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MVCUSTOM: MULTI-VIEW CUSTOMIZED DIFFUSION VIA
GEOMETRIC LATENT RENDERING AND COMPLETION

Anonymous authors
Paper under double-blind review

Inference conditioned on camera pose and text description
Text prompt : "A V* teddybear under a Christmas tree surrounded by presents.”
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Figure 1: Comparison between MVCustom and existing approaches extended to multi-view customiza-
tion. The light blue box shows the reference multi-view images and corresponding camera poses of a
customized object. The ’X’ marks indicate regions inconsistent with either the reference object’s appearance
or across views, while ’O’ marks indicate well-maintained consistency. Our approach clearly outperforms
existing methods by achieving accurate viewpoint alignment and robust multi-view consistency for both the
customized object and novel surroundings generated from diverse textual prompts.

ABSTRACT

Multi-view generation with camera pose control and prompt-based customization are both
essential elements for achieving controllable generative models. However, existing multi-
view generation models do not support customization with geometric consistency, whereas
customization models lack explicit viewpoint control, making them challenging to unify.
Motivated by these gaps, we introduce a novel task, multi-view customization, which aims
to jointly achieve multi-view camera pose control and customization. Due to the scarcity of
training data in customization, existing multi-view generation models, which inherently
rely on large-scale datasets, struggle to generalize to diverse prompts. To address this, we
propose MVCustom, a novel diffusion-based framework explicitly designed to achieve both
multi-view consistency and customization fidelity. In the training stage, MVCustom learns
the subject’s identity and geometry using a feature-field representation, incorporating the
text-to-video diffusion backbone enhanced with dense spatio-temporal attention, which
leverages temporal coherence for multi-view consistency. In the inference stage, we intro-
duce two novel techniques: depth-aware feature rendering explicitly enforces geometric
consistency, and consistent-aware latent completion ensures accurate perspective alignment
of the customized subject and surrounding backgrounds. Extensive experiments demon-
strate that MVCustom achieves the most balanced and consistent competitive performance
across multi-view consistency, customization fidelity, demonstrating effective solution of
multi-objective generation task.

1



047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

Task Method Fidelity Holistic S.MV H.MV

(a) Customization DreamBooth, CustomDiffusion, etc. O O X X
(b) Subject-only text-to-MV gen. FlexGen, Make-Your-3D, etc. X X O X
(c) Text-to-MV generation CameraCtrl, ViewDiff, etc. X O O O
(d) Subject-only image-to-MV gen. SV3D, SyncDreamer, etc. X X O X
(e) Image-to-MV gen. SEVA, CAT3D, ViewCrafter, etc. X O O O
(f) Viewpoint-aware subject custom. CustomDiffusion360, CustomNet O O O X

(g) Multi-view customization MVCustom (ours) O O O O

Table 1: Comparison of existing tasks and representative methods. Fidelity refers to preserving object
identity from reference images and alignment with textual prompts in customization. Holistic denotes whether
both subjects and the surroundings described in a prompt are synthesized. S.MV evaluates whether subjects
remain consistent across different viewpoints. H.MV consistency refers to whether both subjects and their
surroundings are holistically consistent across viewpoints. MV stands for multi-view.

1 INTRODUCTION

As generative models advance rapidly, users are increasingly demanding fine-grained controllability. Among
the essential elements, two forms of control are significant: camera control and customization. First, camera
control is to generate images for specified viewpoints, which is essential in domains such as 3D understanding.
In particular, ensuring camera pose control and multi-view consistency for both the subject and its surroundings
is crucial for realistic and immersive content, as misalignment across views severely undermines geometric
coherence. Second, customization is to capture user-specific subjects, or concepts, supporting personalized
content generation and supporting applications such as creative media and design prototyping, etc.

While each form of control is valuable on its own, integrating them unlocks significantly richer applications.
A unified framework that supports both capabilities enables 3D customization for virtual prototyping and
personalized asset generation, where both user-specific fidelity and geometric consistency are indispensable.
Moreover, it broadens the scope of controllable generative models, enabling realistic, immersive, and user-
tailored content beyond the reach of existing approaches. To this end, we introduce the novel task of multi-view
customization, which requires (1) generating images that adhere to specified camera parameters for consistent
perspective alignment, (2) preserving subject identity provided by reference images, and (3) coherently
adapting both subjects and their surrounding context to diverse textual prompts.

However, to the best of our knowledge, no prior method fully satisfies the requirements of the multi-view
customization. As summarized in Tbl. 1, conventional customization methods (Lee et al., 2024; Ruiz et al.,
2023; Kumari et al., 2024) preserve reference identity and align with prompts, but lack viewpoint control.
Most multi-view generation methods focus only on subjects, neglecting consistent surroundings across views
(cases b, d in Tbl. 1). Some holistic multi-view generation methods (He et al., 2024; Zhou et al., 2025) provide
full-frame consistency but do not support personalization to novel reference concepts (cases c, e). Viewpoint-
aware subject customization methods (Kumari et al., 2024; Yuan et al., 2023) remain subject-centric, leading
to inconsistent surroundings across views (case f). These limitations underscore the need for a new approach
explicitly designed for multi-view customization.

Directly adopting multi-view generation frameworks, which rely heavily on large-scale training data, is
infeasible in the customization setting, where only a few reference images are available. A straightforward
baseline applies conventional customization methods (Ruiz et al., 2023; Hu et al., 2021) directly to text-
conditioned multi-view backbones (c in Tbl. 1), but this approach cannot preserve subject identity and
reduces camera pose control ability. Another naive baseline generates a single customized image, then applies
image-conditioned multi-view generation models (f in Tbl. 1), but the inherent ambiguity of a single view
leads to inconsistent spatial relationships and degraded fidelity, as illustrated in Fig. 1.

2



094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

To address these challenges, we propose MVCustom, a diffusion-based framework explicitly designed for
robust multi-view customization. Our method separates training and inference stages to effectively handle
limited data and ensure geometric consistency across diverse prompts. In the training stage, we leverage
pose-conditioned transformer blocks (Kumari et al., 2024). However, a key change is using the video
diffusion backbone enhanced with dense spatio-temporal attention to transfer temporal coherence into holistic-
frames consistency, ensuring spatial coherence of both the subject and their surroundings across views. At
inference, the key challenge is ensuring multi-view geometric consistency for novel prompts, particularly
for the subject’s surroundings that lack supervision from limited training data. To address this, we introduce
two novel inference-stage techniques: depth-aware feature rendering, which explicitly enforces geometric
consistency using inferred 3D scene geometry, and consistent-aware latent completion, which naturally
completes previously unseen regions revealed by viewpoint shifts. Extensive comparisons demonstrate that
MVCustom is the only approach that effectively integrates accurate multi-view generation and high-fidelity
customization.

Our contributions are summarized as follows:

• We propose a novel task, multi-view customization, clearly define its requirements, and systematically
analyze the limitations of existing methods and tasks.

• We introduce a video diffusion-based backbone enhanced with dense spatio-temporal attention modules,
effectively transferring temporal coherence into multi-view consistency.

• To accommodate limited data in customization, we propose two novel inference-stage methods: depth-
aware feature rendering for explicit geometric consistency, and consistent-aware latent completion for
consistent and realistic completion of disoccluded regions.

2 RELATED WORK

Conventional text-based customization. Customization methods generate images guided by textual
prompts while preserving identities from reference images, typically by learning concept-specific embed-
dings (Gal et al., 2022), fine-tuning models (Ruiz et al., 2023), or applying lightweight adaptations (Hu et al.,
2021). Recent approaches further enhance text-image alignment (Alaluf et al., 2023; Li et al., 2024a) and
multi-subject control (Kumari et al., 2023; Kwon & Ye, 2024). However, these methods typically lack explicit
control over viewpoint. Some works achieve pose-variant compositions (Li et al., 2024b; Song et al., 2024),
but do not support explicit camera pose control. Methods like CustomDiffusion360 (Kumari et al., 2024)
and CustomNet (Yuan et al., 2023) incorporate viewpoint control yet remain predominantly subject-centric,
neglecting to coherently represent their surroundings. In contrast, our proposed MVCustom explicitly ensures
robust spatial coherence for both customized subjects and surroundings across diverse viewpoints.

Multi-view generation. Multi-view generation models (Zhao et al., 2025; Tang et al., 2024; Alper et al.,
2025; Shin et al., 2023) focus on synthesizing consistent multiple views. However, these models typically
require large datasets to learn 3D geometry and inpaint newly visible regions, making them unsuitable for
customization with only a few reference images. An alternative approach may involve applying conventional
customization methods directly onto multi-view generation backbones. Nevertheless, text-conditioned multi-
view generation models (Höllein et al., 2024; Shi et al., 2023; Tang et al., 2023; Huang et al., 2024) are
limited by the scarcity of paired text and multi-view data, leading to poor adaptability to diverse textual
prompts. Another related approach utilizes multi-view diffusion models (Long et al., 2024) for novel-view
synthesis from a single reference image, enabling subject-aware editing in multi-view settings (Liu et al.,
2024). However, these methods primarily focus only subject editing. In contrast, our MVCustom framework
explicitly addresses these challenges, combining effective 3D geometry learning with explicit inference-time
geometric constraints, enabling robust multi-view consistency and precise alignment with diverse textual
prompts.

3
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Figure 2: Overview. (a) The overall training pipeline, depicting how camera pose conditioning operates
with two branches, the main and multi-view. (b) Visualization of our progressive attention mechanism. We
gradually broaden the spatial attention field, enhancing geometric consistency. (c) The detailed illustration of
the pose-conditioned transformer block. FeatureNeRF and a projection layer are trained to produce a feature
map, obtained by concatenating the main-branch and multi-view feature map.

3 METHODOLOGY

In this section, we first introduce our multi-view customization task, explicitly incorporating camera viewpoint
control (Sec. 3.1). Next, we describe pose-conditioned transformer blocks to reflect camera poses into the
customized subject (Sec. 3.2). Then, we introduce our video diffusion backbone designed for large viewpoint
changes (Sec. 3.3). Finally, we present our core contributions — depth-aware feature rendering and consistent-
aware latent completion — to ensure multi-view consistency not only of the customized subject but also their
surroundings under novel textual prompts (Sec. 3.4).

3.1 PROBLEM DEFINITION

We define multi-view customization as an extension of traditional customization that incorporates explicit
control over camera viewpoints. Traditional customization aims to model the conditional distribution p(x |
Y ′, c), where c is a textual prompt describing a novel concept and Y ′ = {y′

i}Ni=1 are reference images. A
common approach is textual inversion (Gal et al., 2022), which introduces a learnable embedding vector v
that replaces part of the text prompt c(v). The embedding is learned by minimizing the denoising objective,
v∗ = argminv Ex,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(xt; c(v), t)∥22

]
, where t denotes the diffusion timestep.

In multi-view customization, each reference image is paired with its camera pose, Y = {(yi, πi)}Ni=1. The
goal is to model the conditional distribution

p(x0:M | Y , c, {ϕm}Mm=0), (1)

where x0:M = {xm}Mm=0 denotes a set of generated images under target camera poses {ϕm}. For brevity,
we denote the set of multi-view outputs as x in the following sections. This formulation enables explicit
camera pose control in addition to identity preservation and text alignment, thereby enhancing controllability,
consistency, and realism of the generated results.

4
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3.2 CONDITIONING CAMERA POSE IN DIFFUSION MODELS

To effectively learn the subject’s geometry from reference data, we adopt the pose-conditioned transformer
block from CustomDiffusion360 (Kumari et al., 2024), replacing the original spatial transformer in the
diffusion models. The transformer block is defined as Fpose(z0, {(zi, πi)}Ni=1, c, ϕ), where z0 is the main-
branch feature map and {(zi, πi)} are reference features with corresponding poses.

The two branches play complementary roles:

• Main branch. Generates target-view features for decoding into the final image. Its feature map is refined
via self-attention s and cross-attention g modules conditioned on c: Xx := g(s(z0), c).

• Multi-view branch. Aggregates reference-view features {Xi}, computed as Xi := f(g(s(zi), c)).
FeatureNeRF synthesizes a pose-aligned feature map Xy by combining {Xi} with camera poses {πi}
via epipolar geometry (Yu et al., 2021) and volume rendering (Mildenhall et al., 2021):

Xy := FeatureNeRF({(Xi, πi)}Ni=1, c, ϕ).

These feature maps are concatenated and projected into the backbone’s feature space, as shown in Fig. 2a.

3.3 BACKBONE FOR DYNAMIC VIEW CHANGE

A pose-conditioned transformer block Fpose generally produces consistent multi-view images about the
subject, but novel surroundings or clothings are often become inconsistent across views. To address this, we
repurpose video generation into multi-view generation based on AnimateDiff (Guo et al., 2023), inherently
suited for handling viewpoint transitions. Our video denoising model Dθ is defined as:

Dθ : (x̃1:N ;Y , c, ϕ1:N ) 7→ x̂1:N , (2)

mapping noisy inputs x̃1:N to clean frames x̂1:N , conditioned on camera poses ϕ1:N .

AnimateDiff’s 1D temporal attention limits its interactions to identical spatial positions, hindering effective
modeling of viewpoint-induced displacements. We extend it with dense 3D spatio-temporal attention (STT)
for richer context modeling. To preserve stability and pretrained knowledge, we gradually expand the spatial
attention field of STT during training (Fig. 2b). The detailed design choices are discussed in Sec. A.

With this backbone, we fine-tune our customized model by incorporating textual inversion and a pose-
conditioned transformer block, optimizing with a standard denoising and additional FeatureNeRF losses
(please see Sec. B for the details).

3.4 INFERENCE-TIME MULTI-VIEW CONSISTENCY UNDER LIMITED DATA

Depth-aware feature rendering. Although our video backbone (Sec. 3.3) produces coherent surroundings,
it does not explicitly enforce geometric consistency under camera motion. To address this, we propose
depth-aware feature rendering, which explicitly imposes geometric constraints conditioned on novel prompts
during inference. Unlike previous depth-conditioned multi-view generation methods (Ren et al., 2025; Yu
et al., 2024), which rely on large-scale training data, our method effectively addresses the lack of geometric
supervision for novel prompt-driven content.

First, the anchor feature mesh Ma is defined using an anchor frame x̂a selected from x̂1:N , denoted
as Ma = (Pa,Fa, Ta), where the anchor frame’s feature map Fa is directly used as texture of mesh.1.
The vertices Pa ∈ RH×W×3 are derived from the depth map D, estimated by an off-the-shelf depth

1Fa is the feature map taken immediately before the spatial transformer in the second up-block (Fig. 2c), a feature
level previously demonstrated to be effective for diffusion-based feature modification (Go et al., 2024).

5



235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

R|T, K

⋯

(a) Depth-aware feature rendering (b) Consistent-aware latent completion

DDPM
Forward

(a) Depth-aware
Feature Rendering

∗ (1− )∗+

=

Latent Completion

N frames

Figure 3: (a) Anchor feature meshMa, consists of a texture Fa, vertices Pa, and triangles Ta, is constructed
using the feature and depth maps, and camera pose of the anchor frame. The Ma is used to render the
projected feature maps for the other camera poses. (b) Completion via latent perturbation for new visible
areas.

estimator (Bhat et al., 2023) applied to x̂a. To align the estimated depth D̂ with FeatureNeRF’s geometric
scale, we normalize D̂ and shift it by the median depth dmed of the anchor view: D ← norm(D̂) + dmed. The
depth map D is resized to the feature resolution (HF ,WF ) of Fa. Using rotation R ∈ R3×3, translation
T ∈ R3, and intrinsic matrix K ∈ R3×3 of the camera parameters associated with x̂a, the 3D points are
computed as P = R(DK−1[u, v, 1]⊤) + T , where [u, v] denotes a feature-space coordinate. Dense mesh
triangles Ta are defined on the pixel grid using D̂, while pruning the regions that become newly visible from
other viewpoints, yielding discontinuous mesh boundaries (see Fig. 3a,Ma).

Second, we renderMa for a given camera pose ϕn, producing the rendered feature map F a
n and visibility

masks M a
n. Notice that the rendering is performed in the feature-space of Fa:

F a
n,M

a
n = R(Ma, ϕn), 1 ≤ n ≤ N, n ̸= a, (3)

whereR denotes a differentiable mesh renderer.

Finally, during the first 35 steps of the 50-step DDIM sampling process, we update each feature map by
replacing masked regions with rendered anchor features:

F̂n = M a
n ⊙ F a

n + (1−M a
n)⊙ Fn, 1 ≤ n ≤ N, n ̸= a, (4)

then, we substitute the combined feature map F̂ for F before the spatial transformer in the second up-block.

Consistent-aware latent completion. Regions where (1−M a
n) is nonzero correspond to newly visible

areas that requires content generation not present in the anchor frame. To address this, we introduce consistent-
aware latent completion, which leverages stochastic perturbations to synthesize these ‘disoccluded’ regions
(see Fig. 3b). Specifically, given an intermediate noisy latent xt in the denoising process, we predict an initial
latent x0 that is semantically meaningful yet incomplete. We then reintroduce noise into x0 via the forward
diffusion process, reverting to the original timestep t and yielding a perturbed latent x′

t. The disoccluded
regions in the original latent xt are selectively replaced with those from x′

t, enforcing spatial coherence across
frames through the temporal consistency of the video backbone. This procedure is iteratively conducted from
timestep T down to an early timestep τ (close to T ), allowing semantic flexibility and coherent synthesis of
novel details in newly exposed regions. Further implementation details, including anchor mesh construction
and inference pseudo-code, are provided in Sec. B.
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Figure 4: Qualitative results. The light blue boxes indicate the multi-view training dataset for the target
concept, while the light pink boxes illustrate the inference phase, where results are conditioned on new text
and target camera poses.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Dataset. We train our video diffusion backbone using a subset (430K samples) of the WebVid10M
dataset (Bain et al., 2021). For customization experiments, we use concepts selected from the Common Ob-
jects in 3D (CO3Dv2) dataset (Reizenstein et al., 2021), following the setup in CustomDiffusion360 (Kumari
et al., 2024). Specifically, we select four categories—car, chair and motorcycle—with three concepts per
category. For evaluation, we randomly sample camera trajectories from the CO3Dv2 test set as target camera
poses.

Competitors. As our task is novel, we compare our proposed method against various applicable baseline
approaches: (1) Custom img + Img-MVgen: This method generates multi-view images by inputting a single
customized image into the image-conditioned multi-view generation model, SEVA (Zhou et al., 2025). The
single input image is taken from the first frame of the output produced by our model, conditioned on the
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MV Generation Customization Inference Cost

Method Camera Pose
Accuracy (↑)

Multi-view
Consistency (↓)

Identity
Preservation (↓)

Text
Alignment (↑) Time (s) GPU (GB)

Custom Img + Img-MV gen 0.675± 0.12 0.214± 0.15 0.504± 0.12 0.676± 0.11 96.18 6.73
Txt-MV gen with DB 0.283± 0.25 0.116± 0.09 0.557± 0.12 0.723± 0.10 27.20 5.42
CustomDiffusion360 0.000± 0.00 0.190± 0.11 0.417± 0.12 0.806± 0.10 74.97 4.99
MVCustom (Ours) 0.735± 0.10 0.121± 0.10 0.448± 0.11 0.744± 0.10 130.92 19.29

Table 2: Quantitative comparison on multi-view generation, customization, and inference cost. We
highlight the best score in light red and the second-best in yellow.

target text and camera pose. (2) Txt-MVgen with DB: A text-conditioned camera-motion-controllable model,
CameraCtrl (He et al., 2024), customized with the conventional DreamBooth-LoRA (Ryu, 2023) approach. (3)
CustomDiffusion360: An existing object viewpoint-controllable customization method (Kumari et al., 2024).
Further comparisons and detailed discussions regarding additional competitors’ capabilities and limitations
are provided in Sec. C.

Evaluation metrics. We evaluate our method using four metrics: camera pose accuracy, multi-view consis-
tency, text alignment, and identity preservation. Camera pose accuracy is measured as the average inter-frame
relative rotation accuracy (range: [0, 1]), computed via COLMAP (Schonberger & Frahm, 2016). If COLMAP
fails to reconstruct camera poses, we assign the minimal accuracy score (0). Multi-view consistency is quanti-
fied by visual similarity (Fu et al., 2023) across views, computed over all view pairs. Identity preservation is
measured via DreamSim similarity (Fu et al., 2023) between generated outputs and reference images. Text
alignment is evaluated using CLIP similarity scores between textual prompts and generated images. Further
details and additional evaluations are provided in Sec. C.

4.2 RESULTS

As shown quantitatively in Tbl. 2 and qualitatively in Fig. 4, MVCustom is the only approach that simultane-
ously achieves high multi-view consistency and accurate customization fidelity. More comprehensive video
comparisons can be found in the supplementary material ("mvcustom.html").

Multi-view consistency with perspective alignment. Accurately reflecting target camera poses is crucial
for multi-view customization. As shown in Tbl. 2 (camera pose accuracy) and qualitative examples (Fig. 4),
MVCustom faithfully generates multi-view images aligned with specified viewpoints. In contrast, Txt-MV
gen with DB fails to reflect rotation-aware trajectories despite explicit conditioning, as clearly observed
in the chair example of Fig. 4, and confirmed by poor pose accuracy (Tbl. 2). This indicates that the
strong camera controllability in Txt-MV generation does not directly translate into multi-view customization
through conventional fine-tuning (see Sec. D). Similarly, Img-MV gen methods rely on a single reference
image, limiting subject appearance and geometry, and causing unnatural subject–surrounding relationships in
distant views (e.g., the motorcycle in Fig. 4). Although CustomDiffusion360 maintains subject consistency,
arbitrary surroundings across viewpoints yield poor holistic multi-view consistency, leading to COLMAP
reconstruction failure and zero pose accuracy (Tbl. 2). By leveraging our video backbone and inference
strategies, MVCustom substantially improves holistic multi-view consistency and perspective alignment,
outperforming all baselines.

As shown in Tbl. 2, MVCustom requires higher computational resources primarily due to the external depth
estimator (increasing GPU memory) and the feature replacement step (increasing inference time), unlike
other competitors relying solely on denoising. Nevertheless, explicitly enforcing geometric consistency at
inference is critical given the constraint of extremely limited training data. Thus, we argue that our significant

8



376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

Frame 1 Frame 2

O
rig

in
al

 
br

an
ch

R
ep

la
ce

 
br

an
ch

O
rig

in
al

 
br

an
ch

R
ep

la
ce

 
br

an
ch

(ⅰ) Feature replacement 
example

(ⅱ) Result of spatio-temporal 
attention backbone (Ours)

(ⅲ) Result of 1D-temporal 
attention backbone

N
e
w!

Un-
changed 
from (i)

Fr
am

e 
1

Fr
am

e 
2

(a) Ablation for DFR and latent completion

(ⅰ) Only model 
customization

(ⅱ) (ⅲ)

Frame 1 Frame 2 Frame 1 Frame 2

feature 
rendering
&replace
ment

+
latent 
comple
tion

+

(b)   Ablation for temporal attention of video backbone

Figure 5: Results of ablation studies. (a) Stepwise effect of applying depth-aware feature rendering (DFR)
and consistent-aware latent completion under x-translation camera pose. (b) Impact of temporal attention
on feature replacement. (i) Feature replacement vertically copies the feature map from frame 1 to frame 2.
Our method successfully enforces spatial flow, whereas 1D temporal attention fails to capture the intended
translation.

improvements in multi-view consistency, geometric accuracy, and customization fidelity clearly justify this
computational trade-off.

ID preservation with text alignment The Custom img + Img-MV gen baseline fails to preserve subject
identity and the textual description of surroundings, particularly as viewpoints move further from the input
image (as shown qualitatively in Fig. 4). Txt-MV gen with DB also fails to retain the reference subject’s
appearance and geometry, leading to poor identity preservation. In contrast, both CustomDiffusion360 and our
MVCustom method successfully preserve the reference subject and effectively reflect diverse textual prompts
across all views, demonstrating superior customization fidelity.

4.3 ABLATION STUDY

Depth-aware feature rendering & Consistent-aware latent Ccmpletion. Customization fine-tuning alone
yields static surroundings despite varying subject poses (Fig. 5a-i). Our novel depth-aware feature rendering
enforces geometric consistency, enabling accurate spatial shifts (e.g., building position) according to camera
movements (Fig. 5a-ii). However, newly revealed regions reuse previous content, reducing realism. Thus, we
propose latent completion, leveraging the generative power of our diffusion backbone to naturally synthesize
previously unseen, context-appropriate details (Fig. 5c). Unlike conventional multi-view methods requiring
extensive datasets, our method explicitly addresses data limitations in customization, significantly enhancing
multi-view coherence and realism; see Sec. D for additional completion results demonstrating visual diversity.

Spatio-temporal attention. We evaluate dense spatio-temporal attention’s effectiveness for spatial con-
sistency. As illustrated in Fig. 5b-i, we vertically shift and insert the first frame’s features into subsequent
frames, expecting clear semantic translations. While original AnimateDiff with 1D temporal attention fails
to preserve spatial coherence due to limited pixel interactions (Fig. 5b-ii), our proposed spatio-temporal
attention successfully maintains spatial consistency and semantic flow (Fig. 5b-iii). Thus, integrated spatio-
temporal attention is crucial for accurately modeling large view displacements and explicitly enforcing spatial
constraints, especially when employing feature replacement (Sec. 3.4).

5 CONCLUSION

In this work, we introduced the novel task of multi-view customization, integrating explicit camera viewpoint
control, subject customization, and spatial consistency for both subjects and their surroundings. To address
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this task, we proposed MVCustom, a diffusion-based framework leveraging dense spatio-temporal attention
for robust multi-view synthesis. Additionally, we introduced two inference-stage strategies—depth-aware
feature rendering and consistent-aware latent completion—to explicitly enforce geometric consistency and
faithfully generate disoccluded regions. Extensive comparisons show that MVCustom is the only approach
that effectively integrates accurate multi-view generation and high-fidelity customization. We believe this
framework provides a foundation for future work on controllable and customizable multi-view generation.

Limitations and future work Our framework currently cannot alter the intrinsic object pose based on text
prompts during inference (e.g., changing from sitting to standing). This limitation arises because FeatureNeRF
learns a fixed canonical pose from reference images, and its radiance field does not take text prompts as
input conditions. Consequently, the object’s intrinsic pose remains tied to this canonical representation.
Experimentally, we found that injecting the rendered feature map Xy via cross attention conditioned on
textual prompts does not overcome this issue. Similar limitations related to intrinsic pose control are noted
in prior work (Song et al., 2024). Future approaches might involve optimizing a dynamic neural field
conditioned on textual prompts built upon a frozen static field from FeatureNeRF, using techniques such as
score distillation sampling, or hypernetwork-based methods. We leave these directions for future exploration.

Anchor frame

Estimated depth map Generated multi-view images
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Figure 6: Comparison of background perspective alignment
in generated images depending on the quality of estimated
depth.

Additionally, another limitation arises from in-
accuracies in the depth maps used in our depth-
aware feature rendering. When the external
depth estimator produces incorrect geometry,
especially for reflective or textureless surfaces,
our method directly constructs feature meshes
using these inaccuracies. This limitation orig-
inates from the external depth estimator rather
than our framework itself. Similar issues affect
other depth-conditioned methods (Yang et al.,
2025; Liu et al., 2025; Hou & Chen, 2024) due
to their inherent dependence on accurate depth
maps. Recent models (Yang et al., 2024; Min
et al., 2025) have significantly improved depth estimation accuracy for reflective and textureless surfaces,
suggesting potential mitigation of this issue. Fig. 6 demonstrates that accurate depth estimation produces
realistic background geometry across multiple views: correctly estimating the depth of a textureless wall
ensures the building naturally rotates with the viewpoint change. Conversely, incorrect estimation perceiving
the wall as distant background results in unrealistic backgrounds across views. In conclusion, we expect
that ongoing advancements in depth estimation techniques will soon overcome this limitation, enabling our
framework to produce even more realistic and consistent multi-view results.
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