
Fast Large Language Model Collaborative Decoding via Speculation

Jiale Fu * 1 2 Yuchu Jiang * 1 2 Junkai Chen 1 2 Jiaming Fan 1 2 Xin Geng 1 2 Xu Yang 1 2

Abstract
Large Language Model (LLM) collaborative de-
coding techniques improve output quality by com-
bining the outputs of multiple models at each gen-
eration step, but they incur high computational
costs. In this paper, we introduce Collaborative
decoding via Speculation (CoS), a novel frame-
work that accelerates collaborative decoding with-
out compromising performance. Inspired by Spec-
ulative Decoding—where a small proposal model
generates tokens sequentially, and a larger tar-
get model verifies them in parallel, our approach
builds on two key insights: (1) the verification
distribution can be the combined distribution of
both the proposal and target models, and (2) al-
ternating each model as the proposer and verifier
can further enhance efficiency. We generalize this
method to collaboration among n models and the-
oretically prove that CoS is never slower than stan-
dard collaborative decoding, typically achieving
faster speed. Extensive experiments demonstrate
CoS is 1.11x–2.23x faster than standard collab-
orative decoding without compromising genera-
tion quality. Our code is available at https:
//github.com/Kamichanw/CoS/.

1. Introduction
Recently, large language models (LLMs) have demonstrated
impressive performance across a wide range of tasks. Be-
yond advances in individual models—such as architectural
innovations and training techniques—there is increasing in-
terest in collaborative approaches involving multiple LLMs
(Lu et al., 2024; Chen et al., 2025). A key class of these
methods combines information from multiple models (e.g.,
probability distributions or logits) during token generation
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Figure 1. Comparison of (a) vanilla collaborative decoding, (b)
speculative decoding, and (c) collaborative decoding via specula-
tion. In (b) and (c), each discrete blue block represents a probability
calculated by one forward pass of Mq , while the continuous green
block indicates the joint distribution requires only one forward
pass of Mp.

to improve next-token prediction and capitalize on the com-
plementary strengths of different models. For instance, en-
sembling methods (Yu et al., 2024; Huang et al., 2024; Yao
et al., 2024) average prediction distributions from multiple
models; contrastive decoding (Li et al., 2023; O’Brien &
Lewis, 2023) improves generation quality and reduces hal-
lucinations by subtracting the outputs of a smaller model
from a larger one; and decoding-time realignment (Liu et al.,
2024; Shi et al., 2024) jointly uses an aligned and an un-
aligned model during decoding to enable flexible control
over alignment. In this paper, we refer to such approaches
collectively as collaborative decoding.

Despite the significant progress in collaborative decoding,
a key challenge persists: combining outputs from multiple
models requires each model to perform a separate forward
pass, which substantially slows down inference compared
to using a single model. This raises a crucial question: can
we speed up collaborative decoding without compromis-
ing quality? To address this, we propose Collaborative
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decoding via Speculation (CoS), a novel framework that
accelerates any form of collaborative decoding while main-
taining output quality. The core idea of CoS comes from
Speculative Decoding (SD) (Xia et al., 2023; Leviathan
et al., 2023).

Speculative Decoding is a technique designed to acceler-
ate LLM inference without sacrificing performance. As
depicted in Figure 1 (b), it uses a smaller but more efficient
proposal model Mq to rapidly generate proposal tokens,
which are then verified in parallel by a larger target model
Mp. The target model accepts a subset of these proposal
tokens, enabling the generation of multiple tokens in a sin-
gle forward pass, thus significantly accelerating inference.
Moreover, by employing specific acceptance-rejection cri-
teria, the generated tokens can be considered as samples
drawn from the distribution of the target model, thus ensur-
ing the generation quality. In this paper, we extend specula-
tive decoding to LLM collaborative decoding based on the
following two observations.

First, SD allows not only sampling from the target
model’s distribution, but also sampling from any com-
bined distribution of the proposal model and target model.
In vanilla SD, the target model’s distribution is directly em-
ployed for token verification and resampling, ensuring that
the generated tokens align with the target model’s distribu-
tion. Similarly, we find that if the combined distribution is
used for verification and resampling, as illustrated in Fig-
ure 1 (c), the generated tokens will follow the combined
distribution. We refer to this generalization of SD to col-
laborative decoding as Naive-CoS. Naive-CoS significantly
reduces the number of model invocations required. For in-
stance, as shown in Figure 1 (a), generating four tokens
with the vanilla collaborative decoding necessitates four in-
vocations to both Mq and Mp, while Naive-CoS, in the
optimal case, requires only four invocations toMq and a
single invocation toMp.

Secondly, alternating each model as proposer and veri-
fier can further accelerate the collaboration process. In
standard SD, the proposer and verifier are fixed, with one
model consistently serving as the proposer and the other as
the verifier. However, we observe that in the collaborative
decoding setting, this static assignment is suboptimal, as
it fails to fully leverage the bonus token. In SD, when all
tokens from the proposal model are accepted by the target
model, the target model will naturally generate an additional
token, referred to as the bonus token. However, since the
bonus token is drawn from the target model’s distribution
rather than the combined distribution, it cannot be directly
appended to the output of collaborative decoding. A naive
solution might be to discard the bonus token or to re-query
the proposal model and compute the combined distribution.
Instead, we propose a more efficient approach: treating the
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(b) Alternate Proposal Framework

Figure 2. The sketch of Alternate Proposal Framework. A contin-
uous colored block indicates a single model invocation, with the
bonus token highlighted in a red rounded box. Beginning from
Step 2, Mq and Mp are invoked alternately. Each invocation in-
volves both the verification of the current token and the generation
of a bonus token. For clarity, we assume that the proposal length
for each model is 1 and that all proposed tokens are accepted.

bonus token as a proposal from the target model, which is
then verified by the proposer model. This insight leads to
the Alternate Proposal Framework, illustrated in Figure 2.
Combined with the Naive-CoS, the alternate proposal frame-
work forms the proposed CoS. We further extend CoS to the
general case of n-model collaboration in Section 3.4.

As shown in Figure 2(a), in standard collaborative decoding,
each model invocation can generate only one probability
distribution, so generating n tokens requires 2n model in-
vocations. With the alternate proposal framework (Figure
Figure 2(b)), each invocation can generate two distributions
in the optimal case, thereby doubling the generation effi-
ciency.

We establish the effectiveness of CoS through both theoreti-
cal and experimental perspectives. Theoretically, we derive
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an expected improvement factor to quantify its acceleration
and prove that CoS is guaranteed to be at least as efficient
as the standard collaborative decoding, typically achieving
greater speed. Additionally, in the weighted ensemble set-
ting—the most common collaborative decoding setting—we
demonstrate that CoS maintains a provable lower bound on
the acceptance rate, ensuring consistently high efficiency.
Experimentally, we conduct extensive experiments across
various tasks, including code generation, mathematical rea-
soning, multi-task understanding, and text summarization.
Our evaluation covers multiple LLM pairs, including Llama,
Vicuna, and Qwen series, under both two-model and three-
model configurations. The results show that CoS consis-
tently achieves the highest acceleration, with speedups of
1.34x–1.85x for weighted ensemble and 1.11x–2.23x for
contrastive decoding.

In summary, our key contributions are as follows: (1) We
extend speculative decoding to the collaborative decoding
setting by refining its verification mechanism, introducing
a Naive-CoS that significantly improves efficiency. (2) We
incorporate an alternate proposal framework into the Naive-
CoS to get the final CoS, further boosting inference speed.
(3) Through extensive theoretical analysis and experimen-
tal evaluation, we demonstrate that our method achieves
substantial acceleration while maintaining a lower bound,
ensuring it never underperforms compared to standard col-
laborative decoding.

2. Related Work
LLM Collaborative Decoding. In this paper, LLM collabo-
rative decoding refers to the integration of information from
multiple LLMs when generating the next token. This typi-
cally involves combining the output probabilities or logits to
compute a final probability distribution. This method can be
used to improve overall performance, especially in solving
complex tasks(Han et al., 2025; 2024). A common approach
is model ensembling, which averages or applies weighted
averaging to the probability distributions of multiple LLMs
to derive the final sampling distribution (Yu et al., 2024;
Huang et al., 2024; Yao et al., 2024). Studies have shown
that this technique can enhance both performance and safety
(Li et al., 2024a). Another method, contrastive decoding, is
based on the observation that smaller models tend to pro-
duce noisier outputs. By subtracting the logits of a smaller
model from those of a larger one, a cleaner and more reli-
able set of logits can be obtained, resulting in higher-quality
outputs (Li et al., 2023; O’Brien & Lewis, 2023). Finally,
decoding-time realignment enables flexible alignment with
human preferences during decoding by linearly combin-
ing the logits of a human-aligned and an unaligned model,
thereby balancing performance with alignment objectives
(Liu et al., 2024; Shi et al., 2024).

Our proposed method, CoS, represents an orthogonal ap-
proach to existing collaborative decoding techniques. It
is designed to substantially improve inference speed while
preserving the benefits of collaboration. Importantly, CoS
is not restricted to accelerating the three methods discussed
above; its generality allows it to enhance the efficiency of
any collaborative decoding approach, including those yet to
be developed.

Speculative Decoding. Speculative decoding (Xia et al.,
2023; Leviathan et al., 2023; Chen et al., 2023) can be
categorized into two main areas: proposal model design and
verification design. In the first category, proposal models
are designed to generate tokens that are more likely to be
accepted by the verifier. This includes independent proposal
models, such as distillation-based method (Zhou et al., 2024)
and target-informed models that incorporate information of
verifier (Zhang et al., 2024; Elhoushi et al., 2024; Monea
et al., 2023; Yi et al., 2024; Monea et al., 2023; Li et al.,
2024b; Sun et al., 2024b).

The second category optimizes target model’s verification
process to improve decoding efficiency, following two main
research directions. The first one increases proposal to-
kens and uses structured attention mechanisms (Miao et al.,
2024; Cai et al., 2024; Li et al., 2024c; Gong et al., 2024)
to validate multiple candidates simultaneously. The second
direction modifies the verification strategy itself, employing
methods like joint probability density estimation (Anony-
mous, 2025a), Monte Carlo tree search (Hu & Huang, 2024),
and a linear binary classifier (Anonymous, 2025b).

The most closely related work is Speculative Contrastive De-
coding (SCD) (Yuan et al., 2024), which combines outputs
from both large and small models during the verification
phase to form a contrastive decoding distribution. Opera-
tionally, SCD can be seen as a special case of Naive-CoS
in the contrastive decoding setting. The method proposed
in this paper differs from SCD in three key ways: (1) CoS
is more broadly applicable and can accelerate any collab-
orative decoding approach; (2) it introduces an alternative
proposal framework that further improves decoding speed;
and (3) it provides a complete theoretical analysis, ensuring
inference efficiency comparable to standard collaborative
decoding methods.

3. Collaborative Decoding via Speculation
3.1. Speculative Decoding

Unlike other acceleration methods (Sun et al., 2024a), spec-
ulative decoding (SD) is a technique designed to speed up
inference while maintaining the quality of generated out-
puts. It involves two phases: the proposal phase and the
verification phase. During the proposal phase, a lightweight
proposal model sequentially generates proposal tokens. In
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the verification phase, a larger target model verifies these
tokens in parallel. Furthermore, by incorporating appropri-
ate acceptance-rejection criteria, the technique ensures that
the generated tokens align precisely with the target model’s
distribution, thus maintaining high-quality results.

Specifically, in the proposal phase, the proposal modelMq

generates a sequence of length γ, denoted as:

(xi+1, xi+2, . . . , xi+γ) ∼
γ∏

j=1

qi+j(x). (1)

Here, xi+j represents the token generated at position i +

j, and qi+j(x) ≜ q(xi+j | x≤i+j−1) is the conditional
probability distribution computed byMq over xi+j , given
the previously generated sequence x≤i+j−1.

In the verification phase, the target model Mp executes
a forward pass, producing γ + 1 target distributions:
pi+1(x), . . . , pi+γ(x), pi+γ+1(x). The first γ distributions
are subsequently used to validate the proposal tokens gen-
erated in the proposal phase. Specifically, a proposal token
xi+j is accepted if the following condition holds:

uj ≤ min

(
1,

pi+j(x)

qi+j(x)

)
(2)

where uj ∼ U(0, 1) represents a uniformly distributed ran-
dom variable. If the token xi+j is rejected, the subsequent
tokens xi+j+1, . . . , xi+γ+1 are discarded, and xi+j is sam-
pled from the distribution norm(max(0, pi+j − qi+j)). If
all γ tokens are accepted, an additional token is directly sam-
pled from pi+γ+1 and appended to the generated sequence,
referred to as the bonus token in our paper.

By iteratively alternating between the proposal and verifica-
tion phases, SD improves inference speed while ensuring the
generated tokens align with the target model’s distribution.

3.2. Naive-CoS

As discussed above, vanilla SD can only accelerate the infer-
ence of a single model. In this subsection, we will introduce
how to apply SD to scenarios involving an arbitrary com-
bination of two models. Specifically, let qi(x) and pi(x)
denote the distributions of token xi given by the proposal
model and the target model, respectively, and let lqi and lpi be
the corresponding logits. Then, the combined distribution
ri(x) can be expressed as

ri(x) = C(qi(x), pi(x)) or C′(lqi , l
p
i ), (3)

where C(·) represents the combination function at the prob-
ability level, while C′(·) is at logits level. For example,
the common weighted ensemble that uses probability for
weighted summation can be expressed as

ri(x) = C(qi(x), pi(x)) = λqi(x) + (1− λ)pi(x), (4)

while contrastive decoding can be represented as

ri(x) = C′(lqi , l
p
i ) = Softmax(lpi − µlqi ). (5)

We note that by making slight modifications to the vanilla
SD, the generated tokens can align with the combined dis-
tribution. Specifically, before verification, we first compute
the combined distribution ri(x) and update the verification
formula in Equation (2) as follows:

uj ≤ min

(
1,

ri+j(x)

qi+j(x)

)
. (6)

Then, if the token is rejected, we resample xi+j from the
distribution norm(max(0, ri+j − qi+j)).

We theoretically prove the correctness of Naive-CoS, that
is, the tokens generated by the above sampling process
precisely align with the combined distribution, with an ac-
ceptance rate α of

α = 1− 1

2
DTV(q, r), (7)

where DTV(q, r) is the total variation distance, defined as
DTV(q, r) =

∑
x∈V |q(x)− r(x)|, where V is the set of all

tokens. The proof is provided in Appendix A.1.

Analysis of speed improvement. In speculative decoding,
inference speed is predominantly influenced by the accep-
tance rate α, with a higher acceptance rate leading to more
substantial speed improvements. In this part, we first ana-
lyze the theoretical speed improvement when α is known.
When α is unknown, we focus on weighted ensemble sce-
nario and provide a lower bound for α. With this bound, we
derive a series of favorable acceleration properties.

Theorem 3.1. Let γ be the proposal length and c be the cost
coefficient, defined as the ratio between the time for a single
invocation of the proposal model and the target model. Then,
the expected speed improvement factor is (1−αγ)(1+c)

(1−α)(1+cγ) .

The proof of Theorem 3.1 is in Appendix A.2. Theorem 3.1
provides the speed improvement factor when α is known.
However, in most cases, α is unknown and requires exten-
sive experiments to estimate. Nevertheless, we find that in
the weighted ensemble scenario, which is the most common
collaborative decoding, α has a lower bound.

Theorem 3.2. If C(p, q) = λq(x) + (1− λ)p(x) and q(x)
is the proposal model. Then α has a lower bound of λ.

Proof. We have α =
∑

x∈V q(x)min
(
1, r(x)

q(x)

)
, then α =∑

x∈V q(x)min
(
1, λ+ (1− λ)p(x)q(x)

)
, and then we get

α ≥
∑

x∈V λq(x) = λ.

The equality holds if and only if p(x)q(x) = 0 for all x ∈ V ,
which means that p(x) and q(x) do not overlap.
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Corollary 3.3. Assume that C(p, q) = λq(x)+(1−λ)p(x),
and thatMq andMp have comparable parameters. Then,
by selecting an appropriate proposal model, α has a lower
bound of at least 0.5.

Proof. Since Mq and Mp have comparable parameters,
either can serve as the proposal model. Therefore, α has a
lower bound of max(λ, 1− λ), which is at least 0.5.

By utilizing the lower bound property, we demonstrate that
the proposed Naive-CoS is guaranteed to be no slower than
the weighted ensemble approach, and it is typically faster.

Corollary 3.4. Assume that C(p, q) = λq(x)+(1−λ)p(x),
then if λ > c

1+c , there exists a value of γ that enhances the
inference speed.

Proof. Consider γ = 2, and solve the inequality
(1−αγ)(1+c)
(1−α)(1+cγ) > 1. Solving this inequality yields α > c

1+c .
Since α ≥ λ follows, establishing the corollary.

Corollary 3.5. Assume that C(p, q) = λq(x)+(1−λ)p(x).
Then, for any λ, there exists a value of γ such that the speed
of the Naive-CoS is not slower than the vanilla weighted
ensemble, and it is almost always faster.

Proof. As stated in Corollary 3.4, if λ > c
1+c , there exists

a value of γ that enhances the inference speed. If we swap
the proposer and the verifier, the condition for acceleration
changes to 1− λ > 1/c

1+1/c , which simplifies to λ < c
1+c .

If λ ̸= c
1+c , either λ > c

1+c or λ < c
1+c must hold, which

ensures a speedup. Otherwise, if λ = c
1+c , then α ≥ λ =

(1−αγ)(1+c)
(1−α)(1+cγ) , which ensures that the speed does not decline.
Moreover, equality only holds when the two distributions
do not overlap, which is almost impossible in practice.

Interpretable quality-speed tradeoff in vanilla SD. In
SD, some studies focus on relaxing the acceptance crite-
ria for a higher acceptance rate to achieve faster inference,
such as lossy SD (Zhou et al., 2024) and typical acceptance
(Cai et al., 2024). However, these methods often lack in-
terpretability, that is, we do not know which distribution
the generated tokens will follow. We find that Naive-CoS
can naturally be an interpretable strategy for adjusting the
quality-speed tradeoff in vanilla SD.

Specifically, we apply a weighted ensemble using the pro-
posal and target models in SD. In this setup, when λ = 0,
the combined distribution aligns exactly with the target dis-
tribution, reducing the method to standard SD. For λ > 0,
the acceptance rate is guaranteed to have a lower bound and
greater than that of vanilla SD, as demonstrated in the proof
of Theorem 3.2, leading to greater acceleration. However,
incorporating less precise information from a smaller model

can introduce some performance degradation. This trade-
off provides a mechanism to balance quality and speed in
speculative decoding.

In contrast to existing approaches, this method improves
interpretability. This is because we know the distribution of
the generated tokens after relaxation, i.e. combined distribu-
tion defined in Equation (4). This allows us to design pro-
posal models that accelerate inference without compromis-
ing performance, and potentially even enhance the model’s
capabilities in specific areas. For instance, some research
suggests that ensembling a smaller model appropriately can
improve safety (Wang et al., 2024; Li et al., 2024a). The
experimental results are shown in Appendix C.1.

3.3. Alternate Proposal Framework

In Section 3.2, we explore the application of speculative de-
coding to LLM collaboration. However, we don’t consider
the bonus token, that is, the additional token generated when
all proposal tokens are accepted. This is because the bonus
token follows the distribution of the verifier rather than the
combined distribution and can not be directly appended
to the output sequence. In this subsection, we introduce
a collaboration framework, termed the alternate proposal
framework, which effectively leverages the bonus token and
demonstrates superior performance.

As shown in Figure 2, in the alternate proposal framework,
the generation of a bonus token is treated as a proposal from
the current verifier, which is subsequently verified by the
current proposer. Specifically, let the proposer be denoted as
Mq and the verifier asMp with proposal lengths γq and γp,
respectively. If all tokens proposed byMq are accepted, a
total of γq + 1 tokens will be generated. The first γq tokens
follows the distribution ri+j(x) = C(qi+j(x), pi+j(x)), for
j = 1, . . . , γq, while the γq + 1-th token is drawn from
pi+γq+1(x). At this stage, the γq+1-th token, referred to as
bonus token, is treated as the initial token inMp’s proposal.
Subsequently,Mp will generate an additional γp−1 tokens
to complete its proposal.

If any proposed tokens are rejected and no bonus token is
generated, the default proposal model will take over as the
proposal model. This default model is predefined and fixed.
As outlined above, the two models alternate as proposers
during the decoding process, which is why this approach is
called the alternate proposal framework. The pseudocode
for this framework is provided in Algorithm 1.

Analysis of speed improvement. We now analyze the
speed improvement achieved by the alternative proposal
framework. For the sake of clarity, we focus on a single
cycle, which encompasses one proposal and one verification.
In this cycle, both the proposer and verifier are fixed. Given
that the decoding process is composed of multiple such
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cycles, the overall decoding performance can be inferred
from the behavior of a single cycle.

First, similar to Theorem 3.1, we provide the expected speed
improvement factor for the alternate proposal framework.

Theorem 3.6. Let Mq be the proposer and Mp be the
verifier, then the expected speed improvement factor of the
alternate proposal framework is (1−αγq )(1+c)

(1−α)(1+cγq−αγpc) .

Proof. When the bonus token is generated, the proposer
only needs to generate γq − 1 new tokens; otherwise, it
must generate γq tokens. The probability of generating
the bonus token is the probability that all proposal tokens
in the last cycle were accepted, which is αγp . Therefore,
the expected time spent on proposal and verification is
αγp (1 + c(γq − 1)) + (1−αγp)(1+ cγq). Then the factor
can be derived following the process in Appendix A.2.

In Corollary 3.5, we proved that in the weighted ensemble
scenario, the Naive-CoS is never slower than the vanilla
collaborative decoding and is typically faster. In this subsec-
tion, with the alternate proposal framework, we extend this
conclusion to any form of two-model collaboration.

Corollary 3.7. For any two models, there exist values of
γq and γp such that the speed of the alternate proposal
framework is never slower than the vanilla collaboration
and is almost always faster.

Proof. Consider γq = γp = 1, then (1−αγq )(1+c)
(1−α)(1+cγq−αγpc) ≥ 1

holds universally. The equality holds only when c = 0 or
α = 0. However, c > 0 because the execution time of the
proposal model is non-negligible, and α > 0 holds unless
the proposal distribution and the combined distribution do
not overlap, which is almost impossible.

An intuitive interpretation of Corollary 3.7 is that when
γq = γp = 1, even in the worst-case scenario—where all
proposal tokens are rejected—each token generation still
requires only one proposal and one verification. This results
in the same number of model invocations as the standard
collaborative decoding. In practice, however, it is rare for
all proposal tokens to be rejected. Once a token is accepted,
the collaboration process becomes more efficient.

3.4. Generalize to More Models

In this subsection, we extend CoS to the n-model collabo-
ration scenario. The core principles remain similar to the
two-model case, with acceleration driven by two key factors.
First, each model can score the proposals of other models
in parallel, where scoring refers to computing the probabil-
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Figure 3. The sketch of CoS in three-model collaboration scenario.
The colored boxes represent the stored probability distributions,
while the gray boxes represent the discarded ones. Each invocation
involves scoring the current proposal tokens and generating a bonus
token. For clarity, we assume that the proposal length for each
model is 1 and that all proposed tokens are accepted.

ity distribution of a proposal from other models.1 Second,
during scoring, a model can naturally generate a bonus to-
ken, which further improves efficiency. We illustrate the
CoS process in the n-model scenario with a simple example,
while detailed pseudocode and a general visualization are
provided in Appendix B.2.

As shown in Figure 3, the process begins in step 1 with the
default proposal model,M1, generating a proposal token x1.
In step 2,M2 scores x1 while simultaneously generating
a bonus token x2. Similarly, in step 3, M3 scores both
x1 and x2 in parallel and produces another bonus token,
x3. At this point, x1 has been scored by both M2 and
M3, enabling the computation of its combined distribution
r1(x) for verification. The associated distributions p(1)1 (x),
p
(1)
2 (x), p(1)3 (x) are no longer needed and are discarded.

If x1 is accepted,M1 computes p(1)2 (x), p(1)3 (x), p(1)4 (x) in
parallel as shown in step 5, allowing verification of x2. Oth-

1We use the term “scoring” rather than “verification” because,
unlike in the two-model case, scoring does not immediately trigger
verification; instead, verification occurs only after all models have
scored a token.
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erwise, if x1 is rejected, all stored distributions are cleared,
andM1 generates a new proposal, similar to step 1.

4. Experiments
4.1. Experimental Setups

Datasets and evaluation. We test CoS across multiple tasks
including code generation, mathematical reasoning, multi-
task understanding, and text summarization on HumanEval
(Chen et al., 2021), GSM8K (Cobbe et al., 2021), MMLU
(Hendrycks et al., 2021), and CNNDM (See et al., 2017),
respectively. We measure each method’s speed by the aver-
age tokens generated per second and compute the speedup
ratio relative to the standard collaborative decoding. All
experiments are conducted on RTX 3090, except for evalu-
ations involving the Llama-Vicuna model pair, which use
the A6000 GPU. Additionally, we also test on the Ascend
910B3 NPU; the corresponding results are shown in Table 9
and Table 10.

Combination functions and methods. We experiment with
two combination functions: weighted ensemble (WE) at the
distribution level (Equation (4)) and contrastive decoding
(CD) at the logits level (Equation (5)). For WE, in the two-
model case, we set λ = 0.5 and temperature T = 1; in the
three-model case, each model’s coefficient was set to 1/3.
For CD, we set µ = 0.1, which is the most common setting,
and set T to both 0 and 1. WE with T = 0 is not tested due
to its uncommon use, as it leads to a one-hot distribution,
reducing information. Among two combination functions,
four methods are compared: (1) the standard collaborative
decoding (WE, CD); (1) parallel collaborative decoding
(WE-P, CD-P); (2) an accelerated version with speculative
decoding (SD), using the smallest model as the proposal and
the combined distribution as the target (WE-SD, CD-SD);
and (3) CoS (WE-CoS, CD-CoS). Since SCD is equivalent
to Naive-CoS, its results are included in our ablation on
alternative proposal frameworks (Appendix C.4).

Model pair configuration. We experiment on different
types of LLMs, including Llama-2 (Touvron et al., 2023;
Miao et al., 2024), Vicuna (Zheng et al., 2023), Llama-3
(Dubey et al., 2024), Qwen-2.5 (Team, 2024), and OPT
(Zhang et al., 2022). Model pair configurations for each
combination function are in Table 1. We also test a three-
model collaboration using Qwen2.5-1.5B-Instruct and its
code and math versions in the WE setting.

Configuration of γ. The proposal length γ is the only
hyperparameter in SD, affecting the algorithm’s acceleration.
In the two-model CoS setting, γ corresponds to the proposal
length of the smaller model, with the larger model fixed at
1. For simplicity, we refer to the smaller model with γ > 1
as the proposal model of CoS, since it typically serves this
role. We tested γ = 5 and γ = 1 for CoS and SD speeds,

Table 1. Model pair configuration. The first column represents the
name of the corresponding model pair for simplicity.

Name Mq Mp

Weight Ensemble (WE)

Llama-Vicuna Llama-2-7B Vicuna-7B-V1.5
Qwen-3b Qwen2.5-3B-Instruct Qwen2.5-Coder-3B-Instruct
Qwen-1.5b Qwen2.5-1.5B-Instruct Qwen2.5-Coder-1.5B-Instruct

Contrastive Decoding (CD)

Llama-3 Llama-3.2-1B Llama-3.1-8B-Instruct
Llama-2 Llama-68M Llama-2-7B
OPT OPT-125M OPT-13B

reporting the optimal results. γ = 5 is the common setting,
while γ = 1 ensures acceleration (Corollary 3.7). In the
three-model CoS, all models have a proposal length of 1.

4.2. Main Results

Table 2 and Table 3 display the speedup ratios for each
method relative to the standard collaborative decoding in
the WE and CD settings, respectively.2 From these two
tables, we have the following findings. First, CoS not only
consistently achieves the highest speedup in all settings, it
also gets speedup across all settings, which supports the
findings in Corollary 3.7. In contrast, SD may reduce the
collaboration speed in some cases. For example, when
using the Llama-2 model pair with T = 1 on HumanEval
in Table 3, applying SD reduces the speed to 0.94x of the
standard collaboration. A similar speed reduction was also
observed in the three-model scenario in Table 2. This is
because vanilla SD does not inherently ensure acceleration.
When the acceptance rate is low, SD may perform slower
than standard decoding.

Second, compared to the CD scenario, the WE scenario
ensures a higher minimum speedup for CoS. In the two-
model case, CoS achieves a minimum speedup of 1.34x,
while in the three-model case, it reaches at least 1.27x. In
contrast, the CD scenario has a speedup as low as 1.11x.
This difference arises because CoS maintains a consistently
high acceptance rate in the WE scenario, as outlined in
Corollary 3.3.

Third, the speedup varies across tasks and is influenced by
the determinism of task outputs. For example, in the WE
scenario, CoS achieved the highest speedup on HumanEval,
averaging 1.65x, as code generation demands strictly for-
matted outputs. Conversely, CoS has a lower speedup of
1.36x on a text summarization task, where output flexibility
is higher. This difference stems from the alignment between
the proposal and target models: in highly deterministic tasks,
their outputs exhibit greater similarity, leading to a higher

2The results of OPT model pair are shown in Appendix C.2.
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Figure 4. Comparison of speedup ratios for different λ in WE across diverse setings. The blue and green lines represent the speedup ratios
when the corresponding models serve as the proposal model, while the shaded region highlights the maximum speedup between the two.
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Figure 5. Comparison of speedup ratios for different µ in CD
across different temperatures and datasets.

acceptance rate and, consequently, stronger acceleration.

4.3. Analysis

Impact of proposal length γ. We evaluate the influence
of various γ values, ranging from 1 to 5, on speedup across
both the WE and CD scenarios, utilizing the HumanEval and
GSM8K datasets. The results in Figure 6 show that when the
models are similar in size, the speedup ratio remains stable
across γ values, as seen in the WE scenario Figure 6 (a).
This is because the high cost of invoking the proposal model
offsets the speedup from increasing γ. However, when
the models differ significantly in size, the speedup ratio
varies considerably with γ, as shown in the CD scenario
Figure 6 (b) and (c).

Additionally, we observe that speedup initially increases
with γ before decreasing. For example, in the experiment
with the Llama-3 model pair on GSM8K (Figure 6 (b)),
speedup improves as γ rises from 1 to 5, peaks at γ = 5,
and then declines. This behavior is explained by two fac-
tors: increasing γ boosts the expected number of accepted

Table 2. The speedup ratio of each method in WE setting. The
method with the optimal speedup is highlighted in bold.

Method HumanEval GSM8K MMLU CNNDM

L
la

m
a

V
ic

un
a

WE 1.00x 1.00x 1.00x 1.00x

WE-P 0.69x 0.73x 0.70x 0.75x

SD 1.27x 1.21x 1.19x 1.15x

CoS 1.58x 1.52x 1.41x 1.46x

Q
w

en
-3

b WE 1.00x 1.00x 1.00x 1.00x

WE-P 0.74x 0.79x 0.79x 0.77

SD 1.13x 1.06x 1.09x 1.08x

CoS 1.62x 1.52x 1.42x 1.38x

Q
w

en
-1

.5
b WE 1.00x 1.00x 1.00x 1.00x

WE-P 0.63x 0.62x 0.64x 0.63x

SD 1.11x 1.13x 1.08x 1.10x

CoS 1.56x 1.46x 1.34x 1.35x

Q
w

en
-1

.5
b

(3
M

od
el

) WE 1.00x 1.00x 1.00x 1.00x

WE-P 0.54x 0.73x 0.80x 0.82x

SD 0.96x 0.92x 0.98x 0.95x

CoS 1.85x 1.53x 1.38x 1.27x

tokens, which improves acceleration; while later proposal
tokens depend on earlier, unverified tokens, making them
less accurate and more likely to be rejected, which wastes
computation. Thus, the optimal speedup is achieved at a
specific γ. In some cases, however, speedup either monoton-
ically increases or decreases due to high or low acceptance
rates. For instance, this is observed in the experiment exper-
iments with the Llama-3 pair on HumanEval (Figure 6 (b))
and the Llama-2 pair on HumanEval (Figure 6 (c)).

Speedup ratio for different weight λ in WE. We exam-
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Figure 6. Comparison of speedup ratios for different γ across different settings.

Table 3. The speedup ratio of each method in CD setting.

T Method HumanEval GSM8K MMLU CNNDM

L
la

m
a-

3

0

CD 1.00x 1.00x 1.00x 1.00x
CD-P 0.41x 0.40x 0.41x 0.41x
SD 2.04x 1.81x 1.52x 1.58x
CoS 2.23x 2.00x 1.77x 1.61x

1

CD 1.00x 1.00x 1.00x 1.00x
CD-P 0.39x 0.41x 0.42x 0.41x
SD 1.55x 1.21x 1.20x 1.07x
CoS 1.65x 1.44x 1.31x 1.18x

L
la

m
a-

2

0

CD 1.00x 1.00x 1.00x 1.00x
CD-P 0.59x 0.50x 0.54x 0.48x
SD 1.15x 1.62x 1.08x 0.93x
CoS 1.26x 1.65x 1.68x 1.30x

1

CD 1.00x 1.00x 1.00x 1.00x
CD-P 0.56x 0.51x 0.53x 0.49x
SD 0.94x 1.16x 1.23x 1.10x
CoS 1.15x 1.20x 1.37x 1.11x

ine the speedup effect of CoS when λ takes values other
than just 0.5. Specifically, we conduct experiments with
λ values ranging from 0.1 to 0.9, using the Llama-Vicuna
and Qwen-3b model pairs on the HumanEval and GSM8K
datasets. The results, presented in Figure 4, show that CoS
consistently achieves a high speedup of at least 1.5x across
all tested λ values. This consistent speedup occurs because,
when the two models are of similar sizes, for any λ, an
appropriate proposal model can be selected to maintain a
high acceptance rate during CoS process (as explained in
Corollary 3.3), ensuring the observed speedup.

Speedup ratio for different weight values of µ in CD. Sim-
ilarly, we examine the speedup effect of CD when µ takes
other values. Specifically, we conduct experiments with µ
ranging from 0.1 to 0.5, using the Llama-3 model pair on the
HumanEval and GSM8K datasets. The results, presented
in Figure 5, show that CoS consistently accelerates the CD

process across all tested µ.

Furthermore, we find that an increase in µ results in a re-
duced speedup. This occurs because CD computes the com-
bined distribution by subtracting the proposal model’s in-
formation from the target model’s. As µ grows, the gap
between these distributions widens, lowering the acceptance
rate (Equation (7)). Despite this, the speedup ratio remains
above 1.00x, confirming that CD-CoS always accelerates,
consistent with Corollary 3.7.

5. Conclusion
This paper introduces Collaborative Decoding via Specula-
tion (CoS), an extension of speculative decoding that acceler-
ates LLM collaborative decoding while maintaining output
quality. CoS refines the verification mechanism for direct
collaborative sampling and introduces an alternate proposal
framework to further boost efficiency. We demonstrate the
effectiveness of CoS through both theoretical analysis and
empirical validation.
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A. Mathematical Proofs
A.1. Correctness of CoS

Assume that in speculative decoding, the proposal distribution is q(x), the target distribution is p(x), and the combined
distribution is r(x) = C(q(x), p(x)). Referring to the proof of speculative decoding correctness (Leviathan et al., 2023), we
now prove that the sampling method described in Section 3.2 ensures that the generated tokens align with the combined
distribution r(x).

First, we have:

P (x = x′) = P (proposal x′ accepted) · P (proposal = x′) + P (proposal rejected) · P (resampled = x′) (8)

By definition, P (proposal x′ accepted) = min
(
1, r(x′)

q(x′)

)
and P (proposal = x′) = q(x′).

P (proposal rejected) =
∑
x∈V

q(x)

[
1−min

(
1,

r(x)

q(x)

)]
=

∑
x∈V

[q(x)−min (q(x), r(x))]

=
∑
x∈V

max (r(x)− q(x), 0)

(9)

and by definition, P (resampled = x′) =
max(r(x′)− q(x′), 0)∑
x∈V max (r(x)− q(x), 0)

. Substituting these into Equation (8), we get:

P (x = x′) = P (proposal x′ accepted) · P (proposal = x′) + P (proposal rejected) · P (resampled = x′)

= min

(
1,

r(x′)

q(x′)

)
· q(x′) +

∑
x∈V

max (r(x)− q(x), 0) · max(r(x′)− q(x′), 0)∑
x∈V max (r(x)− q(x), 0)

= min(q(x′), r(x′)) + max(r(x′)− q(x′), 0)

= r(x′).

(10)

The acceptance rate P (proposal accepted) is computed as:

P (proposal accepted) = 1− P (proposal rejected)

= 1−
∑
x∈V

max (r(x)− q(x), 0)

= 1− 1

2

∑
x∈V
|r(x)− q(x)|

= 1− 1

2
DTV(r, q).

(11)

A.2. Proof of Theorem 3.1

Referring to the proof given by Leviathan et al. (2023), our proof is as follows:

First, after one proposal and one verification, the proposed method generates at least one token, so P (#tokens = 0) = 0
and P (#tokens = 1) = 1. If the model generates i tokens (1 < i < γ), it means the first i− 1 tokens are accepted and the
i+ 1-th token is rejected. Therefore, P (#tokens = i) = αi−1(1− α). If the model generates γ tokens (i = γ), it means
the first γ − 1 tokens are accepted. Thus, P (#tokens = γ) = αγ−1.

E(#tokens) =

γ∑
i=0

iP (#tokens = i) =
1− αγ

1− α
(12)
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Note this value differs from that given by Leviathan et al. (2023). This discrepancy is because, in Section 3.2, we do not
account for the bonus token.

Assume that the time required to invoke the target model once is T , and the time required to invoke a proposal model is
cT . Therefore, one proposal and one verification together take (γc+ 1)T time. The time required to generate one token is
(1−α)(γc+1)

1−αγ T . In the vanilla collaborative decoding, the time required to generate one token is (c+ 1)T . Therefore, the

improvement factor in total walltime is (1−αγ)(1+c)
(1−α)(γc+1) .

B. Algorithm Details
B.1. Alternate Proposal Framework

We provide the detailed pseudo-code of the alternate proposal framework (see Algorithm 1), which is introduced in
Section 3.3.

Algorithm 1 The alternate proposal framework. PROPOSE takes the current token sequence S and a constant γ as inputs
and generates γ tokens T . SCORE feeds a sequence to the current verifier to obtain logits L and a bonus token t. VERIFY
examines T to decide whether it should be accepted according to combined logits.

input ModelsMp,Mq; proposal lengths γq, γp ; prefix sequence prefix.
S ← prefix
C ← ∅ ▷ Initialize cached tokens
while not finish do

if C = ∅ then
▷ Standard speculative decoding step
proposer←Mq

verifier←Mp

T ← PROPOSE(S, proposer.γ)
else
▷ Alternate proposal decoding step
SWAP(proposer, verifier)
T ← C + PROPOSE(S + C, proposer.γ − C.length)

end if
L, t← SCORE(T )
L′ = C′(L)
VERIFY(T, L′)
if all tokens in T are accepted then
C ← t

else
▷ Some tokens are rejected, clear C and resample from
T ← resample from residual distribution
C ← ∅

end if
S ← S + T

end while
return S

B.2. CoS Framework

The CoS framework is a generalization of the alternate proposal framework to scenarios involving more than three models.
Figure 7 illustrates our CoS in a three-model scenario, where the modelsM1,M2,M3 have proposal lengths of γ1 = 3,
γ2 = 2, and γ3 = 1, respectively.

Specifically, in step 1, the default proposal model is invoked to generate γ1 = 3 proposal tokens: x1, x2, x3. In step 2,M2

is invoked to score x1, x2, x3 while naturally generating a bonus token, x4. SinceM2 has a proposal length of γ2 = 2, it is
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then invoked again to generate an additional γ2 − 1 = 1 proposal token to complete its proposal. In step 3,M3 is called to
score x1, . . . , x5 in parallel and generate a bonus token, x6.

At this stage, x1, x2, x3 have been scored by all models, allowing the combined distributions r1(x), r2(x), r3(x) to be
computed and used for verification, as illustrated in step 3. Assuming that x1, x2, x3 are all accepted, their corresponding
probability distributions are no longer needed and are discarded, as shown in step 4. Subsequently, in step 5,M1 is invoked
again to score x4, x5, x6 and generate new proposal tokens: x7, x8, x9.

Next, x4 and x5 undergo verification. If x4 is accepted while x5 is rejected, x4 remains unchanged, whereas x5 is replaced
with x′

5, which is generated through the resampling phase. Since the 5-th token has changed, all subsequent proposal tokens
and probability distributions derived from it become invalid and are discarded, as illustrated in step 6. Once these are
removed, the default proposal model is invoked to generate γ1 new proposal tokens, similar to step 1.

The corresponding pseudocode is provided in Algorithm 2.

1 2 3Token id

Token ~~ ~~~~ ~~~ ~~~ ~~~~

VerifyVerifyVerifyVerify VerifyVerifyVerifyVerify VerifyVerifyVerifyVerify

Step 3: Current Model:              

1 2 3Token id

Step 1: Current Model:              

Token ~~ ~~~~

1 2 3 4Token id

Token

5

~~~ ~~~

6

~~~~

Step 4: Current Model:              

~~ ~~~~~ ~~

1 2 3 4Token id

Token ~~ ~~~~
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~~~ ~~~

Step 2: Current Model:              Step 2: Current Model:              

Step 6: Current Model:              
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Token

5

~~~

6 7 8 9

~~ ~~~~ ~~~ ~~

Step 5: Current Model:              

1 2 3 4Token id
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~~~ ~~~
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~~~~ ~~~~~ ~~~~~ ~~~~~~

VerifyVerifyVerifyVerify VerifyVerifyVerify

~~ ~~~~~ ~~

1 2 3 4Token id

Token

5

~ ~

6

~ ~ ~ ~

Verify Verify
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7 8 97 8 94 5 64 5 6 7 8 94 5 6 6

7 8 97 8 9

7 8 97 8 9

Step 6: Current Model:              

1 2 3 4Token id

Token

5
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~~~~ ~~~~~ ~~~~~ ~~~~~~~~ ~~~~ ~~~ ~~

DiscardDiscardDiscard

7 8 97 8 9

Step 7: Current Model:              

1 2 3 4Token id

Token

5

~~~
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~~~~~~

ResampleResampleResampleResample
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Figure 7. The sketch of CoS framework in three-model scenario. The colored boxes represent the stored probability distributions, while
the grey boxes represent the cleared ones. Each invocation involves scoring the current proposal tokens and generating a bonus token. The
proposal length for model M1,M2,M3 is 3, 2, 1, respectively.
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Algorithm 2 The CoS framework. PROPOSE employs modelM to take the current token sequence S and a constant γ
as inputs and generates γ tokens T . SCORE employs modelM to score a sequence to obtain sequence probabilities P , a
bonus token t and its probability p . VERIFY examines T to decide whether it should be accepted according to combined
probability distribution.

input ModelsM1, . . . ,Mn; proposal lengths γ1, . . . γn, prefix sequence prefix.
S ← prefix
Sc ← ∅ ▷ Initialize cached sequence
Ci ← ∅, for i = 1, . . . , n ▷ Initialize cached probabilities for each model
while not finish do

if Sc = ∅ then
T, P ← PROPOSE(M1, S, γ1) ▷ If no cached sequence, default proposerM1 is invoked to generate proposal
Sc ← T ▷ Cache proposal tokens T and corresponding probabilities P
C1 ← P

else
i← argmini |Ci| ▷ Find the model with the shortest cached probabilities, | · | represents the number of elements
P, t, p← SCORE(Mi, Sc) ▷ Score the Sc, generating probabilities of Sc, bonus token t and its probability p
Sc ← Sc ∪ {t}
Ci ← Ci ∪ P ∪ {p}
while ∀j, Cj ̸= ∅ do
▷ If all Cj are nonempty, t1 (the first token of Sc) must have been scored by all models, so verify it
p′ ← C(p11, . . . , pn1) ▷ pij represents the j-th probability of Ci

VERIFY(p′, t1)
if t1 is accepted then
Sc ← Sc\{t1}
Cj ← Cj\{pj1}, for j = 1, . . . , n

else
t1 ← resample a token from residual distribution
Sc ← ∅
C ← ∅, for j = 1, . . . , n

end if
S ← S ∪ {t1}

end while
T, P ← PROPOSE(Mi, S + Sc, γi − 1) ▷ Generate more γi − 1 tokens to finish the proposal
Sc ← Sc ∪ T
Ci ← Ci ∪ P

end if
end while
return S
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C. Additional Results
C.1. CoS for Quality-Speed Tradeoff

As outlined in 3.2, creating a weighted ensemble of the proposal and target models in CoS offers a way to balance the
tradeoff between quality and speed. We conducted experiments with the Llama-3 model pair on four datasets, adjusting λ
from 0.1 to 0.9. As shown in Figure 8, increasing λ leads to a steady improvement in inference speed but a gradual decline
in performance, allowing users to choose a tradeoff that best suits their needs.
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Figure 8. CoS for quality-speed tradeoff

C.2. Speedup on OPT Model Pair

The results are shown in Table 4.

Table 4. The speedup ratio of each method in CD setting.

T Method HumanEval GSM8K MMLU CNNDM

O
pt

0
CD 1.00x 1.00x 1.00x 1.00x

CD-SD 0.97x 1.05x 1.47x 1.40x
CD-CoS 3.28x 2.61x 3.42x 3.95x

1
CD 1.00x 1.00x 1.00x 1.00x

CD-SD 1.47x 1.55x 2.11x 1.85x
CD-CoS 1.69x 1.76x 2.16x 1.85x

C.3. The Raw Speed

The results are shown in Table 5 and Table 6.

C.4. Ablation study on Alternate Proposal Framework

The results are shown in Table 7 and Table 8. Note that CD-CoS without APF is equivalent to SCD.

C.5. Speedup on NPUs

The results are shown in Table 9 and Table 10.
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Table 5. The raw speed of each method under WE setting. The table reports the average number of tokens generated per second. Models
are of comparable sizes.

Model Pair Method HumanEval GSM8K MMLU CNNDM

Llama-Vicuna
WE 22.617 22.054 20.459 20.782

WE-SD 28.723 26.685 24.346 23.899

WE-CoS 35.734 33.522 28.847 30.341

Qwen-3b
WE 49.624 49.025 47.764 46.966

WE-SD 56.075 51.966 52.062 50.723

WE-CoS 80.390 74.518 67.824 64.813

Qwen-1.5b
WE 82.584 77.941 79.631 76.625

WE-SD 91.668 88.073 86.001 84.287

WE-CoS 128.831 113.793 106.705 103.443

Qwen-1.5b
WE 57.048 53.869 53.742 56.286

WE-SD 55.050 51.082 52.666 51.927

WE-CoS 105.485 68.287 74.426 85.980

Table 6. The raw speed of each method under CD setting. Models are of different sizes.

Model Pair T Method HumanEval GSM8K MMLU CNNDM

Llama-3

0
CD 39.387 38.735 38.969 38.100

CD-SD 80.349 70.110 59.233 60.198

CD-CoS 87.833 77.470 68.975 61.341

1
CD 38.981 38.585 39.028 38.124

CD-SD 60.421 46.688 46.834 40.793

CD-CoS 64.319 55.562 51.127 44.986

Llama-2

0
CD 49.314 48.129 49.700 46.215

CD-SD 56.711 77.969 53.676 42.980

CD-CoS 62.136 79.413 83.496 60.080

1
CD 47.325 47.015 47.492 43.512

CD-SD 44.486 54.537 58.415 47.863

CD-CoS 54.424 56.418 65.064 48.298

OPT

0
CD 23.525 23.525 19.576 19.692

CD-SD 23.211 24.701 28.776 27.568

CD-CoS 78.487 61.400 66.949 77.783

1
CD 23.934 23.422 19.492 19.671

CD-SD 35.182 36.304 41.128 36.391

CD-CoS 40.448 41.222 42.102 36.391
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Table 7. Ablation study on alternate proposal framework (APF) under weighted ensemble (WE) setting (λ = 0.5). Models are of
comparable sizes.

Model Pair Method HumanEval GSM8K

Llama-Vicuna
w/o APF 1.46x 1.39x

WE-CoS 1.58x 1.52x

Qwen-3b
w/o APF 1.40x 1.32x

WE-CoS 1.62x 1.52x

Table 8. Ablation study on alternate proposal framework (APF) under contrastive decoding (CD) setting (µ = 0.1). Models are of
different sizes.

Model Pair T Method HumanEval GSM8K

Llama-3
0 w/o APF 1.98x 1.72x

CD-CoS 2.23x 2.00x

1 w/o APF 1.41x 1.24x
CD-CoS 1.65x 1.44x

Llama-2
0 w/o APF 1.18x 1.59x

CD-CoS 1.26x 1.65x

1 w/o APF 0.89x 1.21x
CD-CoS 1.15x 1.20x

Table 9. The raw speed of each method under both WE and CD settings using the Ascend 910B3 NPU.

Model Pair Method HumanEval GSM8K MMLU CNNDM

Llama-Vicuna
WE 7.60 5.83 2.60 2.35
WE-SD 13.59 8.73 3.81 3.55
WE-CoS 14.14 9.98 4.32 4.06

Llama-2
CD 11.98 10.63 4.96 4.51
CD-SD 13.00 16.28 7.098 4.83
CD-CoS 16.71 16.30 7.54 5.23

Table 10. The speedup ratio of each method under both WE and CD settings using the Ascend 910B3 NPU.

Model Pair Method HumanEval GSM8K MMLU CNNDM

Llama-Vicuna
WE 1.00x 1.00x 1.00x 1.00x
WE-SD 1.79x 1.50x 1.47x 1.51x
WE-CoS 1.86x 1.71x 1.66x 1.73x

Llama-2
CD 1.00x 1.00x 1.00x 1.00x
CD-SD 1.09x 1.53x 1.43x 1.07x
CD-CoS 1.39x 1.53x 1.52x 1.16x
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