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A WAVELET-BASED STEREO MATCHING FRAMEWORK
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Figure 1: EPE metrics for high and low frequency regions on challenging scenes from the ETH3D
dataset (Schops et al., 2017). (a) Traditional iterative-based methods (Lipson et al., 2021) process all
frequency components indiscriminately, resulting in inconsistent convergence in different frequency
regions. (b) Our frequency-specific modules achieve simultaneous convergence of different frequency
components, significantly reducing the required number of iterations. Our method requires only 2
iterations to attain comparable qualitative results to those achieved by the traditional method with 32
iterations.

ABSTRACT

Through an in-depth analysis the underlying cause of the limited performance in
iterative stereo matching methods: frequency convergence inconsistency, we
propose a novel plug-and-play module named Wavelet-Stereo for this inherent
flaw. Specifically, we first summarize the convergence characteristics of dis-
tinct frequency components and designed a specialized dual-branch architecture.
The high-frequency branch rapidly captures detailed context by a unet, while the
low-frequency branch progressively refines the textureless regions throughout the
iteration. These two branches interact via a carefully designed high-frequency
preservation update operator and predict the disparity, achieving synchronous
optimization of both high and low frequency regions. Extensive experiments
demonstrate that our Wavelet-Stereo outperforms the state-of-the-art methods and
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ranks 1st on SceneFlow, ETH3D, KITTI 2015 and KITTI 2012 online leaderboards
for almost all metrics. Our work not only uncovers the phenomenon of frequency
convergence inconsistency for the first time, but also provides an effective solution
and paves the way for new research directions in stereo matching.

1 INTRODUCTION

Stereo matching aims to estimate dense disparity maps by matching corresponding pixels between
rectified stereo images. This technique serves as the cornerstone for autonomous driving (Yang et al.,
2019), augmented reality (Zenati & Zerhouni, 2007), and robotic manipulation (Hsieh & Lin, 2020).
Despite decades of research, achieving high-precision and high-efficiency stereo matching remains
challenging.

The advent of deep learning has revolutionized the field enabling end-to-end disparity prediction
through convolution network (Cheng et al., 2024b; Duggal et al., 2019; Guo et al., 2019; Liang
et al., 2019; Nie et al., 2019; Wu et al., 2019; Wei et al., 2025). Aggregation-based methods (Chang
& Chen, 2018; Kendall et al., 2017; Shen et al., 2021; Xu & Zhang, 2020) improve accuracy by
building 4D correlation volumes and applying 3D convolutions for regularization. To avoid expensive
3D convolution, RAFT-stereo (Lipson et al., 2021) updates the disparity map and hidden states by
iteratively indexing from the all-pairs correlation volume and using the gate recursive unit operator.
However, the iterative optimization methods (Lipson et al., 2021; Xu et al., 2023) exhibits the
following shortcomings: (1) gradual loss of fine-grained information over iteration (Zhao et al.,
2023), and (2) struggling to simultaneously capture high-frequency and low-frequency information
due to the fixed receptive field (Wang et al., 2024). DLNR (Zhao et al., 2023) designs a decouple
module to al leviate the loss of detailed information across the iteration. Selective-Stereo (Wang
et al., 2024) employs convolutional kernels with smaller receptive fields to extract high-frequency
features, while utilizing larger receptive field kernels for low-frequency features. However, neither of
them addresses the essence of these two shortcomings.

Through analysis of RAFT-Stereo’s (Lipson et al., 2021) convergence behavior across high-frequency
and low-frequency regions, we identify a phenomenon termed frequency convergence inconsistency
(Figure. 1(a)), i.e., different frequency regions exhibit divergent convergence behaviors during the
iteration. We attribute this phenomenon to the expansion of receptive field during the iteration. In
early iteration, the model exhibits local receptive fields, allowing it to capture fine-grained details
and converge rapidly in high-frequency regions. As iterations progress, the receptive field expands
to incorporate broader global context, facilitating convergence in low-frequency regions. However,
this enlarged receptive field simultaneously leads to the blurring of fine details, resulting in the
degradation in high-frequency regions.

In this paper, we propose a plug-and-play module named Wavelet-Stereo for solving frequency
convergence inconsistency. Specifically, we first explicitly decompose the left image into high
and low frequency components with the Haar wavelet (Phung et al., 2023). Then, we designed a
dual-branch architecture to process high-frequency and low-frequency components separately. Since
the high-frequency components exhibit local characteristics, we employ a simple unet network to
fully extract the global high-frequency context. For the low-frequency components, we maintain
consistency with previous methods and initialize the hidden states with them. Finally, we propose
a novel high-frequency preservation update operator (HPU) to prevent the degradation of high-
frequency context during the iteration and update the hidden state. The proposed HPU contains
two modules: (1) An iterative-based frequency adapter (IFA) can adaptively finetune the global
high-frequency context to the iteration-specific high-frequency context based on iteration state. (2)
A high-frequency preservation LSTM (HP-LSTM) updates the disparity without propagating the
iteration-specific high-frequency context to next iteration, thus preserving detail. As illustrated in
Figure. 2, our frequency-specific method excels in challenging scenarios containing fine distant
structures. Extensive experiments demonstrate that our Wavelet-Stereo outperforms the state-of-the-
art methods and ranks 1st on KITTI 2015 , KITTI 2012, SceneFlow and ETH3D leaderboards
for almost all metrics.
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Figure 2: Visual comparison on KITTI. All models are trained on Scene Flow and tested directly
on KITTI (Geiger et al., 2012; Menze & Geiger, 2015). Our Wavelet-MonSter outperforms MonSter
( (Cheng et al., 2025)) in challenging areas with high-frequency details and fine structures.

2 RELATED WORK

Aggregation-based methods in Stereo Matching. Aggregation-based methods ( (Chang & Chen,
2018; Cheng et al., 2024a; 2022; Guo et al., 2019; Wei et al., 2025)) have shown significantly
improvement in accuracy and robustness. GCNet ( (Kendall et al., 2017)) a 4D correlation volume by
concatenating the left and right feature maps within a predefined disparity search range, followed by
cost aggregation using 3D convolutions to generate the final matching results. To avoid the use of 3D
convolution, AANet ( (Xu & Zhang, 2020)) introduces intra-scale and cross-scale cost aggregation to
capture the edge and non-edge area. ACVNet ( (Xu et al., 2022b)) propose the attention concatenation
volume to eliminate noise in the cost volume and improve the performance in the ambiguous region.

Iterative-based methods in Stereo Matching. Iterative-based methods ( (Chen et al., 2024; Feng
et al., 2024; Hu et al., 2021)) have demonstrated significant advantages over aggregation-based
methods. RAFT-Stereo ( (Lipson et al., 2021)) introduces an all-pairs correlation volume pyramid
and utilizes GRU-based update operators to perform iterative disparity updates. On this basis, IGEV-
Stereov ( (Xu et al., 2023)) addresses the issue that the initial correlation volume is excessively coarse
by a lightweight cost aggregation network before iteration. CREStereo (Li et al., 2022) proposes
a adaptive group correlation layer, computes correlations within local search windows to reduce
memory and computational overhead. These methods suffer from slow convergence due to their
inability to effectively coordinate the refinement of high and low frequency region.

Frequency-based methods in Stereo Matching. Although frequency domain information (Chen
et al., 2019; Fritsche et al., 2019) has been widely applied in computer vision tasks, its utilization in
the field of stereo matching remains relatively limited. (Yang et al., 2020) learns wavelet coefficients
for disparity prediction. Selective-Stereo ( (Wang et al., 2024)) utilizes convolutions with distinct
receptive fields to capture high frequency and low frequency context respectively. DLNR ( (Zhao
et al., 2023)) proposed a decouple module that separates high-frequency context from hidden states,
alleviate the problem of data coupling. However, these method still transfer high-frequency context
across the iterations, leading to degradation of high-frequency regions during later stages of the
iteration.

3 METHODOLOGY

3.1 OVERALL PIPELINE

Since our method can be integrated into any iterative-based methods, we use Wavelet-RAFT as a
representative example to demonstrate the key innovations of our framework. We employ the same
feature extraction network Ef and cost-volume construction as RAFT-Stereo (Lipson et al., 2021)
used. As shown in Figure. 3, our framework consists of three steps: (1) Frequency Decomposition:
we explicitly separate high-frequency and low-frequency components by DWT in Section 3.2. (2)
Frequency Context Extraction: we extract multi-scale global high-frequency context and low-
frequency context separately in Section 3.3. (3) Iterative Update: we propose a novel update operator
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Figure 3: Overview of Wavelet-RAFT. Wavelet-RAFT employs a dual-branch architecture compris-
ing: (1) high-frequency branch for capturing global high-frequency context Fh, (2) a updating branch
that progressively refines hidden states. The global high-frequency context Fh serve as guidance
injected into the High-frequency Preservation Update (HPU) operator to update the hidden states
during each iteration.

that leverages high-frequency context and low-frequency context to collaborate in each iteration in
Section 3.4.

3.2 FREQUENCY DECOMPOSITION

We use the Haar wavelet (Phung et al., 2023) to decompose the left image IL into four sub-
images Isub with low and high frequency components, i.e., Isub = DWT(IL), where sub ∈
{LL,LH,HL,HH}, ILL represents the low-frequency component, and ILH , IHL, IHH correspond
to the high-frequency components. To obtain multi-scale frequency components, we repeatedly apply
DWT to the low-frequency sub-image (ILL), i.e., Iisub = DWT (Ii−1

LL ), where i ∈ {1, ..., n}, n is the
number of DWT, Iisub ∈ R

H

2i
×W

2i
×3, and I0LL = IL.

3.3 MULTI-SCALE FREQUENCY CONTEXT EXTRACTION

We explicitly obtain the high-frequency and low-frequency components of IL by DWT, which allows
us to process them separately according to their respective frequency characteristics.

Figure 4: The framework of proposed high-frequency context extractor consisting of a U-shaped
network and a series of convolutions blocks, effectively capturing global high-frequency context
through multi-scale context aggregation and skip connection.
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Global High-frequency Context Extraction. To capture global high-frequency details in textures,
edges, and thin objects (see the second row of Figure. 2), we design a U-shaped network as the global
high-frequency context extractor Eh, as shown in Figure. 4. It takes multi-scale high-frequency
components Iisub (sub ∈ {LH,HL,HH}) and outputs multi-scale global high-frequency context
F i
h at 1/4, 1/8 and 1/16 resolution, i.e., F i

h = Eh(I
i
sub). Due to the localized characteristics of

high-frequency components, a lightweight architecture Eh is sufficient to adequately aggregate
detailed information.

Low-frequency Context Extraction. To capture low-frequency context in smooth regions (see the
third row of Figure. 2), we utilize the context encoder in RAFT-Stereo as the low-frequency context
extractor El. The network consists of a series of residual blocks and downsampling layers, producing
multi-scale low-frequency context F i

l at 1/4, 1/8 and 1/16 resolution from low-frequency component
I1LL, i.e., F i

l = El(I
1
LL).

3.4 HIGH-FREQUENCY PRESERVATION UPDATE OPERATOR

In order to fully fusion the extracted high-frequency and low-frequency context, we propose a novel
High-frequency Preservation Update operator (HPU), which consists of Iterative Frequency Adapter
(IFA) and High-frequency Preservation LSTM (HP-LSTM), as illustrated in Figure. 5.

F i
l = HPU(F global

h , F i−1
i ), i ∈ [1, 2, 3, ..., k] (1)

where k represents the number of HPU iterations.

Iterative-based Frequency Adapter: Although the global high-frequency context contains rich
detailed information, directly incorporating it into the update operator is suboptimal, as the network
requires different information at different iteration stages. To address this, the IFA adaptively fine-
tunes the global high-frequency context to iteration-specific high-frequency context based on the
current iteration state, i.e., F ′

h = IFA(F global
h ). Specifically, we design two attention modules to

refine frequency-aware features adaptively at each stage (Woo et al., 2018). (1) The Low-frequency
Selection Attention (LSA) module generates structural attention maps Al that incorporate global
structure cues into the high-frequency context F ′

h. (2) The High-frequency Selection Attention (HSA)
module produces texture-aware attention maps Ah to enhance the hidden states Fl with fine-grained
details.

F ′i,j,k
h = Aj−1

l ⊙ F ′i,j−1,k
h , F i,j,k

l = F i,j−1,k
l , Aj−1

l = LSA(F i,j−1,k
l ), j ∈ [1, 3, 5, ...] (2)

F i,j,k
l = Aj−1

h ⊙ F i,j−1,k
l , F ′i,j,k

h = F ′i,j−1,k
h , Aj−1

h = HSA(F ′i,j−1,k
h ), j ∈ [2, 4, 6, ...] (3)

where ⊙ represents elementwise multiplication, i denotes the resolution dimension (1/4, 1/8, and
1/16), j is defined as the iteration number in IFA, while k is defined the number of HPU iterations.

High-frequency Preservation LSTM: Obtained the iteration-specific high-frequency context from
the IFA, we propose the HP-LSTM to incorporate the finetuned high-frequency context F ′

h, along
with other conditioning such as the correlation volume C and previous disparity dk−1), into the
update of the current hidden state F k

l . It is worthy that the finetuned high-frequency context F ′k−1
h

will not be propagated to the next iteration k.

F k
l ,△dk = LSTMHP (F

k−1
l |F ′k−1

h , L(C, dk−1)) (4)

where L refers lookup operator, the residual disparity △dk is decoded from the hidden state F k
l by a

decoder head D. The disparity d is updated by

dk = dk−1 +△dk. (5)

3.5 LOSS FUNCTION

We use progressively weighted L1 loss across all predicted disparities {dk}. Given the ground truth
of disparity dgt, the total loss is defined as (γ = 0.9):

L =

nk∑
k=1

γnk−i∥dk − dgt∥1. (6)
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Figure 5: (a) The iterative update process of hidden states Fl, guided by global high-frequency
(F k−1

h = F k
h ). (b) Proposed high-frequency preservation update operator that finetunes the global

high-frequency by iterative-based frequency adapter and update hidden states by high-frequency
preservation LSTM. (c) The LSA module adaptively integrates spatial structure information to
enhance high-frequency context (d) The HSA module injects details to enrich low-frequency context.
(e) Our multi-level update structure to update hidden states from 1/16 to 1/4.

Algorithm 1 RAFT-Stereo Pipeline

Require: a pair of rectified images IL, IR
1: fL, fR = Ef (IL, IR)
2: C = correlation(fL, fR), d0 = 0
3:
4: F 0

l = El(IL)
5:
6: for k = 1, · · · , nk do
7: F k

l ,△dk = GRU(F k−1
l ,L(C, dk))

8: dk = dk−1 +△dk
9: end for

10: return disparity d

Algorithm 2 Our Wavelet-RAFT Pipeline

Require: a pair of rectified images IL, IR
1: fL, fR = Ef (IL, IR)
2: C = correlation(fL, fR), d0 = 0
3: IiLL, I

i
HL, I

i
LH , IiHH = DWT (IL), i = 1, 2, 3

4: F 0
l = El(I

1
LL)

5: F global
h = Eh(concat(I

i
HL, I

i
LH , IiHH))

6: for k = 1, · · · , nk do
7: F k

l ,△dk = HPU(F k−1
l , F global

h ,L(C, dk))
8: dk = dk−1 +△dk
9: end for

10: return disparity d

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

Wavelet-Stereo is implemented in Pytorch and trained using two NVIDIA A6000 GPUs. For all
experiments, we use the AdamW (Loshchilov & Hutter, 2017) optimizer and clip gradients to the
range [-1, 1]. We use the one-cycle learning rate schedule with a minimum learning rate of 2e-4. We
pretrain Wavelet-Stereo on the Scene Flow dataset (Mayer et al., 2016) with a batch size of 8 and
200k steps. The ablation experiments are trained with a batch size of 6 for 100k steps. We randomly

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Method RAFT-Stereo ACVNet IGEV-Stereo Wavelet-RAFT (Ours) MonSter Wavelet-MonSter (Ours)

EPE (px) 0.53 0.48 0.47 0.46 0.37 0.36

Table 1: Quantitative evaluation on Scene Flow test set. Bold: Best

ETH3D KITTI 2015 KITTI 2012

Bad1.0 Bad1.0 RMSE D1-fg D1-all D1-fg D1-all Out-2 Out-2 Out-3 Out-3
Noc All Noc Noc Noc All All Noc All Noc All

GwcNet (Guo et al., 2019) 6.42 6.95 0.69 3.49 1.92 3.93 2.11 2.16 2.71 1.32 1.70
GANet (Zhang et al., 2019) 6.22 6.86 0.75 3.37 1.73 3.82 1.93 1.89 2.50 1.19 1.60
LEAStereo (Cheng et al., 2020) - - - 2.65 1.51 2.91 1.65 1.90 2.39 1.13 1.45
ACVNet (Xu et al., 2022a) 2.58 2.86 0.45 2.84 1.52 3.07 1.65 1.83 2.35 1.13 1.47
CREStereo (Li et al., 2022) 0.98 1.09 0.28 2.60 1.54 2.86 1.69 1.72 2.18 1.14 1.46
IGEV-Stereo (Xu et al., 2023) 1.12 1.51 0.34 2.62 1.49 2.67 1.59 1.71 2.17 1.12 1.44
CroCo-Stereo (Weinzaepfel et al., 2023) 0.99 1.14 0.30 2.56 1.51 2.65 1.59 - - - -
Selective-IGEV (Wang et al., 2024) 1.23 1.56 0.29 2.55 1.44 2.61 1.55 1.59 2.05 1.07 1.38
LoS (Li et al., 2024) 0.91 1.03 0.31 2.66 1.52 2.81 1.65 1.69 2.12 1.10 1.38
NMRF-Stereo (Guan et al., 2024) - - - 2.90 1.46 3.07 1.57 1.59 2.07 1.01 1.35
DEFOM-Stereo (Jiang et al., 2025) 0.70 0.78 0.22 2.24 1.33 2.23 1.41 1.43 1.79 0.94 1.18
MonSter (Cheng et al., 2025) 0.46 0.72 0.20 2.76 1.33 2.81 1.41 1.36 1.75 0.84 1.09
Wavelet-MonSter(ours) 0.35 0.63 0.18 2.60 1.31 2.60 1.38 1.32 1.71 0.83 1.07

Table 2: Results on three popular benchmarks. All results are derived from official leaderboard
publications or corresponding papers. All metrics are presented in percentages, except for RMSE,
which is reported in pixels. For testing masks, “All” denotes testing with all pixels while “Noc”
denotes testing with a non-occlusion mask. The best and second best are marked with colors.

crop images to 320 × 736 and use the same data augmentation as (Lipson et al., 2021) for training.
We use 22 update iterations during training and 32 updates for evaluation. The pipeline comparison
of traditional iterative-based framework with ours is shown in Algorithm 1 and Algorithm 2.

4.2 BENCHMARK DATASETS AND PERFORMANCE

We evaluate Wavelet-Stereo on four widely used benchmarks and submit the results to online
leaderboards for public comparison: KITTI 2012 (Geiger et al., 2012), KITTI 2015 (Menze &
Geiger, 2015), ETH3D (Schops et al., 2017), and Scene Flow (Mayer et al., 2016).

Scene Flow. To verify the universality of our proposed framework, we take RAFT-Stereo and
MonSter as baseline and integrate our framework. As shown in Table. 1, both of our models surpass
its baseline and our Wavelet-MonSter establishing a new state-of-the-art EPE benchmark on Scene
Flow. To validate the ability to handle different frequency regions, we split Scene Flow test set into
high-frequency and low-frequency region. As shown in Table. 4, quantitative comparisons reveal that
our Wavelet-Raft outperforms Selective-RAFT (Wang et al., 2024) on EPE metric and surpasses the
baseline by 22%. Compared to Selective-IGEV and DLNR (Zhao et al., 2023) which is designed for
frequency issues, our Wavelet-MonSter outperforms them by 25.89% and 10.3% in high-frequency
regions, 30.2% and 13.7% in low-frequency regions, respectively.

ETH3D. Following MonSter (Cheng et al., 2025), we firstly finetune the Scene Flow pretrained
model on the mixed Tartan Air (Wang et al., 2020), CREStereo Dataset (Li et al., 2022), Scene
Flow (Mayer et al., 2016), Sintel Stereo (Butler et al., 2012), InStereo2k (Bao et al., 2020) and
ETH3D (Schops et al., 2017) datasets for 300k steps. Then we finetune it on the mixed CREStereo
Dataset, InStereo2k and ETH3D datasets with for another 90k steps. As shown in Table. 2, our
Wavelet-MonSter outperforms MonSter by 24.9% on Bad 1.0 metric, and rank 1st among all methods
under identical configurations.

KITTI. Following the training of MonSter (Cheng et al., 2025), we finetune our pretrained model on
the mixed dataset of KITTI 2012 (Geiger et al., 2012) and KITTI 2015 (Menze & Geiger, 2015) with
a batch size of 8 for 50k steps. For best performance, we evaluate our Wavelet-MonSter on the test
set of KITTI 2012 and KITTI 2015, with results submitted to the official KITTI online leaderboard.
As shown in Table. 2, our Wavelet-MonSter achieves the best performance among all published
approaches to date and ranks 1st on both the KITTI 2015 and KITTI 2012 leaderboards for almost all
metrics, outperforming over 280 competing methods. Figure. 6 shows qualitative results on KITTI
2012 and KITTI 2015 test sets, where our Wavelet-MonSter significantly outperforms MonSter in
both detailed high-frequency regions (see the first and second row of figure) and reflective regions
with complex textures (see the third row of figure) in the difficult scenarios.

7
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Figure 6: Qualitative results on KITTI test set. Our Wavelet-MonSter outperforms MonSter in
challenging areas with high-frequency details and weak texture.

4.3 ABLATION STUDY

We conducted comprehensive ablation studies to validate the contribution of each component in our
framework. Due to the simplified training settings, the quantitative results of ablation experiments dif-
fer from the comparison results described above. We present the main results of ablation experiments,
and more results can be found in Appendix A.

Effectiveness of proposed modules. The results in the Table. 3 demonstrate that it is effective and
necessary to propose frequency-specific module for features with distinct convergence characteristics.
To assess the importance of the high-frequency context extractor Eh , we replace Eh with a simple
two-layer convolutional network. Quantitative results (EPE increases from 0.52 to 0.56) demonstrate
that a powerful context extraction network is needed to adequately fuse high-frequency information
at multiple scales.

To validate the effectiveness of HPU and its components, we conducted ablation studies by removing
or replacing key elements of the module.

First, we remove the IFA component from the HPU, which means directly incorporating the global
high-frequency context F global

h into the updating process without finetuning. This modification lead
to a significant degradation in performance (EPE increases from 0.52 to 0.56) , underscoring the
necessity of adaptively refining high-frequency context before it is used to update hidden states.

Second, we replace the HP-LSTM with a standard LSTM, which means the fine-tuned high-frequency
context F ′

h is transfered into the next iteration without preservation. The degradation in performance
(EPE increases from 0.52 to 0.53) precisely validated our motivation to preserve high-frequency
context during the iterations.

Model Eh IFA HP-LSTM GRU EPE (px) D1 (%)
Baseline (RAFT-Stereo) ✓ 0.62 8.40
w/o HP-LSTM ✓ ✓ 0.53 6.34
w/o IFA ✓ ✓ 0.56 6.64
w/o HPU ✓ ✓ 0.58 7.29
w/o Eh ✓ ✓ 0.56 6.72
Full model (Wavelet-RAFT) ✓ ✓ ✓ 0.52 6.21

Table 3: Ablation study of the effectiveness of proposed modules on Scene Flow test set. HPU denotes
High-frequency Preservation Update operator, Eh denotes global high-frequency context extractor,
IFA denotes Iterative-based Frequency Adapter, HP-LSTM refers High-frequency Preservation LSTM
and GPU refers updating units in RAFT-Stereo
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Method HFR LFR

RAFT-Stereo 34.00 0.72
Selective-RAFT 27.89 0.57
Wavelet-RAFT 26.48 0.56
DLNR 31.60 0.63
Selective-IGEV 26.10 0.51
MonSter 26.08 0.47
Wavelet-MonSter 23.42 0.44

Table 4: Quantitative evaluation on Scene
Flow test set in different regions (EPE). HFR
refers to the high-frequency region, while
LFR refers to the low-frequency region.

Model Iteration EPE Runtime (s)

RAFT-Stereo 32 0.53 0.38

32 0.46 0.68
Wavelet-RAFT 16 0.47 0.45

8 0.52 0.23

Table 5: Ablation study of the number of iterations.

Additionally, We substituted the HPU with a standard GRU module in RAFT-Stereo. This modifica-
tion results in performance degradation across all metrics (EPE increases from 0.52 to 0.58 and D1
increases from 6.21 to 7.29). Overall, these experiments substantiate the design motivations of the
HPU and highlight the critical roles played by both the IFA and the HP-LSTM in coordinating the
convergence of high and low frequency regions.

Number of Iterations. As evidenced by Table. 5, our framework significantly accelerates conver-
gence. This improvement stems from mitigating the inherent conflict between high and low frequency
components during the iteration, which enables superior performance with markedly fewer iterations
than traditional methods. Specifically, our Wavelet-RAFT requires only 8 iterations to surpass the
performance of RAFT-Stereo while reducing runtime by 39.5%.

5 ZERO-SHOT GENERALIZATION

Robust zero-shot generalization ability is critical for practical stereo matching model. We validate the
effectiveness of our Wavelet-Monster by training it solely on the Scene Flow dataset and then testing
it on the real-world datasets KITTI 2012, KITTI2015, Middlebury 2014 and ETH3D training sets. As
evidenced by the quantitative results in Table. 6, our approach outperforms all comparable methods.
Quantitative results on KITTI 2012 and KITTI 2015 training sets in Figure. 2 further substantiates
these findings, showing enhanced performance in challenging areas such as textureless surfaces and
detailed object boundaries.

Method KITTI-12 KITTI-15 Middlebury ETH3D
RAFT-Stereo (Lipson et al., 2021) 5.12 5.74 9.36 3.28
CREStereo (Li et al., 2022) 5.03 5.79 12.88 8.98
Selective-IGEV (Wang et al., 2024) 5.64 6.05 12.04 5.40
NMRF-Stereo (Guan et al., 2024) 4.23 5.10 7.54 3.82
IGEV-Stereo (Xu et al., 2023) 4.84 5.51 6.23 3.62
MonSter (Cheng et al., 2025) 3.62 3.97 5.17 2.03
Wavelet-MonSter 3.37 3.56 4.74 1.86

Table 6: Zero-shot generalization benchmark. All models are trained on Scene Flow. The 3-pixel
error rate is used for KITTI, 2-pixel error rate for Middlebury 2014, and 1-pixel error rate for ETH3D.

6 CONCLUSION

Our analysis reveals that the performance degradation in high-frequency regions is a direct conse-
quence of receptive field expansion over iterations. To address this, we introduce Wavelet-Stereo, a
plug-and-play module that applies dedicated process to different frequency components. This method
fully leverages the convergence properties of different frequency components, avoiding the inherent
convergence conflicts in the iterative process of current iterative paradigm methods.
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A APPENDIX

A DATASET AND EVALUATION METRICS

Pretrain dataset: Scene Flow (Mayer et al., 2016) is a synthetic stereo matching dataset consisting
of 35,454 training image pairs and 4,370 testing image pairs, with a resolution of 960×540. It provides
dense disparity maps as ground truth annotations for each image pair. All models in this work are
trained exclusively on the SceneFlow training dataset.

Zero-shot and finetune datasets: To validate the generalization capability of our model, we evaluate
its performance on the training sets of the following four real-world datasets. KITTI 2012 (Geiger
et al., 2012) and KITTI 2015 (Menze & Geiger, 2015) are real-world driving scene datasets.
Specifically, KITTI 2012 provides 194 training pairs and 195 testing pairs, while KITTI 2015 offers
200 training pairs and 200 testing pairs. ETH3D (Schops et al., 2017) consists of gray-scale stereo
pairs acquired from diverse indoor and outdoor scenes, comprising 27 pairs for training and 20 pairs
for testing. Middlebury (Scharstein et al., 2014) provides 15 training pairs and 15 testing pairs of
high-resolution stereo images captured in indoor environments.

Metrics: As usual, we use end-point-error (EPE) and kpx for Scene Flow datasets evaluation metrics,
where EPE is the average l1 distance between the prediction and ground truth disparity. And kpx
denotes the percentage of outliers with an absolute error greater than k pixels. Referencing previous
studies, the thresholds set for each dataset are as follows: 3 pixels for KITTI-2012 and KITTI-2015,
2 pixels for Middlebury, and 1 pixel for ETH3D.

B IMPLEMENTATION

B.1 IMPLEMENTATION DETAILS

Following (Lipson et al., 2021), all models are trained with the Adam optimizer (β1 = 0.9, β2 =
0.999). For data augmentation setting, the image saturation was adjusted between 0 and 1.4, the right
image was perturbed to simulate imperfect rectification that is common in datasets such as ETH3D
and Middlebury. We froze all the batch normalization layers in training process. The maximum
disparity D for training and evaluation is set to D = 192.

B.2 FREQUENCY CONVERGENCE INCONSISTENCY EXPERIMENT

To quantitatively evaluate frequency-specific performance, we generate edge masks using the Canny
operator (implemented via OpenCV, lower=100, upper=200) on ground truth (GT) images for explicit
separation of high-frequency regions and low-frequency regions. The binary edge map M serves as a
high-frequency region mask, enabling calculation of high-frequency endpoint error (EPE) through
element-wise multiplication:

EPEhigh = M ⊙ EPEtotal (7)

Conversely, (1−M) serves as a low-frequency region mask and the low-frequency error is computed
using the inverted mask (1−M):

EPElow = (1−M)⊙ EPEtotal (8)

B.3 STRUCTURE OF HIGH-FREQUENCY PRESERVATION UPDATE OPERATOR

The High-frequency Preservation Update Operator is consisted of Iterative-based Frequency Adapter
and High-frequency Preservation LSTM.

For Iterative-based Frequency Adapter, it contains two frequency attention module: A low-frequency
selection attention (LSA) module and a high-frequency selection attention (HSA) module. The LSA
module processes low-frequency features carrying global structural information through a dual-path
architecture. Let Fl ∈ RH×W×C denote the input low-frequency feature map. The module first
applies both Global Max Pooling (GMP) and Global Average Pooling (GAP) along spatial dimensions
to obtain channel-wise features. These pooled features then undergo channel transformation via 1×1
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convolutions (W1,W2 ∈ RC×C) followed by ReLU activation function:

zmax = ReLU [W1(GMP (Fl))]

zavg = ReLU [W2(GAP (Fl))]

AL = σ(zmax + zavg)

(9)

where σ denotes the sigmoid activation function.

The HSA module targets high-frequency patterns containing local textures and details. It employs
identical pooling operations but processes them through a 7×7 convolutional layer W3 to capture
broader spatial contexts while suppressing noise:

AH = σ(W3(Concat(zmax, zavg))) (10)

where σ denotes the sigmoid activation function and Concat denotes concatenating along the channel
dimension. The LSA module provides global structural context to guide high-frequency processing,
while the HSA module supplies local texture details to enrich low-frequency representations.

For the High-frequency Preservation LSTM, it takes high-frequency feature Fh as condition priors
along with cost volume C, disparity dk to update the hidden states Fl:

xk = [Encoderg(C),Encoderd(dk), dk]
it = σ(Conv([hk−1, xk],Wi) + bhi)

ft = σ(Conv([hk−1, xk],Wf ) + bhf )

gt = tanh(Conv([hk−1, xk],Wg) + bhg)

ot = σ(Conv([hk−1, xk],Wo) + bho)

ct = ft ∗ Fh + it ∗ gt
Fl = ot ∗ tanh(ct)

(11)

C MORE QUANTITATIVE RESULTS

Figure 7: Different level of DWT decomposition (i refers DWT level).

Effectiveness of multi-scale high-frequency feature extractor To evaluate the efficacy of our
multi-scale high-frequency feature extractor Fh, we conduct comprehensive ablation studies by
feeding multi-level DWT outputs (Figure. 7) into the module. It introduces only a minimal parameter
increase through an efficient fusion module that aggregates multi-level high-frequency features from
DWT decomposition. Quantitative evaluation on the Scene Flow test set (Table. 7) demonstrates that
this lightweight design adds just 0.77M additional parameters while achieving 2.3% improvements
(EPE decreases from 0.483 to 0.472).

Table 7: Ablation studies of the effectiveness of our multi-scale high-frequency feature extractor. 1,
2, 3 stand for the level of Discrete Wavelet Transform (DWT).

Method EPE D1 Params. (M)
HPU 0.563 6.92 0.55
HPU + HAM1 0.483 6.39 4.36
HPU + HAM2 0.472 6.26 4.73
HPU + HAM3 (Ours) 0.467 6.21 5.5
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Our high-frequency feature extractor which is fed 3-level DWT decomposition outputs achieves
effective fusion and utilization of multi-scale high-frequency features. This carefully balanced design
maintains the model’s compactness and practical deployability while enabling effective multi-scale
high-frequency feature utilization.

Number of IFA iteration. To determine the most appropriate interaction iteration in IFA, we conduct
a systematic investigation of IFA interaction rounds by varying j from 1 to 6. As quantified in
Table.8, performance exhibits a clear peak at r=4 iterations, with both under-interaction (j<4) and
over-interaction (j>4) leading to degraded results. This suggests: (1) sufficient rounds are necessary
for finetuning the iteration-specific high-frequency features, yet (2) excessive iterations may cause
feature over-smoothing.

Rounds (j) EPE Runtime(s)

1 0.394 0.680
2 0.383 0.686
3 0.371 0.772
4 0.367 0.790
5 0.371 0.865s
6 0.373 0.875s

Table 8: Ablation study of the rounds(j) in IFA.

Parameter and Computational Analysis We further provide quantitative results on memory usage
and computational cost. We use a single Nvidia A6000 graphics card (with 48 GiB memory) and the
batch size is set to 1 for the inference (16 iterations). The memory consumption and computational
cost is shown in Table.9

Table 9: Computational complexity breakdown per stage. Runtime, GPU memory usage, number of
parameters, and equivalent FPS are reported.

Stage Memory(MB) Params(M) Runtime(ms)

DWT 0 - 33.31
Low-frequency Feature Extraction 1660 4.32 10.65
High-frequency Feature Extraction 2064 7.01 5.44
Cost volume 2072 - 70.54
HPU-Refinement 2178 6.47 369.16

D MORE QUALITATIVE RESULTS

In this section, we provide a comprehensive qualitative comparison between our method and the base-
lines on four widely used real-world datasets (KITTI 2012 Geiger et al. (2012), KITTI 2015 Menze
& Geiger (2015), Middlebury Scharstein et al. (2014) and ETH3D Schops et al. (2017)). As shown in
Figure. 10, Figure. 8, Figure. 11 and Figure. 9, our Wavelet-RAFT exhibits significantly superior
zero-shot generalization performance compared to baseline model when pretrained exclusively on the
synthetic SceneFlow (Mayer et al., 2016) dataset. Our Wavelet-MonSter demonstrates remarkable
performance in preserving hierarchical details in the predicted disparity maps, with even the most
delicate structures being accurately maintained, as shown in Figure. 12.
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Figure 8: Qualitative Results – Zero-Shot Generalization on the KITTI 2012 and KITTI 2015
train sets.

Figure 10: Qualitative results on VKITTi train set. The first column shows the left image and the
corresponding ground-truth disparity map. The rest columns show the error map and the predicted
disparity map of RAFT-Stereo and Wavelet-RAFT, respectively.
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Figure 9: Qualitative Results – Zero-Shot Generalization on the Middlebury Scharstein et al. (2014)
train set.

Figure 11: Qualitative Results – Zero-Shot Generalization on the ETH3D Schops et al. (2017) train
set

.
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Figure 12: Qualitative results on ETH3D test set.
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Figure 13: Examples of failure cases for the proposed method. Poor performance due to unnecessary
extraction of task-irrelevant information.

E DISCUSSIONS, LIMITATIONS, AND FURTHER WORK

Limitations. While the proposed method demonstrates strong performance, the computational
overhead induced by the DWT decomposition, multi-scale feature extraction, and iterative frequency
adapter (IFA) operations could potentially hinder real-time deployment. These limitations highlight
important trade-offs between frequency-aware precision and computational practicality that warrant
further investigation in future work.

Further Work. Here are some directions of our future work.

1. Semantics-guided high-frequency processing pipeline that discriminatively extracts task-relevant
high-frequency information.

2. Adaptive number of iteration for different scenarios.

3. Exploring the application of diffusion model in stereo matching.

F THE USE OF LARGE LANGUAGE MODELS

The authors confirm their full accountability for the scholarly validity and originality of this
manuscript. We attest that artificial intelligence was in no way used to generate or falsify re-
search data. The only application of Large Language Models was to aid in wording and phrasing,
with the goal of improving the prose’s idiomatic flow and making the presentation more accessible
to an international academic audience. The final responsibility for the intellectual content and its
expression remains entirely with the authors.
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