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Abstract

We provide a novel uniform convergence guarantee for DeepReach, a deep learning-
based method for solving Hamilton–Jacobi–Isaacs (HJI) equations arising in reach-
ability analysis. Specifically, we show that the DeepReach algorithm, as introduced
by Bansal et al. in their eponymous paper from 2020, is stable in the sense that if
the loss functional for the algorithm converges to zero, then the resulting neural
network approximation converges uniformly to the classical solution of the HJI
equation, assuming that a classical solution exists. We also provide numerical tests
of the algorithm, replicating the experiments provided in the original DeepReach
paper and examining the impact that our technical modifications of the algorithm
have on its empirical performance.

1 Introduction

In optimal control theory, Hamilton–Jacobi (HJ) reachability analysis describes states from which
trajectories will eventually reach a specified set under an optimal control policy [1]. The set of
states from which trajectories will eventually enter the specified set is typically referred to as the
backward reachable tube (BRT). Computing BRTs accurately is of particular interest when designing
autonomous systems that must avoid collisions or otherwise unsafe configurations (e.g., autonomous
vehicles, aircraft, and many other pertinent, real-world examples) [2].

HJ reachability analysis requires solving an associated Hamilton–Jacobi–Isaacs (HJI) equation, a
nonlinear, first-order variational partial differential equation (PDE) [1]. The HJI equation characterizes
the value function for the reachability problem, and the sublevel sets of the value function determine
the BRT. In low dimensions, the HJI equation can be solved relatively easily using a grid-based PDE
solver. In high dimensions, recent work confronts the so-called “curse of dimensionality” by instead
using parametrized neural networks to solve high-dimensional PDEs [3, 4]. For instance, Bansal et al.
developed DeepReach, a deep learning-based solver for the HJI equation that determines approximate
BRTs for high-dimensional optimal control problems [2]. However, autonomous systems require
robust safety guarantees, and it is often difficult to quantify the approximation error made by neural
networks when solving high-dimensional PDEs that lack analytical solutions [5].

We approach this problem from the perspective of PDE theory, aiming to provide a direct uniform
convergence guarantee for DeepReach. Building upon the work of [6, 7, 8], we show that, under
broad technical assumptions, if the neural network loss for DeepReach approaches zero, then the
resulting value function will converge uniformly to the true value function, which solves the HJI
equation. We also include numerical experiments, extending the results in [5] to our technical setting.
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2 Related Work

This paper draws upon work done in two areas: deep learning methods for HJ reachability and
more general convergence guarantees for deep learning-based PDE solvers. In the latter category,
relevant work can be found in [3, 6, 7, 8], which consider solving first-order, nonlinear PDEs using
parametrized neural networks. The theory of viscosity solutions, applied in [6] and discussed in
more detail in [1] and [9], is directly applicable to HJI equations. This line of work is closely
related to physics-informed neural networks (PINNs) [10]. In terms of deep learning methods for HJ
reachability, we primarily build upon the work done by Bansal et al. in DeepReach [2]. DeepReach’s
formulation is analogous to the deep Galerkin method (DGM) first presented in [3]. Consequently,
much of the uniform convergence analysis for high-dimensional HJB equations from [3, 6, 7] applies
naturally to DeepReach, with several important technical modifications outlined in Appendix A.

Since the release of DeepReach in 2020, additional analysis of the method’s approximation error has
been carried out. For instance, in [5], the authors propose a technique labeled scenario optimization,
in which states near the boundary of the approximate BRT are sampled randomly in order to expand
the approximate BRT. In [11], which builds upon the scenario optimization approach of [5], the same
authors instead utilize conformal prediction to establish confidence bounds. Finally, [12] analyzes
the impact that different activation functions have, while [13] restructures the training loss to ensure
that the HJI equation’s terminal condition is always satisfied, often obtaining improved results.

3 Mathematical Background

We consider the general formulation of HJ reachability presented in [1, 2]. In particular, the dynamics
of an autonomous agent in an environment are modeled by a state x ∈ Rn, a control u ∈ U ⊆ Rm,
and a disturbance d ∈ D ⊆ Rm, with ẋ = f(x, u, d). Denote by ξu,dx,t (τ) the state at time τ , under
the control u(·) and disturbance d(·), starting at time t and state x. Denoting the safe set of states by
L, define the BRT on the time interval [t, T ], under worst-case disturbances d(·), by

VBRT(t) := {x ∈ Rn : ∀u(·),∃d(·),∃τ ∈ [t, T ] such that ξu,dx,t (τ) ∈ L}. (1)

From the above formulation of BRTs, we can present the corresponding HJI equations, again
based on the discussion from [1]. Given a target set L, define a function ℓ : Rn → R such that
L = {x ∈ Rn : ℓ(x) ≤ 0}. Define a cost functional, starting at initial state x and initial time t, and
the corresponding value function by

J(x, t, u(·), d(·)) = min τ∈[t,T ]ℓ(ξ
u,d
x,t (τ)), V (t, x) := inf d(·) sup u(·) {J (x, t, u(·), d(·))} . (2)

In the case that L is an unsafe set that the agent wishes to avoid for all time t, the agent first selects an
optimal control that maximizes ℓ, and the disturbance (viewed as an adversarial player in a zero-sum,
two-player game) selects the input that minimizes ℓ. Via a standard dynamic programming argument,
presented in [1], one obtains the HJI variational equation for the reachability problem, given by

min {∂tV (t, x) +H(t, x), ℓ(x)− V (t, x)} = 0,

V (T, x) = ℓ(x).
(3)

Above, the Hamiltonian H : R× Rn → R is

H(t, x) := sup u inf d⟨∇xV (t, x), f(x, u, d)⟩. (4)

The BRT itself is computed as a sublevel set of the solution V to the HJI equation, with

VBRT(t) := {x : V (t, x) ≤ 0}, u⋆(t, x) := argmax u(·) min d(·)⟨∇xV (t, x), f(x, u, d)⟩.

To solve the Equation (3) numerically, we utilize a parametrized neural network Vθ : R× Rn → R,
with parameters θ ∈ RP . At this point, the architecture of the neural network remains unspecified,
although the original implementation of DeepReach and most subsequent related work utilize fully-
connected, feedforward neural networks with sinusoidal activations between layers [2]. In [2], a
standard loss functional based on the L1 or L2-norm is used. Below, we make a slight modification,
instead using sup-norm loss for both our theoretical guarantees and numerical experiments:

L(θ) := ∥Vθ(T, x)− ℓ(x)∥∞ + λ∥min{∂tVθ(t, x) +Hθ(t, x), ℓ(x)− Vθ(t, x)}∥∞, (5)
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where, in practice, (t, x) ∈ R× Rn are sampled points, and Hθ is the Hamiltonian associated with
the approximate value function Vθ, defined as in Equation (4). The DeepReach training procedure
then mimics stochastic gradient descent (SGD). The neural network is first trained with λ = 0 to
learn the terminal condition of the PDE, at t = T . After a pre-determined number of epochs, t is then
linearly decreased from t = T to t = 0, sampling K points {xk}Kk=1 at each step and performing an
SGD step on the neural network parameters θ to learn the solution to Equation (3).

Remark 3.1. In the original DeepReach algorithm, the above loss is defined with respect to the
ℓ1-norm or ℓ2-norm. However, recent work surrounding neural network solutions to second-order
HJB equations indicates that such a choice of loss may not result in convergence to the true value
function [8]. Instead, using a sup-norm loss metric brings both theoretical benefits, as seen in the
convergence proof in Appendix A, and practical benefits, as seen in Section 5 below. As noted
above, the sup-norms involved in Equation (5) are approximated by sampling in practice: [6] and [7]
discuss convergence guarantees for this sampling-based approach, which still tend to exhibit some
dependence on the dimensionality of the underlying problem. For our theoretical guarantees, we
assume that the sup-norm loss in Equation (5) can be approximated to arbitrary accuracy.

4 Theoretical Guarantees

We provide two results concerning the convergence of DeepReach for solving the HJI equation in
Equation (3). All technical results are presented in full, including detailed proofs, in Appendix A.
First, we obtain an existence result as a relatively straightforward consequence of the universal
approximation power of neural networks. Specifically, neural networks with smooth, bounded, non-
constant activations (as is the case in the sinusoidal implementation of DeepReach) can approximate
functions and their derivatives arbitrarily well, as in [14, Theorem 3]. Under the assumption that
the value function V that solves Equation (3) is locally-Lipschitz with locally-Lipschitz gradients,
denoted by V ∈ C1,1

loc ([0, T ]× Rn), we prove the following:

Theorem 4.1. For every ε > 0, there exists a constant C > 0 that depends only on the dynamics
ẋ = f(x, u, d) of the underlying reachability problem such that for some θ ∈ RP , the DeepReach
loss in Equation (5) satisfies L(θ) ≤ Cε.

We also prove the following uniform convergence result, which is far more practical in nature and
does not rely upon a non-constructive universal approximation theorem. All technical assumptions
are presented in detail in Appendix A.

Theorem 4.2. Under Assumptions (A) and (B) , if a sequence of parameters {θ(k)}k∈N is such that
L(θ(k)) → 0 as k → ∞, then for any compact set K ⊂ Rn,

lim
k→∞

sup (t,x)∈[0,T ]×K |Vθ(k)(t, x)− V (t, x)| = 0.

The proof of Theorem 4.2 relies on tools from the theory of viscosity solutions. Specifically, by
establishing that a sequence of neural network approximators are viscosity solutions to a sequence of
perturbed HJI equations and applying an appropriate comparison principle to two suitably-defined
upper and lower limits of the neural network approximators, one may obtain the uniform convergence
guarantee in Theorem 4.2. Finally, we note that Theorem 4.2 is agnostic towards the choice of
optimization algorithm for minimizing the DeepReach loss. In particular, stochastic gradient descent
(or its common variants) need not be used in training for the guarantee to hold.

5 Numerical Experiments

In this section, we provide numerical experiments that demonstrate the performance of DeepReach
for the collision avoidance problem from Appendix B. This problem, first presented in [15], is a
standard two-vehicle, three-dimensional reachability problem. All code for reproducing results and
figures can be found this notebook. More information on the sampling and training procedures used
in both the original implementation of DeepReach and the modification presented in this paper can
be found in Appendix C. We utilize the same neural network architecture and training procedure as
in the open-source, PyTorch-based implementation provided by [2] under the MIT License. Below,
we empirically investigate the impact that fine-tuning with sup-norm loss can have on the accuracy of
the approximate BRT, lending credence to the theoretical convergence guarantee from Section 4.

3

https://colab.research.google.com/drive/18MN5imhNE1xZs9bR64pnKOFFu7z9l0ic?usp=sharing
https://github.com/smlbansal/deepreach/tree/master


The first two figures below correspond to slices of the three-dimensional collision avoidance problem,
evaluated at time t = 0.7 and on the box (x1, x2) ∈ [−1, 1]2. In particular, the coordinates (x1, x2, θ)
are the relative coordinates between two agents. The true value function and BRT are computed
analytically as in [15]. For θ = π, which represents the two agents facing towards each other in
relative coordinates, the pre-trained DeepReach approximation deteriorates in quality; see Figure 1.
However, after fine-tuning the model with sup-norm loss as defined in Equation (5), the DeepReach
BRT more closely approximates the true BRT for θ = π, as seen in Figure 2, measured in terms
of the maximum distance between the boundary of the approximate BRT and the true BRT. After
only 1K epochs (approximately 5 minutes on an L4 Tensor Core GPU) of training, this fine-tuning
procedure exhibits noticeable improvements over models pre-trained for 100K epochs (approximately
16 hours on an L4 GPU) with ℓ1-loss, both in terms of the sampled loss metric and the true maximum
approximation error, as seen in Figure 3 and Figure 4 respectively. Note that Figure 3 and Figure 4 are
for demonstrative purposes only, as the training loss depends stochastically on the sampled training
points. Nonetheless, the trends in both figures are reproducible across trials.

Figure 1: BRT comparison, using pre-
trained model from [2].

Figure 2: BRT comparison, using fine-
tuned model with sup-norm loss.

Figure 3: Fine-tuning with sup-norm
loss results in significant decreases in
DeepReach loss over just 500 epochs.

Figure 4: Maximum approximation error
continues to decrease over 8K epochs,
especially for θ = π.

6 Conclusions and Future Work

We provide two novel convergence guarantees for a variant of the DeepReach algorithm, first
introduced in [2]. In particular, by using a sup-norm loss metric, we show that the DeepReach loss
can be made arbitrarily small by neural network approximators (Theorem 4.1) before showing that
any sequence of neural networks that takes the DeepReach loss to zero must converge uniformly to
the true solution to the HJI equation in question (Theorem 4.2). We then demonstrate this convergence
result empirically, showing that by using the sup-norm loss metric, pre-trained DeepReach models
can be fine-tuned to produce more accurate BRTs in a collision avoidance setting. Future work may
investigate whether Theorem 4.2 can be extended to HJI equations that do not admit classical solutions.
In terms of implementation, improving the performance of DeepReach via adversarial training, a
common technique for training neural networks with sup-norm loss, is possible [8]. Experimenting
with more expressive neural network architectures may also yield better approximations.
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A Technical Proofs

In this section, we provide proofs of Theorem 4.1 and Theorem 4.2 respectively. First, some additional
notation is necessary. Consider an instantiation of Equation (3) on R× Rn. Elements of the relevant
class of fully-connected neural networks, as considered in [2, 13] take the form of a network with L
layers, maximum width n, and a common activation function σ:

Vθ(t, x) := σ(WL . . . σ(W1x+ αt+ c1) . . .+ cL), (6)

where the activation function σ is applied elementwise. Above, Wi are weight matrices, ci are bias
vectors, and α is a scalar weight. In turn, the parameters of each neural network are of the form
θ = (W1, . . . ,WL, c1, . . . , cL, α) ∈ RP (upon flattening all weight matrices into vectors), where P
depends on the maximum width of the network, the depth L of the network, and the dimension n of
the target HJI equation. In turn, we take C

(P )
n+1(σ) to be the class of neural networks with parameters

θ of dimension at most P (but any number of layers L), from which we define Cn+1(σ) as the class
of neural networks with parameters θ of any dimension (i.e., allowing networks with unbounded
width).

Additionally, given any compact subset K ⊂ Rn, define the standard norm on C1(K), the space of
continuously-differentiable functions f : K → R, given by

∥f∥C1(K) := sup
x∈K

|f(x)|+ sup
x∈K

∥∇f(x)∥2

Finally, define an operator by

L[V ](t, x) := min{∂tV (t, x) +H(t, x), ℓ(x)− V (t, x)},

observing that the first line of Equation (3) becomes L[V ](t, x) = 0. Throughout this section, we
also impose the following mild technical assumptions.
Assumption A. Given an underlying reachability problem, with dynamics ẋ = f(x, u, d), we assume
that:

(1) There exist compact sets U ⊆ Rm and D ⊆ Rm such that all control inputs u and distur-
bances d satisfy u ∈ U and d ∈ D.

(2) There exists a compact set K ⊆ Rn such that for any initial state x(0) ∈ K and sequence
of optimal control inputs and disturbances u ∈ U , d ∈ D, the state trajectory satisfies
x(t) ∈ K for all t ∈ [0, T ].

(3) There exists a constant Cf > 0 such that for any x ∈ K, ∥f(x, u, d)∥2 ≤ Cf for all
(u, d) ∈ U × D.

For instance, these standard assumptions all hold for the collision avoidance example introduced
in Section 3. By scaling all states to lie in the d-dimensional box [−1, 1]d in Section 5 above, we
ensure that the compactness assumption above is always met. If dynamics f(x, u, d) are continuous,
then the fact that all trajectories lie in some compact set K immediately implies the boundedness
assumption above. Effectively, we require bounded state trajectories, bounded control inputs and
disturbances, and bounded dynamics.

The next assumption, placed on Equation (3), is discussed in detail in [1] and [9]. Under a wide
variety of circumstances, Equation (3) will indeed admit unique solutions.
Assumption B. There exists a unique, classical solution V ∈ C1,1(ΩK) to Equation (3). Furthermore,
V is also the unique viscosity solution to Equation (3), as defined in Definition A.3 below.

At this point, we note that certain HJI equations only admit viscosity solutions, the appropriate
definition of a weak solution for first-order, nonlinear PDEs that resemble the HJI equation. The
framework for establishing neural network approximation and convergence guarantees for equations
that admit viscosity solutions [6], however, does not yet extend to the case of equations that do not
admit unique classical solutions. In many cases, however, including (again) the collision avoidance
example in Section 3, this is not a concern.

Now, we prove Theorem 4.1, relying on the approximation guarantees provided by [14, Theorem 3].
To make the proof more palatable, we construct several technical lemmas.
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Lemma A.1. Let V ∈ C1,1(ΩK) solve Equation (3) on [0, T ]×K, for some compact set K ⊂ Rn.
Then, for any ε > 0 and bounded, non-constant activation σ : R → R, there exists Vθ ∈ Cn+1(σ)
such that

ε > sup
(t,x)∈ΩK

|V (t, x)− Vθ(t, x)|+ sup
(t,x)∈ΩK

|∂tV (t, x)− ∂tVθ(t, x)|

+ sup
(t,x)∈ΩK

∥∇xV (t, x)−∇xVθ(t, x)∥2.
(7)

Proof. This is a direct consequence of the universal approximation theorem for neural networks,
stated in Proposition [14, Theorem 3]. In particular, the result therein states that if σ ∈ Cm(R) is a
non-constant and bounded activation, then Cn+1 is uniformly m-dense on compact sets in Cm(Rn+1).
In particular, for all h ∈ Cm(Rn+1), all compact subsets K ⊂ Rn+1, and any ε > 0, there exists
ψ ∈ Cn+1 such that ∥h− ψ∥Cm(K) < ε. Taking m = 1, h = V , and ψ = Vθ suffices to prove the
lemma.

Equipped with the preceding lemma, the following estimates will allow us to prove Theorem 4.1.
Lemma A.2. Assume that ε > 0 and Vθ are as in Lemma A.1 and

Hθ(t, x) := sup
u

inf
d
⟨∇xVθ(t, x), f(x, u, d)⟩.

Then, there exists Cf > 0 depending only on the dynamics f such that

|Hθ(t, x)−H(t, x)| < Cfε

for any (t, x) ∈ ΩK . Furthermore, |Vθ(T, x)− ℓ(x)| < ε for all x ∈ K.

Proof. The second estimate follows easily from Lemma A.1 and the fact that V (T, x) = ℓ(x). Indeed,
the fact that sup(t,x)∈ΩK

|V (t, x)− Vθ(t, x)| < ε implies that

|ℓ(x)− Vθ(T, x)| = |V (T, x)− Vθ(T, x)| < ε

for all x ∈ K. On the other hand, Lemma A.1 also guarantees that for any (t, x) ∈ ΩK ,

sup
(t,x)∈ΩK

∥∇xV (t, x)−∇xVθ(t, x)∥2 < ε.

As a result, for fixed (t, x) ∈ ΩK , taking

p(t, x) :=
1

ε
(∇xV (t, x)−∇xVθ(t, x)) ∈ Rn,

it follows that

∇xVθ(t, x) = ∇xV (t, x) + εp(t, x),

where ∥p(t, x)∥2 < 1. In turn, we can write

|Hθ(t, x)−H(t, x)| =
∣∣∣∣sup

u
inf
d
⟨∇xVθ(t, x), f(x, u, d)⟩ − sup

u
inf
d
⟨∇xV (t, x), f(x, u, d)⟩

∣∣∣∣
=

∣∣∣∣sup
u

inf
d
⟨∇xV (t, x) + εp(t, x), f(x, u, d)⟩ − sup

u
inf
d
⟨∇xV (t, x), f(x, u, d)⟩

∣∣∣∣
= ε

∣∣∣∣sup
u

inf
d
⟨p(t, x), f(x, u, d)⟩

∣∣∣∣
≤ ε sup

u

∣∣∣∣infd ⟨p(t, x), f(x, u, d)⟩
∣∣∣∣

≤ ε sup
u

sup
d

|⟨p(t, x), f(x, u, d)⟩|

≤ ε sup
u

sup
d

∥p(t, x)∥2∥f(x, u, d)∥2

< ε sup
u

sup
d

∥f(x, u, d)∥2

≤ Cfε,
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The chain of inequalities above utilizes several standard tricks to interchange the absolute value with
the supremum over control inputs u (resp. disturbances d) before applying the Cauchy–Schwarz
inequality and the fact that ∥p(t, x)∥2 < 1 for all (t, x) ∈ ΩK . Finally, the last inequality utilizes the
assumption that the dynamics are bounded.

Because the bounds obtained in Lemma A.2 are uniform in (t, x) ∈ ΩK , we can in fact write that

∥Hθ −H∥∞ < Cfε, ∥Vθ(T, ·)− ℓ∥∞ < ε,

where ∥ · ∥∞ denotes the supremum norm on ΩK as in the definition of the DeepReach loss in
Equation (5). With both of the above lemmas, we can now prove Theorem 4.1.

Proof of Theorem 4.1. By Lemma A.1, we obtain the existence of Vθ ∈ Cn+1(σ) such that

ε > sup
(t,x)∈ΩK

|V (t, x)− Vθ(t, x)|+ sup
(t,x)∈ΩK

|∂tV (t, x)− ∂tVθ(t, x)|

+ sup
(t,x)∈ΩK

∥∇xV (t, x)−∇xVθ(t, x)∥2.

It remains to show that Vθ satisfies the conditions in the statement of Theorem 4.1. Namely, we
must show that L(θ) ≤ Cε for some C > 0 that only depends on the dynamics of the underlying
reachability problem. Recall that

L(θ) = h1(θ) + λh2(θ)

= ∥Vθ(T, x)− ℓ(x)∥∞ + λ∥min{∂tVθ(t, x) +Hθ(t, x), ℓ(x)− Vθ(t, x)}∥∞,
where λ > 0 is a tunable parameter. Now, Lemma A.2 allows us to establish two useful lower bounds.
First, because V satisfies the HJI equation in Equation (3), we have that

∂tV (t, x) +H(t, x) ≥ min{∂tV (t, x) +H(t, x), ℓ(x)− V (t, x)} = 0

for all (t, x) ∈ ΩK . Thus, it follows that

∂tVθ(t, x) +Hθ(t, x) ≥ ∂tVθ(t, x) +Hθ(t, x)− ∂tV (t, x) +H(t, x) > −ε− Cfε,

applying two of the bounds from Lemma A.2. Taking C := 2max{Cf , 1}, it follows that

∂tVθ(t, x) +Hθ(t, x) > −Cε (8)

for all (t, x) ∈ ΩK . Similarly, observe that because

ℓ(x)− V (t, x) ≥ {∂tV (t, x) +H(t, x), ℓ(x)− V (t, x)} = 0

for all (t, x), we have that

ℓ(x)− Vθ(t, x) ≥ ℓ(x)− Vθ(t, x)− ℓ(x)− V (t, x) = Vθ(t, x)− V (t, x) > −ε ≥ −Cε (9)

again applying the corresponding bound from Lemma A.2. Combining Equation (8) and Equation (9),
it follows that

min{∂tVθ(t, x) +Hθ(t, x), ℓ(x)− Vθ(t, x)} > −Cε
for all (t, x) ∈ ΩK .

Now, because V solves Equation (3), for all (t, x) ∈ ΩK , we must have that either ∂tV (t, x) +
H(t, x) = 0 or ℓ(x) − V (t, x) = 0 (or, both conditions could possibly hold, but this case is not
relevant below). In the former case, we have that

−Cε < min{∂tVθ(t, x) +Hθ(t, x), ℓ(x)− Vθ(t, x)} ≤ ∂tVθ(t, x) +Hθ(t, x)

= ∂tVθ(t, x) +Hθ(t, x)− ∂t(t, x)−H(t, x)

≤ Cε,

again applying the result of Lemma A.2 in the last line. On the other hand, if (t, x) ∈ ΩK is such
that ℓ(x)− V (t, x) = 0, then we see that

−Cε < min{∂tVθ(t, x) +Hθ(t, x), ℓ(x)− Vθ(t, x)} ≤ ℓ(x)− Vθ(t, x)

= ℓ(x)− Vθ(t, x)− (ℓ(x)− V (t, x))

= V (t, x)− Vθ(t, x)

< ε

≤ Cε,
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applying the result of Lemma A.2 yet again. Because the above two cases are exhaustive, it follows
that

|min{∂tVθ(t, x) +Hθ(t, x), ℓ(x)− Vθ(t, x)}| < Cε

for all (t, x) ∈ ΩK . In other words,

h2(θ) = ∥min{∂tVθ(t, x) +Hθ(t, x), ℓ(x)− Vθ(t, x)}∥∞ < Cε.

Now, the fact that ℓ(x) = V (T, x) for all x ∈ K implies that

h1(θ) = ∥Vθ(T, x)− ℓ(x)∥∞ = ∥Vθ(T, x)− V (t, x)∥∞ < ε ≤ Cε,

by Lemma A.2. Thus, it follows that

L(θ) = h1(θ) + λh2(θ) < (C + λC)ε.

By taking C ′ := C + λC, which only depends on the parameter λ > 0 and the dynamics f of the
underlying reachability problem, we conclude that for any ε > 0, there exists some set of parameters
θ such that L(θ) < C ′ε.

The above result ensures that the DeepReach loss is an appropriate metric for solving Equation (3)
numerically: good approximations of the true solution to Equation (3) correspond to small loss values
in Equation (5). However, it is not particularly practical. To provide a practical guarantee, we turn to
Theorem 4.2. Rather than simply establishing the existence of a network that makes the DeepReach
loss arbitrarily small, Theorem 4.2 shows that by performing training under which the DeepReach
loss converges to zero (which is possible by the above result), the corresponding neural networks
must converge uniformly to the solution to Equation (3). In some sense, this result justifies the use of
the DeepReach algorithm, as it guarantees that training via gradient descent (or some other method)
to minimize the DeepReach loss will result in estimators that uniformly converge to the true value
function for a given reachability problem.

Before presenting the proof of Theorem 4.2, several tools from PDE theory, and specifically, the
theory of viscosity solutions to PDEs, are necessary. Note that, as discussed in [1] and [9], the HJI
equation in Equation (3) admits a viscosity solution V . We utilize the following standard definition
of viscosity solutions, introduced in [9]:
Definition A.3. A function v ∈ C((0, T )× Int(K)) is:

(i) a viscosity subsolution of Equation (3) if for any test function φ ∈ C1((0, T ) × Int(K)),
L[φ] ≤ 0 for every local maximum (t0, x0) ∈ (0, T )× Int(K) of v−φ on (0, T )× Int(K).

(ii) a viscosity supersolution of Equation (3) if for any test function φ ∈ C1((0, T )× Int(K)),
L[φ] ≥ 0 for every local minmum (t0, x0) ∈ (0, T )× Int(K) of v − φ on (0, T )× Int(K).

(iii) a viscosity solution of Equation (3) if v is both a viscosity subsolution and viscosity superso-
lution.

More background on viscosity solutions, their motivation, and their many useful properties can be
found in [9] and [16]. Without going into unnecessary technical detail, we remark that any classical
solution to Equation (3) is also a viscosity solution, a fact that we leverage below [16]. Additionally,
viscosity solutions to Equation (3) satisfy a standard comparison principle, in the sense that if u is a
viscosity supersolution and v a viscosity subsolution, then v ≤ u on [0, T )×K [9, 16].

We also require the notion of a proper nonlinear PDE, in the context of viscosity solutions. This
concept, also from [16] is crucial for establishing uniform convergence guarantees for equations that
admit viscosity solutions.
Definition A.4. Suppose that a nonlinear PDE is of the form F (x, u,Du,D2u) = 0, where F :
Rn × R × Rn × Sn → R, with Sn denoting the set of symmetric matrices. Then, F is proper if,
holding all other inputs fixed,

F (x, r, p,X) ≤ F (x, s, p, Y )

for all r ≤ s and X ⪯ Y , with the latter denoting the standard order on PSD matrices.

From the above definition a straightforward reformulation of Equation (3) shows that the HJI equation
in question is necessarily proper.
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Lemma A.5. There exists a map F : ΩK ×R×Rn+1 ×Sn+1 → R such that V solves Equation (3)
if and only if

F (t, x, V (t, x),∇V (t, x),∇2V (t, x)) = 0,

and the resulting equation is proper in the sense of Definition A.4.

Proof. Any solution to Equation (3) satisfies

min {∂tV (t, x) +H(t, x), ℓ(x)− V (t, x)} = 0

on ΩK . Because min{a, b} = −max{−a,−b}, the above equality holds if and only if

−max {−∂tV (t, x)−H(t, x), V (t, x)− ℓ(x)} = 0. (10)

Thus, we take

F (t, x, r, p,X) := max

{
−pt − sup

u
inf
d
⟨px, f(x, u, d)⟩, r − ℓ(x)

}
, (11)

where p = (pt, px) ∈ R× Rn, taking into account both the time and spatial derivatives of solutions
to Equation (3). Then, Equation (10) holds if and only if

F (t, x, V (t, x),∇V (t, x),∇2V (t, x)) = 0.

Furthermore, F defines a proper equation because it does not depend on the input X ∈ Sn+1, and if
r ≤ s, then r − ℓ(x) ≤ s− ℓ(x) for any x ∈ ΩK . In turn,

F (t, x, r, p,X) = max

{
−pt − sup

u
inf
d
⟨px, f(x, u, d)⟩, r − ℓ(x)

}
≤ max

{
−pt − sup

u
inf
d
⟨px, f(x, u, d)⟩, s− ℓ(x)

}
= F (t, x, s, p,X),

holding all other inputs fixed. Thus, F is proper.

Before proving Theorem 4.2, consider the following perturbed version of Equation (3), indexed by
k ∈ N.

min {∂tU(t, x) +H(t, x), ℓ(x)− U(t, x)} = ε(k)(t, x),

U(T, x) = ℓ(x) + δ(k)(x).
(12)

From Theorem 4.1, it immediately follows that there exists a sequence of neural networks {Vθ(k)}k∈N
that solve perturbed HJI equations of the above form. Taking

ε(k)(t, x) := min {∂tVθ(k)(t, x) +Hθ(k)(t, x), ℓ(x)− U(t, x)} , δ(k)(x) := Vθ(k)(T, x)− ℓ(x),

Theorem 4.1 establishes that the sequence {Vθ(k)}k∈N satisfies Equation (12), and we further have
that

L(θ(k)) = h1(θ
(k)) + λh2(θ

(k)) = ∥ε(k)∥∞ + λ∥δ(k)∥∞ → 0

as k → ∞. Conversely, it also holds that if L(θ(k)) → 0, then the corresponding neural networks
satisfy perturbed equations akin to Equation (12). Furthermore, by the construction of the DeepReach
loss, it follows that ∥ε(k)∥∞ → 0 and ∥δ(k)∥∞ → 0 as k → ∞. From Theorem (4.1), we know that
such a sequence of parameters exists.

Now, the sequence of above equations could instead be written as

F (t, x, U(t, x),∇U(t, x),∇2U(t, x)) = max {−∂tU(t, x)−H(t, x), ℓ(x)− U(t, x)} = −ε(k)(t, x),

where F is as in Lemma A.5. In turn, defining

F (k)(t, x, U(t, x),∇U(t, x),∇2U(t, x)) := F (t, x, U(t, x),∇U(t, x),∇2U(t, x)) + ε(k)(t, x),
(13)
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it immediately follows from Lemma A.5 that the sequence in Equation (12) is proper, given by

F (k)(t, x, U(t, x),∇U(t, x),∇2U(t, x)) = 0, (14)

and that F (k) → F uniformly as k → ∞.

The novelty of Theorem 4.2, however, lies in establishing that for any such sequence of neural
networks {Vθ(k)}k∈N obtained via training, Vθ(k) → V uniformly on ΩK . In essence, rather than
simply establishing the existence of such a sequence, the following proof guarantees that standard
training procedures such as gradient descent, coupled with standard techniques to avoid local minima
(e.g., momentum, randomized restarts or perturbations, etc.), on the DeepReach loss will result in
approximations that uniformly converge to the true solution to Equation (3) as training progresses.
We require one more technical lemma, based on the convergence properties of viscosity solutions
from [16].
Lemma A.6. Suppose that uk is a sequence of viscosity subsolutions to a sequence of proper
equations, defined by F (k)(x, u,Du,D2u) = 0, for x ∈ K ⊂ Rn compact. Then,

u(x) := lim
j→∞

sup

{
uk(y) : k ≥ j, y ∈ K, ∥y − x∥2 ≤ 1

j

}
is a viscosity subsolution to the equation F (x, u,Du,D2u) = 0, where

F (x, u,Du,D2u) := lim sup
k→∞

F (k)(x, u,Du,D2u).

Similarly, if uk is instead a sequence of viscosity supersolutions to Fk(x, u,Du,D
2u) = 0, then

u(x) := lim
j→∞

inf

{
uk(y) : k ≥ j, y ∈ K, ∥y − x∥2 ≤ 1

j

}
is a viscosity supersolution to the equation F (x, u,Du,D2u) = 0, where F is defined by taking the
limit infimum of F (k) above.

Proof. This is the result of Lemma 6.1 and the corresponding Remarks 6.2, 6.3, and 6.4 in [16].

Equipped with the above technical lemma, we are finally prepared to prove Theorem 4.2.

Proof of Theorem 4.2. Consider any sequence of parameters {θ(k)}k∈N such that L(θ(k)) → 0 as
k → ∞. As discussed above, such a sequence of parameters defines a family {Vθ(k)}k∈N that satisfies
the sequence of perturbed PDEs in Equation (12), with error terms ε(k) : [0, T ] × K → R and
δ(k) : K → R satisfying

∥ε(k)∥∞ → 0, ∥δ(k)∥∞ → 0

as k → ∞. By Lemma A.5, these perturbed PDEs are equivalently described by proper formulations,
defined in Equation (14). Now, to invoke Lemma A.6, we define

V (t, x) := lim
j→∞

sup

{
Vθ(k)(s, y) : k ≥ j, (s, y) ∈ ΩK , ∥(t, x)− (s, y)∥2 ≤ 1

j

}
and

V (t, x) := lim
j→∞

inf

{
Vθ(k)(s, y) : k ≥ j, (s, y) ∈ ΩK , ∥(t, x)− (s, y)∥2 ≤ 1

j

}
.

Because F (k) → F uniformly on ΩK × R× Rn+1 × Sn+1 as k → ∞, it follows that

lim inf
k→∞

F (k) = F = lim sup
k→∞

F (k).

Thus, by Lemma A.6, V (t, x) is a viscosity subsolution to the proper equation defined by F in
Equation (11). Similarly, V (t, x) is a viscosity supersolution to the proper equation defined in
Equation (11). Note that, by construction, V and V satisfy the pointwise inequality

V (t, x) ≤ V (t, x)
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for all (t, x) ∈ ΩK . However, because V is a viscosity supersolution and V a viscosity subsolution,
by the comparison principle for viscosity solutions in [16, Thoerem 3.3], we have that

V (t, x) ≤ V (t, x)

for all (t, x) ∈ ΩK . Consequently, it follows that V (t, x) = V (t, x), and the resulting function is
both a viscosity subsolution and viscosity supersolution. Hence, by Definition A.3, V (t, x) = V (t, x)
is a viscosity solution to Equation (11). By Assumption (B), however, Equation (11) admits a unique
viscosity solution, so V (t, x) = V (t, x) = V (t, x). Then, by [16, Remark 6.4], the construction of
V and V respectively ensures that

lim
k→∞

Vθ(k)(t, x) = V (t, x)

on any compact subset of [0, T )×K. If not, then there would exists ν > 0 and a sequence {nk}k∈N
and {(tk, xk)}k∈N ∈ [0, T )×K, with (tk, xk) → (t, x) ∈ [0, T ]×K, such that

Vθ(nk)(tk, xk)− V (tk, xk) > ε or Vθ(nk)(tk, xk)− V (tk, xk) < −ε.

Taking k → ∞ however, and using the definitions of V and V respectively, the continuity of V would
imply that

|V (t, x)− V (t, x)| ≥ ε

for some (t, k) ∈ [0, T ] × K, a clear contradiction. Thus, uniform convergence holds any any
compact subset of [0, T ) × K. To extend convergence to all of ΩK = [0, T ] × K, recall that
δ(k)(x) = Vθ(k)(T, x)− ℓ(x) converges uniformly to zero as k → ∞, for all x ∈ K. As a result, it
follows that

lim
k→∞

sup
(t,x)∈ΩK

|Vθ(k)(t, x)− V (t, x)| = 0

as claimed.

B Baseline Collision Avoidance Application

In this appendix, we describe the baseline collision avoidance example, explored in [2, 5] and
Section 5 above. Consider the case of two airplanes approaching each other midair, as in the original
DeepReach paper [2]. In the worst-case scenario, one of the planes acts as a pursuer that attempts to
collide with the other plane, while the other plane acts as an evader. The relative dynamics of this
system, presented in [2] and [13], are given by

ẋ1 = −ve + vp cos θ + ωex2, ẋ2 = vp sin θ − ωex1, θ̇ = ωp − ωe, (15)

where x = (x1, x2) represents the relative positions of the two planes in a two-dimensional plane,
and θ is their relative heading. The two velocities ve and vp are the evader’s and pursuer’s velocities
respectively, and the angular velocities ωe and ωp are defined analogously. For simplicity, the
velocities ve and vp are held constant, while the two agents select inputs ωe and ωp. Note that, in our
notation above, ωp, the control input for the pursuer, is actually the disturbance in the context of the
reachability problem. We constrain |ωe|, |ωp| ≤ ωmax for some constant ωmax > 0, and consider a
standard unsafe set of the form L = {x : ∥x∥2 ≤ β}.
Taking ℓ(x) = ∥x∥2 − β, where β > 0 is a safety parameter, it follows that L = {x : ℓ(x) ≤ 0}, as
is desired in the setting of HJ reachability. Consequently, we can carry out the DeepReach algorithm
as outlined above, training the neural network using the DeepReach loss in Equation (5) to obtain an
approximation Vθ for the value function. In turn, the sublevel set

Vθ
BRT(t) := {x : Vθ(t, x) ≤ 0}

will approximate the true BRT for the collision avoidance problem. As noted in [15], this example is
a natural baseline to consider for reachability analysis because the true BRT V is possible to describe
analytically (at least, very nearly, up to some sampling error). Additionally, as shown in [2], it is
possible to analytically compute the Hamiltonian for this problem. Denoting[

p1
p2
p3

]
:=

[
∂x1

V (t, x1, x2, θ)
∂x2

V (t, x1, x2, θ)
∂θV (t, x1, x2, θ)

]
,

12



we have that

H(t, x) = p1(−ve + vp cosx3) + p2(vp sinx3)− ωmax|p1x3 − p2x1 − p3|+ ωmaxp3 (16)

Because the Hamiltonian can be computed explicitly, implementing the DeepReach loss is straight-
forward in this instance. For general reachability problems, however, it is possible to efficiently
solve the optimization problem in Equation (4) at each step [2]. This basic setup can be extended to
higher-dimensional collision avoidance problems. For instance, with two evading agents and one
pursuing agent, the problem becomes a nine-dimensional collision avoidance problem. As shown in
[2], DeepReach still provides a robust approximation of the BRT in this high-dimensional setting.

C DeepReach Trained with ℓ1-Loss

In this appendix, we provide specific details pertaining to the training and fine-tuning of DeepReach
models, as well as plots reproducing the results of [2]. All plots in this appendix are produced using a
DeepReach model, pre-trained exactly as in [2], with ℓ1-loss. If ℓ2-loss is used instead, we obtain
comparable results. By pretraining with ℓ1-loss (resp. ℓ2-loss) before fine-tuning with sup-norm loss,
we can circumvent the expensive, time-consuming procedure of training DeepReach models from
scratch while still obtaining a useful comparison of the impact that training sup-norm loss can have
on the accuracy of such models.

Regardless of the loss metric in use, at each step of DeepReach training, K = 65000 uniformly-
sampled points are used to train the neural network as in Equation (5). All states are scaled to lie
in the interval [−1, 1], and the time interval in question is rescaled to satisfy T = 1, both of which
improve training stability. As in [2], we utilize a simple three-layer feedforward neural network, with
hidden layer size 512 and sinusoidal activation given by σ(x) = sin(x). The hyperparameter λ is set
to λ = 0 during pre-training (500 – 1K epochs, depending on the trial) and λ = 1.5 × 102 during
training (the remaining 500 – 10K epcohs, depending on the trial), and the neural network loss in
minimized using the Adam optimizer. The true BRT for the collision avoidance problem is computed
numerically, using the Level Set Toolbox (LST) PDE solver, as in implementation provided by [2, 15].
LST also provides a numerical solution for the true value function V .

Figure 5: Absolute difference between true and approximate value functions, using pre-trained
DeepReach model from [2].

Figure 6: Comparison of BRT obtained by pre-trained DeepReach model and analytical BRT from
[15]. Note the discrepancy between the two sets at θ = π.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper abides by the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Section 1 and Section 6 describe how the theoretical guarantees in this paper
may allow for the development of more robust collision-avoidance systems.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All original creators and owners of code used in this paper’s numerical
experiments are properly credited in Section 5, Appendix C, and the linked Colab notebook.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: New assets are not introduced in this paper, although a link to the code used
for numerical experiments can be found in Section 5.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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