
Leaving the Nest :
Going Beyond Local Loss Functions for Predict-Then-Optimize

Sanket Shah1, Bryan Wilder2, Andrew Perrault3, Milind Tambe1

1Harvard University
2Carnegie Mellon University

3Ohio State University
sanketshah@g.harvard.edu, bwilder@andrew.cmu.edu, perrault.17@osu.edu, milind_tambe@harvard.edu

Abstract

Predict-then-Optimize is a framework for using machine learn-
ing to perform decision-making under uncertainty. The central
research question it asks is, “How can we use the structure of
a decision-making task to tailor ML models for that specific
task?” To this end, recent work has proposed learning task-
specific loss functions that capture this underlying structure.
However, current approaches make restrictive assumptions
about the form of these losses and their impact on ML model
behavior. These assumptions both lead to approaches with
high computational cost, and when they are violated in prac-
tice, poor performance. In this paper, we propose solutions
to these issues, avoiding the aforementioned assumptions and
utilizing the ML model’s features to increase the sample effi-
ciency of learning loss functions. We empirically show that our
method achieves state-of-the-art results in four domains from
the literature, often requiring an order of magnitude fewer
samples than comparable methods from past work. Moreover,
our approach outperforms the best existing method by nearly
200% when the localness assumption is broken.

1 Introduction
Predict-then-Optimize (PtO) (Donti, Amos, and Kolter 2017;
Elmachtoub and Grigas 2021) is a framework for using ma-
chine learning (ML) to perform decision-making under uncer-
tainty. As the name suggests, it proceeds in two steps—first,
an ML model is used to make predictions about the uncertain
quantities of interest, then second, these predictions are ag-
gregated and used to parameterize an optimization problem
whose solution provides the decision to be made. Many real-
world applications require both prediction and optimization,
and have been cast as PtO problems. For example, recom-
mender systems need to predict user-item affinity to deter-
mine which titles to display (Wilder, Dilkina, and Tambe
2019), while portfolio optimization uses stock price predic-
tions to construct high-performing portfolios (Bengio 1997).
In the context of AI for Social Good, PtO has been used
to plan intervention strategies by predicting how different
subgroups will respond to interventions (Wang et al. 2022).

The central research question of PtO is, “How can we use
the structure of an optimization problem to learn predictive
models that perform better for that specific decision-making

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

task?". In this paper, we refer to the broad class of meth-
ods used to achieve this goal as Decision-Focused Learning
(DFL). Recently, multiple papers have proposed learning
task-specific loss functions for DFL (Chung et al. 2022; Law-
less and Zhou 2022; Shah et al. 2022). The intuition for these
methods can be summarized in terms of the Anna Karenina
principle—while perfect predictions lead to perfect decisions,
different kinds of imperfect predictions have different im-
pacts on downstream decision-making. Such loss functions,
then, attempt to use learnable parameters to capture how
bad different kinds of prediction errors are for the decision-
making task of interest. For example, a Mean Squared Error
(MSE) loss may be augmented with tunable parameters to as-
sign different weights to different true labels. Then, a model
trained on such a loss is less likely to make the kinds of errors
that affect the quality of downstream decisions.

Learning task-specific loss functions poses two major chal-
lenges. First, learning the relationship between predictions
and decisions is challenging. To make learning this relation-
ship more tractable, past approaches learn different loss func-
tions for each instance of the decision-making task, each
of which locally approximates the behavior of the optimiza-
tion task. However, the inability to leverage training samples
across different such instances can make learning loss func-
tions sample inefficient, especially for approaches that require
a large number of samples to learn. This is especially prob-
lematic because creating the dataset for learning these loss
functions is the most expensive part of the overall approach.
In this paper, rather than learning separate loss functions for
each decision-making instance, we learn a mapping from the
feature space of the predictive model to the parameters of
different local loss functions. This ‘feature-based parame-
terization’ gives us the best of both worlds—we retain the
simplicity of learning local loss functions while still being
able to generalize across different decision-making instances.
In addition to increasing efficiency, this reparameterization
also ensures that the learned loss functions are Fisher Con-
sistent—a fundamental theoretical property that ensures that,
in the limit of infinite data and model capacity, optimizing
for the loss function leads to optimal decision-making. Past
methods for learning loss functions do not satisfy even this
basic theoretical property!

The second challenge with learning loss functions is that it
presents a chicken-and-egg problem—to obtain the distribu-

ar
X

iv
:2

30
5.

16
83

0v
2

 [
cs

.L
G

]
 1

8
Fe

b
20

24

tion of predictions over which the learned loss function must
accurately approximate the true decision quality, a predictive
model is required, yet to obtain such a model, a loss function
is needed to train it. To address this, Shah et al. (2022) use a
simplification we call the “localness of prediction”, i.e., they
assume that predictions will be ‘close’ to the true labels, and
generate candidate predictions by adding random noise to
the true labels. However, this doesn’t take into account the
kinds of predictions that models actually generate and, as
a result, can lead to the loss functions being optimized for
unrealistic predictions. In contrast, Lawless and Zhou (2022)
and Chung et al. (2022) use a predictive model trained using
MSE to produce a single representative sample that is used to
construct a simple loss function. However, this single sample
is not sufficient to learn complex loss functions. We explic-
itly formulate the goal of sampling a distribution of realistic
model predictions, and introduce a technique that we call
model-based sampling to efficiently generate such samples.
Because these interventions allow us to move away from
localness-based simplifications, we call our loss functions
‘Efficient Global Losses’ or EGLs .

In addition to our theoretical Fisher Consistency results
(Section 4.1), we show the merits of EGLs empirically by
comparing them to past work on four domains (Section 6).
First, we show that in one of our key domains, model-based
sampling is essential for good performance, with EGLs out-
performing even the best baseline by nearly 200%. The key
characteristic of this domain is that it breaks the localness
assumption (Section 5.1), which causes past methods to fail
catastrophically. Second, we show that EGLs achieve state-
of-the-art performance on the remaining three domains from
the literature, despite having an order of magnitude fewer
samples than comparable methods in two out of three of them.
This improvement in sample efficiency translates to a reduc-
tion in the time taken to learn task-specific loss functions,
resulting in an order-of-magnitude speed-up. All-in-all, we
believe that these improvements bring DFL one step closer
to being accessible in practice.

2 Background
2.1 Predict-then-Optimize
There are two steps in Predict-then-Optimize (PtO).
In the Predict step, a learned predictive model Mθ

is used to make predictions about uncertain quantities
[ŷ1, . . . , ŷN] = [Mθ(x1), . . . ,Mθ(xN)] based on some fea-
tures [x1, . . . , xN]. Next, in the Optimize step, these pre-
dictions are aggregated as ŷ = [ŷ1, . . . , ŷN] and used to
parameterize an optimization problem z∗(ŷ):

z∗(ŷ) = argmax
z

f(z; ŷ), s.t. z ∈ Ω

where f is the objective and Ω ⊆ Rdim(z) is the feasible
region. The solution to this optimization task z = z∗(ŷ)
provides the optimal decision for the predictions ŷ. We call a
full set of inputs ŷ or y = [y1, . . . , yN] to the optimization
problem an instance of the decision-making task.

However, the optimal decision z∗(ŷ) for the predictions
ŷ may not be optimal for the true labels y. To evaluate the

Decision Quality (DQ) of a set of predictions ŷ, we measure
how well the decisions they induce z∗(ŷ) perform on the set
of true labels y with respect to the objective function f :

DQ(ŷ,y) = f(z∗(ŷ);y) (1)

The central question of Predict-then-Optimize, then, is
about how to learn predictive models Mθ that have high
DQ. When models are trained in a task-agnostic manner,
e.g., to minimize Mean Squared Error (MSE), there can be
a mismatch between predictive accuracy and DQ, and past
work (see Section 3) has shown that the structure of the opti-
mization problem z∗ can be used to learn predictive models
with better DQ. We refer to this broad class of methods
for tailoring predictive models to decision-making tasks as
Decision-Focused Learning (DFL) and describe one recent
approach below.

2.2 Task-Specific Loss Functions
Multiple authors have suggested learning task-specific loss
functions for DFL (Chung et al. 2022; Lawless and Zhou
2022; Shah et al. 2022). These approaches add learnable
parameters to standard loss functions (e.g., MSE) and tune
them, such that the resulting loss functions approximate the
‘regret’ in DQ for ‘typical’ predictions. Concretely, for the
distribution over predictions ŷ = [Mθ(x1), . . . ,Mθ(xN)] of
the model Mθ , the goal is to choose a loss function Lϕ with
parameters ϕ such that:

ϕ∗ = argmin
ϕ

Ex,y,ŷ
[(
Lϕ(ŷ,y)−DQregret(ŷ,y)

)2]
where DQregret(ŷ,y) ≡ DQ(y,y)−DQ(ŷ,y) (2)

where DQ is defined in Equation (1). Note here that the first
term in DQregret is a constant w.r.t. ŷ, so minimizing DQregret
is equivalent to maximizing DQ. Adding the DQ(y,y) term,
however, makes DQregret behave more like a loss function—a
minimization objective with a minimum value of 0 at ŷ = y.
As a result, parameterized versions of simple loss functions
can learn the structure of DQregret (and thus DQ).

A meta-algorithm for learning predictive models Mθ using
task-specific loss functions is as follows:
1. Sampling ỹ: Generate K candidate predictions ỹk =

[y1 ± ϵ1, . . . , yN ± ϵN], e.g., by adding Gaussian noise
ϵn ∼ N (0, σ) to each true label yn. This strategy is mo-
tivated by the ‘localness of predictions’ assumption, i.e.,
that predictions will be close to the true labels.

2. Generating dataset: Run a optimization solver on the
sampled predictions ỹ to get the corresponding decision
quality values DQregret(ỹ,y). This results in a dataset
of the form [(ỹ1, DQ1

regret), . . . , (ỹ
K , DQK

regret)] for each
instance y in the training and validation set.

3. Learning Loss Function(s): Learn loss function(s) that
minimize the MSE on the dataset from Step 2. Lawless
and Zhou (2022) and Chung et al. (2022) re-weight the
MSE loss for each instance:

L&Zyw(ŷ) = wy · ||ŷ − y||22 (3)

Shah et al. (2022) propose 2 families of loss functions,
which they call ‘Locally Optimized Decision Losses’

(LODLs). The first adds learnable weights to MSE for
each prediction that comprises the instance ŷ. The second
is more general—an arbitrary quadratic function of the
predictions that comprise ŷ, where the learned parameters
are the coefficients of each polynomial term.

WMSEyw(ŷ) =
∑N
n=1w

y
n · (ŷn − yn)

2

QuadraticyH(ŷ) = (ŷ − y)THy(ŷ − y) (4)
The parameters for these losses w > wmin > 0 and
H = LTL + wmin · I are constrained to ensure that the
learned loss is convex. They also propose ‘Directed’ vari-
ants of each loss in which the parameters to be learned are
different based on whether (ŷ − y) > 0 or not. These pa-
rameters are then learned for every instance y, e.g., using
gradient descent.

4. Learning predictive model Mθ: Train the predictive
model Mθ on the loss functions learned in the previous
step, e.g., a random forest (Chung et al. 2022), a neural
network (Shah et al. 2022), or a linear model (Lawless
and Zhou 2022).

In this paper, we propose two modifications to the meta-
algorithm above. We modify Step 1 in Section 5 and Step 3
in Section 4. Given that these contributions help overcome
the challenges associated with the losses being "local", we
call our new method EGL (Efficient Global Losses).

3 Related Work
In Section 2.2, we contextualize why the task-specific loss
function approaches of Chung et al. (2022); Lawless and
Zhou (2022); Shah et al. (2022) make sense, and use the intu-
ition to scale model-based sampling and better empirically
evaluate the utility of different aspects of learned losses.

In addition to learning loss functions, there are alternative
approaches to DFL. The most common of these involves
optimizing for the decision quality directly by modeling the
Predict-then-Optimize task end-to-end and differentiating
through the optimization problem (Agrawal et al. 2019; Amos
et al. 2018; Donti, Amos, and Kolter 2017). However, discrete
optimization problems do not have informative gradients, and
so cannot be used as-is in an end-to-end pipeline. To address
this issue, most past work either constructs task-dependent
surrogate problems that do have informative gradients for
learning predictive models (Ferber et al. 2020; Mensch and
Blondel 2018; Tschiatschek, Sahin, and Krause 2018; Wilder,
Dilkina, and Tambe 2019; Wilder et al. 2019) or propose loss
functions for specific classes of optimization problems (e.g.
with linear objectives (Elmachtoub and Grigas 2021; Mu-
lamba et al. 2021)). However, the difficulty of finding good
task-specific relaxations for arbitrary optimization problems
limits the adoption of these techniques in practice. On the
other hand, learning a loss function is more widely applicable
as it applies to any optimization problem and only requires
access to a solver for the optimization problem; as a result,
we focus on improving this approach in this paper.

4 Part One: Feature-based Parameterization
The challenge of learning the DQregret(ŷ,y) function is that
it is as hard as learning a closed-form solution to an arbitrary

optimization problem. To make the learning problem easier,
past approaches typically learn multiple local approximations,
e.g., DQi

regret(ŷi) for every decision-making instance yi in
the training and validation set. This simplification trades off
the complexity of learning a single complex DQregret for the
cost of learning many simpler DQi

regret functions:

DQregret(ŷ,y)︸ ︷︷ ︸
complex

≈ DQi
regret(ŷi)︸ ︷︷ ︸
simple

, ∀ŷi ≈ yi + ϵ, ∀i ∈ [N]

However, this is problematic because calculating DQregret
for each of the sampled predictions ỹ is the most expen-
sive step in learning task-focused loss functions (see Sec-
tion 6.2). Specifically, learning each DQi

regret can require as
many as Ω(dim(y)2) samples (for the ‘DirectedQuadratic’
loss function from Shah et al. (2022)), leading to the need for
N · dim(y)2 samples overall. As a result, this approach does
not scale as the number of instances (i ∈ [N]) in the dataset
or the size of the optimization problem (dim(y)) increases.

To make learning loss functions more scalable, we have
to find a way to trade-off the hardness of learning a global
approximation against the cost of learning a local approxi-
mation. The standard machine learning approach for this is
to replace learning DQi

regret with a loss L that allows pool-
ing samples across different instances i ∈ [N] and predic-
tions dim(y). However, in doing this, two important design
choices have to be made—(1) What should be the functional
form of L?, and (2) What should the inputs to L be?

For the first, we could set L to simply be some neural
network model and try to learn some sort of global approxi-
mation to DQregret. However, in addition to the fact that this
does not address the “hardness” of learning a global approx-
imation, Shah et al. (2022) show that the lack of convexity
of the learned neural networks can sometimes lead to catas-
trophic failures, i.e., models that perform worse than random
guessing. Building on this insight, we propose using a neural
network to instead learn a mapping to the parameters of a
convex-by-construction loss function family. That way, re-
gardless of the learned parameters, we ensure that ŷ∗ = y is
a minimizer of the resulting loss function and so the learned
loss is guaranteed to never fail catastrophically.

For the second, we propose using the features xi associated
with the prediction yi as the input to our learned loss. To
ensure that ŷ∗ = y regardless of how well we model DQregret,
we show in Section 4.1 that the loss functions must have the
same set of parameters for a given set of features x in order
to be Fisher Consistent (discussed in more detail below).

Putting both of these together, EGLs learn a mapping
Pψ(x) from the features x of any prediction in the dataset
to the corresponding parameters in convex-by-construction
LODL loss families as follows:
• WeightedMSE: We learn a mapping Pψ : x → w from

the features x of a optimization parameter y to its asso-
ciated ‘weight’ w. Intuitively, the weight w encodes how
important a given prediction is, and so EGLs learn to pre-
dict the impact of different predictions’ errors on DQregret.

• Quadratic: For every pair of predictions ŷi and ŷj , we
learn a mapping Pψ : (xi, xj) → Lij where L = [[Lij]]

is the matrix that parameterizes the loss function (see
Equation (4)).

• Directed Variants: Instead of learning a mapping from
the features x to a single parameter, we instead learn
a mapping from x → [w+, w−] for ‘Directed Weight-
edMSE’ and (xi, xj) → [L++, L±, L−+, L−−] for ‘Di-
rected Quadratic’.

We then optimize for the optimal parameters ψ∗ of the
learned losses along the lines of past work:

ψ∗ = argmin
ψ

Ex,y,ŷ
[(
LPψ(x)(ŷ,y)−DQregret(ŷ,y)

)2]
where Lϕ = LPψ(x) is the learned loss function. For our
experiments, the model Pψ is a 4-layer feedforward neural
network with a hidden dimension of 500 trained using gradi-
ent descent. Given that we learn a mapping from the features
of a given prediction x to the corresponding loss function
parameter(s), we call our resulting approach feature-based
parameterization (FBP).

4.1 Fisher Consistency
One desirable property of a Predict-then-Optimize loss func-
tion is that, in the limit of infinite data and model capac-
ity, the optimal prediction induced by the loss also mini-
mizes the decision quality regret. If this is true, we say that
loss ℓ is “Fisher Consistent" w.r.t. the decision quality regret
DQregret (Elmachtoub and Grigas 2021).
Definition 4.1 (Fisher Consistency). A loss ℓ(ŷ,y) is said
to be Fisher Consistent with respect to the decision quality
regret DQregret if the set of minimizers of the loss function
ŷ∗(x) = argminŷ Ey|x[ℓ(ŷ,y)] also minimize DQregret for
all possible distributions P (x,y).

However, the methods proposed in past work do not satisfy
this property even for the simplest of cases—in which the
objective f of the optimization problem z∗ is linear. Con-
cretely:
Theorem 4.2. Weighting-the-MSE losses are not Fisher Con-
sistent for Predict-then-Optimize problems in which the opti-
mization function z∗ has a linear objective.

Proof. We show a proof by counter-example below. Consider
a PtO problem in which the goal is to (a) predict the utility
of a resource for two individuals (say, A and B), and then
(b) give the resource to the individual with higher utility.
Consider the utilities to be drawn from:

y = (yA, yB) =

{
(0, 0.55), with probability 0.5

(1, 0.55), with probability 0.5

The optimal decision, then, is to give the resource to individ-
ual B because E[ŷB] = 0.55 > E[ŷA] = 0.5.

To learn a predictive model using a Weighting-the-MSE
loss, we follow the meta-algorithm in Section 2.2:
1. We sample K = 25 points in the “neighborhood” of each

of the true labels (0, 0.55) and (1, 0.55). For simplicity,
we add uniform-random noise ϵk ∼ U [−1, 1] only to yA
to get ỹk = (yA ± ϵk, yB).

2. We calculate DQregret for each sample. We plot DQregret
vs ŷA in Figure 1 (given ŷB is fixed).

Figure 1: A plot of DQregret vs. ŷA (for fixed ŷB). The sam-
ples from Step 1 correspond to the blue dots for the (0, 0.55)
instance and the orange dots for the (1, 0.55) instance. We
also plot the learned weighted MSE loss for each instance
using solid lines in their corresponding colors.

3. Based on this dataset, we fit a loss of the form given by
Equation (3). Because there is only one weight being
learned here, this can be seen as either a WeightedMSE
LODL from Shah et al. (2022) or a reweighted task-loss
from Lawless and Zhou (2022), as seen in Figure 1.

4. Finally, we estimate a predictive model based on this
loss. The optimal prediction given this loss is ŷ∗ =
(ŷ∗A, ŷ

∗
B) ≈ (0.602, 0.55) (see Appendix B for details).

Under this predictive model, the optimal decision would be
to give the resource to individual A because they have higher
predicted utility, i.e., ŷ∗A > ŷ∗B . But this is suboptimal!

More generally, because “WeightedMSE” can be seen as
a special case of the other methods in Shah et al. (2022),
none of the loss functions in past work are Fisher Consis-
tent! To gain intuition for why this happens, let us analyze
the predictions that are induced by weighting-the-MSE type
losses:
Lemma 4.3. The optimal prediction ŷ∗(x) for some feature
x given a weighted MSE loss function with weights wy as-
sociated with the label y ∈ y is ŷ∗(x) = Ey|x[wy·y]

Ey|x[wy] , given
infinite model capacity.

The proof is presented in Appendix A. In their paper, El-
machtoub and Grigas (2021) show that the optimal prediction
that minimizes DQregret is ŷ∗(x) = Ey|x[y], i.e., the optimal
prediction should depend only on the value of the labels
corresponding to that feature. However, ŷ∗(x) = Ey|x[wy·y]

Ey|x[wy]
in weighted MSE losses, and so the optimal prediction de-
pends on not only the labels but also the weight associated
with them. While this is not a problem by itself, the weight
learned for a label y ∈ y is dependent on not only the label
itself but also the other labels y−y in that instance. In the
context of the counter-example in the proof of Theorem 4.2,
the weight associated with individual A is dependent on the
utility of individual B (via DQregret). As a result, it is pos-
sible to create a distribution P (x,y) for which such losses
will not be Fisher Consistent. However, this is not true for
WeightedMSE with FBP!
Theorem 4.4. WeightedMSE with FBP is Fisher Consistent
for Predict-then-Optimize problems in which the optimization
function z∗ has a linear objective.

Proof. In WeightedMSE with FBP, the weights associated
with some feature x are not independently learned for each
instance y but are instead a function of the features x. As a
result, the weight wy associated with that feature is the same
across all instances, i.e., wy = w(x), ∀y. Plugging that into
the equation from Lemma 4.3:

ŷ∗(x) =
Ey|x[wy · y]
Ey|x[wy]

=
w(x) · Ey|x[y]

w(x)
= Ey|x[y]

which is a minimizer of DQregret (Elmachtoub and Grigas
2021). Thus, WeightedMSE with FBP is Fisher Consistent.

5 Part Two: Model-based Sampling
Loss functions serve to give feedback to the model. How-
ever, to make them easier to learn, their expressivity is often
limited. As a result, they cannot estimate DQregret accurately
for all possible predictions but must instead concentrate on
a subset of “realistic predictions” for which the predictive
model Mθ will require feedback during training. However,
there is a chicken-and-egg problem in learning loss functions
on realistic predictions—a model is needed to generate such
predictions, but creating such a model would in turn require
its own loss function to train on.

Past work has made the assumption that the predictions
ŷ will be close to the actual labels y to efficiently generate
potential predictions ỹ. However, if the assumption does not
hold, Gaussian sampling may not yield good results, as seen
in Section 5.1. Instead, in this paper, we propose an alter-
native: model-based sampling (MBS). Here, to generate a
distribution of potential predictions using this approach, we
train a predictive model Mθ on a standard loss function (e.g.,
MSE). Then, at equally spaced intervals during the training
process, we use the intermediate model to generate predic-
tions for each problem instance in the dataset. These form
the set of potential predictions ỹ based on which we create
the dataset and learn loss functions. The hyperparameters
associated with this approach are:
• Number of Models: Instead of sampling predictions from

just one model, we can train multiple models to increase
the diversity of the generated predictions. In our experi-
ments, we choose from {1, 5, 10} predictive models.

• LR and Number of Training Steps: The learning rates
are chosen from {10−6, 10−5, . . . , 1} with a possible
cyclic schedule (Smith 2017). We use a maximum of
50000 updates across all the models.

Empirically, we find that a high learning rate and large num-
ber of models works best. Both of these choices increase the
diversity of the generated samples and help create a richer
dataset for learning loss functions.

5.1 Localness of Predictions
To illustrate the utility of model-based sampling, we analyze
the Cubic Top-K domain proposed by Shah et al. (2022).
The goal in this domain is to fit a linear model to approx-
imate a more complex cubic relationship between x and y
(Figure 2, Appendix C). This could be motivated by explain-
ablity (Rudin 2019; Hughes et al. 2018), data efficiency, or

simplicity. The localness assumption breaks here because
it is not possible for linear models (or low-capacity models
more generally) to closely approximate the true labels of a
more complex data-generating process. The objective of the
learned loss function, then, is to provide information about
what kind of suboptimal predictions are better than others.

Learned losses accomplish this by first generating plau-
sible predictions and then learning how different sorts of
errors change the decision quality. In this domain, the de-
cision quality is solely determined by the point with the
highest predicted utility. As can be seen in Figure 2 (Ap-
pendix C), the highest values given x ∼ U [−1, 1] are either
at x = −0.5 or x = 1. In fact, because the function is flatter
around x = −0.5, there are more likely to be large values
there. When Gaussian sampling (Shah et al. 2022) is used to
generate candidate predictions, the highest sampled values
are also more likely to be at x = −0.5 because the added
noise has a mean of zero. However, a linear model cannot
have a maximum value at x = −0.5, only x ∈ {−1, 1}. As a
result, the loss functions learned based on the samples from
this method focus on the wrong subset of labels and lead to
poor downstream performance. On the other hand, the candi-
date predictions generated by model-based sampling are the
outputs of linear models, allowing the loss functions to take
this into account. We visualize this phenomenon in Figure 3.

In their paper, Shah et al. (2022) propose a set of “directed
models” to make LODLs perform well in this domain. How-
ever, these models only learn useful loss functions because
the value of the label at x = 1 is slightly higher than the value
at x = −0.5. To show this, we create a variant of this domain
called “(Hard) Cubic Top-K” in which yx=−0.5 > yx=1.
Then, in Table 1, we see that even the “directed” LODLs
fail catastrophically in this domain, while the loss functions
learned with model-based sampling perform well.

6 Experiments
In this section, we validate EGLs empirically on four do-
mains from the literature. We provide brief descriptions of
the domains below but refer the reader to the corresponding
papers for more details.
Cubic Top-K (Shah et al. 2022) Learn a model whose
top-k predictions have high corresponding true labels.
• Predict: Predict resource n’s utility ŷn using a linear

model with feature xn ∼ U [−1, 1]. The true utility is
yn = 10x3

n − 6.5xn for the standard version of the do-
main and yn = 10x3

n − 7.5xn for the ‘hard’ version. The
predictive model is linear, i.e., Mθ(x) = mx+ c.

• Optimize: Out of N = 50 resources, choose the top K = 1
resources with highest utility.

Web Advertising (Wilder, Dilkina, and Tambe 2019) The
objective of this domain is to predict the Click-Through-
Rates (CTRs) of different (user, website) pairs such that good
websites to advertise on are chosen.
• Predict: Predict the CTRs ŷm for N = 10 fixed users on
M = 5 websites using the website’s features xm. The
features for each website are obtained by multiplying the
true CTRs ym from the Yahoo! Webscope Dataset (Yahoo!
2007) with a random N ×N matrix A, resulting in xm =

Table 1: Overall Results. The entries represent the Mean Normalized Test DQ ± SEM. Methods that are not applicable to
specific domains are denoted by ‘-’. Bolded values represent the set of methods that outperform the others by a statistically
significant margin (p-value < 0.05). Our method achieves state-of-the-art performance without any handcrafting and an order of
magnitude fewer samples.

Category Method

New Domain Domains from the Literature

(Hard) Cubic
Top-K

Cubic
Top-K

Web
Advertising

Portfolio
Optimization

2-Stage MSE -0.65 ± 0.04 -0.50 ± 0.06 0.60 ± 0.04 0.04 ± 0.00

Expert-crafted
Surrogates

SPO+ -0.68 ± 0.00 0.96 ± 0.00 - -
Entropy-Regularized

Top-K 0.24 ± 0.08 0.96 ± 0.00 - -

Multilinear Relaxation - - 0.74 ± 0.01 -
Differentiable QP - - - 0.141 ± 0.003

Learned Losses

L&Z (1 Sample) -0.68 ± 0.00 -0.96 ± 0.00 0.65 ± 0.02 0.133 ± 0.005
LODL (32 Samples) -0.68 ± 0.00 -0.38 ± 0.29 0.84 ± 0.04 0.146 ± 0.003

LODL (2048 Samples) -0.67 ± 0.01 0.96 ± 0.00 0.93 ± 0.01 0.154 ± 0.005
EGL (32 Samples) 0.69 ± 0.00 0.96 ± 0.00 0.95 ± 0.01 0.153 ± 0.004

Aym. The predictive model Mθ is a 2-layer feedforward
network with a hidden dimension of 500.

• Optimize: Choose which K = 2 websites to advertise on
such that the expected number of users who click on an
advertisement at least once (according to the CTR matrix)
is maximized. The objective to be maximized is z∗(ŷ) =
argmaxz

∑N
j=0(1−

∏M
i=0(1− zi · ŷij)), where zi can be

either 0 or 1. This is a submodular maximization problem.
Portfolio Optimization (Donti, Amos, and Kolter 2017)
Based on the Markovitz model (Markowitz and Todd 2000),
the aim is to predict future stock prices in order to create a
portfolio that has high returns but low risk.
• Predict: Predict the future stock price yn for each stock
n using its historical data xn. The historical data includes
information on 50 stocks obtained from the QuandlWIKI
dataset (Quandl 2022). The model Mθ is a 2-layer feedfor-
ward network with a hidden dimension of 500.

• Optimize: Choose a distribution z over stocks to maximize
zTy − λ · ŷTQŷ based on a known correlation matrix Q
of stock prices. Here, λ = 0.001 represents the constant
for risk aversion.

For each set of experiments, we run 10 experiments with
different train-test splits, and randomized initializations of
the predictive model and loss function parameters. Details of
the computational resources (OSC 1987) and hyperparameter
optimization used are given in Appendix D.

For all of these domains, the metric of interest is the de-
cision quality achieved by the predictive model Mθ on the
hold-out test set when trained with the loss function in ques-
tion. However, given that the scales of the decision quality
for each domain vary widely, we linearly re-scale the value
such that 0 corresponds to the DQ of making predictions
uniformly at random ŷ = ϵ ∼ U [0, 1] and 1 corresponds to
making perfect predictions ŷ = y. Concretely:

Normalized DQ(ŷ,y) =
DQ(ŷ,y)−DQ(ϵ,y)

DQ(y,y)−DQ(ϵ,y)

6.1 Overall Results
We compare our approach against the following baselines
from the literature in Table 1:
• MSE: A standard regression loss.
• Expert-crafted Surrogates: The end-to-end approaches

described in Section 3 that require handcrafting differ-
entiable surrogate optimization problems for each do-
main separately (Donti, Amos, and Kolter 2017; Wang
et al. 2020; Elmachtoub and Grigas 2021; Xie et al. 2020;
Wilder et al. 2019).

• L&Z: Lawless and Zhou (2022)’s approach for learning
losses (equivalent to Chung et al. (2022)).

• LODL: Shah et al. (2022)’s approach for learning loss
functions. Trained using 32 and 2048 samples.

(Hard) Cubic Top-K We empirically verify our analysis
from Section 5.1 by testing different baselines on our pro-
posed “hard” top-k domain. In Table 1, we see that all our
baselines perform extremely poorly in this domain. Even the
expert-crafted surrogate only achieves a DQ of 0.24 while
EGLs achieve the best possible DQ of 0.69; this corresponds
to a gain of nearly 200% for EGLs.
Domains for the Literature We find that our method
reaches state-of-the-art performance in all the domains from
the literature. In fact, we see that EGLs achieve similar perfor-
mance to LODLs with an order of magnitude fewer samples
in two out of three domains. In Section 6.2 below, we see
that this corresponds to an order of magnitude speed-up over
learning LODLs of similar quality!

6.2 Computational Complexity Experiments
We saw in Section 6.1 that EGLs perform as well as LODLs
with an order of magnitude fewer samples. In Table 3, we
show how this increased sample efficiency translates to dif-
ferences in runtime. We see that, by far, most of the time in
learning LODLs is spent in step 2 of our meta-algorithm. As
a result, despite the fact that EGLs take longer to perform

Table 2: Comparison to LODLs. MBS → Model-based Sampling, FBP → Feature-based Parameterization, and EGL = LODL +
MBS + FBP. The entries represent the Mean Normalized Test DQ ± SEM. EGLs improve the DQ for almost every choice of loss
function family and domain.

Domain Method

Normalized Test Decision Quality

Directed
Quadratic

Directed
WeightedMSE Quadratic WeightedMSE

Cubic
Top-K

LODL -0.38 ± 0.29 -0.86 ± 0.10 -0.76 ± 0.19 -0.95 ± 0.01
LODL (2048 samples) -0.94 ± 0.01 0.96 ± 0.00 -0.95 ± 0.01 -0.96 ± 0.00

EGL (MBS) 0.96 ± 0.00 0.96 ± 0.00 0.77 ± 0.13 0.77 ± 0.13
EGL (FBP) 0.58 ± 0.26 0.96 ± 0.00 -0.28 ± 0.21 -0.77 ± 0.11
EGL (Both) 0.96 ± 0.00 0.77 ± 0.13 0.96 ± 0.00 0.77 ± 0.13

Web
Advertising

LODL 0.75 ± 0.05 0.72 ± 0.03 0.84 ± 0.04 0.71 ± 0.03
LODL (2048 samples) 0.93 ± 0.01 0.84 ± 0.02 0.93 ± 0.01 0.78 ± 0.03

EGL (MBS) 0.86 ± 0.03 0.83 ± 0.03 0.78 ± 0.06 0.77 ± 0.04
EGL (FBP) 0.93 ± 0.02 0.80 ± 0.03 0.92 ± 0.01 0.75 ± 0.04
EGL (Both) 0.95 ± 0.01 0.78 ± 0.06 0.92 ± 0.02 0.81 ± 0.04

Portfolio
Optimization

LODL 0.146 ± 0.003 0.136 ± 0.003 0.145 ± 0.003 0.122 ± 0.003
LODL (2048 samples) 0.154 ± 0.005 0.141 ± 0.004 0.147 ± 0.004 0.113 ± 0.014

EGL (MBS) 0.135 ± 0.011 0.138 ± 0.010 0.146 ± 0.015 0.108 ± 0.009
EGL (FBP) 0.139 ± 0.005 0.141 ± 0.008 0.147 ± 0.008 0.136 ± 0.004
EGL (Both) 0.134 ± 0.013 0.127 ± 0.011 0.145 ± 0.011 0.153 ± 0.004

Table 3: Time taken to run the meta-algorithm (Sec-
tion 2.2) for comparable WeightedMSE EGLs and LODLs
on the Web Advertising domain. EGLs take only 6% of the
LODLs’ time to train.

Time Taken
(in seconds)

Method

LODL EGL

Samping ỹ
(Step 1)

0.18 ± 0.01
(Gaussian Sampling)

0.48 ± 0.04
(MBS)

Generating Dataset
(Step 2)

10376.65 ± 119.81
(2048 samples)

200.43 ± 4.24
(32 samples)

Learning Losses
(Step 3)

53.67 ± 1.84
(Separate Losses)

445.67 ± 62.42
(FBP)

Total 10430.50 ± 131.66 646.58 ± 66.70

steps 1 and 3, the increase in sample efficiency results in an
order-of-magnitude speedup over LODLs.

6.3 Ablation Study
In this section, we compare EGLs to their strongest competi-
tor from the literature, i.e., LODLs (Shah et al. 2022). Specif-
ically, we look at the low-sample regime—when 32 samples
per instance are used to train both losses—and present our
results in Table 2. We see that EGLs improve the decision
quality for almost every choice of loss function family and
domain. We further analyze Table 2 below.

Feature-based Parameterization (FBP): Given that this
is the low-sample regime, ‘LODL + FBP’ almost always does
better than just LODL. These gains are especially apparent
in cases where adding more samples would improve LODL
performance—the “Directed” variants in the Cubic Top-K

domain, and the “Quadratic” methods in the Web Advertising
domain.

Model-based Sampling (MBS): This contribution is most
useful in the Cubic Top-K domain, where the localness as-
sumption is broken. Interestingly, however, MBS also im-
proves performance in the other two domains where the lo-
calness assumption does not seem to be broken (Table 4 in
Appendix D.1). We hypothesize that MBS helps here in two
different ways:
1. Increasing effective sample efficiency: We see that, in

the cases where FBP helps most, the gains from MBS
stack with FBP. This suggests that MBS helps improve
sample-efficiency. Our hypothesis is that model-based
sampling allows us to focus on predictions that would lead
to a “fork in the training trajectory”, leading to improved
performance with fewer samples.

2. Helping WeightedMSE models: MBS also helps improve
the worst-performing WeightedMSE models in these do-
mains which, when combined with FBP, outperform even
LODLs with 2048 samples. This suggests that MBS does
more than just increase sample efficiency. We hypothe-
size that MBS also reduces the search space by limiting
the set of samples ỹ to “realistic predictions”, allowing
even WeightedMSE models that have fewer parameters to
perform well in practice.
Portfolio Optimization: The results for this domain don’t

follow the trends noted above because there is a distribution
shift between the validation and test sets in this domain (as
the train/test/validation split is temporal instead of i.i.d.).
In Table 5 (Appendix D.2), we see that EGLs outperform
LODLs and follow the trends noted above if we measure their
performance on the validation set, which is closer in time to
training (and hence has less distribution shift).

Acknowledgements
Sanket Shah was supported by the ARO under Grant Number:
W911NF-18-1-0208. The views and conclusions contained
in this document are those of the author s and should not
be interpreted as representing the official policies, either ex-
pressed or implied, of ARO or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation herein. Bryan Wilder was supported by NSF
(Award Number 2229881).

References
Agrawal, A.; Amos, B.; Barratt, S.; Boyd, S.; Diamond, S.;
and Kolter, J. Z. 2019. Differentiable convex optimization
layers. Advances in Neural Information Processing Systems,
32.
Amos, B.; Jimenez, I.; Sacks, J.; Boots, B.; and Kolter, J. Z.
2018. Differentiable MPC for End-to-end Planning and Con-
trol. In Advances in Neural Information Processing Systems,
volume 31.
Bengio, Y. 1997. Using a financial training criterion rather
than a prediction criterion. International journal of neural
systems, 8(04): 433–443.
Chung, T.-H.; Rostami, V.; Bastani, H.; and Bastani, O.
2022. Decision-Aware Learning for Optimizing Health Sup-
ply Chains. arXiv preprint arXiv:2211.08507.
Donti, P.; Amos, B.; and Kolter, J. Z. 2017. Task-based end-
to-end model learning in stochastic optimization. Advances
in Neural Information Processing Systems, 30.
Elmachtoub, A. N.; and Grigas, P. 2021. Smart “predict, then
optimize”. Management Science.
Ferber, A.; Wilder, B.; Dilkina, B.; and Tambe, M. 2020.
MIPaaL: Mixed integer program as a layer. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34,
1504–1511.
Hughes, M.; Hope, G.; Weiner, L.; McCoy, T.; Perlis, R.;
Sudderth, E.; and Doshi-Velez, F. 2018. Semi-Supervised
Prediction-Constrained Topic Models. In Proceedings of the
Twenty-First International Conference on Artificial Intelli-
gence and Statistics, 1067–1076.
Lawless, C.; and Zhou, A. 2022. A Note on Task-Aware Loss
via Reweighing Prediction Loss by Decision-Regret. arXiv
preprint arXiv:2211.05116.
Markowitz, H. M.; and Todd, G. P. 2000. Mean-variance
analysis in portfolio choice and capital markets. John Wiley
& Sons.
Mensch, A.; and Blondel, M. 2018. Differentiable dynamic
programming for structured prediction and attention. In
International Conference on Machine Learning, 3462–3471.
PMLR.
Mulamba, M.; Mandi, J.; Diligenti, M.; Lombardi, M.; Bu-
carey, V.; and Guns, T. 2021. Contrastive Losses and Solution
Caching for Predict-and-Optimize. In Proceedings of the In-
ternational Joint Conferences on Artificial Intelligence.
OSC. 1987. Ohio Supercomputer Center. http://osc.edu/ark:
/19495/f5s1ph73.

Quandl. 2022. WIKI Various End-Of-Day Data. https://www.
quandl.com/data/WIKI. Accessed: 2022-05-18.
Rudin, C. 2019. Stop explaining black box machine learning
models for high stakes decisions and use interpretable models
instead. Nature Machine Intelligence, 1(5): 206–215.
Shah, S.; Wang, K.; Wilder, B.; Perrault, A.; and Tambe, M.
2022. Decision-Focused Learning without Decision-Making:
Learning Locally Optimized Decision Losses. In Advances
in Neural Information Processing Systems.
Smith, L. N. 2017. Cyclical learning rates for training neural
networks. In 2017 IEEE winter conference on applications
of computer vision (WACV), 464–472. IEEE.
Tschiatschek, S.; Sahin, A.; and Krause, A. 2018. Differ-
entiable submodular maximization. In Proceedings of the
27th International Joint Conference on Artificial Intelligence,
2731–2738.
Wang, K.; Shah, S.; Chen, H.; Perrault, A.; Doshi-Velez,
F.; and Tambe, M. 2021. Learning MDPs from Features:
Predict-Then-Optimize for Sequential Decision Making by
Reinforcement Learning. In Ranzato, M.; Beygelzimer, A.;
Dauphin, Y.; Liang, P.; and Vaughan, J. W., eds., Advances
in Neural Information Processing Systems, volume 34, 8795–
8806. Curran Associates, Inc.
Wang, K.; Verma, S.; Mate, A.; Shah, S.; Taneja, A.; Madhi-
walla, N.; Hegde, A.; and Tambe, M. 2022. Decision-Focused
Learning in Restless Multi-Armed Bandits with Applica-
tion to Maternal and Child Care Domain. arXiv preprint
arXiv:2202.00916.
Wang, K.; Wilder, B.; Perrault, A.; and Tambe, M. 2020.
Automatically learning compact quality-aware surrogates for
optimization problems. Advances in Neural Information
Processing Systems, 33: 9586–9596.
Wilder, B.; Dilkina, B.; and Tambe, M. 2019. Melding the
data-decisions pipeline: Decision-focused learning for combi-
natorial optimization. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, 1658–1665.
Wilder, B.; Ewing, E.; Dilkina, B.; and Tambe, M. 2019. End
to end learning and optimization on graphs. Advances in
Neural Information Processing Systems, 32: 4672–4683.
Xie, Y.; Dai, H.; Chen, M.; Dai, B.; Zhao, T.; Zha, H.; Wei,
W.; and Pfister, T. 2020. Differentiable top-k with optimal
transport. Advances in Neural Information Processing Sys-
tems, 33: 20520–20531.
Yahoo! 2007. A1 - Yahoo! Search Marketing Advertising
Bidding Data, Version 1.0. https://webscope.sandbox.yahoo.
com/. Accessed: 2022-05-18.

A Proof of Lemma 4.3
Proof. The loss value for a prediction ŷ made using features x for a weight-the-MSE type loss LWMSE is:

LWMSE
x (ŷ) = Ey|x[

N∑
n=0

wyn(ŷn − yn)
2]

To find the optimal prediction, we differentiate the RHS with respect to the prediction ŷ corresponding to the feature x and
equate it to 0. Importantly, the prediction ŷ is not dependent on the distributions P (y|x). Moreover, because we assume infinite
model capacity, the prediction ŷ can also take any value and is independent of any other prediction ŷ′ ∈ ŷ−ŷ . As a result:

0 =
δ

δŷ
E[

N∑
n=0

wyn(ŷn − yn)
2]

= E[
δ

δŷ

N∑
n=0

wyn(ŷn − yn)
2]

= E[wy(ŷ − y)] = E[wy] · ŷ − E[wy · y]

=⇒ ŷ =
Ey|x[wy · y]
Ey|x[wy]

B Numerical Details for the Counter-Example in Section 4.1
We give more numerical details for the motivating example step-wise below:
• Step 1: For each instance, yblue = (yblue

A , yblue
B) = (0, 0.55) and yorange = (yorange

A , yorange
B) = (1, 0.55), we gen-

erate 15 possible predictions by adding noise ϵ ∼ U [−1, 1] to yblue
A and yorange

A respectively. Concretely, we con-
sider the following possible predictions ỹblue ∈ {(−1, 0.55), (−0.86, 0.55), . . . , (0.86, 0.55), (1, 0.55)}, and ỹorange ∈
{(0, 0.55), (0.14, 0.55), . . . , (1.86, 0.55), (2, 0.55)}}.

• Step 2: For each of these possible predictions, we calculate the optimal decision z∗(ỹ) and then the decision quality regret
DQregret(ỹ,y) = f(z∗(y),y)− f(z∗(ỹ),y). We document these values in the following table:

Possible Predicted
Utilities ỹ

Optimal Decision
z∗(ỹ)

Decision Quality Regret
DQregret(ỹ,y)

(-1, 0.55) Give Resource to B yblue
B − yblue

B = 0

9 values −→
...

...
...

(0.43, 0.55) Give Resource to B yblue
B − yblue

B = 0
(0.57, 0.55) Give Resource to A yblue

B − yblue
A = 0.55

2 values −→
...

...
...

(1, 0.55) Give Resource to A yblue
B − yblue

A = 0.55

(0, 0.55) Give Resource to B yorange
A − yorange

B = 0.45

2 values −→
...

...
...

(0.43, 0.55) Give Resource to B yorange
A − yorange

B = 0.45
(0.57, 0.55) Give Resource to A yorange

A − yorange
A = 0

9 values −→
...

...
...

(2, 0.55) Give Resource to A yorange
A − yorange

A = 0

• Step 3: Based on the datasets {ỹblue} and {ỹorange} for each instance, we learn weights for the corresponding instance by
learning a weight for each instance that minimizes the MSE loss. Specifically, we choose:

wcolor = argmin
ŵcolor

1

15

∑
ỹcolor

[DQregret(ỹ
color,ycolor)− WMSEŵcolor(ỹcolor,ycolor)]2

where, WMSEŵcolor(ỹcolor,ycolor) ≡ ŵcolor · (ỹcolor
A − ycolor

A)2

To calculate the argmin we run gradient descent, and get wblue ≈ 0.385 and worange ≈ 0.582.

• Step 4: Based on Lemma 4.3, we know that:

ŷ =
Ey|x[wy · y]
Ey|x[wy]

Then, plugging the values of the weights from Step 3 into the formula above, we get:

ŷA =
pblue · wblue · yblue

A + porange · worange · yorange
A

pblue · wblue + porange · worange

=
0.5 · 0.385 · 0 + 0.5 · 0.582 · 1

0.5 · 0.385 + 0.5 · 0.582
≈ 0.602

C Visualizations for the Cubic Top-K domain

Figure 2: Cubic Top-K Domain. The underlying mapping from x → y is given by the green dashed line. The set y consists of
N = 50 points where xn ∼ U [−1, 1], and the goal is to predict the point with the largest y. The linear model that minimizes the
MSE loss is given in blue.

(a) Cubic Top-K with Gaussian Sampling (b) (Hard) Cubic Top-K with Gaussian Sampling

(c) Cubic Top-K with Model-based Sampling

Figure 3: Visualizing Sampling Strategies for the Cubic Top-K Domain. The points in green represent the true labels for
some instance y with the dashed curve representing the underlying mapping x → y. The points in orange and red each represent
a set of sampled predictions ỹorange and ỹred with the larger point denoting the sampled prediction with the maximum value.

D Additional Results
We run our experiments on an internal cluster (OSC 1987). Each job was run with up to 16GM of memory, 8 cores of an Intel
Xeon Cascade Lake CPUs, and optionally one Nvidia A100 GPU. For each method and choice of hyperparameters, we run 10
experiments with different train-test splits, and randomized initializations of the predictive model and loss function parameters.
Then, for each method, we choose the best hyperparameters based on the highest average decision quality on a validation set.
The corresponding normalized test decision qualities are then reported in Table 3 (for LODLs and EGLs) and Table 1 (for
other models). The best values across different loss function families in Table 3 are then summarized in Table 1. Some of
the hyperparameters that we vary are the learning rates, the number of epochs and patience, the batch size, the loss function
families, and the amount of 2-stage loss we mix into the “expert-crafted surrogates” (in multiples of 10 over reasonable values).
Given the number of hyperparameters, we do not try all combinations but instead manually iterate over subsets of promising
hyperparameter values.

D.1 Localness of Predictions in Different Domains

Table 4: Validating the “localness of predictions” for different domains. The error on the validation set for predictive models
trained on the MSE loss. We see that the localness assumption breaks for the Cubic Top-K domains because the errors are high,
implying that the predictions are not close to the true labels.

Domain Final Validation MSE

Portfolio Optimization 0.000402
Web Advertising 0.063420

Cubic Top-K 2.364202
(Hard) Cubic Top-K 3.015765

D.2 Analyzing the Portfolio Optimization Domain

Table 5: Validation DQ for Portfolio Optimization MBS → Model-based Sampling, FBP → Feature-based Parameterization,
and EGL = LODL + MBS + FBP. The entries represent the Mean Normalized Validation DQ ± SEM. All the EGL variants
outperform LODLs on the validation DQ.

Domain Method

Normalized Validation Decision Quality

Directed
Quadratic

Directed
WeightedMSE Quadratic WeightedMSE

Portfolio
Optimization

LODL 0.170 ± 0.006 0.150 ± 0.007 0.165 ± 0.006 0.134 ± 0.007
LODL (2048 samples) 0.189 ± 0.009 0.162 ± 0.009 0.165 ± 0.008 0.144 ± 0.014

EGL (MBS) 0.171 ± 0.026 0.160 ± 0.027 0.179 ± 0.047 0.140 ± 0.018
EGL (FBP) 0.172 ± 0.009 0.175 ± 0.030 0.170 ± 0.022 0.151 ± 0.009
EGL (Both) 0.186 ± 0.020 0.179 ± 0.024 0.190 ± 0.022 0.172 ± 0.009

D.3 Time taken to generate dataset for learned losses

Figure 4: The amount of time taken to create the dataset used to train the loss functions vs. the number of samples per instance y
in that dataset. To make the results comparable across different experimental domains, we divide the actual generation time
by the time taken to generate a dataset containing 32 samples for each domain. We see that for the Web Advertising and
Portfolio Optimization domains, the cost scales roughly linearly with the number of samples. For the Cubic Top-K domain, the
decision-making problem (top-k) is trivial and the computation is determined by other overheads, leading to a near-constant
generation time.

D.4 Sensitivity Analysis

Table 6: Varying the complexity of the mapping Pψ by varying the number of layers in the NN used to implement P .
We find that, interestingly, whether or not we need a high model complexity depends on the choice of the loss function family.
For the ‘Quadratic’ loss function families, which perform well in the Web Advertising domain (Table 3), we need models with
high capacity because of the non-linear mapping between features and parameters. Conversely, for ‘WeightedMSE’-type loss
functions, which are optimal in the other two domains, lower model capacity works better. This is especially true for the Portfolio
Optimization domain, where we overfit the validation set (Section 6.3).

Number
of Layers

Normalized Test DQ

Cubic
Top-K

Web
Advertising

Portfolio
Optimization

1 0.58 ± 0.25 0.91 ± 0.04 0.13 ± 0.02
2 0.58 ± 0.25 0.9 ± 0.02 0.12 ± 0.02
3 0.77 ± 0.19 0.9 ± 0.01 0.12 ± 0.02
4 0.2 ± 0.21 0.93 ± 0.01 0.12 ± 0.01
5 0.2 ± 0.31 0.92 ± 0.02 0.1 ± 0.02

Table 7: Varying the complexity of the mapping Pψ by varying the number of layers in the NN used to implement P . We
find that, in general, a larger number of models is better (8 & 16 models seem to do better on average than 1 & 2 models).

Number of
Sampling
Models

Normalized Test DQ

Cubic
Top-K

Web
Advertising

Portfolio
Optimization

1 0.2 ± 0.31 0.88 ± 0.04 0.11 ± 0.02
2 0.2 ± 0.31 0.89 ± 0.03 0.11 ± 0.01
4 0.4 ± 0.29 0.89 ± 0.02 0.14 ± 0.01
8 0.2 ± 0.21 0.93 ± 0.01 0.12 ± 0.01
16 0.58 ± 0.25 0.88 ± 0.03 0.13 ± 0.02

E Limitations
• Smaller speed-ups in simple decision-making tasks: In Section 6.2 we show how a reduction in the number of samples

needed to train loss functions almost directly corresponds to a speed-up in learning said losses. This is because Step 2 of
the meta-algorithm (Section 2.2), in which we have to run an optimization solver for multiple candidate predictions, is the
rate-determining step. However, for simpler optimization problems that can be solved more quickly (e.g., the Cubic Top-K
domain in Figure 4), this may no longer be the case. In that case, FBP is likely to have limited usefulness. Conversely, however,
FBP is likely to be even more beneficial for more complex decision-making problems (e.g., MIPs (Ferber et al. 2020) or RL
tasks (Wang et al. 2021)).

• Limited Understanding of Why MBS Performs Well: In this paper, we endeavor to provide necessary conditions for when
MBS allows EGLs to outperform LODLs, i.e., when the localness assumption is broken. However, EGLs seem to work
well even when these conditions do not hold, e.g., in the Web Advertising and Portfolio Optimization domains. We provide
hypotheses for why we believe this occurs in Section 6.3, but further research is required to rigorously test them.

