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ABSTRACT

World models play a crucial role in decision-making within embodied environ-
ments, enabling cost-free explorations that would otherwise be expensive in the
real world. However, to support faithful imagination in out-of-distribution (OOD)
regions, world models must possess significant generalizability, which poses sub-
stantial challenges for previous scalable approaches. This paper addresses two
primary sources of the world model generalization error: the policy distribution
shift caused by the divergence between test and data-collection policies, and the
compounding error arising from long-horizon autoregressive rollout. To tackle
these issues, we introduce the policy-conditioning and the retracing-rollout tech-
niques, respectively. Incorporating these two techniques, we present Whale, a
scalable spatial-temporal transformer-based world model with enhanced generaliz-
ability. We first demonstrate the effectiveness of the two techniques, showcasing
their consistent superiority over previous baselines in both trajectory generation
quality and value estimation accuracy. Furthermore, we propose Whale-X, a 414M
parameter world model trained on 970K trajectories from Open X-Embodiment
datasets. We show that Whale-X exhibits promising scalability and strong general-
izability in real-world manipulation scenarios using minimal demonstrations.

1 INTRODUCTION

Human beings have the capability to envision an imagined world in their minds, predicting how
different actions might lead to different outcomes (Maus et al., 2013; Nortmann et al., 2015). Inspired
by this aspect of human intelligence, world models (Ha & Schmidhuber, 2018) are designed to
abstract real-world dynamics and provide such "what if" prediction. As a result, embodied agents
can interact with world models instead of real-world environments to generate simulation data,
which can be used for various downstream tasks, including counterfactual prediction (Chen et al.,
2023), off-value estimation (Fu et al., 2021), and offline reinforcement learning (Levine et al., 2020).
However, the requirement for accurate out-of-distribution (OOD) predictions for reliable model
imagination poses significant challenges to the generalizability of world models, which has not been
well addressed by previous approaches (Schubert et al., 2023).

In this work, we investigate the sources of the generalization error in world models, identifying two
primary factors: 1) policy distribution shift (Janner et al., 2019), stemming from the divergence
between the test policy and data-collection policies, and 2) error compounding (Xu et al., 2020),
resulting from long-horizon autoregressive rollouts. The interplay of these two factors intensifies the
challenge of generalization in world models.

To mitigate the generalization error caused by policy distribution shift, we introduce the policy
conditioning, building upon the concept of policy-conditioned model learning (Chen et al., 2024a),
aims to embed the policy information into the dynamics model learning, allowing the model to
adapt to different policies actively to mitigate the extrapolation error caused by distribution shift.
Furthermore, we propose a simple yet effective technique called retracing rollout, to reduce the
long-horizon compounding error during test time. This approach fixes the first frame of the moving
contexts to be the initial real observation and relabels the corresponding action by retracing the effects
of the original actions at the history timesteps. As a plug-and-play solution, retracing rollout can be
efficiently applied to end-effector pose control in various embodiment tasks without necessitating any
changes to the training process.
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Incorporating these two techniques, we present Whale, a scalable embodied world model based on
the spatial-temporal transformer (Ma et al., 2024; Bruce et al., 2024), designed to enable faithful long-
horizon imagination for real-world visual control tasks. To substantiate the effectiveness of Whale,
we conduct extensive experiments on both simulated Meta-World (Yu et al., 2019) benchmark and a
physical robot platform, encompassing a variety of pixel-based manipulation tasks. Experimental
results on the simulated tasks show that Whale outperforms existing world model learning methods
in both video fidelity and value estimation accuracy. Moreover, we also validate the effectiveness
of policy-conditioning and retracing-rollout techniques in reducing the generalization error. As a
further step, we introduce Whale-X, a 414M parameter world model trained on 970k real-world
demonstrations from Open X-Embodiment datasets (Collaboration et al., 2023). Whale-X serves as
a foundational embodied world model for evaluating real-world behaviors. With fine-tuning on a
few demonstrations in completely unseen environments and robots, Whale-X demonstrates strong
OOD generalizability across visual, motion, and task perspectives. Furthermore, by scaling up the
pre-training dataset or model parameters, Whale-X shows impressive scalability during both the
pre-training and fine-tuning phases.

The primary contributions of this work are outlined as follows:

• We introduce two key techniques: policy conditioning and retracing rollout, to tackle two
main challenges of world model generalization: policy distribution shift and long-horizon
error compounding;

• By incorporating these two techniques, we propose Whale, a scalable embodied world
model with enhanced generalizability, and further present a 414M parameter Whale-X
pre-trained on 970K robot demonstrations;

• We conduct extensive experiments to showcase the effectiveness of two techniques while
highlighting Whale’s remarkable scalability and generalization across both simulated and
real-world tasks.

2 BACKGROUNDS

2.1 SEQUENTIAL DECISION-MAKING

A typical formulation of sequential decision tasks is the Markov decision process (MDP) (Puterman,
1990) specified by the tuple M = (S,A, r, T ∗, γ,H, ρ0), where S is the state space, A is the action
space, r(s, a) is the reward function, T ∗(s′|s, a) is the real transition probability, γ ∈ (0, 1] is the
discount factor, H is the decision horizon, and ρ0(s) is the initial state distribution. In this work, we
simply consider the case where γ = 1 andH <∞. In reinforcement learning (Sutton & Barto, 2018),
the objective is to learn a policy that maximizes the expected return in the MDP, which involves
estimating the value of different policies. Specifically, the value of policy π is defined as:

V πT∗ = EτH∼(π,T∗)

[ H∑
t=1

r(st, at)
]
, (1)

where the state-action trajectory τH = (s1, a1, . . . , sH , aH) and rewards are generated by the rollouts
of policy π within the dynamics T ∗. Therefore, an unbiased estimation of policy values requires
online interactions with the real environment.

A common scenario involves abundant pre-collected experience data, but direct interaction with
the environment is either prohibited or costly, necessitating value estimation and optimization to be
performed offline. In this scenario, an environment model T can be explicitly learned from the offline
data and used to generate a simulated experience for value estimation and optimization. Assume
that V πT is the value estimated within the model T , the environment model error induces a value
gap |V πT∗ − V πT | for the policy π. If the model is globally accurate, the value gap will diminish for
any policy. However, offline experiences are often collected by a narrow range of policies (e.g.,
near-expert policies), and the learned environment models have to generalize beyond the training
experiences to evaluate diverse policies.
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2.2 WORLD MODELS FOR VISUAL CONTROL

Real-world control tasks often involve high-dimensional visual observations and a partially observable
nature. These visual control environments can be further described by a partially observable Markov
decision process (POMDP) (Åström, 1965) specified by tuple (S,O, ϕ,A, r, T ∗, γ,H, ρ0), where
the agent receives visual observation ot = ϕ(st) at each step, only containing incomplete information
of st, and executes an action based on history observations at ∼ π(·|o1:t). The environment
then transitions into the next state st+1 according to T ∗(·|st, at) and provides the agent the next
observation ot+1 = ϕ(st+1) and a reward signal r(st, at). The agent must predict future outcomes
and make decisions based on historical observations due to incomplete information, making the
learning of general environment models in visual domains a significant challenge.

World models (Ha & Schmidhuber, 2018) are proposed as a general framework of learning visual
dynamics. A vision module learns an abstract, compressed representation of high-dimensional
image observations zt = Eθ(ot), a memory model tries to predict the future representations based
on the history Pθ(zt+1|z1:t, a1:t), compressing what happens over time, and a decoder recovers
the observation and reward predictions from the predicted representation ôt+1, r̂t+1 = Dθ(zt+1).
The combination of vision and memory modules enables efficient autoregressive future predictions,
allowing agents to plan or learn policies through model imaginations for visual control. Advanced
approaches (Hafner et al., 2020; 2023; Babaeizadeh et al., 2021; Gupta et al., 2023; Wu et al.,
2024) largely retain this architecture, but replace the encoder, decoder, and latent dynamics with
different model architectures (e.g. transformer with video tokenizer and detokenizer). However, these
works have not emphasized the generalizability of world models, which is crucial for sequential
decision-making but has not been well addressed by previous approaches (Schubert et al., 2023).

3 SCALABLE WORLD MODEL WITH ENHANCED GENERALIZABILITY

The common learning methods for autoregressive world models regard the transition learning as a
standard supervised learning problem, minimizing the negative log-likelihood (NLL) of the single-step
transition probabilities over the pre-collected trajectories in a teacher-forcing manner, i.e.,

min
T

Eµ∼ΠEτH∼(µ,T∗)
1

H

H∑
h=1

− log T (oh|τh−1) ⇐⇒ min
T
lKL(T ; Π),

where (sub-)trajectory τh = (o1, a1, o2, . . . , oh, ah), 1 ≤ h ≤ H is generated by interaction of a
behavior policy µ with the real dynamics T ∗, and behavior µ is assumed to be sampled from a
behavior policy distribution Π. Minimizing the NLL equals to minimizing the KL divergence loss

lKL(T ; Π) = Eµ∼ΠEτH∼(µ,T∗)
1

H

H∑
h=1

DKL(T
∗(·|τh−1), T (·|τh−1)). The learned world models are

usually utilized to evaluate any target policy π by simulating trajectories in an autoregressive manner:

V πT = EτH∼(π,T )

[ H∑
t=1

r(ot, at)
]
,

where the trajectory simulation distribution deviates from the training distribution. In classical
sequential modeling tasks like sentence generation and translation, the distribution shift from teacher-
forcing training to autoregressive generation diminishes as the model accuracy improves, which
therefore does not lead to significant negative impacts. In the world model learning, however, the
distribution shift results from both the model inaccuracy and the policy divergence, exacerbating the
evaluation inaccuracy:∣∣∣V πT − V πT∗

∣∣∣ ≤ 2Rmax H2︸︷︷︸
AutoReg

(√
2 lKL(T ; Π)︸ ︷︷ ︸
Train Error

+L ·W1(d
π, dΠ)︸ ︷︷ ︸

Policy Divergence

)
, (2)

where a distribution shift term induced by the policy divergence 1 occurs in addition to the KL training
loss, further amplified by an H2 factor caused by the autoregressive generation. Even if the world

1Here W1(d
π, dΠ) is the Wasserstein-1 distance between the π-induced trajectory distribution dπ(τ) and

the behavior trajectory distribution dΠ(τ) = Eµ∼Π[d
µ(τ)], and L is the Lipschitz constant of model loss w.r.t.

the trajectory, adapted from Chen et al. (2024a).
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Figure 1: The overall architecture of Whale. The policy embedding model encodes the observation
and action subsequences into policy embeddings zi, which are then passed to the dynamics model
along with observation tokens and actions to generate the next token predictions x̂i+1. The predicted
observation tokens are subsequently fed into the dynamics model for further predictions autoregres-
sively and decoded into observation predictions to obtain later policy embeddings.

model perfectly fits the training transitions, i.e. lKL(T ; Π) = 0, the variation of the policies could
also significantly shift the trajectory distribution to those large error areas, resulting in degenerative
generalizability.

One possible solution to this policy generalization issue is to embed the policy information into the
world model, allowing the model to actively recognize and adapt to the policy-induced distribution
shift (Chen et al., 2024a). This adaptation effect has been shown to reduce model generalization error
caused by policy divergence, i.e. the last term in Eq (2). For further analysis, please refer to Appendix
A. Furthermore, we devise a simple trick to facilitate long-horizon model rollout for embodiment
tasks, effectively alleviating the autoregressive error amplification. Building on these concepts, we
propose Whale, a scalable embodied world model with enhanced generalizability.

3.1 OVERALL MODEL ARCHITECTURE

In Figure 1, we illustrate the architecture of the Whale. Specifically, Whale comprises three main
components: policy embedding model, video tokenizer, and dynamics model. Inspired by previous
works (Bruce et al., 2024), these modules utilize a spatial-temporal transformer (ST-transformer)
architecture. Within this framework, each token is designed to attend only to other tokens in the
current frame and those at corresponding positions in prior frames. Additionally, Whale is capable of
generating all tokens for the next frame in parallel at one time. These designs significantly simplify
the computational demands from a quadratic to a linear dependency relative to sequence length,
reducing both the memory usage and computational costs of the model training while increasing
model inference speed.

3.2 POLICY EMBEDDING LEARNING

We would like to extract the decision patterns within training trajectories τH into a policy embedding,
reminiscent of the maximization of the evidence lower bound (ELBO) of the trajectory likelihood
conditioned on the history τh (Venkatraman et al., 2024; Yang et al., 2023; Ajay et al., 2021):

logP (τH |τh) ≥ Eqϕ(z|τH)

H∑
t=h

log πw(at|ot, τt−1, z)−DKL(qϕ(z|τH)||pψ(z|τh)) + Const, (3)

where qϕ(z|τH) denotes the posterior encoder, encoding the whole trajectory τH into a latent variable
z; πw(ah|oh, τh−1, z) denotes the decoder, which recovers the decision action from the latent
variable z and the up-to-date history (τh−1, oh); pψ(z|τh) denotes the prior predictor, which allows
the prediction of z based on the history τh. The information bottleneck requires the learned variable z
to effectively capture the decision pattern within the trajectory, embedding the information about the
corresponding behavior policy. Following this argument, we propose to learn the policy embedding
by maximizing the ELBOs over H decision steps and adjusting the amount of KL constraints similar
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Figure 2: The illustration of the retracing rollout. Here, the retrace action â1 can produce an equal
effect of the robot’s arm as executing a1, · · · , at−3 sequentially from o1, thus effectively reducing
the compounding error of the robot’s arm generated by world models.

to β-VAE (Higgins et al., 2017):

L(w, ϕ, ψ) = EτH∼D

[
Eqϕ(z|τH)

[
−

H∑
h=1

log πw(ah|oh, τh−1, z)
]
+β

H∑
h=1

DKL(qϕ(z|τH)||pψ(z|τh))
]
,

(4)
here the KL terms constrain the embedding predictions from sub-trajectories up to each time step
h, encouraging them to approximate the posterior encoding. This ensures that the representation
remains policy-consistent, meaning that trajectories generated by the same policy should have similar
representations, as suggested in the previous analysis.

3.3 WORLD MODEL LEARNING

World models typically consist of an observation encoder that encodes the raw observation into a
compact representation and a dynamics model that predicts future transitions within this representation
space (Ha & Schmidhuber, 2018). In this work, we adopt a tokenizer based on VQ-VAE (Van
Den Oord et al., 2017) as the encoder to discretize observations into tokens and train a dynamics
model at the token level.

Specifically, the video tokenizer eθ is composed of an encoder Eθ and a decoder Dθ, where the
encoder Eθ compresses video input into a sequence of tokens, while the decoder Dθ is capable
of reconstructing the original video from these tokens. This tokenizer is trained with the standard
VQ-VAE loss Ltok(θ) , which is a combination of a L1 reconstruction loss, a codebook loss, and a
commitment loss.

After training the tokenizer, we embed the policy information into the dynamics model learning
process. The key distinction from standard dynamics model learning is that Whale additionally
incorporates a policy embedding zh inferred by the prior predictor pψ. In this phase, for each
input trajectory segment τH , the video tokenizer first converts it into a sequence of tokens xH =

((x
(1)
1 , · · · , x(N)

1 ), (x
(1)
2 , · · · , x(N)

2 ), · · · , (x(1)H , · · · , x(N)
H )), where x(j)i represents the j-th token of

the i-th frame. Consequently, the training objective of the dynamics model is to maximize the
log-likelihood of the tokens xh+1 for the next frame sh+1, conditioned on the history tokens x0:h,
history actions a0:h and the policy embedding zh = pψ(τh):

Ldyn(θ) = EτH∼D
[
−

H∑
h=1

logPθ(xh+1|x1:h, a1:h, zh)
]
, (5)

Intuitively speaking, Whale does not only accept history as a direct feature to predict transitions but
also infers the latent decision intention from the history to enable test-time adaptation to the induced
distribution shift.

3.4 RETRACING ROLLOUT FOR COMPOUNDING ERROR REDUCTION

Model imagination involves rolling out a policy or executing an action sequence step-by-step within
the world model. As highlighted in Eq (2), this process suffers from error compounding during test

5
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Figure 3: Qualitative evaluation: long-horizon video generation results of Whale on Meta-World,
Open X-Embodiment, and our Real-world tasks.

time due to the shift from teacher-forcing training objective to autoregressive generation, resulting
in a quadratic increase in model error as the decision horizon H extends. To mitigate this issue,
we propose a simple but effective technique, termed retracing rollout, as depicted in Figure 2.
Specifically, if the model imagination begins from a real initial observation o1 with a context
length assumed to be 4, the context for standard autoregressive rollout to predict ôt+1 at timestep t is
(ôt−3, at−3, ôt−2, at−2, ôt−1, at−1, ôt, at). Nevertheless, if the decision horizon significantly exceeds
the context length, the prediction context for later observations will consist entirely of model-generated
images and actions. This causes early prediction errors to accumulate, leading to increasingly
inaccurate subsequent predictions, a phenomenon commonly referred to as compounding error. To
mitigate this issue, our retracing rollout instead use the context (o1, â1, ôt−2, at−2, ôt−1, at−1, ôt, at),
which fixes the first frame to be the initial real observation o1, and relabel the corresponding action
â1 to produces an equivalent effect on the robot’s end-effector as executing the skipped actions
a1, . . . , at−3 sequentially, starting from o1.

Benefiting from the semantic structure of the action space in embodied control, the action-retracing
operation is computationally feasible for end-effector pose control. For instance, in the Open X-
embodied dataset, the action space is defined by a 7-dimensional vector that controls the end-effector.
The first three dimensions represent the changes in the gripper position (∆x, ∆y, ∆z), the next three
represent the changes in wrist orientation (∆roll, ∆pitch, ∆yaw), and the final dimension determines
whether the gripper opens or closes. Therefore, the retrace action can be directly computed using Eq
(6), where a(j)i represents the value of the j-th dimension of the action ai.

retrace(a1, · · · , at) =

(
t∑
i=1

a
(0)
i ,

t∑
i=1

a
(1)
i ,

t∑
i=1

a
(2)
i ,

t∑
i=1

a
(3)
i ,

t∑
i=1

a
(4)
i ,

t∑
i=1

a
(5)
i , a

(6)
t

)
. (6)

The retracing rollout intuitively offers two key advantages. First, in long-horizon rollouts, it acts as a
"fast track" connecting the initial observation to the predicted target, reducing the prediction error in
the pose of the robot’s arm. Second, by consistently incorporating the real initial observation o1 into
the model’s context, the retracing rollout significantly improves the coherence and consistency of the
generated trajectories. Notably, the retracing rollout operates without any modifications to the training
process, making it a plug-and-play solution, offering both flexibility and ease of implementation.

4 EXPERIMENT

We conduct extensive experiments on both simulated tasks and real-world tasks. The experimental
design is primarily designed to answer the following key questions:

• How does Whale perform compared with other baselines on simulated tasks? Are policy-
conditioning and retracing-rollout techniques effective? (Section 4.1)
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• How does Whale perform on real-world tasks? Can Whale benefit from pre-training on internet-
scale data? (Section 4.2)

• How is Whale’s scalability? Does increasing the model capacity or pre-training data improve
performance on real-world tasks? (Section 4.3)

4.1 SIMULATION EVALUATION

Experiment Setups We conduct our simulated task experiments on the Meta-World (Yu et al.,
2019) benchmark, which offers a diverse set of vision-based manipulation tasks. In this experiment,
we construct a training dataset with 60k trajectories collected from 20 tasks. The model learning
algorithms are required to use all the data for training from scratch. During evaluation, given an
initial observation and a sequence of actions, the world model should reconstruct the corresponding
video trajectories. More detailed information about data collection can be found in Appendix D.1.

Baselines We compare Whale against several world model learning baselines, including
(1) FitVid (Babaeizadeh et al., 2021), a variational-based world model that can fit large diverse video
datasets. (2) MCVD (Voleti et al., 2022), a diffusion-based world model that can perform video
generation conditioning on different subsets of video frames and actions. (3) DreamerV3 (Hafner
et al., 2023), a recurrent world model that outperforms specialized methods across diverse control
tasks. (4) iVideoGPT (Wu et al., 2024), a scalable transformer-based world model that achieved
state-of-the-art results in video generation and embodied control tasks. Complete descriptions and
implementation details are provided in Appendix B.2.

Evaluation Metrics The evaluation scenarios are divided into two categories: seen policies and
unseen policies. Specifically, seen policies involve tasks and action sequences that both appear in the
training set, unseen policies refer to tasks from the training set with action sequences generated by
unseen policies. Moreover, we assess the performance of world models from two perspectives: 1)
Video fidelity. Measures the quality of video trajectory generation, in terms of Fréchet Video Distance
(FVD) (Unterthiner et al., 2018), Peak Signal-to-noise Ratio (PSNR) (Huynh-Thu & Ghanbari, 2008),
Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018), and Structural Similarity
Index Measure (SSIM) (Wang et al., 2004). 2) Value estimation accuracy. Verifies whether the model
can correctly estimate the value of a given action sequence, in terms of Value Gap.

Comparison Results Table 1 presents the results for video fidelity and value estimation in the unseen
policies setting. Our analysis shows that Whale outperforms all other methods across every metric
related to video fidelity, with a notable advantage in FVD. 2 Furthermore, the value estimation results
demonstrate that Whale consistently matches or surpasses the baselines in minimizing the value
gap for both seen and unseen policies, emphasizing its superior accuracy in value estimation. The
remaining evaluation and visualization results can be found in Appendix C and F.1.

Meta-World #Params FVD↓ PSNR↑ SSIM↑ LPIPS↓ Value Gap ↓
unseen policies & 64×64 resolution

FitVid 143M 154.6 23.7 90.3 6.5 11.1
MCVD 53M 272.8 29.7 92.3 4.0 15.9
DreamerV3 44M 142.7 27.6 92.1 4.3 5.3
iVideoGPT 63M 115.7 28.5 92.8 4.5 6.4
Whale (ours) 51M 33.0±1.4 29.8±0.0 94.4±0.0 3.2±0.0 5.6±0.3

unseen policies & 256×256 resolution

DreamerV3 61M 112.4 26.2 91.7 8.5 7.5
Whale (ours) 63M 28.2±3.6 29.2±0.2 95.0±0.1 4.3±0.1 5.0±0.2

Table 1: Performance comparison on Meta-World benchmark with various models.

2In the 64×64 resolution, retracing rollout was omitted due to inconsistencies in object appearance within
the real videos, offering no added benefit in this context. However, at higher resolutions, retracing rollout led to
a marked improvement, as demonstrated in Table 2 and Table 3.
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Ablation Study To validate the effectiveness of policy-conditioned and retracing rollout techniques,
we conduct comprehensive ablation experiments under the unseen policies setting at a resolution of
256x256, as presented in Table 4 and Figure 4. The results show that the policy-conditioned method
effectively identifies and represents test policies, generating more realistic video trajectories and
reducing the value gap by 37%. Additionally, we find that retracing rollout provides significant
improvements: without altering the training process, the FVD of trajectories generated by retracing
rollout is only 33% of that produced by standard autoregressive rollout, while the value gap is reduced
to 50% of the original. These findings demonstrate that the policy-conditioning and retracing-rollout
mechanisms significantly enhance the generalizability of world models. For more results, please refer
to Appendix C.

Meta-World FVD↓ PSNR↑ SSIM↑ LPIPS↓ Value Gap ↓
unseen policies & 256×256 resolution

Whale (w/o retracing-rollout) 84.2±5.7 24.3±0.3 92.0±0.2 6.9±0.3 10.0±0.6
Whale (w/o policy-conditioning) 32.0±0.4 28.9±0.2 94.6± 0.1 4.6±0.1 7.9±0.2
Whale (ours) 28.2±3.6 29.2±0.2 95.0±0.1 4.3±0.1 5.0±0.2

Table 2: Ablation Study of Whale on Meta-World benchmark.

4.2 PHYSICAL ROBOT EVALUATION

Pre-training. We present Whale-X, a 414M parameter world model pre-trained on 970K real-world
robot demonstrations from Open X-Embodiment datasets. We use the entire dataset to pre-train
both the policy embedding model and the video tokenizer, selectively using a subset of the data
to pre-train the dynamics model. Whale-X serves as a foundational embodied world model for
evaluating real-world behaviors, capable of generating realistic and controllable video trajectories
that align with the given actions, as shown in Figure 3. Additional details on the pre-training process
and the generated results can be found in Appendix D.2 and Appendix F.3, respectively.

Experiment Setups. To evaluate the out-of-distribution generalizablitiy of Whale-X in the physical
world, we conduct comprehensive real-world experiments on ARX5 robotic platform. The evaluation
tasks differ significantly from the pre-training data, in terms of the robotic platform, camera angles,
and background visual information, posing considerable challenges for world models.

We carefully collect a limited dataset for fine-tuning, consisting of 60 trajectories for each of the
four tasks: open bin, push plate, throw ball, and move bottle. Following this, we designed several
challenging unseen tasks for testing, with a focus on evaluating the model from the perspectives of
visual generalization, motion generalization, and task generalization perspectives. Further details on
the data collection process can be found in Appendix E.

Evaluation Metrics. Given an initial frame and a sequence of subsequent actions, world models
should autoregressively generate future video trajectories. For a visual world model to be effective
in decision-making, it needs to focus more on reasoning about the consequences of actions than on
reconstructing irrelevant visual information like backgrounds. Thus we introduce the consistency
rate to assess whether the differences in reconstructed object positions, interactive object states,
and robot arm positions fall within an acceptable range compared to the ground truth. We use the
multimodal large model GPT-4o (Achiam et al., 2023) for this evaluation through multiple rounds
of Q&A. Details of the prompts and the evaluation process can be found in the Appendix H, with
results presented in Figure 4. In addition, we employ several video fidelity metrics, similar to those
in Section 4.1, to assess the quality of video generation by the world models.

Task Results Whale-X model shows a clear advantage in our real-world experiments. Specifically,
as shown in Figure 4, the quantitative results indicate that: 1) Whale-X improves consistency by
63% and 30% compared to models without policy-conditioning and retracing-rollout respectively,
demonstrating that these mechanisms significantly enhance the OOD generalizability; and 2) Whale-
X, pre-trained on 970k samples, achieved much higher consistency rate than models trained from
scratch, highlighting the benefits of pre-training on large-scale internet data. Furthermore, the
evaluation of video generation quality aligns with these consistency rate findings as illustrated in
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Figure 4: The results of physical robot evaluation on unseen scenarios. The row above shows the bar
chart of the consistency rate, and the row below represents the tasks used for testing. The experiments
demonstrate that Whale-X exhibits good generalization performance in unseen scenarios, and both
the proposed policy-conditioning and retracing-rollout can enhance the model’s performance.

Real-world Tasks PSNR↑ SSIM↑ LPIPS↓
unseen tasks & 256×256 resolution

Whale-X (training from scratch) 20.0 74.9 37.0
Whale-X (w/o retracing-rollout) 21.9 79.6 30.3
Whale-X (w/o policy-conditioning) 21.4 79.0 31.2
Whale-X (ours) 22.3 80.5 29.6

Table 3: Video Fidelity of Whale-X on real-world tasks.

Figure 5: Scaling Experiment Results of Whale-X. The leftmost plot shows the training loss curves
for models with varying parameter sizes during the pre-training phase. The second plot presents the
final training loss for all models after 300k pre-training steps. The third plot displays the test loss
after fine-tuning. The legend in the figure indicates the parameter number of the dynamics model.

Table 3: both policy-conditioning and retracing-rollout techniques boost OOD generalizability and
significantly outperform models lacking pre-training.

4.3 SCALING EXPERIMENTS

In this section, we aim to investigate the scaling behavior of Whale-X. Specifically, We freeze the
video tokenizer and policy embedding model, adjusting only the model size and pre-training data
size of dynamics models, considering the impact of model size and data size for the pre-training and
fine-tuning phases.
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Pre-training Scaling Experiments. With a freezed video tokenizer and policy embedding model,
we train four dynamics models ranging from 39M to 456M parameters during the pre-training phase,
with results shown in the first two plots of Figure 5. These results demonstrate that Whale-X exhibits
strong scalability, as increasing either the pre-training data or the number of parameters reduces the
training loss. Notably, the training loss of Whale-X follows a log-linear relationship with FLOPs,
which can guide the design of larger models and appropriate data ratios for future experiments.

Fine-tuning Scaling Experiments. Apart from the scalability in the pre-training stage, it is also
worth verifying whether a larger model can exhibit better performance during the fine-tuning phase.
To this end, we fine-tune a series of dynamics models and show the test mean-squared-error losses in
the leftmost plot in Figure 5. The results indicate that after fine-tuning, the larger model demonstrates
lower loss on test data, highlighting promising scalability of Whale-X for real-world tasks.

5 RELATED WORKS

Learning accurate dynamics models has been a long-standing challenge in sequential decision-making.
Many works focused primarily on learning transition models in lower-dimensional proprioceptive
state spaces from the perspective of model architecture (Chua et al., 2018; Zhang et al., 2021; Janner
et al., 2021; Chen et al., 2024b) or learning objective (Xu et al., 2020; Chen et al., 2023; Luo et al.,
2024a; Lin et al., 2024). The environment model learning provides benefits for downstream tasks,
especially model-based reinforcement learning (Janner et al., 2019; Yu et al., 2020; 2021; Sun et al.,
2023). Recent research interest has shifted towards learning environment models for high-dimensional
image-based tasks (Hafner et al., 2020; Babaeizadeh et al., 2021; Yang et al., 2024), commonly
referred to as world models (Ha & Schmidhuber, 2018).

Some recent model-based RL algorithms leverage latent imagination for more efficient and accurate
rollouts (Hafner et al., 2020; 2021; 2023; Hansen et al., 2022; Schrittwieser et al., 2020), but they
become more complex by tightly coupling model and policy learning. Advanced methods leverage
modern action-conditioned video prediction models (Oh et al., 2015; Kaiser et al., 2020) to model
the visual dynamics and pre-train from large-scale video experience data (Mendonca et al., 2023b;
Wu et al., 2023). Various models have been adopted in these methods, including RNNs (Villegas
et al., 2019; Hafner et al., 2020; Babaeizadeh et al., 2021), diffusion models (Voleti et al., 2022),
and transformers (Gupta et al., 2023; Wu et al., 2024). These interactive models generate videos
under the control of the executed actions, with the goal of capturing real visual dynamics for
various decision strategies. However, these works have not emphasized the generalizability of world
models, which is crucial for sequential decision-making but has not been well addressed by previous
approaches (Schubert et al., 2023). In contrast, our work focuses on the world model generalizability
from a perspective of evaluation accuracy and utilizing model adaptation to policies and retracing
rollout to mitigate the generalization error in scalable world models.

6 DISCUSSIONS AND LIMITATIONS

We introduce Whale, a scalable and generalizable embodied world model that incorporates the policy-
conditioning mechanism and retracing-rollout technique to enhance out-of-distribution generalization,
and pre-train a 414M-parameter Whale-X on large-scale real-world robot data to assist physical robot
manipulation. As a powerful world model with strong generalizability and promising scalability,
Whale enables high-fidelity imagination and accurate value estimation, even in novel scenarios,
thereby facilitating downstream control tasks.

Limitations and future work. Although Whale-X marks significant progress, there remains
substantial room for further improvement in future work. One limitation is the lack of diversity in
real-world robotic data, typically collected by a narrow range of policies (e.g. near-optimal policies).
This poses significant challenges to the generalization of world models. Additionally, we found that
the quality of reward models with visual input plays a crucial role in accurate value estimation, which
remains an unsolved challenge for future research. Lastly, we have to mention that although Whale’s
generalization capability has significantly improved compared with previous methods, it remains
limited for zero-shot transfer in the face of the diversity and complexity of unseen real-world tasks.
Integrating existing prior knowledge into the data-driven world model learning process could enable
broader generalization, presenting a valuable avenue for long-term research.
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A ANALYSIS OF POLICY CONDITIONING

In this section, we provide some theoretical explanations about why policy-conditioning mechanism
helps mitigate the generalization error caused by the policy divergence. The analysis is mainly
adapted from Chen et al. (2024a).

First, we introduce an assumption on the smoothness of a well-trained dynamics model:

Assumption A.1 For the learned dynamics model T , the point-wise total-variation model error
DTV[T

∗(·|τh), T (·|τh)] is L-Lipschitz with respect to the trajectory inputs, i.e.,∣∣∣DTV[T
∗(·|τ1h), T (·|τ1h)]−DTV[T

∗(·|τ2h), T (·|τ2h)]
∣∣∣ ≤ L ·D(τ1h , τ

2
h),

where D(·, ·) is some kind of distance defined on the trajectory space.

Assumption A.1 measures the local extrapolation ability of a world model. Based on this assumption,
the value gaps of common dynamics model T without a policy-conditioning mechanism can be
controlled:

Proposition A.2 Under Assumption A.1, for any policy π, the value gap of common dynamics model
T without policy conditioning has an upper bound:∣∣∣V πT − V πT∗

∣∣∣ ≤ 2RmaxH
2
(√

2 lKL(T ; Π)︸ ︷︷ ︸
Train Error

+ L ·W1(d
π, dΠ)︸ ︷︷ ︸

Policy Divergence Error

)
,

where W1(d
π, dΠ) is the Wasserstein-1 distance between the π-induced trajectory distribution dπ(τ)

and the behavior trajectory distribution dΠ(τ) = Eµ∼Π[d
µ(τ)].

Proposition A.2 shows that the generalization of common dynamics model T solely relies on its point-
level smoothness over the trajectory inputs, resulting in an inevitable extrapolation error of the policy
distribution. In contrast, a policy-conditioned dynamics model T (·), which yields adapted dynamics
model T (π) for some policy π, takes a further step to reduce the policy distribution extrapolation
error:

Proposition A.3 Under Assumption A.1, for any policy π, the value gap of policy-conditioned
dynamics model T (·) has an upper bound:∣∣∣V πT (π) − V πT∗

∣∣∣ ≤ 2RmaxH
2
(√

2 lKL(T ; Π)︸ ︷︷ ︸
Train Error

+ L ·W1(d
π, dΠ)− C(π,Π)︸ ︷︷ ︸

Reduced Policy Divergence Error

)
,

where the adaptation gain C(π,Π) := Eµ∼ΠEτ∼dπDTV[T
∗, T (µ)](τ)− Eτ∼dπDTV[T

∗, T (π)](τ)
summarizes the policy adaptation effect.

Proposition A.3 explains the benefit brought by policy-conditioning: a positive adaptation gain
C(π,Π), which quantifies the advantage of the policy adaptation effect. The key insight is that when
testing on an unseen policy π within some effective region, the model T (π), customized for π, should
exhibit a smaller model error under the target trajectory distribution dπ compared to models T (µ)
trained on behavior policies µ ∈ Π, which mitigates the generalization error caused by the policy
extrapolation. Although it is challenging to rigorously analyze the adaptation gain C(π,Π) due to the
complexity of neural networks and the optimization process, qualitative discussions and empirical
evidence, as shown in Chen et al. (2024a), justify the underlying rationale.

B IMPLEMENTATION DETAILS

B.1 IMPLEMENTATION DETAILS OF WHALE

Video Tokenizer. Here we show the architecture and training hyperparameter of the video tokenizer
as shown in Table 4. We train three different video tokenizers in total, and our model architecture and
training parameter selection are based on the design of Bruce et al. (2024).
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Component Parameter Meta-World(64×64) Meta-World(256×256) Whale-X(256×256)

Encoder
num_layers 4 12 12

d_model 512 512 512
num_heads 8 8 8

Decoder
num_layers 8 16 20

d_model 512 512 1024
num_heads 8 8 16

Codebook

num_codes 1024 1024 2048
patch_size 4 16 16
latent_dim 32 32 32

beta 0.25 0.25 0.25

Optimizer

type AdamW AdamW AdamW
max_lr 3e-4 3e-4 3e-4
min_lr 3e-4 3e-4 3e-5
β1 0.9 0.9 0.9
β2 0.9 0.9 0.9

weight_decay 1e-4 1e-4 0
warmup_steps 10k 10k 5k

batch_size 32 32 64
training_steps 100k 150k 300k

Table 4: Hyperparameter of video tokenizers.

Policy Embedding Model. The model architecture and training hyperparameters of the policy
embedding model are shown in Table 5. We also train three different policy embedding models. We
use two-hot encoding for the practical implementation of our policy embedding similar in Hafner et al.
(2020). Additionally, We also observe overfitting in the policy embedding model during pre-training,
prompting the use of the early-stop technique. As a result, the checkpoint at 50k is selected as the
final model for Whale-X.

Dynamics model Table 6 and Table 7 present the hyperparameters of the dynamics model. We
train a total of 6 different dynamics models. The architecture design and training hyperparameters of
our dynamics model are also referred to Bruce et al. (2024).

B.2 IMPLEMENTATION DETAILS OF BASELINES

We use the official implementation of VP2 (Tian et al., 2023) for both FitVid and MCVD. For
DreamerV3, we retain only the world model learning component. Additionally, we use the official
implementation of iVideoGPT as described in their original paper, but with a reduced number of
parameters. The detailed hyperparameters for DreamerV3 and iVideoGPT are provided in Table 8
and Table 9, respectively.

C ADDITIONAL EXPERIMENTS RESULTS

Benchmark results. The omitted benchmark results on simulated tasks are shown in Table 10.
This table presents the evaluation results of trajectories generated by the world model, conditioned on
action sequences produced by policies seen in the training dataset.

Ablation studies. The omitted ablation studies results on simulated tasks are shown in Table 11,
showcasing both retracing rollout and policy conditioning consistently effective in seen policies
setting.
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Component Parameter Meta-World(64×64) Meta-World(256×256) Whale-X(256×256)

Posterior

num_layers 8 8 12
d_model 512 512 768

num_heads 8 8 12
patch_size 8 32 32

Prior

num_layers 4 4 8
d_model 512 512 512

num_heads 4 4 8
patch_size 8 32 32

Policy

num_layers 8 8 12
d_model 512 512 768

num_heads 8 8 12
log_std [-2, 5] [-2, 5] [-2, 5]

patch_size 8 32 32

Embedding category_size 16 16 16
class_size 16 16 16

Optimizer

type AdamW AdamW AdamW
max_lr 3e-4 3e-4 3e-4
min_lr 3e-5 3e-5 3e-5
β1 0.9 0.9 0.9
β2 0.9 0.9 0.9

weight_decay 1e-4 1e-4 1e-4
warmup_steps 5k 5k 5k

batch_size 64 64 64
training_steps 100k 100k 50k

Table 5: Hyperparameter of policy embedding models.

Model #Parameters (dynamics only) num_layers num_heads d_model
Whale-Meta64 26M 12 8 512
Whale-Meta256 26M 12 8 512
Whale-X-small 39M 18 8 512
Whale-X-medium 77M 16 16 768
Whale-X-base 204M 24 16 1024
Whale-X-large 456M 24 12 1536

Table 6: Model hyperparameter of dynamics models.

Parameter Value
max_lr 3e-5
min_lr 3e-6
β1 0.9
β2 0.9

weight_decay 0
warmup_steps 5k

batch_size 64
training_steps 300k

Table 7: Trainig hyperparameter of dynamics models.
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Hyperparameters Values
# Parameters 44M

Dynamics hidden 1024
Dynamics deterministic 1024

Dynamics stochastic 32
Dynamics discrete 32

CNN depth 64
CNN kernel size 4

MLP layers 5
MLP units 1024

Actionvation SiLU
Train batch size 32

Train batch length 8

Table 8: Hyperparameters for DreamerV3.

Hyperparameters Values
# Parameters 63M
Down blocks 3

Down layers per block 2
Down channels [64, 128, 256]

Up blocks 3
Up layers per block 3

Up channels [256, 128, 64]
Embedding dim 64
Codebook size 8192
Actionvation SiLU

Transformer hidden dim 512
Transformer hidden layers 6

Attention Heads 8
Feedforward dim 1024

Table 9: Hyperparameters for iVideoGPT.

Meta-World FVD ↓ PSNR↑ SSIM↑ LPIPS↓ Value Gap ↓
seen policies & 64×64 resolution

FitVid 193.2 23.7 90.3 6.4 9.7
MCVD 271.7 30.1 92.8 3.8 12.2
DreamerV3 145.8 28.3 92.8 4.0 4.4
iVideoGPT 122.0 30.4 93.3 4.4 4.5
Whale (ours) 28.4±1.1 31.3±0.01 95.3±0.03 2.9±0.05 4.7 ± 0.47

seen policies & 256×256 resolution

DreamerV3 105.1 26.8 92.1 8.2 6.2
Whale (ours) 25.2± 3.0 30.1±0.2 95.4±0.1 4.0±0.1 3.9 ± 0.3

Table 10: Benchmark results in seen policies setting.

D DATA PREPARATION

D.1 SIMULATED DATA

We select a total of 20 tasks from the MetaWorld benchmark. Each task includes a training set of
3,000 trajectories and a test set of 1,500 trajectories. Specifically, for each task, we use six different
policies to collect the training set: expert policy, random policy, two suboptimal policies with different
levels of Gaussian noise, and two cross-environment policies. Additionally, three unseen policies are
used to gather the testing data. The world models are trained on the full training dataset, followed by
a thorough evaluation using the testing data.

D.2 PRE-TRAINING DATA

We pretrain our Whale-X model on the Open X-Embodiment dataset (Collaboration et al., 2023)
(OpenX). The full OpenX dataset consists of more than 70 individual robot datasets, with more
than 2M robot trajetories, that were pooled into a coherent and easy-to-use data format in a large
community effort. We list our used data mixture in Table 12, mostly following OpenVLA (Kim et al.,
2024) and Octo (Octo Model Team et al., 2023).

To train a world model focused on tabletop tasks, we extract data related to tabletop tasks from the
dataset that features similar camera positions (the bolded tasks in Table 12) to train the dynamics
model, while the video tokenizer and policy condition model are trained on the full OpenX dataset.
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Meta-World FVD↓ PSNR↑ SSIM↑ LPIPS↓ Value Gap ↓
seen policies & 256×256 resolution

Whale (wo retracing rollout) 63.4±23.6 25.5±0.7 92.8±0.5 6.2±0.6 7.5±1.0
Whale (wo policy-conditioned) 28.4±1.1 29.5±0.2 95.0±0.1 4.5±0.1 4.9±0.1
Whale 25.2±3.0 30.1±0.2 95.4±0.1 4.0±0.1 3.9±0.3

Table 11: Ablation Study of Whale in seen policies setting.

Whale-X Pre-training Dataset Mixture Percentage
Fractal (Brohan et al., 2022) 12.7%
Kuka (Kalashnikov et al., 2018) 12.7%
Bridge(Ebert et al., 2021; Walke et al., 2023) 13.3%
Taco Play (Rosete-Beas et al., 2022; Mees et al., 2023) 3.0%
Jaco Play (Dass et al., 2023) 0.4%
Berkeley Cable Routing (Luo et al., 2023) 0.2%
Roboturk (Mandlekar et al., 2018) 2.3%
Viola (Zhu et al., 2023b) 0.9%
Berkeley Autolab UR5 (Chen et al.) 1.2%
Toto (Zhou et al., 2023) 2.0%
Language Table (Lynch et al., 2023) 4.4%
Stanford Hydra Dataset (Belkhale et al., 2023) 4.4%
Austin Buds Dataset (Zhu et al., 2022) 0.2%
NYU Franka Play Dataset (Cui et al., 2022) 0.8%
Furniture Bench Dataset (Heo et al., 2023) 2.4%
UCSD Kitchen Dataset (Yan et al., 2023) <0.1%
Austin Sailor Dataset (Nasiriany et al., 2022) 2.2%
Austin Sirius Dataset (Liu et al., 2023) 1.7%
DLR EDAN Shared Control (Quere et al., 2020) <0.1%
IAMLab CMU Pickup Insert (Saxena et al., 2023) 0.9%
UTAustin Mutex (Shah et al., 2023) 2.2%
Berkeley Fanuc Manipulation (Zhu et al., 2023a) 0.7%
CMU Stretch (Mendonca et al., 2023a) 0.2%
BC-Z (Jang et al., 2022) 7.5%
FMB Dataset (Luo et al., 2024b) 7.1%
DobbE (Shafiullah et al., 2023) 1.4%
DROID (Khazatsky et al., 2024) 10.0%

Table 12: Whale-X Pre-training Dataset Mixture.

E REAL-WORLD TASK DESIGN

E.1 HARDWARE SETUP

Our hardware setup is shown in Figure 6. For the embodiment, we use the ARX5 robotic platform,
which is similar to Aloha (Fu et al., 2024) and includes two master arms and two puppet arms. Data
is collected via teleoperation and we only use the right arm in our experiment. For the vision sensor,
a Realsense D435i camera is mounted above the left side of the platform to capture RGB image
observations.

E.1.1 DETAILS OF TASKS

The training data set used for finetuning consists of 4 tasks: Move Bottle, Open Bin, Push Plate,
and Throw Ball.
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2x master arms
(only use right 
one)

2x puppet arms
(only use right 
one)

third-person 
perspective 
camera backdrop

props

Figure 6: The illustration of our robotics platform used for physical robot evaluation.
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Figure 7: The illustration of Training Tasks.

Move Bottle: The robot arm must first grasp the bottle and then move it to a specific area on the right
side of the table. The bottle’s initial position is somewhat random, varying within a range of two
bottle widths around the location shown in the figure, while its target position remains fixed.

Open Bin: In this task, the robot arm must press a small white area on the trash bin’s lid to open
it. The initial position of the trash bin has some randomness, and it may vary within a 5 cm range
around the position shown in the figure. Additionally, the orientation of the trash bin may have a
random variation of about 10 degrees relative to its square alignment.

Push Plate: In this task, the robot arm must push the plate from the left side of the table to the right
with appropriate force and angle. The challenge lies in the fact that the plate may rotate or shift
during the pushing process. The initial position of the plate has some randomness, varying within a 5
cm range around the position shown in the figure. The robot arm needs to push the plate at a distance
of approximately 20 cm.

Throw Ball: In this task, the robot arm needs to make a two-stage decision: 1) move to the ball’s
location and grasp it; 2) move to the trash bin’s opening and release the gripper. The initial position
of the trash bin has some randomness, varying within a 5 cm range around the position shown in the
figure.
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visual generalization：任务无关物体
motion generalization：不同方向
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Figure 8: The illustration of Generalization Tasks.

Visual Generalization: In this unseen scenario, we introduced several visual distractors not encoun-
tered during the fine-tuning phase, including a soda can, a plate, a ball, and a pencil, based on the
Open Bin task. This task is designed to test the robustness of the world model’s visual representation
and its generalization in visual perception.

Motion Generalization: In this unseen scenario, based on the Push Plate task, we changed the
specific task from pushing left to right in the fine-tuning data to pushing right to left. This task is
designed to evaluate the model’s ability to generalize environment transition modeling when facing
an unseen action distribution, or even a completely reversed action distribution.

Task Generalization: In this unseen scenario, we combined two tasks from the fine-tuning
phase—Open Bin and Throw Ball—into a new two-stage task. In this task, the robot arm must first
open the bin and then place the ball inside. This task is designed to test the model’s generalization
ability to new tasks, as well as its capability to model long-horizon actions.

E.2 DATA OVERVIEW

Entry Value
# Episodes 300(240 for fine-tuning, 60 for testing)

Average horizon 30
Data Collect Method Human teleoperation using the master arm

Scene Type Table top
Robot Morphology Single arm
Camera resolution 640x480

# Cameras 1
Action dimension 7

Action space EEF position
Action semantics (∆x, ∆y, ∆z, ∆roll, ∆pitch, ∆yaw, the gripper state)
Control frequency 5Hz
Has suboptimal? Yes(some failure data for fine-tuning)

Has camera calibration? No

Table 13: The meta Information of data used in physical robot evaluation.

F QUALITATIVE EVALUATION

F.1 QUALITATIVE EVALUATION ON SIMULATED TASK

Figure 9 shows the results of Whale and baselines after rolling out 64 steps in two different tasks.
Notably, this qualitative evaluation is highly challenging and presents significant complexities. First,
the evaluation rollout horizon is set to 64, exceeding that used in prior works, which imposes
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substantial demands on the generalizability and robustness of world models. Moreover, the variations
between adjacent frames are subtle in the Meta-World environment, requiring world models to learn
the semantics of actions from these minimal changes. In each image, the first row represents the real
trajectory, while the others show the generated trajectories. It can be observed that Whale not only
generates high-fidelity videos but also accurately restores the robot arm’s pose. DreamerV3 is the
baseline closest to Whale, but its generated trajectory still loses key information, such as the blue
marker representing the target point. The other baselines fail to accurately model the robot arm’s
pose changes from the subtle variations between adjacent frames.

(context)

Ground
truth

Whale (ours)

iVideoGPT

DreamerV3

MCVD

FitVid

(context)

Ground
truth

(context)

Whale (ours)

iVideoGPT

DreamerV3

MCVD

FitVid

t = 0 t = 4 t = 8 t = 12 t = 16 t = 24t = 20 t = 28 t = 32 t = 36 t = 40 t = 44 t = 48 t = 56t = 52 t = 64

t = 0 t = 4 t = 8 t = 12 t = 16 t = 24t = 20 t = 28 t = 32 t = 36 t = 40 t = 44 t = 48 t = 56t = 52 t = 64

Meta-World

Figure 9: Additional qualitative evaluation on the Meta-World dataset.

F.2 QUALITATIVE EVALUATION ON OPEN X-EMBODIMENT DATASET

Figure 10 shows the qualitative evaluation results of Whale-X on Open X-Embodiment dataset.
Whale-X demonstrates a remarkable ability to generate high-fidelity, action-conditioned trajectories.
Moreover, with the aid of retracing-rollout and policy-conditioning techniques, Whale-X consistently
delivers highly accurate predictions of the robotic arm’s pose.

F.3 QUALITATIVE EVALUATION ON REAL-WORLD TASK

Figure 11 shows the qualitative evaluation results of Whale-X on Real-world Tasks. Whale-X
demonstrates strong generalizability in terms of motion, visualization, and task combination.

G POLICY EMBEDDING ANALYSIS

In this section, we conduct experiments to visualize the policy embeddings via t-SNE (Van der
Maaten & Hinton, 2008) in order to verify whether our method can learn reasonable representations.
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Figure 10: Additional qualitative evaluation on the Open X-Embodiment dataset.

Figure 12a shows that dfferent policies for the same task can be distinguished by the learned policy
embeddings. Figure 12b shows that the expert policies for different tasks can also be distinguished,
while Figure 12c shows the random policies for different tasks cannot. This distinction indicates that
our learned embedding is more inclined towards policy representation rather than task representation.
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Figure 11: Additional qualitative evaluation on the Real-world tasks.

100 75 50 25 0 25 50 75 100
100

80

60

40

20

0

20

40

Labels
cross_policy_1
cross_policy_2
expert_policy
noisy_expert_policy
random_policy

(a) Same task different policies

200 100 0 100 200
200

150

100

50

0

50

100

150

200
Labels

button-press-wall-v2
coffee-push-v2
drawer-close-v2
handle-press-v2
pick-out-of-hole-v2
plate-slide-v2
reach-v2

(b) Different tasks expert policies

20 15 10 5 0 5 10 15

20

10

0

10

20

Labels
button-press-wall-v2
coffee-push-v2
drawer-close-v2
handle-press-v2
pick-out-of-hole-v2
plate-slide-v2
reach-v2

(c) Different tasks random policies

Figure 12: The policy embedding visualization via t-SNE (Van der Maaten & Hinton, 2008). The
different colors denotes different policies in the same task (12a) and different tasks’ expert policies
(12b) or random policies (12c). The separability validates the ability of the embeddings learned by
our method to represent different policies.
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H GPT-4O EVALUATION DETAILS

H.1 Q&A EXAMPLE

We use the large vision language model GPT-4o for evaluation in the physical robot experiment.
Generally, we input the real final frame and the model-generated final frame to GPT-4o, using natural
language dialogue to enable GPT-4o to assess whether the generated errors in key information such
as the robot arm’s position and the status of interactive objects fall within an acceptable range, thus
determining whether the generated results are consistent with reality. Figure 13 shows one of our
dialogue examples with GPT-4o. We use multi-turn dialogue to enable the model to easily process
and infer information from images.

H.2 ALL GPT-4O PROMPTS

Table 14 contains all the prompts we used with GPT-4o for evaluation in unseen scenarios. The
prompts evaluate various criteria by listing factors such as the robotic arm’s position and the status of
interactive objects.

Task Prompt
Visual Generalization Here are two images. The first image is the last frame of a real scene, and I will provide

you with another image predicted by a model. The task is to open the trash bin under
an unseen background. The trash bin is on the left side of the desk and is closed at
the beginning. You need to determine if the two images are consistent based on the
following criteria: 1) You can see the inside of the trash bin. 2) Is the predicted image
clear? When all these criteria are satisfied, we call the predicted image is consistent
with the real one. Now I will show you the real image.

Motion Generaliza-
tion

Here are two images. The first image is the last frame of a real scene, and I will provide
you with another image predicted by a model. You need to determine if the two images
are consistent based on the following criteria: 1) Is the plate’s position on the left side
of the image? 2) Does the plate disappear in the predicted image? 3) Is the predicted
image clear? 4) Is the robot arm still present in the predicted image? 5) Does the
position of the robot arm in the predicted image match that of the real image? When
all these criteria are satisfied, we call the predicted image is consistent with the real
one. Now I will show you the real image.

Task Generalization Here are two images. The first image is the last frame of a real scene, and I will provide
you with another image predicted by a model. You need to determine if the two images
are consistent based on the following criteria: 1) You can see the inside of the trash
bin. 2) The ball should be simply missing and not on the desk. 3) Is there any severe
distortion in the predicted image? 4) Is the position of the robot arm in the predicted
image not far away from that of the real image? When all these criteria are satisfied,
we call the predicted image is consistent with the real one. Now I will show you the
real image.

Table 14: The prompt used for 3 unseen tasks.

H.3 MORE EVALUATION RESULTS

Figure 14 15 16 17 show the evaluation results for Whale-X, Whale-X (w/o policy conditioning),
Whale-X (w/o retracing-rollout), and Whale-X (training from scratch) on the Visual Generalization
task. Figure 18 19 20 21 show the evaluation results for Whale-X, Whale-X (w/o policy conditioning),
Whale-X (w/o retracing-rollout), and Whale-X (training from scratch) on the Motion Generalization
task. Figure 22 23 24 25 show the evaluation results for Whale-X, Whale-X (w/o policy conditioning),
Whale-X (w/o retracing-rollout), and Whale-X (training from scratch) on the Task Generalization
task.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Here are two images. The first image is the last frame of a real scene, and I 
will provide you with another image predicted by a model. You need to 
determine if the two images are consistent based on the following criteria: 
1) You can see the inside of the trash bin. 2) The ball should be simply 
missing and not in the desk. 3) Is there any severe distortion in the 
predicted image? 4) Is the position of the robotic arm in the predicted 
image not far away from that of the real image? When all these criterias 
are satisied, we call the predicted image is consistent with the real one. 
Now I will show you the real image.

Please provide the predicted image so I can 
compare it with the real one based on the criteria 
you provided.

User

GPT-4o

Now I will show you the predicted image. Yes means the predicted image is 
consistent with the real image. No means the opposite. Just answer yes or no 
and give your reason.User

Yes, the predicted image is consistent with the real image.   
Reason: 1. You can see the inside of the trash bin. 2. The ball is 
simply missing and not in the desk. 3. There is no severe 
distortion in the predicted image. 4. The position of the robotic 
arm in the predicted image is not far away from that of the real 
image.

GPT-4o

Figure 13: The illustration of a Q&A example using GPT-4o for evaluating the world model’s
consistency rate.

I COMPUTATIONAL RESOURCES

Our models for simulated Meta-World tasks are trained and evaluated on a single RTX 4090 GPU
platform, while Whale-X for real-world robot manipulation is trained and evaluated using 8 RTX
4090 GPUs. On simulated tasks, it is approximately 2 days for tokenizer training, 8 hours for policy
embedding model training, and 1 day for dynamics model training, totaling around 3 days. Pre-
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User

Yes.   You can see the inside of the trash bin, and the predicted image is clear. 
Therefore, the predicted image is consistent with the real one based on the 
provided criteria.

GPT-4o

Visual Generalization

Whale-X

Whale-X(w/o policy-conditioning)

User

No.  Reason: The inside of the trash bin is not clearly visible in the predicted image; 
it appears blurry and unclear. Therefore, the predicted image does not satisfy 
both consistency criteria.

GPT-4o

last frame for query

last frame for query

[0, 3, 6, 9, 12, 15, 18, 21]

t = 0 t = 9 t = 15 t = 21... ... ... ...

t = 0 t = 9 t = 15 t = 21... ... ... ...

t = 0 t = 3 t = 6 t = 9 t = 12 t = 15 t = 18 t = 21

Figure 14: The example of GPT-4o evaluation for Whale-X on the Visual Generalization Task.

User

Yes.   You can see the inside of the trash bin, and the predicted image is clear. 
Therefore, the predicted image is consistent with the real one based on the 
provided criteria.

GPT-4o

Visual Generalization

Whale-X

Whale-X(w/o policy-conditioning)

User

No.  Reason: The inside of the trash bin is not clearly visible in the predicted image; 
it appears blurry and unclear. Therefore, the predicted image does not satisfy 
both consistency criteria.

GPT-4o

last frame for query

last frame for query

[0, 3, 6, 9, 12, 15, 18, 21]

t = 0 t = 9 t = 15 t = 21... ... ... ...

t = 0 t = 9 t = 15 t = 21... ... ... ...

t = 0 t = 3 t = 6 t = 9 t = 12 t = 15 t = 18 t = 21

Figure 15: The example of GPT-4o evaluation for Whale-X(w/o policy-conditioning) on the Visual
Generalization Task.

User

Yes.   You can see the inside of the trash bin, and the predicted image is clear. 
Therefore, the predicted image is consistent with the real one based on the 
provided criteria.

GPT-4o

Visual Generalization

Whale-X(w/o retracing-rollout)

Whale-X(Training from scratch)

User

No.  The predicted image is not consistent with the real scene. While you can see 
the inside of the trash bin, the image lacks clarity due to pixelation, making it 
difficult to discern details clearly..

GPT-4o

last frame for query

last frame for query

t = 0 t = 9 t = 15 t = 21... ... ... ...

t = 0 t = 9 t = 15 t = 21... ... ... ...

Figure 16: The example of GPT-4o evaluation for Whale-X(w/o retracing-rollout) on the Visual
Generalization Task.

training a Whale-X-base model using 8 RTX-4090 GPUs takes about 10 days in total. Specifically,
tokenizer training requires 6 days, dynamics model training takes 3 days, and policy embedding
model training takes less than 1 day.
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User

Yes.   You can see the inside of the trash bin, and the predicted image is clear. 
Therefore, the predicted image is consistent with the real one based on the 
provided criteria.

GPT-4o

Visual Generalization

Whale-X(w/o retracing-rollout)

Whale-X(Training from scratch)

User

No.  The predicted image is not consistent with the real scene. While you can see 
the inside of the trash bin, the image lacks clarity due to pixelation, making it 
difficult to discern details clearly..

GPT-4o

last frame for query

last frame for query

t = 0 t = 9 t = 15 t = 21... ... ... ...

t = 0 t = 9 t = 15 t = 21... ... ... ...

Figure 17: The example of GPT-4o evaluation for Whale-X(Training from scratch) on the Visual
Generalization Task.

User

Yes, the predicted image is consistent with the real image. Here are the reasons 
for each criterion:  1. Yes, the plate's position is on the left side of the image. 2. No, 
the plate does not disappear in the predicted image. 3. Yes, the predicted image is 
clear. 4. Yes, the robotic arm is still present in the predicted image. 5. Yes, the 
position of the robotic arm in the predicted image matches that of the real image.  
All criteria are satisfied.

GPT-4o

Motion Generalization

Whale-X

Whale-X(w/o policy-conditioning)

User

No.  1) The plate's position on the left side of the image: Yes, the plate remains 
on the left side in both images. 2) Does the plate disappear in the predicted 
image? No, the plate is still present in the predicted image. 3) Is the predicted 
image clear? Yes, the predicted image is clear. 4) Is the robotic arm still present 
in the predicted image? Yes, the robotic arm is still present in the predicted 
image. 5) Does the position of the robotic arm in the predicted image match 
that of the real image? No, the position of the robotic arm in the predicted 
image does not exactly match that of the real image. The arm is turned at a 
slightly different angle in the predicted image compared to the real image.  
Since not all the criteria are satisfied, the predicted image is not consistent with 
the real image.

GPT-4o

last frame for query

last frame for query

[0, 4, 8, 12, 16, 20, 24, 28, 30]

t = 0 t = 8 t = 16 t = 24 t = 30... ... ... ...

t = 0 t = 8 t = 16 t = 24 t = 30... ... ... ...

t = 0 t = 4 t = 8 t = 12 t = 16 t = 20 t = 24 t = 28 t = 30

Figure 18: The example of GPT-4o evaluation for Whale-X on the Motion Generalization Task.

User

Yes, the predicted image is consistent with the real image. Here are the reasons 
for each criterion:  1. Yes, the plate's position is on the left side of the image. 2. No, 
the plate does not disappear in the predicted image. 3. Yes, the predicted image is 
clear. 4. Yes, the robotic arm is still present in the predicted image. 5. Yes, the 
position of the robotic arm in the predicted image matches that of the real image.  
All criteria are satisfied.

GPT-4o

Motion Generalization

Whale-X

Whale-X(w/o policy-conditioning)

User

No.  1) The plate's position on the left side of the image: Yes, the plate remains 
on the left side in both images. 2) Does the plate disappear in the predicted 
image? No, the plate is still present in the predicted image. 3) Is the predicted 
image clear? Yes, the predicted image is clear. 4) Is the robotic arm still present 
in the predicted image? Yes, the robotic arm is still present in the predicted 
image. 5) Does the position of the robotic arm in the predicted image match 
that of the real image? No, the position of the robotic arm in the predicted 
image does not exactly match that of the real image. The arm is turned at a 
slightly different angle in the predicted image compared to the real image.  
Since not all the criteria are satisfied, the predicted image is not consistent with 
the real image.

GPT-4o

last frame for query

last frame for query

[0, 4, 8, 12, 16, 20, 24, 28, 30]

t = 0 t = 8 t = 16 t = 24 t = 30... ... ... ...

t = 0 t = 8 t = 16 t = 24 t = 30... ... ... ...

t = 0 t = 4 t = 8 t = 12 t = 16 t = 20 t = 24 t = 28 t = 30

Figure 19: The example of GPT-4o evaluation for Whale-X(w/o policy-conditioning) on the Motion
Generalization Task.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

User

No, the predicted image is not consistent with the real image. Here are the reasons 
based on the provided criteria:  1. **Is the plate's position on the left side of the 
image?**    - Yes, the plate's position is still on the left side of the image in both 
images.  2. **Does the plate disappear in the predicted image?**    - No, the plate 
does not disappear in the predicted image.  3. **Is the predicted image clear?**    - 
Yes, the predicted image is clear.  4. **Is the robotic arm still present in the 
predicted image?**    - Yes, the robotic arm is still present in the predicted image.  
5. **Does the position of the robotic arm in the predicted image match that of the 
real image?**    - No, the position of the robotic arm in the predicted image is 
slightly different compared to the real image.  Since not all criteria are met, the 
answer is "No."

GPT-4o

Motion Generalization

Whale-X(w/o retracing-rollout)

Whale-X(Training from scratch)

User

No, the predicted image is not consistent with the real image.   Here are the reasons 
based on the provided criteria:  1. The plate's position on the left side of the image: 
In the real image, the plate is on the left side, but it is missing in the predicted image. 
2. The plate disappears in the predicted image: Yes, the plate is not present in the 
predicted image. 3. The predicted image is clear: Yes, the predicted image is clear. 4. 
The robotic arm is still present in the predicted image: Yes, the robotic arm is present. 
5. The position of the robotic arm in the predicted image matches that of the real 
image: No, the position of the robotic arm in the predicted image does not match 
that in the real image. It appears to have moved slightly.  Since not all criteria are 
satisfied, the predicted image is not consistent with the real one.

GPT-4o

last frame for query

last frame for query

t = 0 t = 8 t = 16 t = 24 t = 30... ... ... ...

t = 0 t = 8 t = 16 t = 24 t = 30... ... ... ...

Figure 20: The example of GPT-4o evaluation for Whale-X(w/o retracing-rollout) on the Motion
Generalization Task.

User

No, the predicted image is not consistent with the real image. Here are the reasons 
based on the provided criteria:  1. **Is the plate's position on the left side of the 
image?**    - Yes, the plate's position is still on the left side of the image in both 
images.  2. **Does the plate disappear in the predicted image?**    - No, the plate 
does not disappear in the predicted image.  3. **Is the predicted image clear?**    - 
Yes, the predicted image is clear.  4. **Is the robotic arm still present in the 
predicted image?**    - Yes, the robotic arm is still present in the predicted image.  
5. **Does the position of the robotic arm in the predicted image match that of the 
real image?**    - No, the position of the robotic arm in the predicted image is 
slightly different compared to the real image.  Since not all criteria are met, the 
answer is "No."

GPT-4o

Motion Generalization

Whale-X(w/o retracing-rollout)

Whale-X(Training from scratch)

User

No, the predicted image is not consistent with the real image.   Here are the reasons 
based on the provided criteria:  1. The plate's position on the left side of the image: 
In the real image, the plate is on the left side, but it is missing in the predicted image. 
2. The plate disappears in the predicted image: Yes, the plate is not present in the 
predicted image. 3. The predicted image is clear: Yes, the predicted image is clear. 4. 
The robotic arm is still present in the predicted image: Yes, the robotic arm is present. 
5. The position of the robotic arm in the predicted image matches that of the real 
image: No, the position of the robotic arm in the predicted image does not match 
that in the real image. It appears to have moved slightly.  Since not all criteria are 
satisfied, the predicted image is not consistent with the real one.

GPT-4o

last frame for query

last frame for query

t = 0 t = 8 t = 16 t = 24 t = 30... ... ... ...

t = 0 t = 8 t = 16 t = 24 t = 30... ... ... ...

Figure 21: The example of GPT-4o evaluation for Whale-X(Training from scratch) on the Motion
Generalization Task.

User

Yes.  Reason: 1. You can see the inside of the trash bin. 2. The ball is missing and 
not on the desk. 3. There is no severe distortion in the predicted image. 4. The 
position of the robotic arm in the predicted image is not far away from that in the 
real image..

GPT-4o

Task Generalization

Whale-X

User

Yes, the predicted image is consistent with the real image. Here are the reasons:  1. 
You can see the inside of the trash bin. 2. The ball is missing and not on the desk. 3. 
There is no severe distortion in the predicted image. 4. The position of the robotic 
arm in the predicted image is not far away from that in the real image.

GPT-4o

Whale-X(w/o policy-conditioning)

last frame for query

last frame for query

t=0, 5, 10, 15, 20, 25, 30, 35, 39]

t = 0 t = 10 t = 20 t = 30 t = 39... ... ... ...

t = 0 t = 10 t = 20 t = 30 t = 39... ... ... ...

t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35 t = 39

Figure 22: The example of GPT-4o evaluation for Whale-X on the Task Generalization Task.
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User

Yes.  Reason: 1. You can see the inside of the trash bin. 2. The ball is missing and 
not on the desk. 3. There is no severe distortion in the predicted image. 4. The 
position of the robotic arm in the predicted image is not far away from that in the 
real image..

GPT-4o

Task Generalization

Whale-X

User

Yes, the predicted image is consistent with the real image. Here are the reasons:  1. 
You can see the inside of the trash bin. 2. The ball is missing and not on the desk. 3. 
There is no severe distortion in the predicted image. 4. The position of the robotic 
arm in the predicted image is not far away from that in the real image.

GPT-4o

Whale-X(w/o policy-conditioning)

last frame for query

last frame for query

t=0, 5, 10, 15, 20, 25, 30, 35, 39]

t = 0 t = 10 t = 20 t = 30 t = 39... ... ... ...

t = 0 t = 10 t = 20 t = 30 t = 39... ... ... ...

t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35 t = 39

Figure 23: The example of GPT-4o evaluation for Whale-X(w/o policy-conditioning) on the Task
Generalization Task.

User

No.   Reasons: 1. You cannot see the inside of the trash bin because the lid is 
closed in the predicted image. 2. The ball is missing as expected. 3. There is no 
severe distortion in the predicted image. 4. The position of the robotic arm in the 
predicted image is not far away from its position in the real image.  Since the first 
criteria are not satisfied, the predicted image is not consistent with the real one.

GPT-4o

Task Generalization

Whale-X(w/o retracing-rollout)

User

No, the predicted image is not consistent with the real image. Here are the 
reasons:  1. You cannot see the inside of the trash bin in the predicted image, 
whereas it is visible in the real image. 2. The ball is missing, but since the inside 
of the bin is not visible, we can't confirm it is genuinely missing. 3. There is severe 
distortion in the predicted image, especially visible on the trash bin and the 
surrounding area. 4. The position of the robotic arm appears altered and slightly 
farther from the one in the real image.  Therefore, the predicted image does not 
satisfy the criteria for consistency.

GPT-4o

Whale-X(Training from scratch)

last frame for query

last frame for query

t = 0 t = 10 t = 20 t = 30 t = 39... ... ... ...

t = 0 t = 10 t = 20 t = 30 t = 39... ... ... ...

Figure 24: The example of GPT-4o evaluation for Whale-X(w/o retracing-rollout) on the Task
Generalization Task.

User

No.   Reasons: 1. You cannot see the inside of the trash bin because the lid is 
closed in the predicted image. 2. The ball is missing as expected. 3. There is no 
severe distortion in the predicted image. 4. The position of the robotic arm in the 
predicted image is not far away from its position in the real image.  Since the first 
criteria are not satisfied, the predicted image is not consistent with the real one.

GPT-4o

Task Generalization

Whale-X(w/o retracing-rollout)

User

No, the predicted image is not consistent with the real image. Here are the 
reasons:  1. You cannot see the inside of the trash bin in the predicted image, 
whereas it is visible in the real image. 2. The ball is missing, but since the inside 
of the bin is not visible, we can't confirm it is genuinely missing. 3. There is severe 
distortion in the predicted image, especially visible on the trash bin and the 
surrounding area. 4. The position of the robotic arm appears altered and slightly 
farther from the one in the real image.  Therefore, the predicted image does not 
satisfy the criteria for consistency.

GPT-4o

Whale-X(Training from scratch)

last frame for query

last frame for query

t = 0 t = 10 t = 20 t = 30 t = 39... ... ... ...

t = 0 t = 10 t = 20 t = 30 t = 39... ... ... ...

Figure 25: The example of GPT-4o evaluation for Whale-X(Training from scratch) on the Task
Generalization Task.
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