

A WAVELET-BASED STEREO MATCHING FRAMEWORK FOR SOLVING FREQUENCY CONVERGENCE INCONSISTENCY

Anonymous authors

Paper under double-blind review

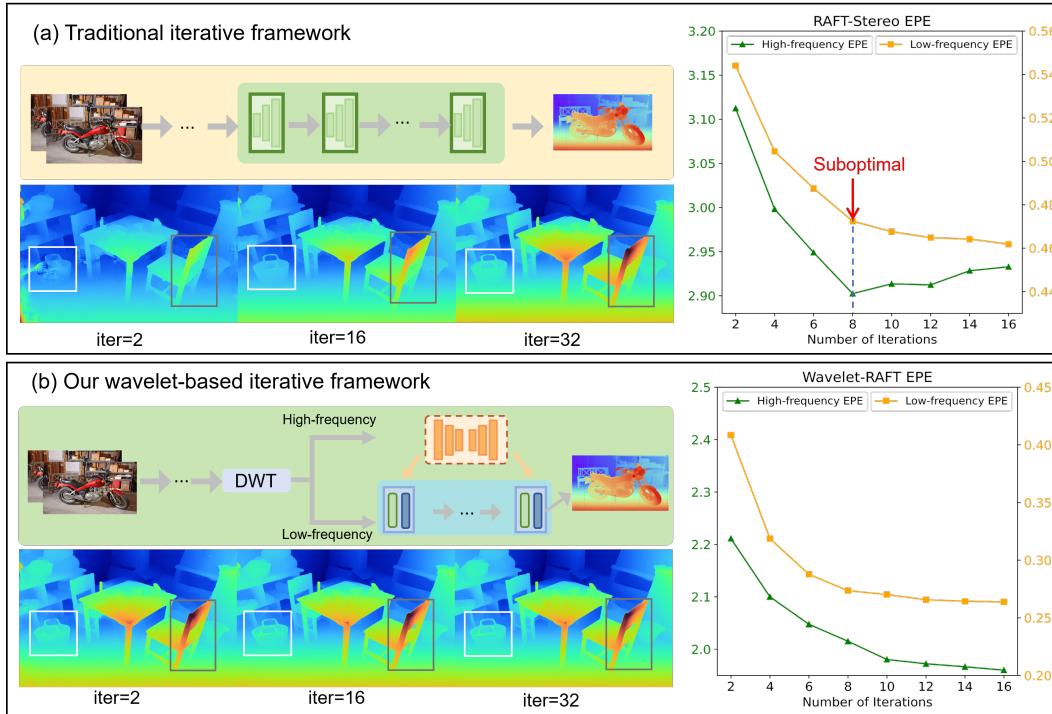


Figure 1: EPE metrics for high and low frequency regions on challenging scenes from the ETH3D dataset (Schops et al., 2017). (a) Traditional iterative-based methods (Lipson et al., 2021) process all frequency components indiscriminately, resulting in inconsistent convergence in different frequency regions. (b) Our frequency-specific modules achieve simultaneous convergence of different frequency components, significantly reducing the required number of iterations. Our method requires only 2 iterations to attain comparable qualitative results to those achieved by the traditional method with 32 iterations.

ABSTRACT

Through an in-depth analysis the underlying cause of the limited performance in iterative stereo matching methods: **frequency convergence inconsistency**, we propose a novel plug-and-play module named Wavelet-Stereo for this inherent flaw. Specifically, we first summarize the convergence characteristics of distinct frequency components and designed a specialized dual-branch architecture. The high-frequency branch rapidly captures detailed context by a unet, while the low-frequency branch progressively refines the textureless regions throughout the iteration. These two branches interact via a carefully designed high-frequency preservation update operator and predict the disparity, achieving synchronous optimization of both high and low frequency regions. Extensive experiments demonstrate that our Wavelet-Stereo outperforms the state-of-the-art methods and

054 ranks 1st on SceneFlow, ETH3D, KITTI 2015 and KITTI 2012 online leaderboards
 055 for almost all metrics. Our work not only uncovers the phenomenon of frequency
 056 convergence inconsistency for the first time, but also provides an effective solution
 057 and paves the way for new research directions in stereo matching.
 058
 059
 060
 061

1 INTRODUCTION

062 Stereo matching aims to estimate dense disparity maps by matching corresponding pixels between
 063 rectified stereo images. This technique serves as the cornerstone for autonomous driving (Yang et al.,
 064 2019), augmented reality (Zenati & Zerhouni, 2007), and robotic manipulation (Hsieh & Lin, 2020).
 065 Despite decades of research, achieving high-precision and high-efficiency stereo matching remains
 066 challenging.
 067

068 The advent of deep learning has revolutionized the field enabling end-to-end disparity prediction
 069 through convolution network (Cheng et al., 2024b; Duggal et al., 2019; Guo et al., 2019; Liang
 070 et al., 2019; Nie et al., 2019; Wu et al., 2019; Wei et al., 2025). Aggregation-based methods (Chang
 071 & Chen, 2018; Kendall et al., 2017; Shen et al., 2021; Xu & Zhang, 2020) improve accuracy by
 072 building 4D correlation volumes and applying 3D convolutions for regularization. To avoid expensive
 073 3D convolution, RAFT-stereo (Lipson et al., 2021) updates the disparity map and hidden states by
 074 iteratively indexing from the all-pairs correlation volume and using the gate recursive unit operator.
 075 However, the iterative optimization methods (Lipson et al., 2021; Xu et al., 2023) exhibits the
 076 following shortcomings: (1) gradual loss of fine-grained information over iteration (Zhao et al.,
 077 2023), and (2) struggling to simultaneously capture high-frequency and low-frequency information
 078 due to the fixed receptive field (Wang et al., 2024). DLNR (Zhao et al., 2023) designs a decouple
 079 module to al leviate the loss of detailed information across the iteration. Selective-Stereo (Wang
 080 et al., 2024) employs convolutional kernels with smaller receptive fields to extract high-frequency
 081 features, while utilizing larger receptive field kernels for low-frequency features. However, neither of
 082 them addresses the essence of these two shortcomings.
 083

084 Through analysis of RAFT-Stereo’s (Lipson et al., 2021) convergence behavior across high-frequency
 085 and low-frequency regions, we identify a phenomenon termed **frequency convergence inconsistency**
 086 (Figure. 1(a)), i.e., different frequency regions exhibit divergent convergence behaviors during the
 087 iteration. We attribute this phenomenon to the expansion of receptive field during the iteration. In
 088 early iteration, the model exhibits local receptive fields, allowing it to capture fine-grained details
 089 and converge rapidly in high-frequency regions. As iterations progress, the receptive field expands
 090 to incorporate broader global context, facilitating convergence in low-frequency regions. However,
 091 this enlarged receptive field simultaneously leads to the blurring of fine details, resulting in the
 092 degradation in high-frequency regions.

093 In this paper, we propose a plug-and-play module named Wavelet-Stereo for solving frequency
 094 convergence inconsistency. Specifically, we first explicitly decompose the left image into high
 095 and low frequency components with the Haar wavelet (Phung et al., 2023). Then, we designed a
 096 dual-branch architecture to process high-frequency and low-frequency components separately. Since
 097 the high-frequency components exhibit local characteristics, we employ a simple unet network to
 098 fully extract the global high-frequency context. For the low-frequency components, we maintain
 099 consistency with previous methods and initialize the hidden states with them. Finally, we propose
 100 a novel high-frequency preservation update operator (HPU) to prevent the degradation of high-
 101 frequency context during the iteration and update the hidden state. The proposed HPU contains
 102 two modules: (1) An iterative-based frequency adapter (IFA) can adaptively finetune the global
 103 high-frequency context to the iteration-specific high-frequency context based on iteration state. (2)
 104 A high-frequency preservation LSTM (HP-LSTM) updates the disparity without propagating the
 105 iteration-specific high-frequency context to next iteration, thus preserving detail. As illustrated in
 106 Figure. 2, our frequency-specific method excels in challenging scenarios containing fine distant
 107 structures. Extensive experiments demonstrate that our Wavelet-Stereo outperforms the state-of-the-
 108 art methods and ranks 1st on **KITTI 2015**, **KITTI 2012**, **SceneFlow** and **ETH3D** leaderboards
 109 for almost all metrics.

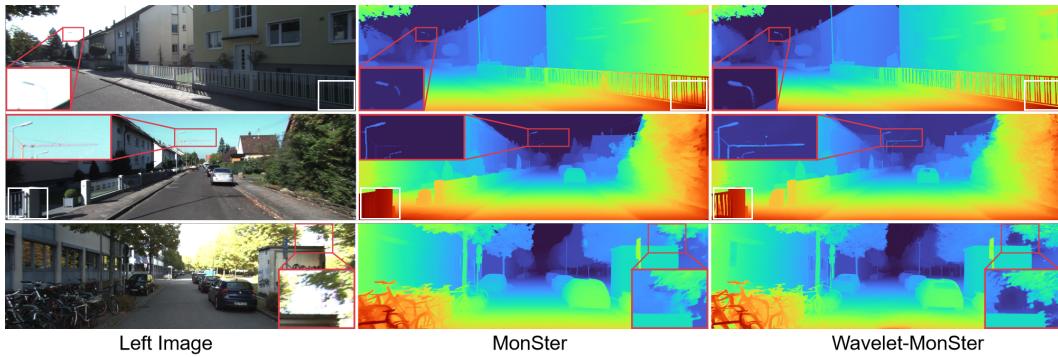


Figure 2: **Visual comparison on KITTI.** All models are trained on Scene Flow and tested directly on KITTI (Geiger et al., 2012; Menze & Geiger, 2015). Our Wavelet-MonSter outperforms MonSter ((Cheng et al., 2025)) in challenging areas with high-frequency details and fine structures.

2 RELATED WORK

Aggregation-based methods in Stereo Matching. Aggregation-based methods ((Chang & Chen, 2018; Cheng et al., 2024a; 2022; Guo et al., 2019; Wei et al., 2025)) have shown significantly improvement in accuracy and robustness. GCNet ((Kendall et al., 2017)) a 4D correlation volume by concatenating the left and right feature maps within a predefined disparity search range, followed by cost aggregation using 3D convolutions to generate the final matching results. To avoid the use of 3D convolution, AAANet ((Xu & Zhang, 2020)) introduces intra-scale and cross-scale cost aggregation to capture the edge and non-edge area. ACVNet ((Xu et al., 2022b)) propose the attention concatenation volume to eliminate noise in the cost volume and improve the performance in the ambiguous region.

Iterative-based methods in Stereo Matching. Iterative-based methods ((Chen et al., 2024; Feng et al., 2024; Hu et al., 2021)) have demonstrated significant advantages over aggregation-based methods. RAFT-Stereo ((Lipson et al., 2021)) introduces an all-pairs correlation volume pyramid and utilizes GRU-based update operators to perform iterative disparity updates. On this basis, IGEV-Stereov ((Xu et al., 2023)) addresses the issue that the initial correlation volume is excessively coarse by a lightweight cost aggregation network before iteration. CREStereo (Li et al., 2022) proposes a adaptive group correlation layer, computes correlations within local search windows to reduce memory and computational overhead. These methods suffer from slow convergence due to their inability to effectively coordinate the refinement of high and low frequency region.

Frequency-based methods in Stereo Matching. Although frequency domain information (Chen et al., 2019; Fritzsche et al., 2019) has been widely applied in computer vision tasks, its utilization in the field of stereo matching remains relatively limited. (Yang et al., 2020) learns wavelet coefficients for disparity prediction. Selective-Stereo ((Wang et al., 2024)) utilizes convolutions with distinct receptive fields to capture high frequency and low frequency context respectively. DLNR ((Zhao et al., 2023)) proposed a decouple module that separates high-frequency context from hidden states, alleviate the problem of data coupling. However, these method still transfer high-frequency context across the iterations, leading to degradation of high-frequency regions during later stages of the iteration.

3 METHODOLOGY

3.1 OVERALL PIPELINE

Since our method can be integrated into any iterative-based methods, we use Wavelet-RAFT as a representative example to demonstrate the key innovations of our framework. We employ the same feature extraction network E_f and cost-volume construction as RAFT-Stereo (Lipson et al., 2021) used. As shown in Figure. 3, our framework consists of three steps: (1) **Frequency Decomposition**: we explicitly separate high-frequency and low-frequency components by DWT in Section 3.2. (2) **Frequency Context Extraction**: we extract multi-scale global high-frequency context and low-frequency context separately in Section 3.3. (3) **Iterative Update**: we propose a novel update operator

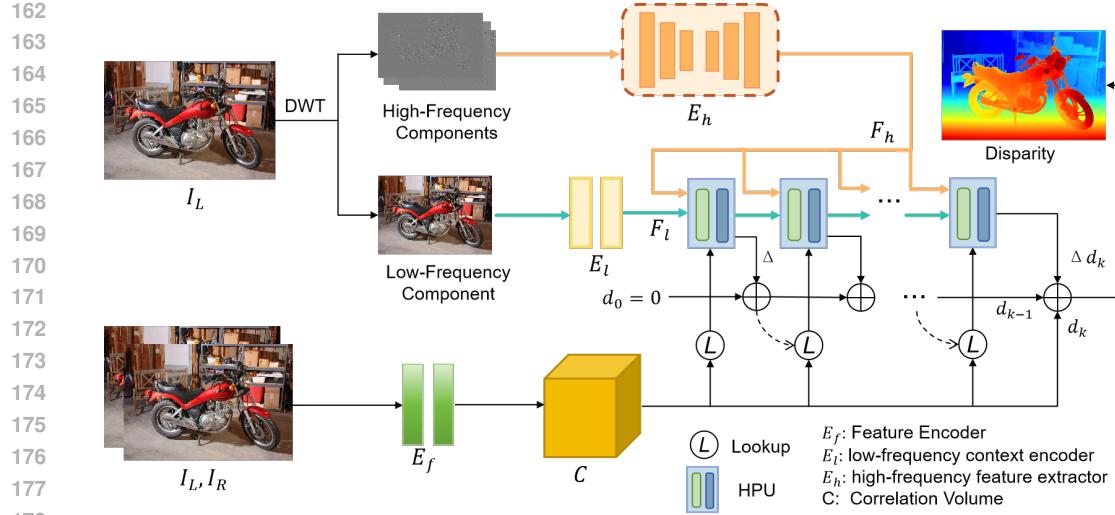


Figure 3: **Overview of Wavelet-RAFT.** Wavelet-RAFT employs a dual-branch architecture comprising: (1) high-frequency branch for capturing global high-frequency context F_h , (2) a updating branch that progressively refines hidden states. The global high-frequency context F_h serve as guidance injected into the High-frequency Preservation Update (HPU) operator to update the hidden states during each iteration.

that leverages high-frequency context and low-frequency context to collaborate in each iteration in Section 3.4.

3.2 FREQUENCY DECOMPOSITION

We use the Haar wavelet (Phung et al., 2023) to decompose the left image I_L into four sub-images I_{sub} with low and high frequency components, i.e., $I_{sub} = DWT(I_L)$, where $sub \in \{LL, LH, HL, HH\}$, I_{LL} represents the low-frequency component, and I_{LH}, I_{HL}, I_{HH} correspond to the high-frequency components. To obtain multi-scale frequency components, we repeatedly apply DWT to the low-frequency sub-image (I_{LL}), i.e., $I_{sub}^i = DWT(I_{LL}^{i-1})$, where $i \in \{1, \dots, n\}$, n is the number of DWT, $I_{sub}^i \in \mathbb{R}^{\frac{H}{2^i} \times \frac{W}{2^i} \times 3}$, and $I_{LL}^0 = I_L$.

3.3 MULTI-SCALE FREQUENCY CONTEXT EXTRACTION

We explicitly obtain the high-frequency and low-frequency components of I_L by DWT, which allows us to process them separately according to their respective frequency characteristics.

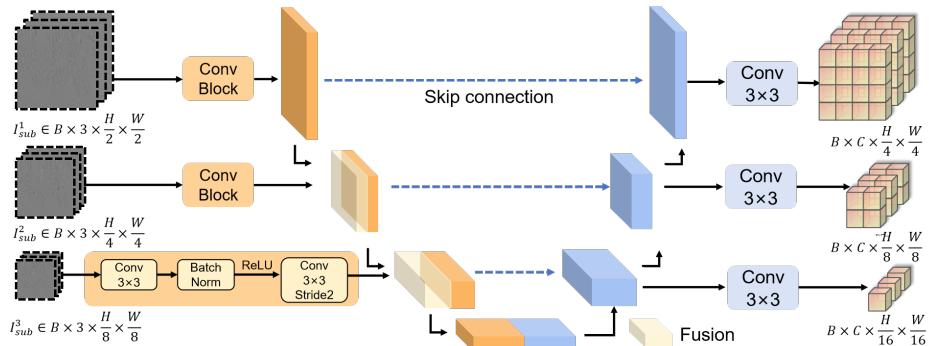


Figure 4: The framework of proposed high-frequency context extractor consisting of a U-shaped network and a series of convolutions blocks, effectively capturing global high-frequency context through multi-scale context aggregation and skip connection.

216 **Global High-frequency Context Extraction.** To capture global high-frequency details in textures,
 217 edges, and thin objects (see the second row of Figure. 2), we design a U-shaped network as the global
 218 high-frequency context extractor E_h , as shown in Figure. 4. It takes multi-scale high-frequency
 219 components I_{sub}^i ($sub \in \{LH, HL, HH\}$) and outputs multi-scale global high-frequency context
 220 F_h^i at 1/4, 1/8 and 1/16 resolution, i.e., $F_h^i = E_h(I_{sub}^i)$. Due to the localized characteristics of
 221 high-frequency components, a lightweight architecture E_h is sufficient to adequately aggregate
 222 detailed information.

223 **Low-frequency Context Extraction.** To capture low-frequency context in smooth regions (see the
 224 third row of Figure. 2), we utilize the context encoder in RAFT-Stereo as the low-frequency context
 225 extractor E_l . The network consists of a series of residual blocks and downsampling layers, producing
 226 multi-scale low-frequency context F_l^i at 1/4, 1/8 and 1/16 resolution from low-frequency component
 227 I_{LL}^1 , i.e., $F_l^i = E_l(I_{LL}^1)$.

229 3.4 HIGH-FREQUENCY PRESERVATION UPDATE OPERATOR

231 In order to fully fusion the extracted high-frequency and low-frequency context, we propose a novel
 232 High-frequency Preservation Update operator (HPU), which consists of Iterative Frequency Adapter
 233 (IFA) and High-frequency Preservation LSTM (HP-LSTM), as illustrated in Figure. 5.

$$234 F_l^i = HPU(F_h^{global}, F_l^{i-1}), i \in [1, 2, 3, \dots, k] \quad (1)$$

236 where k represents the number of HPU iterations.

237 **Iterative-based Frequency Adapter:** Although the global high-frequency context contains rich
 238 detailed information, directly incorporating it into the update operator is suboptimal, as the network
 239 requires different information at different iteration stages. To address this, the IFA adaptively fine-
 240 tunes the global high-frequency context to iteration-specific high-frequency context based on the
 241 current iteration state, i.e., $F'_h = IFA(F_h^{global})$. Specifically, we design two attention modules to
 242 refine frequency-aware features adaptively at each stage (Woo et al., 2018). (1) The Low-frequency
 243 Selection Attention (LSA) module generates structural attention maps A_l that incorporate global
 244 structure cues into the high-frequency context F'_h . (2) The High-frequency Selection Attention (HSA)
 245 module produces texture-aware attention maps A_h to enhance the hidden states F_l with fine-grained
 246 details.

$$247 F_h'^{i,j,k} = A_l^{j-1} \odot F_h'^{i,j-1,k}, \quad F_l^{i,j,k} = F_l^{i,j-1,k}, \quad A_l^{j-1} = LSA(F_l^{i,j-1,k}), j \in [1, 3, 5, \dots] \quad (2)$$

$$248 F_l'^{i,j,k} = A_h^{j-1} \odot F_l^{i,j-1,k}, \quad F_h'^{i,j,k} = F_h^{i,j-1,k}, \quad A_h^{j-1} = HSA(F_h^{i,j-1,k}), j \in [2, 4, 6, \dots] \quad (3)$$

250 where \odot represents elementwise multiplication, i denotes the resolution dimension (1/4, 1/8, and
 251 1/16), j is defined as the iteration number in IFA, while k is defined the number of HPU iterations.

252 **High-frequency Preservation LSTM:** Obtained the iteration-specific high-frequency context from
 253 the IFA, we propose the HP-LSTM to incorporate the finetuned high-frequency context F'_h , along
 254 with other conditioning such as the correlation volume C and previous disparity d_{k-1} , into the
 255 update of the current hidden state F_l^k . It is worthy that the finetuned high-frequency context $F_h'^{k-1}$
 256 will not be propagated to the next iteration k .

$$257 F_l^k, \Delta d_k = LSTM_{HP}(F_l^{k-1} | F_h'^{k-1}, L(C, d_{k-1})) \quad (4)$$

259 where L refers lookup operator, the residual disparity Δd_k is decoded from the hidden state F_l^k by a
 260 decoder head D . The disparity d is updated by

$$262 d_k = d_{k-1} + \Delta d_k. \quad (5)$$

263 3.5 LOSS FUNCTION

265 We use progressively weighted L_1 loss across all predicted disparities $\{d_k\}$. Given the ground truth
 266 of disparity d_{gt} , the total loss is defined as ($\gamma = 0.9$):

$$268 \mathcal{L} = \sum_{k=1}^{n_k} \gamma^{n_k - i} \|d_k - d_{gt}\|_1. \quad (6)$$

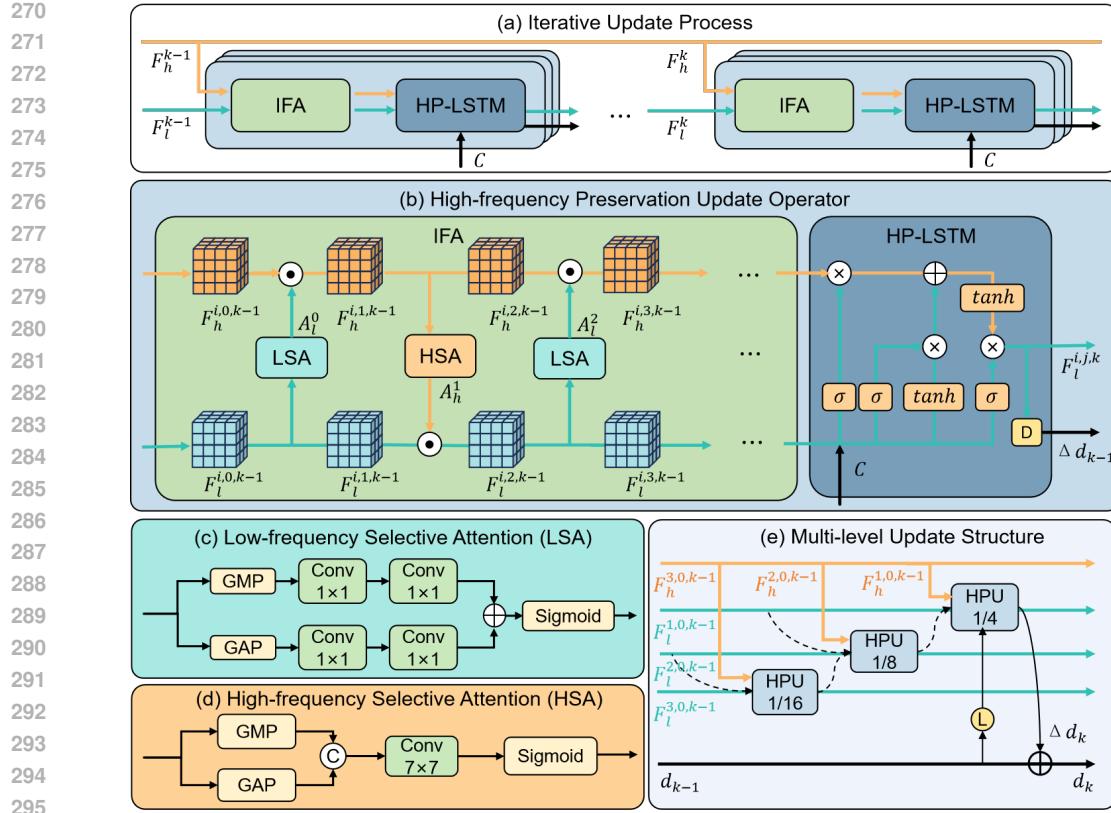


Figure 5: (a) The iterative update process of hidden states F_l , guided by global high-frequency ($F_h^{k-1} = F_h^k$). (b) Proposed high-frequency preservation update operator that finetunes the global high-frequency by iterative-based frequency adapter and update hidden states by high-frequency preservation LSTM. (c) The LSA module adaptively integrates spatial structure information to enhance high-frequency context (d) The HSA module injects details to enrich low-frequency context. (e) Our multi-level update structure to update hidden states from 1/16 to 1/4.

Algorithm 1 RAFT-Stereo Pipeline

Require: a pair of rectified images I_L, I_R
1: $f_L, f_R = E_f(I_L, I_R)$
2: $C = \text{correlation}(f_L, f_R), d_0 = 0$
3:
4: $F_l^0 = E_l(I_L)$
5:
6: **for** $k = 1, \dots, n_k$ **do**
7: $F_l^k, \Delta d_k = GRU(F_l^{k-1}, L(C, d_k))$
8: $d_k = d_{k-1} + \Delta d_k$
9: **end for**
10: **return** disparity d

Algorithm 2 Our Wavelet-RAFT Pipeline

Require: a pair of rectified images I_L, I_R
1: $f_L, f_R = E_f(I_L, I_R)$
2: $C = \text{correlation}(f_L, f_R), d_0 = 0$
3: $I_{LL}^i, I_{HL}^i, I_{LH}^i, I_{HH}^i = DWT(I_L), i = 1, 2, 3$
4: $F_l^0 = E_l(I_{LL}^1)$
5: $F_h^{global} = E_h(concat(I_{HL}^i, I_{LH}^i, I_{HH}^i))$
6: **for** $k = 1, \dots, n_k$ **do**
7: $F_l^k, \Delta d_k = HPU(F_l^{k-1}, F_h^{global}, L(C, d_k))$
8: $d_k = d_{k-1} + \Delta d_k$
9: **end for**
10: **return** disparity d

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Wavelet-Stereo is implemented in Pytorch and trained using two NVIDIA A6000 GPUs. For all experiments, we use the AdamW (Loshchilov & Hutter, 2017) optimizer and clip gradients to the range [-1, 1]. We use the one-cycle learning rate schedule with a minimum learning rate of 2e-4. We pretrain Wavelet-Stereo on the Scene Flow dataset (Mayer et al., 2016) with a batch size of 8 and 200k steps. The ablation experiments are trained with a batch size of 6 for 100k steps. We randomly

324
325
326

Method	RAFT-Stereo	ACVNet	IGEV-Stereo	Wavelet-RAFT (Ours)	MonSter	Wavelet-MonSter (Ours)
EPE (px)	0.53	0.48	0.47	0.46	0.37	0.36

327
328Table 1: Quantitative evaluation on Scene Flow test set. **Bold**: Best

329

	ETH3D			KITTI 2015				KITTI 2012			
	Bad1.0	Bad1.0	RMSE	D1-fg	D1-all	D1-fg	D1-all	Out-2	Out-2	Out-3	Out-3
	Noc	All	Noc	Noc	Noc	All	All	Noc	All	Noc	All
GwcNet (Guo et al., 2019)	6.42	6.95	0.69	3.49	1.92	3.93	2.11	2.16	2.71	1.32	1.70
GANet (Zhang et al., 2019)	6.22	6.86	0.75	3.37	1.73	3.82	1.93	1.89	2.50	1.19	1.60
LEAStereo (Cheng et al., 2020)	-	-	-	2.65	1.51	2.91	1.65	1.90	2.39	1.13	1.45
ACVNet (Xu et al., 2022a)	2.58	2.86	0.45	2.84	1.52	3.07	1.65	1.83	2.35	1.13	1.47
CREStereo (Li et al., 2022)	0.98	1.09	0.28	2.60	1.54	2.86	1.69	1.72	2.18	1.14	1.46
IGEV-Stereo (Xu et al., 2023)	1.12	1.51	0.34	2.62	1.49	2.67	1.59	1.71	2.17	1.12	1.44
CroCo-Stereo (Weinzaepfel et al., 2023)	0.99	1.14	0.30	2.56	1.51	2.65	1.59	-	-	-	-
Selective-IGEV (Wang et al., 2024)	1.23	1.56	0.29	2.55	1.44	2.61	1.55	1.59	2.05	1.07	1.38
LoS (Li et al., 2024)	0.91	1.03	0.31	2.66	1.52	2.81	1.65	1.69	2.12	1.10	1.38
NMRF-Stereo (Guan et al., 2024)	-	-	-	2.90	1.46	3.07	1.57	1.59	2.07	1.01	1.35
DEFOM-Stereo (Jiang et al., 2025)	0.70	0.78	0.22	2.24	1.33	2.23	1.41	1.43	1.79	0.94	1.18
MonSter (Cheng et al., 2025)	0.46	0.72	0.20	2.76	1.33	2.81	1.41	1.36	1.75	0.84	1.09
Wavelet-MonSter(ours)	0.35	0.63	0.18	2.60	1.31	2.60	1.38	1.32	1.71	0.83	1.07

340

Table 2: Results on three popular benchmarks. All results are derived from official leaderboard publications or corresponding papers. All metrics are presented in percentages, except for RMSE, which is reported in pixels. For testing masks, “All” denotes testing with all pixels while “Noc” denotes testing with a non-occlusion mask. The **best** and **second best** are marked with colors.341
342
343
344
345
346
347
348

crop images to 320×736 and use the same data augmentation as (Lipson et al., 2021) for training. We use 22 update iterations during training and 32 updates for evaluation. The pipeline comparison of traditional iterative-based framework with ours is shown in Algorithm 1 and Algorithm 2.

4.2 BENCHMARK DATASETS AND PERFORMANCE

349
350
351
352
353

We evaluate Wavelet-Stereo on four widely used benchmarks and submit the results to online leaderboards for public comparison: KITTI 2012 (Geiger et al., 2012), KITTI 2015 (Menze & Geiger, 2015), ETH3D (Schops et al., 2017), and Scene Flow (Mayer et al., 2016).

354
355
356
357
358
359
360
361
362

Scene Flow. To verify the universality of our proposed framework, we take RAFT-Stereo and MonSter as baseline and integrate our framework. As shown in Table. 1, both of our models surpass its baseline and our Wavelet-MonSter establishing a new state-of-the-art EPE benchmark on Scene Flow. To validate the ability to handle different frequency regions, we split Scene Flow test set into high-frequency and low-frequency region. As shown in Table. 4, quantitative comparisons reveal that our Wavelet-Raft outperforms Selective-RAFT (Wang et al., 2024) on EPE metric and surpasses the baseline by 22%. Compared to Selective-IGEV and DLNR (Zhao et al., 2023) which is designed for frequency issues, our Wavelet-MonSter outperforms them by 25.89% and 10.3% in high-frequency regions, 30.2% and 13.7% in low-frequency regions, respectively.

363
364
365
366
367
368
369

ETH3D. Following MonSter (Cheng et al., 2025), we firstly finetune the Scene Flow pretrained model on the mixed Tartan Air (Wang et al., 2020), CREStereo Dataset (Li et al., 2022), Scene Flow (Mayer et al., 2016), Sintel Stereo (Butler et al., 2012), InStereo2k (Bao et al., 2020) and ETH3D (Schops et al., 2017) datasets for 300k steps. Then we finetune it on the mixed CREStereo Dataset, InStereo2k and ETH3D datasets with for another 90k steps. As shown in Table. 2, our Wavelet-MonSter outperforms MonSter by 24.9% on Bad 1.0 metric, and rank 1st among all methods under identical configurations.

370
371
372
373
374
375
376
377

KITTI. Following the training of MonSter (Cheng et al., 2025), we finetune our pretrained model on the mixed dataset of KITTI 2012 (Geiger et al., 2012) and KITTI 2015 (Menze & Geiger, 2015) with a batch size of 8 for 50k steps. For best performance, we evaluate our Wavelet-MonSter on the test set of KITTI 2012 and KITTI 2015, with results submitted to the official KITTI online leaderboard. As shown in Table. 2, our Wavelet-MonSter achieves the best performance among all published approaches to date and ranks 1st on both the KITTI 2015 and KITTI 2012 leaderboards for almost all metrics, outperforming over 280 competing methods. Figure. 6 shows qualitative results on KITTI 2012 and KITTI 2015 test sets, where our Wavelet-MonSter significantly outperforms MonSter in both detailed high-frequency regions (see the first and second row of figure) and **reflective regions with complex textures** (see the third row of figure) in the difficult scenarios.

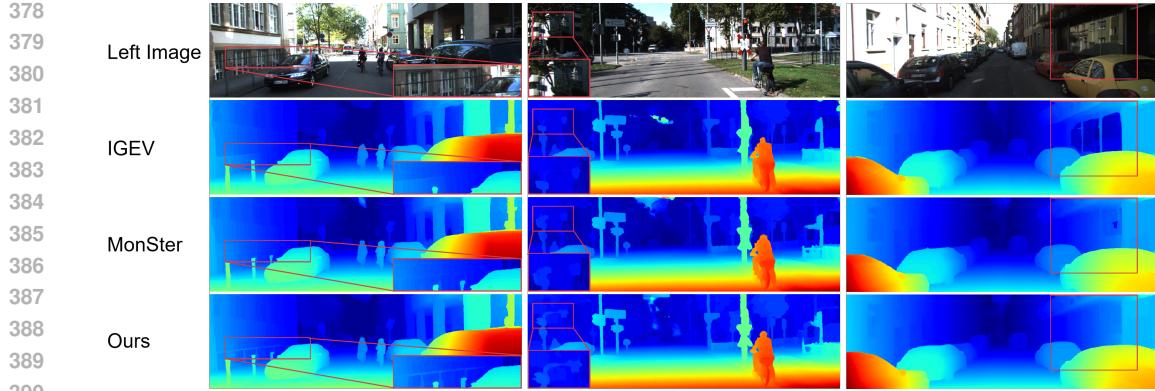


Figure 6: Qualitative results on KITTI test set. Our Wavelet-MonSter outperforms MonSter in challenging areas with high-frequency details and weak texture.

4.3 ABLATION STUDY

We conducted comprehensive ablation studies to validate the contribution of each component in our framework. Due to the simplified training settings, the quantitative results of ablation experiments differ from the comparison results described above. We present the main results of ablation experiments, and more results can be found in Appendix A.

Effectiveness of proposed modules. The results in the Table. 3 demonstrate that it is effective and necessary to propose frequency-specific module for features with distinct convergence characteristics. To assess the importance of the high-frequency context extractor E_h , we replace E_h with a simple two-layer convolutional network. Quantitative results (EPE increases from 0.52 to 0.56) demonstrate that a powerful context extraction network is needed to adequately fuse high-frequency information at multiple scales.

To validate the effectiveness of HPU and its components, we conducted ablation studies by removing or replacing key elements of the module.

First, we remove the IFA component from the HPU, which means directly incorporating the global high-frequency context F_h^{global} into the updating process without finetuning. This modification lead to a significant degradation in performance (EPE increases from 0.52 to 0.56), underscoring the necessity of adaptively refining high-frequency context before it is used to update hidden states.

Second, we replace the HP-LSTM with a standard LSTM, which means the fine-tuned high-frequency context F_h' is transferred into the next iteration without preservation. The degradation in performance (EPE increases from 0.52 to 0.53) precisely validated our motivation to preserve high-frequency context during the iterations.

Model	E_h	IFA	HP-LSTM	GRU	EPE (px)	D1 (%)
Baseline (RAFT-Stereo)				✓	0.62	8.40
w/o HP-LSTM	✓	✓			0.53	6.34
w/o IFA	✓		✓		0.56	6.64
w/o HPU	✓			✓	0.58	7.29
w/o E_h		✓	✓		0.56	6.72
Full model (Wavelet-RAFT)	✓	✓	✓		0.52	6.21

Table 3: Ablation study of the effectiveness of proposed modules on Scene Flow test set. HPU denotes High-frequency Preservation Update operator, E_h denotes global high-frequency context extractor, IFA denotes Iterative-based Frequency Adapter, HP-LSTM refers High-frequency Preservation LSTM and GPU refers updating units in RAFT-Stereo

Method	HFR	LFR
RAFT-Stereo	34.00	0.72
Selective-RAFT	27.89	0.57
Wavelet-RAFT	26.48	0.56
DLNR	31.60	0.63
Selective-IGEV	26.10	0.51
MonSter	26.08	0.47
Wavelet-MonSter	23.42	0.44

Table 4: Quantitative evaluation on Scene Flow test set in different regions (EPE). HFR refers to the high-frequency region, while LFR refers to the low-frequency region.

Additionally, We substituted the HPU with a standard GRU module in RAFT-Stereo. This modification results in performance degradation across all metrics (EPE increases from 0.52 to 0.58 and D1 increases from 6.21 to 7.29). Overall, these experiments substantiate the design motivations of the HPU and highlight the critical roles played by both the IFA and the HP-LSTM in coordinating the convergence of high and low frequency regions.

Number of Iterations. As evidenced by Table. 5, our framework significantly accelerates convergence. This improvement stems from mitigating the inherent conflict between high and low frequency components during the iteration, which enables superior performance with markedly fewer iterations than traditional methods. Specifically, our Wavelet-RAFT requires only 8 iterations to surpass the performance of RAFT-Stereo while reducing runtime by 39.5%.

5 ZERO-SHOT GENERALIZATION

Robust zero-shot generalization ability is critical for practical stereo matching model. We validate the effectiveness of our Wavelet-Monster by training it solely on the Scene Flow dataset and then testing it on the real-world datasets KITTI 2012, KITTI2015, Middlebury 2014 and ETH3D training sets. As evidenced by the quantitative results in Table. 6, our approach outperforms all comparable methods. Quantitative results on KITTI 2012 and KITTI 2015 training sets in Figure. 2 further substantiates these findings, showing enhanced performance in challenging areas such as textureless surfaces and detailed object boundaries.

Method	KITTI-12	KITTI-15	Middlebury	ETH3D
RAFT-Stereo (Lipson et al., 2021)	5.12	5.74	9.36	3.28
CREStereo (Li et al., 2022)	5.03	5.79	12.88	8.98
Selective-IGEV (Wang et al., 2024)	5.64	6.05	12.04	5.40
NMRF-Stereo (Guan et al., 2024)	4.23	5.10	7.54	3.82
IGEV-Stereo (Xu et al., 2023)	4.84	5.51	6.23	3.62
MonSter (Cheng et al., 2025)	3.62	3.97	5.17	2.03
Wavelet-MonSter	3.37	3.56	4.74	1.86

Table 6: **Zero-shot generalization benchmark.** All models are trained on Scene Flow. The 3-pixel error rate is used for KITTI, 2-pixel error rate for Middlebury 2014, and 1-pixel error rate for ETH3D.

6 CONCLUSION

Our analysis reveals that the performance degradation in high-frequency regions is a direct consequence of receptive field expansion over iterations. To address this, we introduce Wavelet-Stereo, a plug-and-play module that applies dedicated process to different frequency components. This method fully leverages the convergence properties of different frequency components, avoiding the inherent convergence conflicts in the iterative process of current iterative paradigm methods.

486 REFERENCES
487

488 Wei Bao, Wei Wang, Yuhua Xu, Yulan Guo, Siyu Hong, and Xiaohu Zhang. Instereo2k: a large real
489 dataset for stereo matching in indoor scenes. *Science China Information Sciences*, 63:1–11, 2020.

490 Daniel J Butler, Jonas Wulff, Garrett B Stanley, and Michael J Black. A naturalistic open source
491 movie for optical flow evaluation. In *Proceedings of the European Conference on Computer Vision*,
492 pp. 611–625. Springer, 2012.

493 Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo matching network. In *Proceedings of the*
494 *IEEE Conference on Computer Vision and Pattern Recognition*, pp. 5410–5418, 2018.

495 Yunpeng Chen, Haoqi Fan, Bing Xu, Zhicheng Yan, Yannis Kalantidis, Marcus Rohrbach, Shuicheng
496 Yan, and Jiashi Feng. Drop an octave: Reducing spatial redundancy in convolutional neural
497 networks with octave convolution. In *Proceedings of the IEEE/CVF International Conference on*
498 *Computer Vision*, pp. 3435–3444, 2019.

499 Ziyang Chen, Wei Long, He Yao, Yongjun Zhang, Bingshu Wang, Yongbin Qin, and Jia Wu. Mocha-
500 stereo: Motif channel attention network for stereo matching. In *Proceedings of the IEEE/CVF*
501 *Conference on Computer Vision and Pattern Recognition*, pp. 27768–27777, 2024.

502 Junda Cheng, Xin Yang, Yuechuan Pu, and Peng Guo. Region separable stereo matching. *IEEE*
503 *Transactions on Multimedia*, 25:4880–4893, 2022.

504 Junda Cheng, Gangwei Xu, Peng Guo, and Xin Yang. Coatrsnet: Fully exploiting convolution and
505 attention for stereo matching by region separation. *International Journal of Computer Vision*, 132
506 (1):56–73, 2024a.

507 Junda Cheng, Wei Yin, Kaixuan Wang, Xiaozhi Chen, Shijie Wang, and Xin Yang. Adaptive fusion
508 of single-view and multi-view depth for autonomous driving. In *Proceedings of the IEEE/CVF*
509 *Conference on Computer Vision and Pattern Recognition*, pp. 10138–10147, 2024b.

510 Junda Cheng, Longliang Liu, Gangwei Xu, Xianqi Wang, Zhaoxing Zhang, Yong Deng, Jinliang
511 Zang, Yurui Chen, Zhipeng Cai, and Xin Yang. Monster: Marry monodepth to stereo unleashes
512 power. *arXiv preprint arXiv:2501.08643*, 2025.

513 Xuelian Cheng, Yiran Zhong, Mehrtash Harandi, Yuchao Dai, Xiaojun Chang, Hongdong Li, Tom
514 Drummond, and Zongyuan Ge. Hierarchical neural architecture search for deep stereo matching.
515 *Advances in Neural Information Processing Systems*, 33:22158–22169, 2020.

516 Shivam Duggal, Shenlong Wang, Wei-Chiu Ma, Rui Hu, and Raquel Urtasun. Deeppruner: Learning
517 efficient stereo matching via differentiable patchmatch. In *Proceedings of the IEEE/CVF*
518 *International Conference on Computer Vision*, pp. 4384–4393, 2019.

519 Miaojie Feng, Junda Cheng, Hao Jia, Longliang Liu, Gangwei Xu, and Xin Yang. Mc-stereo: Multi-
520 peak lookup and cascade search range for stereo matching. In *2024 International Conference on*
521 *3D Vision (3DV)*, pp. 344–353. IEEE, 2024.

522 Manuel Fritzsche, Shuhang Gu, and Radu Timofte. Frequency separation for real-world super-
523 resolution. In *2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW)*,
524 pp. 3599–3608. IEEE, 2019.

525 Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti
526 vision benchmark suite. In *2012 IEEE Conference on Computer Vision and Pattern Recognition*,
527 pp. 3354–3361. IEEE, 2012.

528 Tongfan Guan, Chen Wang, and Yun-Hui Liu. Neural markov random field for stereo matching.
529 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
530 5459–5469, 2024.

531 Xiaoyang Guo, Kai Yang, Wukui Yang, Xiaogang Wang, and Hongsheng Li. Group-wise correlation
532 stereo network. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
533 *Recognition*, pp. 3273–3282, 2019.

540 Yi-Zeng Hsieh and Shih-Syun Lin. Robotic arm assistance system based on simple stereo matching
 541 and q-learning optimization. *IEEE Sensors Journal*, 20(18):10945–10954, 2020.
 542

543 Yaoyu Hu, Wenshan Wang, Huai Yu, Weikun Zhen, and Sebastian Scherer. Orstereo: Occlusion-aware
 544 recurrent stereo matching for 4k-resolution images. In *2021 IEEE/RSJ International Conference
 545 on Intelligent Robots and Systems (IROS)*, pp. 5671–5678. IEEE, 2021.

546 Hualie Jiang, Zhiqiang Lou, Laiyan Ding, Rui Xu, Minglang Tan, Wenjie Jiang, and Rui Huang.
 547 Defom-stereo: Depth foundation model based stereo matching. *arXiv preprint arXiv:2501.09466*,
 548 2025.

549 Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter Henry, Ryan Kennedy, Abraham
 550 Bachrach, and Adam Bry. End-to-end learning of geometry and context for deep stereo re-
 551 gression. In *Proceedings of the IEEE International Conference on Computer Vision*, pp. 66–75,
 552 2017.

553 Jiankun Li, Peisen Wang, Pengfei Xiong, Tao Cai, Ziwei Yan, Lei Yang, Jiangyu Liu, Haoqiang Fan,
 554 and Shuaicheng Liu. Practical stereo matching via cascaded recurrent network with adaptive corre-
 555 lation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 556 pp. 16263–16272, 2022.

557 Kunhong Li, Longguang Wang, Ye Zhang, Kaiwen Xue, Shunbo Zhou, and Yulan Guo. Los: Local
 558 structure-guided stereo matching. In *Proceedings of the IEEE/CVF Conference on Computer
 559 Vision and Pattern Recognition*, pp. 19746–19756, 2024.

560 Zhengfa Liang, Yulan Guo, Yiliu Feng, Wei Chen, Linbo Qiao, Li Zhou, Jianfeng Zhang, and
 561 Hengzhu Liu. Stereo matching using multi-level cost volume and multi-scale feature constancy.
 562 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 43(1):300–315, 2019.

563 Lahav Lipson, Zachary Teed, and Jia Deng. Raft-stereo: Multilevel recurrent field transforms for
 564 stereo matching. In *2021 International Conference on 3D Vision (3DV)*, pp. 218–227. IEEE, 2021.

565 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
 566 arXiv:1711.05101*, 2017.

567 Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy,
 568 and Thomas Brox. A large dataset to train convolutional networks for disparity, optical flow, and
 569 scene flow estimation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern
 570 Recognition*, pp. 4040–4048, 2016.

571 Moritz Menze and Andreas Geiger. Object scene flow for autonomous vehicles. In *Proceedings of
 572 the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 3061–3070, 2015.

573 Guang-Yu Nie, Ming-Ming Cheng, Yun Liu, Zhengfa Liang, Deng-Ping Fan, Yue Liu, and Yongtian
 574 Wang. Multi-level context ultra-aggregation for stereo matching. In *Proceedings of the IEEE/CVF
 575 Conference on Computer Vision and Pattern Recognition*, pp. 3283–3291, 2019.

576 Hao Phung, Quan Dao, and Anh Tran. Wavelet diffusion models are fast and scalable image generators.
 577 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 578 10199–10208, 2023.

579 Daniel Scharstein, Heiko Hirschmüller, York Kitajima, Greg Krathwohl, Nera Nešić, Xi Wang, and
 580 Porter Westling. High-resolution stereo datasets with subpixel-accurate ground truth. In *Pattern
 581 Recognition: 36th German Conference, GCPR 2014, Münster, Germany, September 2–5, 2014,
 582 Proceedings 36*, pp. 31–42. Springer, 2014.

583 Thomas Schops, Johannes L Schonberger, Silvano Galliani, Torsten Sattler, Konrad Schindler, Marc
 584 Pollefeys, and Andreas Geiger. A multi-view stereo benchmark with high-resolution images and
 585 multi-camera videos. In *Proceedings of the IEEE Conference on Computer Vision and Pattern
 586 Recognition*, pp. 3260–3269, 2017.

587 Zhelun Shen, Yuchao Dai, and Zhibo Rao. Cfnet: Cascade and fused cost volume for robust
 588 stereo matching. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 589 Recognition*, pp. 13906–13915, 2021.

594 Wenshan Wang, Delong Zhu, Xiangwei Wang, Yaoyu Hu, Yuheng Qiu, Chen Wang, Yafei Hu, Ashish
 595 Kapoor, and Sebastian Scherer. Tartanair: A dataset to push the limits of visual slam. In *2020*
 596 *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp. 4909–4916.
 597 IEEE, 2020.

598 Xianqi Wang, Gangwei Xu, Hao Jia, and Xin Yang. Selective-stereo: Adaptive frequency information
 599 selection for stereo matching. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 600 *and Pattern Recognition*, pp. 19701–19710, 2024.

602 Xiaobao Wei, Changyong Shu, Zhaokun Yue, Chang Huang, Weiwei Liu, Shuai Yang, Lirong Yang,
 603 Peng Gao, Wenbin Zhang, Gaochao Zhu, et al. Decoupling bidirectional geometric representations
 604 of 4d cost volume with 2d convolution. *arXiv preprint arXiv:2509.02415*, 2025.

606 Philippe Weinzaepfel, Thomas Lucas, Vincent Leroy, Yohann Cabon, Vaibhav Arora, Romain Brégier,
 607 Gabriela Csurka, Leonid Antsfeld, Boris Chidlovskii, and Jérôme Revaud. Croco v2: Improved
 608 cross-view completion pre-training for stereo matching and optical flow. In *Proceedings of the*
 609 *IEEE/CVF International Conference on Computer Vision*, pp. 17969–17980, 2023.

610 Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block
 611 attention module. In *Proceedings of the European conference on computer vision (ECCV)*, pp.
 612 3–19, 2018.

614 Zhenyao Wu, Xinyi Wu, Xiaoping Zhang, Song Wang, and Lili Ju. Semantic stereo matching with
 615 pyramid cost volumes. In *Proceedings of the IEEE/CVF International Conference on Computer*
 616 *Vision*, pp. 7484–7493, 2019.

617 Gangwei Xu, Junda Cheng, Peng Guo, and Xin Yang. Attention concatenation volume for accurate
 618 and efficient stereo matching. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 619 *and Pattern Recognition*, pp. 12981–12990, 2022a.

621 Gangwei Xu, Junda Cheng, Peng Guo, and Xin Yang. Attention concatenation volume for accurate
 622 and efficient stereo matching. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 623 *and Pattern Recognition*, pp. 12981–12990, 2022b.

624 Gangwei Xu, Xianqi Wang, Xiaohuan Ding, and Xin Yang. Iterative geometry encoding volume for
 625 stereo matching. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 626 *Recognition*, pp. 21919–21928, 2023.

628 Haofei Xu and Juyong Zhang. Aanet: Adaptive aggregation network for efficient stereo matching.
 629 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 630 1959–1968, 2020.

631 Guorun Yang, Xiao Song, Chaoqin Huang, Zhidong Deng, Jianping Shi, and Bolei Zhou. Driving-
 632 stereo: A large-scale dataset for stereo matching in autonomous driving scenarios. In *Proceedings*
 633 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 899–908, 2019.

635 Menglong Yang, Fangrui Wu, and Wei Li. Waveletstereo: Learning wavelet coefficients of disparity
 636 map in stereo matching. In *Proceedings of the IEEE/CVF conference on computer vision and*
 637 *pattern recognition*, pp. 12885–12894, 2020.

638 Nadia Zenati and Noureddine Zerhouni. Dense stereo matching with application to augmented
 639 reality. In *2007 IEEE International Conference on Signal Processing and Communications*, pp.
 640 1503–1506. IEEE, 2007.

642 Feihu Zhang, Victor Prisacariu, Ruigang Yang, and Philip HS Torr. Ga-net: Guided aggregation net
 643 for end-to-end stereo matching. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 644 *and Pattern Recognition*, pp. 185–194, 2019.

645 Haoliang Zhao, Huizhou Zhou, Yongjun Zhang, Jie Chen, Yitong Yang, and Yong Zhao. High-
 646 frequency stereo matching network. In *Proceedings of the IEEE/CVF Conference on Computer*
 647 *Vision and Pattern Recognition*, pp. 1327–1336, 2023.

648 **A APPENDIX**649 **A DATASET AND EVALUATION METRICS**

650 **Pretrain dataset:** Scene Flow (Mayer et al., 2016) is a synthetic stereo matching dataset consisting
 651 of 35,454 training image pairs and 4,370 testing image pairs, with a resolution of 960×540. It provides
 652 dense disparity maps as ground truth annotations for each image pair. All models in this work are
 653 trained exclusively on the SceneFlow training dataset.

654 **Zero-shot and finetune datasets:** To validate the generalization capability of our model, we evaluate
 655 its performance on the training sets of the following four real-world datasets. **KITTI 2012** (Geiger
 656 et al., 2012) and **KITTI 2015** (Menze & Geiger, 2015) are real-world driving scene datasets.
 657 Specifically, KITTI 2012 provides 194 training pairs and 195 testing pairs, while KITTI 2015 offers
 658 200 training pairs and 200 testing pairs. **ETH3D** (Schops et al., 2017) consists of gray-scale stereo
 659 pairs acquired from diverse indoor and outdoor scenes, comprising 27 pairs for training and 20 pairs
 660 for testing. **Middlebury** (Scharstein et al., 2014) provides 15 training pairs and 15 testing pairs of
 661 high-resolution stereo images captured in indoor environments.

662 **Metrics:** As usual, we use end-point-error (EPE) and kpx for Scene Flow datasets evaluation metrics,
 663 where EPE is the average l_1 distance between the prediction and ground truth disparity. And kpx
 664 denotes the percentage of outliers with an absolute error greater than k pixels. Referencing previous
 665 studies, the thresholds set for each dataset are as follows: 3 pixels for KITTI-2012 and KITTI-2015,
 666 2 pixels for Middlebury, and 1 pixel for ETH3D.

667 **B IMPLEMENTATION**668 **B.1 IMPLEMENTATION DETAILS**

669 Following (Lipson et al., 2021), all models are trained with the Adam optimizer ($\beta_1 = 0.9, \beta_2 =$
 670 0.999). For data augmentation setting, the image saturation was adjusted between 0 and 1.4, the right
 671 image was perturbed to simulate imperfect rectification that is common in datasets such as ETH3D
 672 and Middlebury. We froze all the batch normalization layers in training process. The maximum
 673 disparity D for training and evaluation is set to $D = 192$.

674 **B.2 FREQUENCY CONVERGENCE INCONSISTENCY EXPERIMENT**

675 To quantitatively evaluate frequency-specific performance, we generate edge masks using the Canny
 676 operator (implemented via OpenCV, lower=100, upper=200) on ground truth (GT) images for explicit
 677 separation of high-frequency regions and low-frequency regions. The binary edge map M serves as a
 678 high-frequency region mask, enabling calculation of high-frequency endpoint error (EPE) through
 679 element-wise multiplication:

$$EPE_{high} = M \odot EPE_{total} \quad (7)$$

680 Conversely, $(1 - M)$ serves as a low-frequency region mask and the low-frequency error is computed
 681 using the inverted mask $(1 - M)$:

$$EPE_{low} = (1 - M) \odot EPE_{total} \quad (8)$$

682 **B.3 STRUCTURE OF HIGH-FREQUENCY PRESERVATION UPDATE OPERATOR**

683 The High-frequency Preservation Update Operator is consisted of Iterative-based Frequency Adapter
 684 and High-frequency Preservation LSTM.

685 For Iterative-based Frequency Adapter, it contains two frequency attention module: A low-frequency
 686 selection attention (LSA) module and a high-frequency selection attention (HSA) module. The LSA
 687 module processes low-frequency features carrying global structural information through a dual-path
 688 architecture. Let $F_l \in R^{H \times W \times C}$ denote the input low-frequency feature map. The module first
 689 applies both Global Max Pooling (GMP) and Global Average Pooling (GAP) along spatial dimensions
 690 to obtain channel-wise features. These pooled features then undergo channel transformation via 1×1

702 convolutions ($W_1, W_2 \in R^{C \times C}$) followed by *ReLU* activation function:
 703

$$\begin{aligned} 704 \quad z_{max} &= \text{ReLU}[W_1(\text{GMP}(F_l))] \\ 705 \quad z_{avg} &= \text{ReLU}[W_2(\text{GAP}(F_l))] \\ 706 \quad A_L &= \sigma(z_{max} + z_{avg}) \\ 707 \end{aligned} \quad (9)$$

708 where σ denotes the sigmoid activation function.

709 The HSA module targets high-frequency patterns containing local textures and details. It employs
 710 identical pooling operations but processes them through a 7×7 convolutional layer W_3 to capture
 711 broader spatial contexts while suppressing noise:

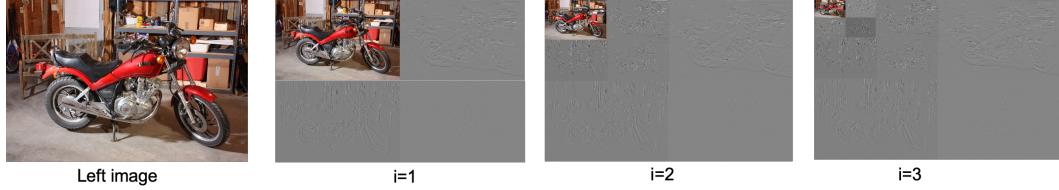
$$712 \quad A_H = \sigma(W_3(\text{Concat}(z_{max}, z_{avg}))) \quad (10)$$

713 where σ denotes the sigmoid activation function and *Concat* denotes concatenating along the channel
 714 dimension. The LSA module provides global structural context to guide high-frequency processing,
 715 while the HSA module supplies local texture details to enrich low-frequency representations.

716 For the High-frequency Preservation LSTM, it takes high-frequency feature F_h as condition priors
 717 along with cost volume C , disparity d_k to update the hidden states F_l :

$$\begin{aligned} 718 \quad x_k &= [\text{Encoder}_g(C), \text{Encoder}_d(d_k), d_k] \\ 719 \quad i_t &= \sigma(\text{Conv}([h_{k-1}, x_k], W_i) + b_{hi}) \\ 720 \quad f_t &= \sigma(\text{Conv}([h_{k-1}, x_k], W_f) + b_{hf}) \\ 721 \quad g_t &= \tanh(\text{Conv}([h_{k-1}, x_k], W_g) + b_{hg}) \\ 722 \quad o_t &= \sigma(\text{Conv}([h_{k-1}, x_k], W_o) + b_{ho}) \\ 723 \quad c_t &= f_t * F_h + i_t * g_t \\ 724 \quad F_l &= o_t * \tanh(c_t) \\ 725 \\ 726 \\ 727 \\ 728 \end{aligned} \quad (11)$$

729 C MORE QUANTITATIVE RESULTS



730 Figure 7: Different level of DWT decomposition (i refers DWT level).

731 **Effectiveness of multi-scale high-frequency feature extractor** To evaluate the efficacy of our
 732 multi-scale high-frequency feature extractor F_h , we conduct comprehensive ablation studies by
 733 feeding multi-level DWT outputs (Figure. 7) into the module. It introduces only a minimal parameter
 734 increase through an efficient fusion module that aggregates multi-level high-frequency features from
 735 DWT decomposition. Quantitative evaluation on the Scene Flow test set (Table. 7) demonstrates that
 736 this lightweight design adds just 0.77M additional parameters while achieving 2.3% improvements
 737 (EPE decreases from 0.483 to 0.472).

738 Table 7: Ablation studies of the effectiveness of our multi-scale high-frequency feature extractor. 1,
 739 2, 3 stand for the level of Discrete Wavelet Transform (DWT).

740 Method	741 EPE	742 D1	743 Params. (M)
744 HPU	0.563	6.92	0.55
745 HPU + HAM ₁	0.483	6.39	4.36
746 HPU + HAM ₂	0.472	6.26	4.73
747 HPU + HAM ₃ (Ours)	0.467	6.21	5.5

Our high-frequency feature extractor which is fed 3-level DWT decomposition outputs achieves effective fusion and utilization of multi-scale high-frequency features. This carefully balanced design maintains the model’s compactness and practical deployability while enabling effective multi-scale high-frequency feature utilization.

Number of IFA iteration. To determine the most appropriate interaction iteration in IFA, we conduct a systematic investigation of IFA interaction rounds by varying j from 1 to 6. As quantified in Table.8, performance exhibits a clear peak at $r=4$ iterations, with both under-interaction ($j < 4$) and over-interaction ($j > 4$) leading to degraded results. This suggests: (1) sufficient rounds are necessary for finetuning the iteration-specific high-frequency features, yet (2) excessive iterations may cause feature over-smoothing.

	Rounds (j)	EPE	Runtime(s)
1	0.394	0.680	
2	0.383	0.686	
3	0.371	0.772	
4	0.367	0.790	
5	0.371	0.865s	
6	0.373	0.875s	

Table 8: Ablation study of the rounds(j) in IFA.

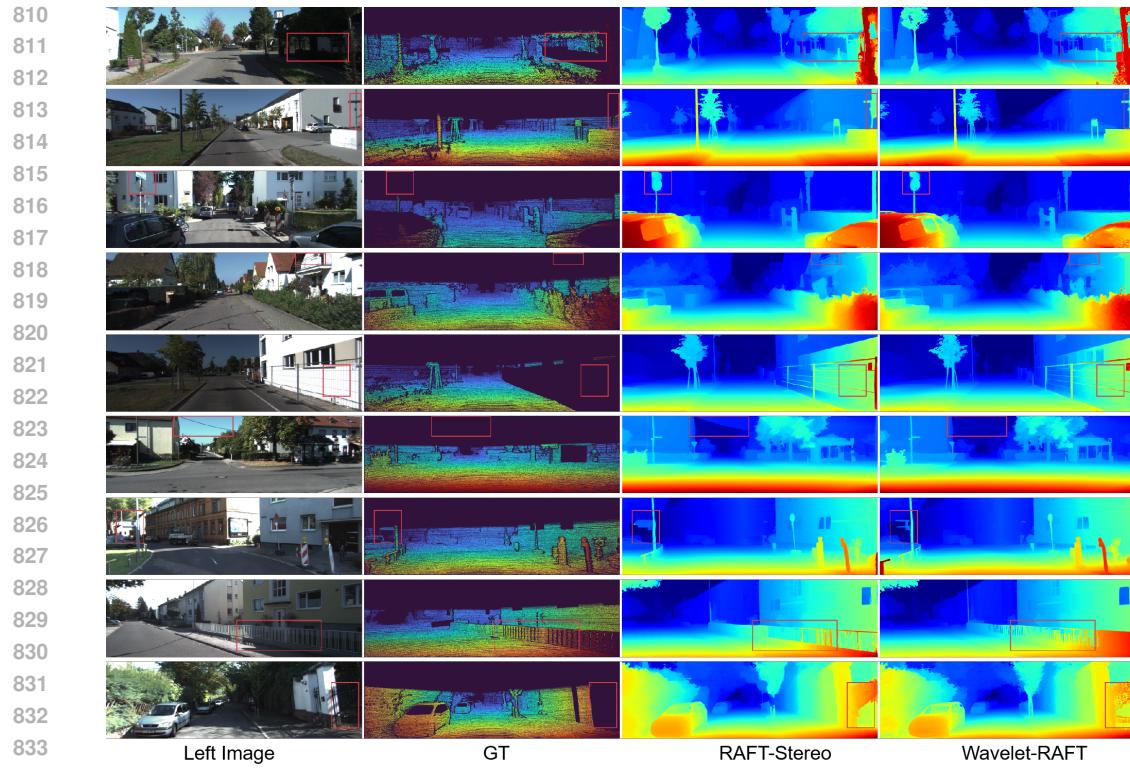
Parameter and Computational Analysis We further provide quantitative results on memory usage and computational cost. We use a single Nvidia A6000 graphics card (with 48 GiB memory) and the batch size is set to 1 for the inference (16 iterations). The memory consumption and computational cost is shown in Table.9

Table 9: Computational complexity breakdown per stage. Runtime, GPU memory usage, number of parameters, and equivalent FPS are reported.

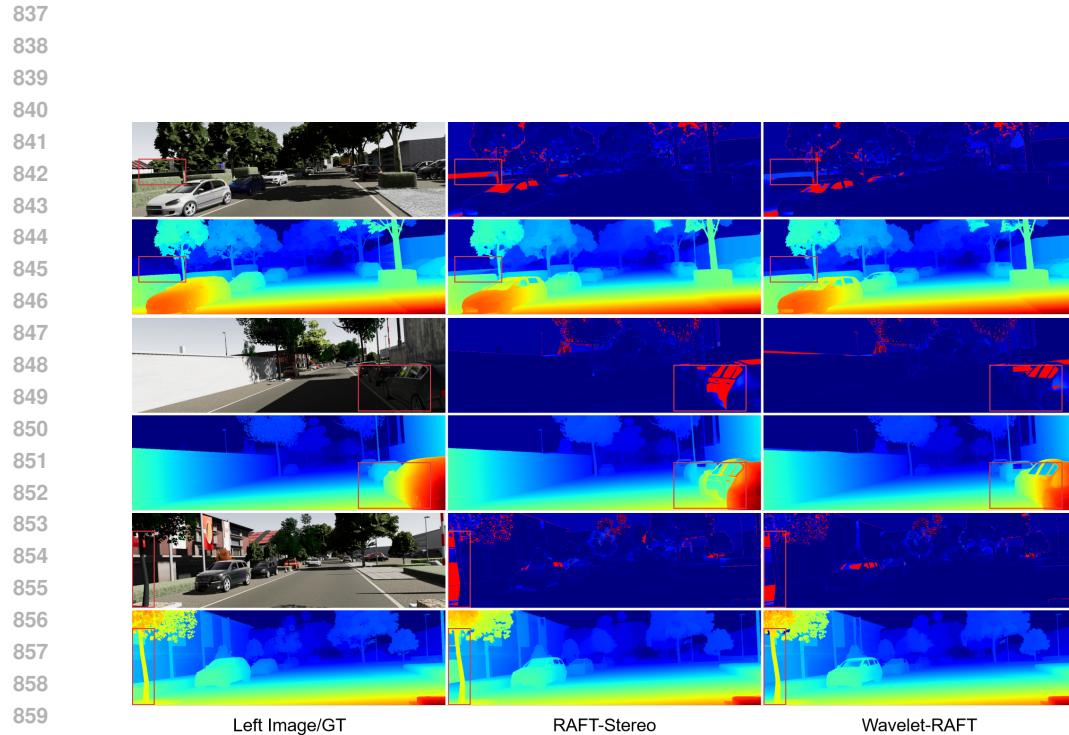
Stage	Memory(MB)	Params(M)	Runtime(ms)
DWT	0	-	33.31
Low-frequency Feature Extraction	1660	4.32	10.65
High-frequency Feature Extraction	2064	7.01	5.44
Cost volume	2072	-	70.54
HPU-Refinement	2178	6.47	369.16

D MORE QUALITATIVE RESULTS

In this section, we provide a comprehensive qualitative comparison between our method and the baselines on four widely used real-world datasets (KITTI 2012 Geiger et al. (2012), KITTI 2015 Menze & Geiger (2015), Middlebury Scharstein et al. (2014) and ETH3D Schops et al. (2017)). As shown in Figure. 10, Figure. 8, Figure. 11 and Figure. 9, our Wavelet-RAFT exhibits significantly superior zero-shot generalization performance compared to baseline model when pretrained exclusively on the synthetic SceneFlow (Mayer et al., 2016) dataset. Our Wavelet-MonSter demonstrates remarkable performance in preserving hierarchical details in the predicted disparity maps, with even the most delicate structures being accurately maintained, as shown in Figure. 12.



835 **Figure 8: Qualitative Results – Zero-Shot Generalization on the KITTI 2012 and KITTI 2015**
836 **train sets.**



862 **Figure 10: Qualitative results on VKITTi train set.** The first column shows the left image and the
863 corresponding ground-truth disparity map. The rest columns show the error map and the predicted
disparity map of RAFT-Stereo and Wavelet-RAFT, respectively.

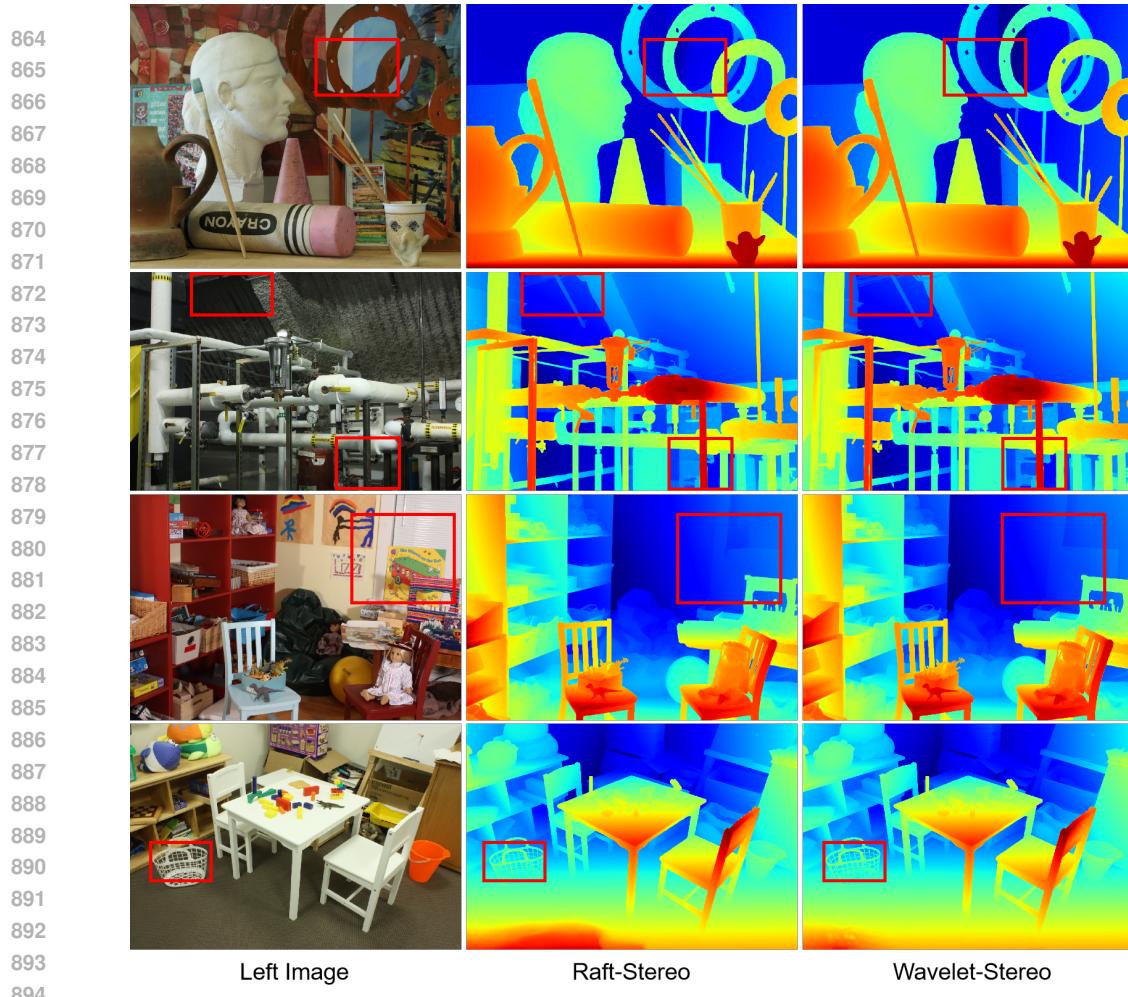
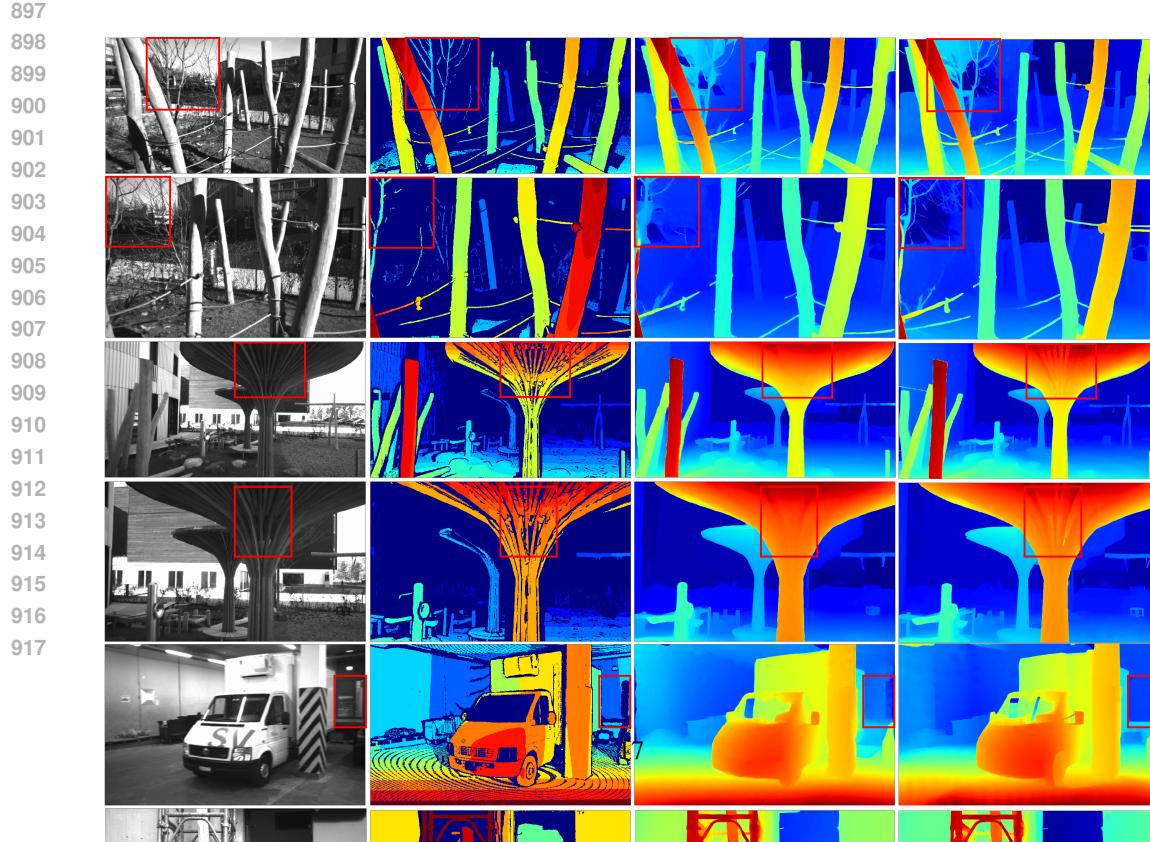


Figure 9: Qualitative Results – Zero-Shot Generalization on the Middlebury Scharstein et al. (2014) train set.



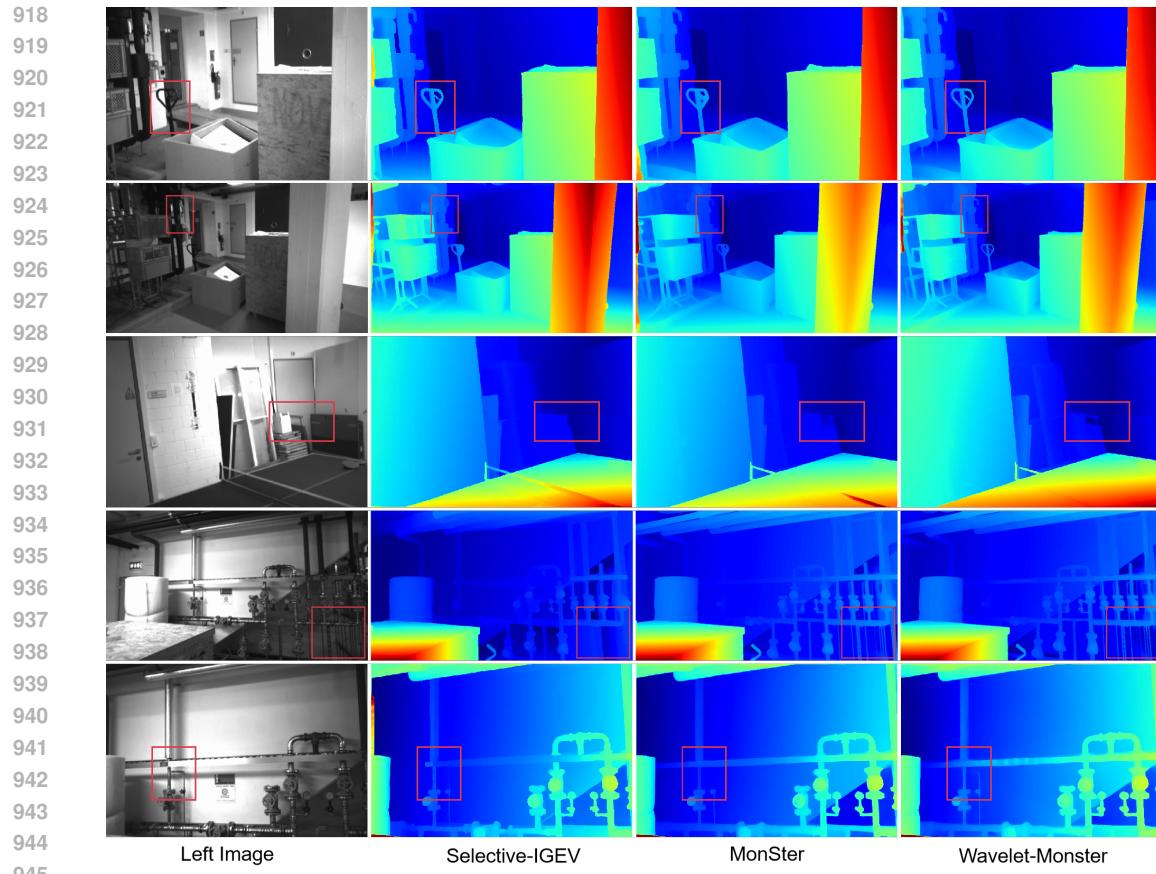
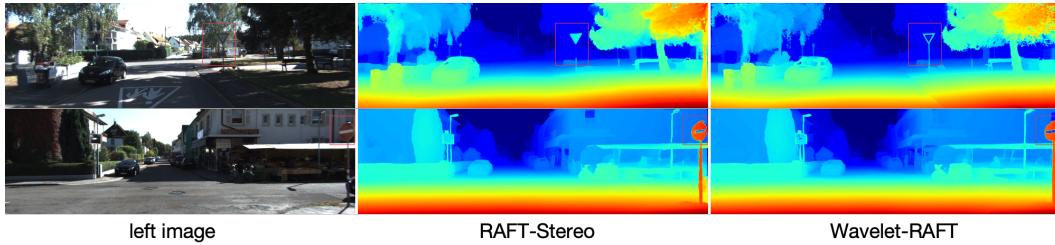


Figure 12: Qualitative results on ETH3D test set.

946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971



972
973
974
975
976
977
978
979
980
981
982
983
984
985
Figure 13: Examples of failure cases for the proposed method. Poor performance due to unnecessary
extraction of task-irrelevant information.

E DISCUSSIONS, LIMITATIONS, AND FURTHER WORK

986
987
988
989
990
Limitations. While the proposed method demonstrates strong performance, the computational
overhead induced by the DWT decomposition, multi-scale feature extraction, and iterative frequency
adapter (IFA) operations could potentially hinder real-time deployment. These limitations highlight
important trade-offs between frequency-aware precision and computational practicality that warrant
further investigation in future work.

991
992
Further Work. Here are some directions of our future work.

993
994
1. Semantics-guided high-frequency processing pipeline that discriminatively extracts task-relevant
high-frequency information.

995
2. Adaptive number of iteration for different scenarios.

996
3. Exploring the application of diffusion model in stereo matching.

F THE USE OF LARGE LANGUAGE MODELS

1000
1001
1002
1003
1004
The authors confirm their full accountability for the scholarly validity and originality of this
manuscript. We attest that artificial intelligence was in no way used to generate or falsify re-
search data. The only application of Large Language Models was to aid in wording and phrasing,
with the goal of improving the prose's idiomatic flow and making the presentation more accessible
to an international academic audience. The final responsibility for the intellectual content and its
expression remains entirely with the authors.

1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025