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Abstract
Pre-trained models have become the preferred
backbone due to the increasing complexity of
model parameters. However, traditional pre-
trained models often face deployment challenges
due to their fixed sizes, and are prone to negative
transfer when discrepancies arise between train-
ing tasks and target tasks. To address this, we
propose KIND, a novel pre-training method de-
signed to construct decomposable models. KIND
integrates knowledge by incorporating Singular
Value Decomposition (SVD) as a structural con-
straint, with each basic component represented
as a combination of a column vector, singular
value, and row vector from U , Σ, and V ⊤ matri-
ces. These components are categorized into learn-
genes for encapsulating class-agnostic knowledge
and tailors for capturing class-specific knowl-
edge, with knowledge diversion facilitated by a
class gate mechanism during training. Exten-
sive experiments demonstrate that models pre-
trained with KIND can be decomposed into learn-
genes and tailors, which can be adaptively re-
combined for diverse resource-constrained de-
ployments. Moreover, for tasks with large do-
main shifts, transferring only learngenes with
task-agnostic knowledge, when combined with
randomly initialized tailors, effectively mitigates
domain shifts. Code will be made available
at https://github.com/Te4P0t/KIND.

1. Introduction
The increasing size of models has significantly increased
computational costs, making pre-trained models a corner-
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Figure 1. (a) Traditional pre-training prioritizes maximizing per-
formance on training datasets, often producing fixed-size models
and making them prone to negative transfer. In contrast, KIND
redefines the training objective to pre-train models that are both
structure- and knowledge-decomposable. (b) Consequently, KIND
enables pre-trained models to be adaptively restructured, facilitat-
ing deployment in diverse resource-constrained scenarios. (c) Ad-
ditionally, the task-agnostic knowledge encapsulated in learngenes
can effectively mitigate domain shifts.

stone of modern machine learning (Qiu et al., 2020; Han
et al., 2021; Feng et al., 2025b). These pre-trained models
have proven highly effective, especially when combined
with parameter-efficient fine-tuning (PEFT) techniques such
as LoRA (Hu et al., 2022; Hayou et al., 2024) and its vari-
ants (Zhang et al., 2023; Valipour et al., 2023; Liu et al.,
2024). However, traditional pre-training approaches primar-
ily focus on optimizing performance for specific training
datasets, often neglecting their transferability to downstream
tasks and adaptability to diverse deployment scenarios.

As a result, pre-trained models typically have a fixed, large
size, designed to encapsulate as much knowledge as possi-
ble from the training data. This design, however, presents
significant challenges for practical deployment, which is
often constrained by factors like memory usage, processing
power, and response time (Zhang et al., 2022). More im-
portantly, when downstream tasks differ significantly from
the pre-training datasets, the transferred knowledge can

1

https://github.com/Te4P0t/KIND


KIND: Knowledge Integration and Diversion for Training Decomposable Models

become redundant (Feng et al., 2024), biased (Ren et al.,
2024), or even harmful (Wang et al., 2019; Rosenstein et al.,
2005). These limitations underscore that traditional pre-
trained models may not always serve as optimal backbones,
as illustrated in Figure 1. This raises a critical question:
Can we rethink the pre-training process to develop decom-
posable pre-trained models that can be adaptively adjusted
to meet the specific requirements of downstream tasks and
deployment scenarios?

Recently, a novel knowledge transfer framework called
Learngene has been introduced (Wang et al., 2023). Un-
like traditional transfer learning methods, Learngene en-
capsulates task-agnostic knowledge into modular network
fragments (Feng et al., 2023) known as learngenes, to en-
hance the efficiency of knowledge transfer and improve
network adaptability. Building upon the Learngene frame-
work, we propose KIND, a novel pre-training method that
performs Knowledge INtegration and Diversion during the
pre-training process. KIND is designed to construct flexible
and decomposable pre-trained models, facilitating adap-
tive transformations to address the diverse requirements of
downstream tasks and deployment scenarios.

KIND decomposes the weight matrix into basic components
for knowledge integration, then associates class-specific and
class-agnostic knowledge with distinct components to facil-
itate knowledge diversion. For this decomposition, KIND
employs Singular Value Decomposition (SVD), represent-
ing each basic component as a combination of a column
vector, singular value, and row vector derived from the
U , Σ, and V ⊤ matrices. These basic components are cat-
egorized into two types: learngenes, which encapsulate
class-agnostic knowledge, and tailors, which capture class-
specific knowledge. Instead of directly applying SVD to
pre-trained model weights (Han et al., 2023; Zhang & Pi-
lanci, 2024; Robb et al., 2020), KIND incorporates SVD
as a structural constraint during pre-training and trains the
basic components rather than the full weight matrices. Such
indirect training enables more explicit control over each
class-specific component, guided by a class gate mecha-
nism, thereby facilitating effective knowledge diversion.

We conduct experiments on class-conditional image genera-
tion tasks to better demonstrate knowledge transfer, using
Diffusion Transformers (DiTs) (Peebles & Xie, 2023) as
the backbone for diffusion models. We pre-train DiT-B and
DiT-L with KIND on ImageNet-1K, resulting in decompos-
able models that can be effectively divided into learngenes
and tailors. Extensive experiments evaluate KIND across
three scenarios. 1) General Tasks: Models pre-trained with
KIND perform on par with traditional pre-trained models
(often outperforming them) without additional computa-
tional costs. 2) Resource-constrained Scenarios: KIND
facilitates flexible combinations of learngenes and tailors

to meet storage and computational limits, maintaining per-
formance without sacrificing performance. 3) Tasks with
Large Domain Shifts: KIND transfers learngenes only,
combined with randomly initialized tailors, enabling effi-
cient adaptation via class-agnostic knowledge.

Our main contributions are as follows: 1) We redefine the
pre-training objective by shifting the focus from solely max-
imizing model performance to diverting knowledge into
class-agnostic knowledge and class-specific components,
facilitating the construction of a more flexible and decom-
posable backbone adaptable to various scenarios. 2) We pro-
pose KIND, a novel pre-training method that integrates and
diverts knowledge, marking the first application of learn-
genes to image generation tasks. 3) We establish a new
benchmark for evaluating transfer efficiency and flexibility
in diffusion models. Extensive experiments demonstrate
that KIND achieves state-of-the-art performance while pro-
viding flexible storage and computational efficiency.

2. Related Work
2.1. Initialization and Training of Variable-sized Models

Practical deployments often encounter constraints related
to memory usage, processing power, and response time,
necessitating models of variable sizes (Zhang et al., 2022).
However, traditional pre-trained models are typically fixed
in size, requiring retraining when a suitable model size is
unavailable (Qiu et al., 2020; Han et al., 2021). While tra-
ditional model compression techniques, such as knowledge
distillation (Gou J, 2021; Muralidharan et al., 2024) and
model pruning (Zhang et al., 2024a; Castells et al., 2024),
can generate models of variable sizes, they involve repeated
operations for each model size, resulting in significant inef-
ficiencies in both time and resource consumption.

The Learngene framework, inspired by the transfer of ge-
netic information in nature (Feng et al., 2023), encap-
sulates common knowledge into modular network frag-
ments, termed “learngenes”, and employs them to initialize
variable-sized models (Wang et al., 2023). Notably, the
process of condensing knowledge from pre-trained mod-
els into learngenes incurs a one-time cost, eliminating the
need for further training during model initialization. Cur-
rent learngene-based methods, either direct transfer selected
layers from pre-trained models (Wang et al., 2022; 2023),
or apply predefined rules (e.g., Kronecker products) to dis-
till knowledge knowledge into learngenes (Xia et al., 2024;
Feng et al., 2025a). However, these approaches neglect the
alignment between model components and their correspond-
ing knowledge, limiting their efficiency and adaptability.

In contrast, KIND enhances such alignment through knowl-
edge diversion during pre-training, constructing a decom-
posable model that enables more flexible and efficient ini-
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tialization across varying model sizes.

2.2. Parameter Efficient Fine-Tuning (PEFT)

The increasing complexity of model parameters has made
fine-tuning all parameters of pre-trained models resource-
intensive and time-consuming (Touvron et al., 2021; Achiam
et al., 2023). To address this, PEFT techniques are devel-
oped to adapt large pre-trained models to new tasks by
fine-tuning only a small set of parameters (Hu et al., 2022;
Houlsby et al., 2019; Hu et al., 2023; Chen et al., 2022). Re-
cent approaches apply SVD to pre-trained weight matrices,
fine-tuning models by adjusting singular values, a process
known as spectral shift (Han et al., 2023; Robb et al., 2020;
Sun et al., 2022), or by fine-tuning singular vectors (Zhang
et al., 2024b; Zhang & Pilanci, 2024). However, existing
PEFT methods rely on models pre-trained with traditional
objectives and do not fully consider their adaptability as
universal backbones across diverse tasks.

In contrast, KIND decomposes pre-trained models into
learngenes and tailors through knowledge diversion. The
class-agnostic knowledge encapsulated in learngenes signif-
icantly enhances transfer adaptability, particularly for tasks
with large domain shifts compared to the training tasks.

3. Methods
3.1. Preliminary

3.1.1. LATENT DIFFUSION MODELS

Latent diffusion models transfer the diffusion process from
the high-resolution pixel space to the latent space by em-
ploying an autoencoder E , which encodes an image x into
a latent code z = E(x). A diffusion model is then trained
to generate the corresponding latent code in a denoising
process, minimizing the following objective:

L = Ez,c,ε,t[||ε − εθ(zt|c, t)||22] (1)

Here, εθ is a noise prediction network that predicts the noise
ε added to zt at timestep t, conditioned on c.

3.1.2. DIFFUSION TRANSFORMERS (DITS)

DiT is a transformer-based architecture for noise predic-
tion, replacing the traditional UNet. Given an image
x ∈ RH1×H2×C and its latent code z ∈ Rh1×h2×c encoded
by E , DiT divides the latent code z into T patches, which
are then mapped to D-dimensional patch embeddings, with
added position embeddings.

The structure of DiTs resembles that of Vision Transformers
(ViTs), which comprises L stacked layers, each containing a
Multi-Head Self-Attention (MSA) mechanism and a Point-
wise Feedforward (PFF) layer. In each layer, a self-attention
head Ai performs self-attention using a query Q, key K,

and value V ∈ RT ×D, with parameter matrices W i
q , W i

k,
and W i

v ∈ RD×d:

Ai = softmax(QiK
⊤
i√

d
)Vi , Ai ∈ RT ×d (2)

MSA mechanism combines h self-attention heads A and
projects the concatenated outputs using a weight matrix Wo:

MSA = concat(A1, A2, ..., Ah)Wo , Wo ∈ Rhd×D (3)

In the implementation of MSA, the matrices W i
q , W i

k, and
W i

v ∈ RD×d for h attention heads are combined into three
parameter matrices Wq , Wk, and Wv ∈ RD×hd.

PFF layer comprises two linear transformations Win ∈
RD×D′

and Wout ∈ RD′×D with a GELU (Hendrycks &
Gimpel, 2016) activation function:

PFF(x) = GELU(xWin + b1)Wout + b2 (4)

where b1 and b2 are the biases for the linear transformations,
and D′ denotes the hidden layer dimensions.

3.2. Knowledge Integration in Weight Matrices

FSGAN (Robb et al., 2020) directly applies SVD to pre-
trained model parameters and fine-tunes the singular val-
ues for adaptation, achieving success in image segmenta-
tion (Sun et al., 2022) and generation (Han et al., 2023)
This shows that SVD can create a compact parameter space,
facilitating efficient fine-tuning of pre-trained models.

However, directly applying SVD to pre-trained parameter
matrices decomposes them based on fixed orthogonaliza-
tion rules, leading to poor interpretability and making it
challenging to determine whether the knowledge in each
basic component is class-specific. This limits the model’s
decomposability, risking the loss of valuable knowledge.

To address this, we integrate knowledge by reconstructing
weight matrices using the SVD-derived components U , Σ,
and V , where each basic component is a combination of a
column vector, singular value and row vector from U , Σ, and
V ⊤. We then explicitly associate each basic component with
a specific type of knowledge (either class-specific or class-
agnostic), which is achieved through a class gate mechanism
to divert knowledge (Section 3.3).

For the DiT architecture, the main weight matrices across
the L-layers are θ = {W

(1∼L)
q , W

(1∼L)
k , W

(1∼L)
v ,

W
(1∼L)
o , W

(1∼L)
in , W

(1∼L)
out }1. Let W

(l)
⋆ represent any

weight matrix in layer l, where ⋆ ∈ S and S = {q, k, v, o,

in, out} denotes the set of subscripts. The matrices U
(l)
⋆ ,

1W
(1∼L)
q denotes the set {W

(1)
q , W

(2)
q , . . . , W

(L)
q }. Similar

notations throughout the paper follow this convention.
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Figure 2. (a) For each weight matrix in DiTs, we integrate it into the product of matrices U , Σ and V ⊤, formally inspired by SVD.
The components of these matrices are then explicitly partitioned into the learngenes and tailors, which encapsulate class-agnostic and
class-specific knowledge, respectively. (b) Knowledge is diverted through a class gate ensuring each training image updates only the
learngenes and their corresponding class-related tailors, so that the class-agnostic knowledge can be condensed into the learngenes, while
knowledge specific to each class is diverted into corresponding tailors.

Σ(l)
⋆ , V

(l)
⋆ are the corresponding components that constitute

W
(l)
⋆ , which is calculated as:

W
(l)
⋆ = U

(l)
⋆ Σ(l)

⋆ V
(l)

⋆

⊤

=
r∑

i=1
u

(l,i)
⋆ σ

(l,i)
⋆ v

(l,i)
⋆

(5)

where Σ(l)
⋆ = diag(σ) with σ = [σ(l,1)

⋆ , σ
(l,2)
⋆ , ..., σ

(l,r)
⋆ ].

U
(l)
⋆ = [u(l,1)

⋆ , u
(l,2)
⋆ , ..., u

(l,r)
⋆ ] ∈ Rm1×r, and V

(l)
⋆ =

[v(l,1)
⋆ , v

(l,2)
⋆ , ..., v

(l,r)
⋆ ]⊤ ∈ Rr×m2 . The rank r and dimen-

sions m1 and m2 are associated with W
(l)
⋆ . Each basic

component is represented as Θ(l,i)
⋆ = (u(l,i)

⋆ , σ
(l,i)
⋆ , v

(l,i)
⋆ ).

3.3. Knowledge Diversion by Class Labels

Given a dataset with Ncls classes, our objective is to allocate
knowledge of each class to the corresponding basic com-
ponents while extracting class-agnostic knowledge shared
across all classes, thereby achieving knowledge diversion.

We categorize all basic components into learngenes and tai-
lors, encapsulating class-agnostic and class-specific knowl-
edge, respectively. Specifically, the components are parti-
tioned based on the number of classes Ncls and matrix rank
r, satisfying r = Ncls · NT + NG, where NT denotes the
number of components per class, with the tailor for the c-th
class Tc:

Tc = {Θ(l,i)
⋆ |i ∈ [(c − 1) · NT , c · NT ], ⋆ ∈ S, l ∈ [1, L]}

(6)

NG is the number of basic components forming learngenes:

G = {Θ(l,i)
⋆ |i ∈ [Ncls · NT , Ncls · NT + NG], ⋆ ∈ S, l ∈ [1, L]}

(7)
In this way, the r basic components of each matrix are
partitioned into NG learngenes and Ncls tailors, with the
model parameters represented as θ = G +

∑Ncls

c=1 Tc.

To encapsulate the class-specific knowledge of the c-th
class in the c-th tailor, we introduce a class gate G =
[0, . . . , 0, 1, 0, . . . , 0] ∈ RNcls for knowledge diversion dur-
ing the training of DiTs, where only one the element at
the c-th position is set to 1, corresponding to the class in-
dex. This mechanism ensures that, for each training class,
only the weight parameters of the learngene and relevant
tailors are updated (See Algorithm 1 for more details). The
optimization objective is defined as:

arg min
G,T

LG·θ, s.t. θ = G +
Ncls∑
c=1

Tc (8)

where the loss function L is defined in Eq. (1).

3.4. Decomposable Models for Diverse Scenarios

After training via knowledge diversion, we obtain a decom-
posable model made up of basic components, which can be
adaptively reassembled to meet the target memory size and
specific task requirements during deployment.

Recombination for Variable Model Sizes. In practice,
not all knowledge in pre-trained models is applicable to

4



KIND: Knowledge Integration and Diversion for Training Decomposable Models

××!
Target
Classes

Direct Select !!"#

! ××

Random
Learngene

Frozen
Trainable

…

! "

…!

"

…!

"

…

! "
…!

"#

…!

"

(a) Recombination for Variable Model Sizes 

(b) Class-agnostic Knowledge for Large Domain Shift

Target
Classes

Add Random Tailors !$%&!"'
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randomly initialized tailors for class-specific fine-tuning.

downstream tasks, and transferring excessive knowledge
can be both memory-intensive and redundant. For down-
stream tasks similar to parts of the training dataset, we can
directly select the appropriate pre-trained tailors combined
with learngenes. For instance, when deploying a DiT pre-
trained on ImageNet to a resource-constrained device for
generating images of “dogs”, we can deploy only the tailor
corresponding to “dog” (Tdog) and the learngene (G). Sim-
ilarly, for unknown classes, we can select closely related
tailors for fine-tuning, adjusting the number of tailors based
on the available memory.

Class-agnostic Knowledge for Large Domain Shift. Pre-
trained models often encounter negative transfer when fac-
ing large domain shifts, a challenge that also affects the
transfer of pre-trained tailors. In such cases, class-agnostic
knowledge encapsulated in learngenes fully demonstrates
its advantages. Thus, for tasks with large domain shifts,
only learngenes need to be transferred, along with randomly
initialized tailors Trandom. During fine-tuning, we freeze the
learngene and only update the tailors, enabling them to learn
class-specific knowledge from the downstream task, thereby
achieving more efficient fine-tuning.

4. Experiments
4.1. Datasets

We conduct class-conditioned generation on ImageNet-
1K (Deng et al., 2009), which contains 1,000 classes. To

Table 1. Performance of constructing variable-sized models on
training classes. “Para.” denotes the total number of model pa-
rameters, which reflects the model size. “Time” is the additional
training steps required to construct models of the target sizes.

Para.(M) Methods Time FID↓ sFID↓ IS↑ Prec.↑ Rec.↑

D
iT

-L

457.0 Trad. PT 0 9.68 6.15 72.22 0.69 0.47
362.5 Heur-LG 100K 23.86 7.24 48.34 0.54 0.47
249.2 Laptop-diff 100K 17.20 7.25 57.07 0.59 0.47
249.2 Auto-LG 100K 18.38 8.22 57.68 0.58 0.46
245.9 KIND 0 9.33 6.80 79.39 0.69 0.46

D
iT

-B

129.7 Trad. PT 0 25.14 7.57 47.15 0.53 0.46
108.4 Heur-LG 100K 41.53 8.93 34.29 0.42 0.47
76.5 Laptop-diff 100K 48.22 11.09 31.19 0.37 0.47
76.5 Auto-LG 100K 45.69 10.77 32.77 0.39 0.47
70.2 KIND 0 21.14 8.85 58.18 0.55 0.44

minimize inter-class similarity, we merge certain similar
classes based on their superclasses in WordNet (Miller,
1995), resulting in a final set of 611 classes. Among these,
150 classes are used for pre-training the diffusion models,
while the remaining 461 classes serve as novel classes for
constructing downstream tasks. Further details can be found
in Appendix A.3. Additionally, we use datasets, includ-
ing CelebA-HQ (Huang et al., 2018), Hubble (Weinzierl,
2023), MRI, and Pokémon, to simulate large domain shifts
compared to the training data.

4.2. Basic Setting

For pre-training DiT, we train class-conditional latent DiTs
of sizes -B and -L, with a latent patch size of p = 2 at a
256 × 256 image resolution on training classes. All models
are trained using AdamW with a batch size of 256 and a
constant learning rate of 1 × 10−4 over 300K steps. An
exponential moving average (EMA) of DiT weights is used
with a decay rate of 0.9999, and results are reported using
the EMA model. During image generation, a classifier-
free guidance (cfg) scale of 1.5 is applied. Performance is
evaluated using Fréchet Inception Distance (FID) (Heusel
et al., 2017), sFID (Nash et al., 2021), Fréchet DINO dis-
tance(FDD) (Stein et al., 2023), Inception Score (Salimans
et al., 2016) and Precision/Recall (Kynkäänniemi et al.,
2019). Further details are provided in Appendix A.2.

5. Results
5.1. Construction of Variable-Sized Pre-Trained Models

The models pre-trained by KIND are inherently decom-
posable, consisting of learngenes that encapsulate class-
agnostic knowledge and tailors that capture class-specific
knowledge. This decomposition enables flexible deploy-
ment of models across devices, as demonstrated in Table 1.

Compared to traditional pre-trained models, KIND achieves
comparable performance with the same number of training
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Table 2. Performance of various PEFT and learngene methods on novel classes. All methods are fine-tuned for 50K steps on 18 downstream
tasks involving novel classes. “Para.” denotes the average number of trainable parameters, while “FLOPs” represents the average total
floating-point operations required during fine-tuning.

Methods DiT-B/2 DiT-L/2

Para.(M) FLOPs(G) FID↓ sFID↓ IS↑ Prec.↑ Recall↑ Para.(M) FLOPs(G) FID↓ sFID↓ IS↑ Prec.↑ Recall↑

PE
FT

SVDiff 0.1 43.6 55.01 18.12 19.6 0.35 0.55 0.2 155.0 49.59 16.81 20.8 0.38 0.56
OFT 14.2 119.7 36.19 17.79 32.0 0.48 0.50 50.5 425.6 24.81 18.27 44.1 0.59 0.47
LoRA 12.8 50.1 36.70 16.28 31.6 0.44 0.57 45.3 178.2 22.55 14.00 46.3 0.55 0.56
PiSSA 12.8 50.1 33.16 15.51 34.6 0.49 0.52 45.3 178.2 19.41 14.72 53.7 0.63 0.50
LoHa 12.7 87.1 42.38 17.37 27.3 0.40 0.58 45.3 309.6 29.79 15.17 35.8 0.49 0.59
DoRA 12.8 129.5 35.87 16.40 32.3 0.45 0.56 45.6 503.0 21.28 14.16 48.3 0.57 0.55

L
G

Heur-LG 129.6 43.6 55.45 22.14 24.4 0.33 0.48 456.8 155.0 41.83 19.23 30.9 0.40 0.51
Auto-LG 129.6 43.6 56.38 21.39 25.5 0.30 0.49 456.8 155.0 31.78 18.71 41.7 0.46 0.54
KIND 12.8 33.7 20.94 14.75 62.4 0.53 0.50 45.4 119.6 12.87 12.93 86.1 0.65 0.51

FT Full FT 129.6 43.6 26.49 15.08 45.1 0.51 0.55 456.8 155.0 14.51 13.16 69.1 0.63 0.55

steps, without increasing training complexity. Additionally,
the decomposable nature of KIND allows for direct recom-
bination tailored to specific deployment needs, with no fur-
ther time-consuming steps required. In contrast to knowl-
edge distillation and pruning (Zhang et al., 2024a), KIND
offers significant advantages by avoiding the resource over-
head of repeated distillation and pruning for each model
size, which is required in distillation-based methods.

Unlike traditional learngenes, such as Heur-LG (Wang et al.,
2022) and Auto-LG (Wang et al., 2023), which directly
transfer certain layers from traditional pre-trained mod-
els, KIND encapsulates task-agnostic knowledge into learn-
genes and retains task-specific knowledge in tailors through
knowledge diversion. This enables the direct combination of
learngenes and tailors without additional training, ensuring
both efficiency and adaptability across tasks.

5.2. Performance on Tasks with Novel Classes

To evaluate KIND’s adaptability, we use learngenes as the
backbone with randomly initialized tailors and compare it
to PEFT methods based on traditional pre-trained models
on tasks with novel classes. As shown in Table 2, KIND
achieves state-of-the-art results on DiT-B and DiT-L, reduc-
ing FID by 6.54 and sFID by 1.07, while using only 45.4M
parameters and saving 35.4G FLOPs on DiT-L.

Despite the efficiency of PEFT methods, a significant per-
formance gap remains compared to Full FT, highlighting the
task discrepancy between training and novel classes. PEFT
methods, which freeze pre-trained parameters, struggle to
adapt to novel tasks. As shown in Figure 4, PEFT-generated
images perform poorly in capturing class-specific knowl-
edge due to limited trainable parameters and task mismatch.
Existing learngene methods like Heur-LG and Auto-LG
transfer partial knowledge from pre-trained models, but the
transferability of each module, trained with traditional ob-
jectives, is limited.

Table 3. Performance comparison of KIND and PEFT methods in
transferring to downstream tasks with significant domain shifts,
evaluated using FDD for image quality assessment.

CelebA-HQ Hubble MRI Pokemon

DiT-B DiT-L DiT-B DiT-L DiT-B DiT-L DiT-B DiT-L

SVDiff 0.622 0.388 0.385 0.305 0.187 0.148 0.605 0.469
OFT 0.343 0.226 0.255 0.168 0.056 0.046 0.469 0.321
LoRA 0.284 0.197 0.232 0.142 0.061 0.056 0.412 0.285
PiSSA 0.281 0.195 0.211 0.152 0.057 0.051 0.418 0.295
LoHa 0.336 0.268 0.252 0.189 0.065 0.130 0.439 0.316
DoRA 0.282 0.203 0.589 0.330 0.043 0.048 0.396 0.333

KIND 0.201 0.152 0.124 0.109 0.042 0.040 0.343 0.262

In contrast, KIND diverts class-agnostic knowledge into
learngenes, creating a flexible backbone for adaptation to
downstream tasks with novel classes. The randomly ini-
tialized tailors are adjusted via low-rank assumptions, com-
bining with learngenes to meet task-specific needs, thereby
improving transfer efficiency and enhancing the generaliz-
ability of knowledge transfer. As shown in Figure 4 and
Table 2, KIND-generated images outperform PEFT methods
in both quality and performance metrics.

5.3. Performance on Tasks with Large Domain Shifts

KIND demonstrates significant advantages in adapting to
tasks with novel classes, with these benefits becoming even
more pronounced when dealing with tasks involving large
domain shifts. As shown in Table 3 and Figure 5, KIND out-
performs PEFT methods on both DiT-B and DiT-L, achiev-
ing substantial improvements in image generation quality.

This further demonstrates that the knowledge encapsulated
in learngenes is sufficiently class-agnostic, allowing it to be
shared effectively across various tasks. In contrast, PEFT
methods based on traditional pre-trained models show disad-
vantages, as the knowledge learned from ImageNet is often
difficult to transfer to new domains, especially in specialized
fields like Hubble and MRI. This highlights a key limitation
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Figure 4. Selected samples from tasks with novel classes, generated by KIND and other PEFT methods using the DiT-L/2 model, with a
resolution of 256 × 256. All images are generated using a classifier-free guidance (cfg) scale of 3.0.
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Figure 5. Selected samples from tasks with large domain shifts,
generated by KIND and other PEFT methods using the DiT-L/2,
with a resolution of 256 × 256. All images are generated using a
classifier-free guidance (cfg) scale of 1.5.

of current pre-training approaches, which aim to improve
generalization by incorporating as many domain-specific
images as possible during training (Ramesh et al., 2022;
Esser et al., 2024). While this may enhance performance, it
leads to larger model sizes, reduced transfer flexibility, and
increased computational overhead.

5.4. Ablation and Analysis

5.4.1. ABLATION EXPERIMENTS

To assess the effectiveness of learngenes, tailors, and the
class gate, we conduct a series of ablation experiments.
#1 performs Singular Value Decomposition (SVD) on pre-

Table 4. Ablation study on different components of KIND.

LG Tailor Gate FID↓ sFID↓ IS↑ Prec.↑ Recall↑

D
iT

-B
/2 #1 60.28 19.96 20.4 0.30 0.49

#2 ✓ 49.54 18.08 23.2 0.34 0.56
#3 ✓ ✓ 21.60 14.84 59.7 0.54 0.50

KIND ✓ ✓ ✓ 20.94 14.75 62.4 0.53 0.50

D
iT

-L
/2 #1 42.04 18.07 28.0 0.41 0.54

#2 ✓ 33.53 15.55 32.2 0.46 0.59
#3 ✓ ✓ 13.03 12.93 85.1 0.64 0.51

KIND ✓ ✓ ✓ 12.87 12.93 86.1 0.65 0.51

trained weights and randomly selects NG singular vectors to
form its backbone, followed by fine-tuning with LoRA. #2
replaces the backbone with learngenes extracted by KIND,
based on the structure in #1. #3 substitutes tailors for LoRA
in fine-tuning the model, without using the class gate.

As shown in Table 4, the knowledge encapsulated in learn-
genes, which undergoes knowledge diversion, is more class-
agnostic, making it better suited for adaptation to down-
stream tasks, especially when these tasks differ significantly
from the training tasks (e.g., #1 vs. #2). Additionally, tailors
can also function as a PEFT method by integrating class-
specific knowledge into pre-trained models or learngenes,
thereby enhancing the model’s ability to acquire new knowl-
edge for downstream tasks (#2 vs. #3). Finally, the class
gate further enhances this by helping the model distinguish
class-specific knowledge, boosting the effectiveness of the
tailors (#3 vs. KIND).
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Figure 6. Visualization of convergence speed of KIND and other
methods on downstream tasks. Each image is sampled every 10K
steps to illustrate progress more clearly.

Table 5. Comparison of pre-trained models and learngenes when
serving as backbones on training tasks.

Entropy↑ Variance↓ Kurtosis↓

Raw Images of ImageNet 1.458 6.414e−4 884.3

Pretrained Model 2.387 4.516e−4 780.1
Learngene 4.046 1.495e−4 544.9

5.4.2. STRONG LEARNING ABILITY BROUGHT BY
LEARNGENES

As noted in (Wang et al., 2022; Xia et al., 2024), learngenes
accelerate downstream model adaptation by transferring
common knowledge, offering a significant advantage over
training from scratch. Beyond this, KIND further improves
convergence speed compared to PEFT methods. Figure 6
illustrates the convergence speed of KIND, with images
generated by models every 10K training steps.

The convergence speed is generally influenced by the num-
ber of trainable parameters during fine-tuning, with PEFT
methods focusing on reducing this number using techniques
like orthogonalization and low-rank constraints (Ding et al.,
2023; Han et al., 2024). However, these methods often
neglect the transferability of knowledge in pre-trained mod-
els by directly fixing their parameters. In contrast, KIND
leverages learngenes that encapsulate class-agnostic knowl-
edge as the backbone, offering superior transferability while
remaining lightweight. Meanwhile, the tailors capture task-
specific knowledge, allowing KIND to achieve faster con-
vergence and improved performance on downstream tasks.

5.4.3. ANALYSIS ON CLASS-AGNOSTIC KNOWLEDGE

As discussed earlier, learngenes provide a superior back-
bone compared to pre-trained models by encapsulating class-
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Figure 7. Visualization of KIND w/ and w/o Tailers (i.e., learngene
only) across 12 superclasses for 2 different seeds.

agnostic knowledge. To further investigate this, we analyze
the properties of the class-agnostic knowledge encapsulated
in learngenes. Table 5 compares learngenes themselves (i.e.,
w/o tailors) with pre-trained models on training tasks. The
results reveal that learngenes demonstrate higher entropy,
along with lower variance and kurtosis, suggesting that the
class-agnostic knowledge they encapsulate is widely ap-
plicable across diverse classes. Such stability underscores
that learngenes, as a backbone, offer better adaptability to
unfamiliar classes than traditional pre-trained models.

We also visualize learngenes with and without tailors in
Figure 7. The visualizations demonstrate that learngenes are
not sensitive to category variations, consistently generating
similar images across different class conditions. While these
images may lack detailed semantic information on their own,
combining them with class-specific knowledge (i.e., tailors)
enables the generation of images corresponding to specific
classes. This further underscores the inherent commonality
of knowledge within learngenes.

6. Conclusion
In this study, we introduce KIND, a pre-training method for
constructing decomposable models. KIND employs knowl-
edge diversion during pre-training, separating class-agnostic
knowledge into learngenes and class-specific knowledge
into tailors. This approach enables the adaptive assembly
of variable-sized models by selectively integrating relevant
tailors. The class-agnostic knowledge within learngenes mit-
igates the challenges of tasks with large domain shifts, par-
ticularly when combined with randomly initialized tailors
for task-specific fine-tuning. We demonstrate the effective-
ness of KIND in resource-constrained scenarios and tasks
with significant domain shifts, with further analysis and vi-
sualizations illustrating the robustness of the class-agnostic
knowledge encapsulated in learngenes.
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A. Training Details
A.1. Details of Knowledge Diversion

Algorithm 1 presents the pseudo code for diverting class-
agnostic knowledge into learngenes and class-specific
knowledge into tailors.

Algorithm 1 Diversion of Class-agnostic Knowledge and
Class-specific Knowledge
Input: DiT f , Training dataset D = {(x(i), y(i))}m

i=1 of Ncls

classes, number of epochs Nep, batch size B, learning rate α
Output: Learngene G
1: Randomly initialize the weight matrices θ of f , as well as the

matrices U
(l)
⋆ , Σ(l)

⋆ , and V
(l)

⋆

2: for ep = 1 to Nep do
3: for each batch {(xi, yi)}B

i=1 do
4: Update θ of f with U

(l)
⋆ , Σ(l)

⋆ and V
(l)

⋆ under the rule of
Eq. (5)

5: Initialize class gate G ∈ RB×Ncls according to labels of
images in this batch

6: For each xi, forward propagate ŷi = f(xi, G · θ)
7: Calculate Lbatch = 1

B

∑B

i=1 L(ŷi, yi) according to
Eq. (1)

8: Backward propagate the loss Lbatch to compute
the gradients with respect to U

(l)
⋆ , Σ(l)

⋆ and V
(l)

⋆ :
∇U Lbatch, ∇ΣLbatch and ∇V Lbatch

9: Update the learngenes U
(l)
G,⋆, Σ(l)

G,⋆ and V
(l)

G,⋆:

U
(l)
G,⋆ := U

(l)
G,⋆ − α · ∇U Lbatch,

Σ(l)
G,⋆ := Σ(l)

G,⋆ − α · ∇ΣLbatch

V
(l)

G,⋆ := V
(l)

G,⋆ − α · ∇V Lbatch

10: Update the tailors U
(l)
Ti,⋆, Σ(l)

Ti,⋆ and V
(l)

Ti,⋆:

U
(l)
Ti,⋆ := U

(l)
Ti,⋆ − α · G(∇U Lbatch)

Σ(l)
Ti,⋆ := Σ(l)

Ti,⋆ − α · G(∇ΣLbatch)
V

(l)
Ti,⋆ := V

(l)
Ti,⋆ − α · G(∇V Lbatch)

11: end for
12: end for

A.2. Hyper-parameters

Table 6 presents the basic settings, including learning rate,
training steps and the number of learngene components NG

and tailor components NT for KIND integrating and divert-
ing knowledge. And Table 7 presents the hyper-parameters
of PEFT and other learngene methods on 18 downstream
tasks. Apart from general hyper-parameters, we also record
the hyper-parameters specific to each method. Among them,
the parameter r of Lora, PiSSA, Dora and LoHA denotes
the rank and the r in OFT denotes the block number respec-
tively.

A.3. Details of Downstream Tasks

Table 9 presents the details of 18 downstream tasks, which
are sorted by the class numbers in each task. Each task is
composed of c ∈ [7, 35] novel classes, where the classes

Table 6. Hyper-parameters for KIND diverting knowledge on train-
ing classes of ImageNet-1K.

Training Settings Configuration

optimizer AdamW
learning rate 1e-4
weight decay 0
batch size 256
training steps 200,000
image size 256×256
VAE ema
DiT block adaLN-Zero
NG (DiT-B/-L) 318 / 424
NT (DiT-B/-L) 3 / 4

merged into superclasses in ImageNet1K and their corre-
sponding superclasses are listed in Table 10 and Table 11,
while the rest remain the same as the classes in ImageNet-
1K.

B. Additional Results
We provide more images of novel classes generated by our
KIND which is a DiT-L/2 model composed of learngenes
and tailors at 256 × 256 resolution, as shown in Figure 8-15.
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Table 7. Hyper-parameters for PEFT and learngene methods when fine-tuning on novel classes of ImageNet-1K.
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-B
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L
)

Rank or Block Number r
Task
ID #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18

OFT 256 50K 1e-4 21 11 8 7 6 6 5 5 5 5 5 5 4 4 4 4 4 4
Lora 512 50K 1e-3 -B 21 39 54 60 69 72 78 78 78 84 84 87 90 90 93 99 102 105

-L 28 52 72 80 92 96 104 104 104 112 112 116 120 120 124 132 136 140
PiSSA 256 50K 1e-3 -B 21 39 54 60 69 72 78 78 78 84 84 87 90 90 93 99 102 105

-L 28 52 72 80 92 96 104 104 104 112 112 116 120 120 124 132 136 140
Dora 256 50K 1e-3 -B 21 39 54 60 69 72 78 78 78 84 84 87 90 90 93 99 102 105

-L 28 52 72 80 92 96 104 104 104 112 112 116 120 120 124 132 136 140
LoHA 256 50K 1e-3 -B 10 19 27 30 34 36 39 39 39 42 42 43 45 45 46 49 51 52

-L 14 26 36 40 46 48 52 52 52 56 56 58 60 60 62 66 68 70
SVDiff 256 50K 5e-3/3e-3 —–
Heru-LG 256 50K 1e-4 —–
Auto-LG 256 50K 1e-4 —–
KIND 256 50K 1e-3 —–
Full FT 256 50K 1e-4 —–

Table 8. Detailed FID of PEFT and learngene methods when fine-tuning on each novel classes.

Methods Task ID
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18

D
iT

-B
PE

FT

SVDiff 143.4 144.9 140.6 112.3 112.5 114.2 117.4 104.3 108.6 107.5 102.3 93.6 97.5 108.9 109.6 95.2 81.6 100.6
OFT 92.3 90.4 93.7 71.9 76.0 86.7 82.3 72.6 74.5 76.9 65.4 63.0 67.8 77.3 78.1 64.4 63.7 75.2
Lora 85.5 94.2 97.7 75.8 80.3 89.2 89.4 76.6 76.2 83.1 68.9 64.7 70.5 78.7 79.1 67.0 63.3 78.6
PiSSA 83.0 89.4 93.0 69.3 73.8 82.1 81.1 69.4 71.6 76.2 64.3 60.5 64.3 74.4 70.2 60.7 59.7 71.1
LoHa 94.9 100.8 108.3 84.3 88.2 95.8 97.5 85.5 86.6 90.6 78.9 73.2 79.3 88.8 88.0 76.4 69.4 86.9
Dora 82.9 91.6 94.0 73.1 77.8 87.2 87.8 73.9 75.4 79.0 67.8 64.2 69.6 77.0 78.6 65.2 62.2 77.0

L
G

Heru-LG 98.7 111.1 122.4 97.0 102.5 114.4 122.2 95.1 99.5 108.4 87.8 90.5 91.7 103.6 101.8 94.4 88.3 100.2
Auto-LG 107.8 113.7 129.3 105.6 100.1 117.7 112.3 100.5 100.3 105.7 89.9 91.4 93.7 105.1 101.7 99.1 87.3 99.9
KIND 55.0 73.4 70.4 52.7 58.3 65.2 59.7 47.8 51.9 56.7 42.7 43.7 44.6 56.3 62.8 43.5 39.8 52.0

FT Full FT 56.3 75.5 78.1 59.9 65.1 72.6 70.1 58.6 60.1 66.1 54.2 51.4 53.8 63.7 63.3 52.8 51.5 62.7

D
iT

-L
PE

FT

SVDiff 118.2 132.0 127.2 98.3 97.2 103.0 105.6 92.3 98.3 97.2 92.9 84.1 90.5 102.3 110.4 109.0 76.3 92.3
OFT 59.4 71.4 72.4 52.3 57.9 65.1 64.5 55.1 60.4 58.6 48.7 50.1 52.7 62.2 60.8 50.1 51.1 61.9
Lora 54.6 72.5 72.0 55.9 59.0 65.7 65.1 53.7 54.5 61.6 48.7 49.4 50.3 57.4 57.1 47.5 46.1 59.7
PiSSA 52.6 68.9 67.0 50.2 54.1 60.8 58.4 49.2 48.4 55.4 43.1 44.4 44.3 53.1 48.6 41.1 41.9 50.6
LoHa 65.3 78.7 83.3 63.9 69.6 77.6 78.3 66.1 66.7 73.8 62.2 59.0 62.5 68.6 68.1 59.3 56.1 72.5
Dora 52.2 71.3 68.0 52.9 56.7 64.3 62.4 52.2 51.1 58.7 46.9 47.0 47.9 56.0 55.7 44.9 45.1 56.2

L
G

Heru-LG 73.3 92.6 97.1 79.9 86.2 94.4 94.5 77.8 82.2 88.8 72.4 71.9 77.2 85.8 85.1 74.8 71.9 84.0
Auto-LG 66.5 81.1 82.6 69.3 70.0 80.4 76.3 66.6 67.4 72.8 58.8 59.3 61.0 70.9 69.3 64.9 58.1 70.2
KIND 39.0 66.2 61.8 44.2 46.0 54.7 47.5 39.1 40.0 46.3 33.2 36.3 34.7 45.9 43.9 31.5 30.9 40.8

FT Full FT 38.0 64.1 61.9 44.6 45.5 56.1 50.8 41.4 41.2 48.5 36.1 38.6 38.2 47.4 43.4 35.3 34.9 44.1
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KIND: Knowledge Integration and Diversion for Training Decomposable Models

Table 9. Details of superclasses in each downstream task

Task Superclasses of ImageNet

#1 n02510455 n02509815 n01662784 n02118333 n02083346 n02437616 n02457408

#2 n03187595 n03788365 n03933933 n04273569 n03843555 n03400231 n03325584 n09472597 n03874293 n04591713
n03854065 n03868863 n07711569

#3 n07753592 n03763968 n03109150 n09399592 n03903868 n03720891 n02939185 n03908714 n04014297 n02804414
n06785654 n04131690 n02794156 n02971356 n02056570 n02965783 n04243546 n06359193

#4 n02877765 n04238763 n04009552 n03666591 n07614500 n09332890 n01629276 n04483307 n03291819 n02120997
n03717622 n04041544 n03873416 n04467665 n03394916 n03272010 n04118538 n04367480 n04447861 n03775071

#5 n04086273 n04141076 n03657121 n03379051 n02401031 n01503061 n03840681 n04380533 n03871628 n11879895
n04090263 n04557648 n03016953 n02808304 n02879718 n03724870 n04423845 n02917067 n03691459 n02672831
n04146614 n04525305 n04264628

#6 n03496892 n06874185 n04392985 n03485794 n03982430 n04540053 n03602883 n02871525 n02978881 n03961711
n04005630 n03065424 n04200800 n02823750 n03344393 n04325704 n03220513 n03498962 n04356056 n03347037
n09421951 n07760859 n04133789 n07565083

#7 n04332243 n02883205 n03405725 n03017168 n04553703 n03777568 n02951358 n07720875 n03637318 n02090827
n04265275 n03028079 n07920052 n03954731 n04141327 n03255030 n03447447 n00002684 n03530642 n03425413
n04524313 n03110669 n03764736 n12267677 n02676566 n03417042

#8 n03676483 n02865351 n03792972 n02974003 n02906734 n07860988 n03249569 n00021265 n02727426 n03782006
n02317335 n02815834 n03388043 n03529860 n02817516 n03761084 n09246464 n03899768 n03970156 n04485082
n01769347 n07880968 n03197337 n03876231 n02699494 n03472232

#9 n02121808 n07734744 n03424325 n03494278 n03935335 n03690938 n03240683 n03467068 n02980441 n03450230
n02512053 n04517823 n02730930 n03133878 n03259280 n04376876 n03803284 n03920288 n02966193 n02814860
n02669723 n03000134 n02793495 n02766320 n03649909 n04125021

#10 n03985232 n03590841 n03388549 n04065272 n03633091 n02916936 n03201208 n04208210 n02988304 n09229709
n02769748 n02791270 n03814639 n03481172 n03692522 n04501370 n03584829 n02843684 n04252225 n03196217
n02704792 n03384352 n03785016 n03459775 n03599486 n01806143 n03294048 n03995372

#11 n04341686 n03603722 n04081281 n03623198 n03497657 n02690373 n09193705 n04486054 n01986214 n01639765
n03180011 n03532672 n03540267 n02356798 n03662601 n04277352 n04204238 n04204347 n04530566 n04033901
n03793489 n02268148 n04209239 n04266014 n01861778 n03062245 n03179701 n11939491

#12 n04111531 n04597913 n07932039 n04118776 n02859443 n04523525 n02077923 n03938244 n07707451 n04371430
n02797295 n04228054 n03207743 n01882714 n07716906 n03216828 n04589890 n03063689 n03630383 n04252077
n02153203 n03207941 n03908618 n03796401 n07697313 n02898711 n04548362 n03290653 n02930766

#13 n03000247 n04040759 n04590129 n03492542 n03733805 n04044716 n01877812 n04418357 n09428293 n03045698
n03998194 n03443371 n03983396 n03902125 n03598930 n01844917 n04509417 n02441326 n02786058 n03134739
n03838899 n04192698 n02837789 n02074367 n02701002 n07717070 n03977966 n12992868 n03445777 n04162706

#14 n03538406 n03314780 n03916031 n04310018 n04074963 n04462240 n03250847 n01704323 n07753113 n04532106
n09288635 n04033995 n03929855 n03733281 n04562935 n03124043 n03682487 n04487081 n03743016 n03670208
n03980874 n04596742 n03457902 n04536866 n03085013 n03527444 n04099969 n04141975 n04326547 n02825657

#15 n04417672 n02966687 n03868242 n02692877 n04435653 n04039381 n02084071 n02776631 n02950826 n04350905
n04552348 n07831146 n04149813 n03787032 n03791053 n04357314 n04476259 n02129604 n03791235 n03992509
n01604330 n03891332 n04613696 n04592741 n02687172 n02782093 n04525038 n02835271 n01674464 n07742313
n02454379

#16 n02910353 n02323902 n03327234 n01726692 n03095699 n04443257 n04201297 n02667093 n04584207 n04328186
n02909870 n04311174 n04067472 n04270147 n04344873 n03777754 n03658185 n03706229 n07836838 n03770679
n03208938 n01976146 n02062744 n03697007 n03476684 n02469914 n04458633 n02274259 n10565667 n01872401
n03584254 n04019541 n03461385

#17 n03063599 n04576211 n03841143 n03617480 n02992211 n04251144 n04239074 n02131653 n04254120 n02979186
n01514668 n03476991 n04229816 n03776460 n04429376 n01696633 n01905661 n03594945 n04370456 n02159955
n04230808 n03141823 n00001930 n03485407 n04372370 n04285008 n03032252 n04286575 n02894605 n03709823
n02329401 n03160309 n03721384 n03857828

#18 n02870880 n03127747 n02880940 n04346328 n04482393 n03800933 n04152593 n03051540 n03042490 n04317175
n03661043 n04548280 n04235860 n02807133 n02790996 n03877472 n07892512 n07871810 n03866082 n07875152
n10148035 n04531098 n03814906 n02927161 n04296562 n03729826 n04023962 n01768244 n00003553 n04127249
n04505470 n03825788 n03794056 n03929660 n03742115
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KIND: Knowledge Integration and Diversion for Training Decomposable Models

Table 10. Details of superclasses in ImageNet-1K

Superclass Classes of ImageNet

n02084071 n02085620 n02085782 n02085936 n02086079 n02086240 n02086646 n02086910 n02087046
n02087394 n02088094 n02088238 n02088364 n02088466 n02088632 n02089078 n02089867
n02089973 n02090379 n02090622 n02090721 n02091244 n02091467 n02091635 n02091831
n02092002 n02092339 n02093256 n02093428 n02093647 n02093754 n02093859 n02093991
n02094114 n02094258 n02094433 n02095314 n02095570 n02095889 n02096051 n02096177
n02096294 n02096437 n02096585 n02097047 n02097130 n02097209 n02097298 n02097474
n02097658 n02098105 n02098286 n02098413 n02099267 n02099429 n02099601 n02099712
n02099849 n02100236 n02100583 n02100735 n02100877 n02101006 n02101388 n02101556
n02102040 n02102177 n02102318 n02102480 n02102973 n02104029 n02104365 n02105056
n02105162 n02105251 n02105412 n02105505 n02105641 n02105855 n02106030 n02106166
n02106382 n02106550 n02106662 n02107142 n02107312 n02107574 n02107683 n02107908
n02108000 n02108089 n02108422 n02108551 n02108915 n02109047 n02109525 n02109961
n02110063 n02110185 n02110341 n02110627 n02110806 n02110958 n02111129 n02111277
n02111500 n02111889 n02112018 n02112137 n02112350 n02112706 n02113023 n02113186
n02113624 n02113712 n02113799 n02113978

n01503061 n01530575 n01531178 n01532829 n01534433 n01537544 n01558993 n01560419 n01580077
n01582220 n01592084 n01601694 n01608432 n01817953 n01818515 n01819313 n01820546
n01824575 n01828970 n01829413 n01833805 n01843065 n01843383 n02002556 n02002724
n02006656 n02007558 n02009229 n02009912 n02011460 n02012849 n02013706 n02017213
n02018207 n02018795 n02025239 n02027492 n02028035 n02033041 n02037110 n02051845
n02058221

n02159955 n02165105 n02165456 n02167151 n02168699 n02169497 n02172182 n02174001 n02177972
n02190166 n02206856 n02219486 n02226429 n02229544 n02231487 n02233338 n02236044
n02256656 n02259212 n02264363

n02469914 n02481823 n02483362 n02483708 n02484975 n02486261 n02486410 n02487347 n02488291
n02488702 n02489166 n02490219 n02492035 n02492660 n02493509 n02493793 n02494079
n02497673 n02500267

n01726692 n01728572 n01728920 n01729322 n01729977 n01734418 n01735189 n01737021 n01739381
n01740131 n01742172 n01744401 n01748264 n01749939 n01751748 n01753488 n01755581
n01756291

n02512053 n01440764 n01443537 n01484850 n01491361 n01494475 n01496331 n01498041 n02514041
n02526121 n02536864 n02606052 n02607072 n02640242 n02641379 n02643566 n02655020

n01674464 n01675722 n01677366 n01682714 n01685808 n01687978 n01688243 n01689811 n01692333
n01693334 n01694178 n01695060

n02401031 n02403003 n02408429 n02410509 n02412080 n02415577 n02417914 n02422106 n02422699
n02423022

n01769347 n01770081 n01773157 n01773549 n01773797 n01774384 n01774750 n01775062 n01776313

n02083346 n02114367 n02114548 n02114712 n02114855 n02115641 n02115913 n02116738 n02117135

n02441326 n02441942 n02442845 n02443114 n02443484 n02444819 n02445715 n02447366

n12992868 n12985857 n12998815 n13037406 n13040303 n13044778 n13052670 n13054560

n02153203 n01795545 n01796340 n01797886 n01798484 n01806567 n01807496

n02120997 n02125311 n02127052 n02128385 n02128757 n02128925 n02130308

n02274259 n02276258 n02277742 n02279972 n02280649 n02281406 n02281787

n04531098 n02795169 n02808440 n03950228 n04049303 n04398044 n04493381

n01629276 n01629819 n01630670 n01631663 n01632458 n01632777

n01662784 n01664065 n01665541 n01667114 n01667778 n01669191

n01905661 n01924916 n01950731 n01955084 n01990800 n02321529

n02121808 n02123045 n02123159 n02123394 n02123597 n02124075

n02329401 n02342885 n02346627 n02361337 n02363005 n02364673

n04341686 n03781244 n03788195 n03837869 n03877845 n03956157
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Table 11. Details of superclasses in ImageNet-1K (continued)

Superclass Classes of ImageNet Superclass Classes of ImageNet

n01976957 n01978287 n01978455 n01980166 n01981276 n02134971 n02137549 n02138441

n02118333 n02119022 n02119789 n02120079 n02120505 n02268148 n02268443 n02268853

n02131653 n02132136 n02133161 n02134084 n02134418 n03906997 n02783161 n03388183

n04530566 n02981792 n03947888 n04147183 n04612504 n01604330 n01614925 n01616318

n00021265 n07579787 n07583066 n07584110 n07590611 n01696633 n01697457 n01698640

n01639765 n01641577 n01644373 n01644900 n01940736 n01943899 n01968897

n01844917 n01855032 n01855672 n01860187 n01942177 n01944390 n01945685

n01861778 n01871265 n02504013 n02504458 n02062744 n02066245 n02071294

n00002684 n01914609 n01917289 n09256479 n02090827 n02091032 n02091134

n01976146 n01983481 n01984695 n01985128 n02134971 n02137549 n02138441

n02323902 n02325366 n02326432 n02328150 n02268148 n02268443 n02268853

n02395003 n02395406 n02396427 n02397096 n03906997 n02783161 n03388183

n03472232 n02777292 n03535780 n03888605 n03001627 n02791124 n03376595

n03800933 n02787622 n02804610 n03884397 n00001930 n02799071 n09835506

n03791235 n02814533 n03100240 n03930630 n04235291 n02860847 n03218198

n03497657 n02869837 n03124170 n04259630 n04014297 n02895154 n03146219

n03405725 n03018349 n03337140 n04550184 n02883344 n03014705 n03127925

n04576211 n03272562 n03393912 n03895866 n03540267 n03026506 n04254777

n04230808 n03534580 n03770439 n04136333 n03380867 n03047690 n03680355

n02898711 n04311004 n04366367 n04532670 n03682487 n03075370 n03874599

n07707451 n07714571 n07716358 n07718747 n02766320 n03125729 n03131574

n01604330 n01614925 n01616318 n03928116 n03452741 n04515003

n01696633 n01697457 n01698640 n04464852 n03478589 n04389033

n01940736 n01943899 n01968897 n03985232 n03642806 n03832673

n01942177 n01944390 n01945685 n04524313 n03673027 n04347754

n02062744 n02066245 n02071294 n03051540 n03710637 n03710721

n02090827 n02091032 n02091134 n04565375 n03773504 n04008634

n02880940 n03775546 n04263257 n03294048 n03924679 n04004767

n03327234 n03930313 n04604644 n02942699 n03976467 n04069434

n03603722 n04560804 n04579145 n07679356 n07684084 n07695742

n07717070 n07717410 n07717556 n00003553 n12057211 n12620546

n13134947 n12144580 n13133613
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Figure 8. Images of n02510455 generated by KIND. Figure 9. Images of n02509815 generated by KIND.
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Figure 10. Images of n01882714 generated by KIND. Figure 11. Images of n02120997 generated by KIND.
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Figure 12. Images of n01503061 generated by KIND. Figure 13. Images of n09193705 generated by KIND.
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Figure 14. Images of n09472597 generated by KIND. Figure 15. Images of n09399592 generated by KIND.
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