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Abstract
The vulnerability of Deep Neural Networks to
Adversarial Attacks has fuelled research towards
building robust models. While most existing Ad-
versarial Training algorithms aim towards defend-
ing against imperceptible attacks, real-world ad-
versaries are not limited by such constraints. In
this work, we aim to achieve adversarial robust-
ness at larger epsilon bounds. We first discuss the
ideal goals of an adversarial defense algorithm
beyond perceptual limits, and further highlight
the shortcomings of naively extending existing
training algorithms to higher perturbation bounds.
In order to overcome these shortcomings, we pro-
pose a novel defense, Oracle-Aligned Adversarial
Training (OA-AT), that attempts to align the pre-
dictions of the network with that of an Oracle dur-
ing adversarial training. The proposed approach
achieves state-of-the-art performance at large ep-
silon bounds (`∞ bound of 16/255) while outper-
forming adversarial training algorithms such as
AWP, TRADES and PGD-AT at standard pertur-
bation bounds (`∞ bound of 8/255) as well.

1. Introduction
Deep Neural Networks are known to be vulnerable to Ad-
versarial Attacks, which are perturbations crafted with an
intention to fool the network [25]. In a classification setting,
adversarially perturbed images cause the network predic-
tion to flip to unrelated classes, while causing no change
in a human’s prediction (Oracle label). The definition of
adversarial attacks involves the presence of an Oracle, and
this makes it challenging to formalize threat models for the
training and verification of adversarial defenses. The widely
accepted convention used in practice is the `p norm based
threat model [5] with low-magnitude bounds to ensure im-
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Figure 1. Adversarially attacked images (b-e, g) and perturbations
(f, h) for various `∞ bounds. Attacks are generated from a PGD
Adversarially Trained model (AT) [18, 19] or a Normally Trained
model (NT). Original unperturbed image is shown in (a). Predic-
tion of the attack source model is printed above each image.

perceptibility [11]. For example, attacks constrained within
an `∞ norm of 8/255 on the CIFAR-10 dataset are imper-
ceptible to the human eye as shown in Fig.1(b), ensuring
that the Oracle label is unchanged.

While low-magnitude `p norm based threat models form a
crucial subset of the widely accepted definition of adversar-
ial attacks [10], they are not sufficient, as there exist valid
attacks at higher ε-bounds as well, as shown in Fig.1(g).
However, the challenge at large perturbation bounds is the
existence of attacks that can flip Oracle labels as well [28],
as shown in Fig.1(c-e). This makes it difficult to naively
scale existing Adversarial Training algorithms to large ε
bounds. In this work, we aim to improve robustness at larger
epsilon bounds, such as an `∞ norm bound of 16/255. We
define this as a moderate-magnitude bound, and discuss
the ideal goals for achieving robustness under this threat
model in Sec.3. We further propose a novel defense Oracle-
Aligned Adversarial Training (OA-AT), which attempts to
align the predictions of the network with that of an Oracle,
rather than enforcing all samples within the constraint set to
have the same label as the unperturbed image.

Our contributions have been summarized below:
• We define the ideal goals for a moderate-ε threat model

(`∞ radius of 16/255) and construct our goals as a
feasible subset of the same.

• We propose methods for generating Oracle-Aligned
adversaries, which can be used for adversarial training.
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• We propose Oracle-Aligned Adversarial Training (OA-
AT) to improve robustness within the defined moderate-
ε threat model.

• We demonstrate superior performance when com-
pared to state-of-the-art methods such as AWP [30],
TRADES [31] and PGD-AT [18, 19] at ε = 16/255
while also performing better at ε = 8/255.

• We achieve improvements over the baselines even
at larger model capacities such as ResNet-34 and
WideResNet-34-10.

2. Related Works
Robustness against imperceptible attacks: Adversarial
Training has emerged as the most successful defense strat-
egy against `p norm bound imperceptible attacks. PGD Ad-
versarial Training (PGD-AT) [18] constructs multi-step ad-
versarial attacks by maximizing Cross-Entropy loss within
the considered threat model and subsequently minimizes
the same for training. This was followed by several adver-
sarial training methods [31, 1, 20, 30, 23, 19] that improved
accuracy against such imperceptible threat models further.
Zhang et al. [31] proposed the TRADES defense, which
maximizes the Kullback-Leibler (KL) divergence between
the softmax outputs of adversarial and clean samples for
attack generation, and minimizes the same in addition to the
Cross-Entropy loss on clean samples for training.

Improving Robustness of base defenses: Wu et al. [30]
proposed an additional step of Adversarial Weight Perturba-
tion (AWP) to perturb the weights of the model in order to
maximize the training loss, and further train the perturbed
model to minimize the same. This generates a flatter loss sur-
face [24], thereby improving robust generalization. While
this can be integrated with any defense, AWP-TRADES
is the state-of-the-art adversarial defense today. On simi-
lar lines, the use of stochastic weight averaging of model
weights [14] is also seen to improve the flatness of loss sur-
face, resulting in a boost in robustness [12, 6]. Recent works
[19, 20, 12] attempt to find the best training techniques such
as early stopping, use of optimal weight decay and weight
averaging to achieve enhanced robust performance on base
defenses such as PGD-AT [18] and TRADES [31].

Robustness against large perturbation attacks: Shaeiri
et al. [21] demonstrate that the standard formulation of ad-
versarial training is not well-suited for achieving robustness
at large perturbations, as the loss saturates very early. The
authors propose Extended Adversarial Training (ExAT),
where a model trained on low-magnitude perturbations
(ε = 8/255) is fine-tuned with large magnitude perturba-
tions (ε = 16/255) for merely 5 training epochs, to achieve
improved robustness at large perturbations. The authors
also discuss the use of a varying epsilon schedule to im-
prove training convergence. Friendly Adversarial Training

(FAT) [1] performs early-stopping of an adversarial attack
by thresholding the number of times the model misclassi-
fies the image during attack generation. The threshold is
increased over training epochs to increase the strength of the
attack over training. On similar lines, Sitawarin et al. [22]
propose Adversarial Training with Early Stopping (ATES),
which performs early stopping of a PGD attack based on the
margin of the perturbed image being greater than a thresh-
old that is increased over epochs. We improve upon these
methods significantly using our proposed approach (Sec.4).

3. Preliminaries and Threat Model
3.1. Notation

We consider an N -class image classification problem with
access to a labelled training dataset D. The input images
are denoted by x ∈ X and their corresponding labels are
denoted as y ∈ {1, ..., N}. The function represented by
the Deep Neural Network is denoted by fθ where θ ∈ Θ
denotes the set of trained network parameters. The N -
dimensional softmax output of the input image x is denoted
as fθ(x). Adversarial examples are defined to be images
that are crafted specifically to fool a model into making
an incorrect prediction [10]. An adversarial image corre-
sponding to a clean image x would be denoted as x̃. The
set of all images within an `p norm ball of radius ε, S(x)
is defined as, S(x) = {x̂ : ||x̂ − x||p < ε}. The set of
all `p norm bound adversarial examples, A(x) is defined
as, A(x) = {x̃ : fθ(x̃) 6= y, x̃ ∈ S(x)}. In this work, we
specifically consider robustness to `∞ norm bound adversar-
ial examples. We define the Oracle prediction of a sample
x as the label that a human is likely to assign to the image,
and denote it as O(x). For a clean image, O(x) would cor-
respond to the true label y, while for a perturbed image it
could differ from the original label.

3.2. Nomenclature of Adversarial Attacks

Tramèr et al. [28] discuss the existence of two types of ad-
versarial examples: Sensitivity-based examples, where the
model prediction changes, but the Oracle prediction remains
the same as the unperturbed image, and Invariance-based
examples, where the Oracle prediction changes, while the
model prediction remains unchanged. Models trained us-
ing standard empirical risk minimization are susceptible to
sensitivity-based adversarial examples, while models which
are overly robust to large perturbation bounds could be
susceptible to invariance-based examples. Since these def-
initions are dependent on the model being considered, we
define a different nomenclature which only depends on the
input image and the threat model considered, as below:

• Oracle-Invariant set OI(x), is defined as the set of all
images within the bound S(x), which preserve the Ora-
cle label. The Oracle is invariant to such perturbations:
OI(x) := {x̂ : O(x̂) = O(x), x̂ ∈ S(x)}
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• Oracle-Sensitive set OS(x), is defined as the set of all
images within the bound S(x), which flip the Oracle
label. The Oracle is sensitive to such perturbations:
OS(x) := {x̂ : O(x̂) 6= O(x), x̂ ∈ S(x)}

3.3. Objectives of the Proposed Defense

Defenses based on the conventional `p norm based threat
model defined in Sec.3.1 attempt to train models which are
invariant to all samples within S(x). This is an ideal re-
quirement for low ε-bound perturbations, where the added
noise is imperceptible, and hence all samples within the
threat model are Oracle-Invariant. An example of a low ε
threat model is the constraint set defined by ε = 8/255 for
the CIFAR-10 dataset, which produces adversarial exam-
ples that are perceptually similar to the corresponding clean
images, as shown in Fig.1(b).

As we move to larger ε bounds, Oracle-labels begin to
change, as shown in Fig.1(c, d, e). For a very high per-
turbation bound such as 32/255, the changes produced by
an attack are clearly perceptible and cause a change in the
Oracle label in many cases. Hence, robustness at such large
bounds may not be of much practical relevance. The focus
of this work is to achieve robustness within a moderate-
magnitude `p norm bound threat model, where some per-
turbations look partially modified (Fig.1(c)), while others
look unchanged (Fig.1(g)), as is the case with ε = 16/255
for CIFAR-10. The existence of attacks that do not sig-
nificantly change the perception of the image necessitates
the requirement of robustness within such bounds, while
the existence of partially Oracle-Sensitive samples makes
it difficult to use standard adversarial training methods on
the same. The ideal goals for training defenses under this
moderate-magnitude threat model are described below:

• Robustness against samples which belong to OI(x)
• Sensitivity towards samples which belong to OS(x),

with model’s prediction matching the Oracle label
• No specification on Out-of-Distribution (OOD) images

We incorporate these goals in the training objective of our
proposed defense, which is discussed in Sec.4. Given the
practical difficulty in assigning Oracle labels, we consider
the following criteria for our defense evaluations:

• Robustness-Accuracy trade-off, measured using accu-
racy on clean samples and robustness against valid
attacks within the threat model (discussed below)

• Robustness against all attacks within ε = 8/255, mea-
sured using strong white-box attacks [8, 23]

• Robustness to Oracle-Invariant samples within ε =
16/255, measured using gradient-free attacks [2]

We do not explicitly define goals for white-box attacks
within the moderate ε bound of 16/255 since the existence
of Oracle-Sensitive samples within this bound is image
specific. We note from Fig.1(c) and Fig.A2(b) that most
adversarial examples look partially modified at ε = 16/255.

4. Proposed Method
In order to achieve the goals discussed in Sec.3.3, we re-
quire to generate Oracle-Sensitive and Oracle-Invariant sam-
ples and impose specific training losses on each of them
individually. Since the labeling of adversarial samples as
Oracle-Invariant or Oracle-Sensitive is expensive and cannot
be done while training networks, we propose to use attacks
which ensure a given type of perturbation (OI or OS) by
construction, and hence do not require explicit annotation.

Generation of Oracle-Sensitive examples: Robust mod-
els are known to have perceptually aligned gradients [29].
Adversarial examples generated using a robust model tend
to start looking like the target (other) class images at large
perturbation bounds, as seen in Fig.1(c, d, e). We therefore
use large ε white-box adversarial examples generated from
the model being trained as Oracle-Sensitive samples, and
the model prediction as a proxy to the Oracle prediction.

Generation of Oracle-Invariant examples: While the
strongest Oracle-Invariant examples are generated using the
gradient-free Square attack [2], it uses 5000 queries, which
is computationally expensive for use in adversarial train-
ing. Reducing the number of queries weakens the attack
significantly. The most efficient attack that is widely used
for adversarial training is the PGD 10-step attack. How-
ever, it cannot be used for the generation of Oracle-Invariant
samples as gradient-based attacks generated from adversari-
ally trained models produce Oracle-Sensitive samples. We
propose to use the Learned Perceptual Image Patch Similar-
ity (LPIPS) measure for the generation of Oracle-Invariant
attacks, as it is known to match well with perceptual sim-
ilarity [32, 17]. As shown in Fig.A1, while the standard
AlexNet model used in prior work [17] fails to distinguish
between Oracle-Invariant and Oracle-Sensitive samples, an
adversarially trained model is able to distinguish between
the two effectively. We therefore propose to minimize the
LPIPS distance between natural and perturbed images, in ad-
dition to the maximization of Cross-Entropy loss for attack
generation: LCE(x, y)− λ · LPIPS(x, x̂). We choose λ as
the minimum value that transforms the attack from Oracle-
Sensitive to Oracle-Invariant (OI), to generate strong OI
attacks (Fig.A2). This is further fine-tuned during training
to achieve the optimal robustness-accuracy trade-off.

Oracle-Aligned Adversarial Training (OA-AT): The
training algorithm for the proposed defense, Oracle-Aligned
Adversarial Training (OA-AT) is presented in Algorithm-
A1. We use the Trades-AWP formulation [31, 30] as the
base implementation, with Cross-Entropy loss instead of
KL-divergence loss for attack generation, as it results in
stronger attacks [12]. Different from Wu et al. [30], we
maximize loss on xi + 2 · δ̃i (where δ̃i is the attack) in the
additional weight perturbation step, as it results in improved
robust generalization. We use cosine learning rate schedule.
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Table 1. CIFAR-10, CIFAR-100: Performance (%) of the pro-
posed defense OA-AT compared to baselines, against attacks with
different ε bounds. Sorted by AutoAttack accuracy [8] (AA 8/255)

Method Clean GAMA
(8/255)

AA
(8/255)

GAMA
(12/255)

Square
(12/255)

GAMA
(16/255)

Square
(16/255)

CIFAR-10 (ResNet-18)

FAT [1] (8) 84.36 48.41 48.14 29.39 39.48 15.18 25.07
PGD-AT [18] (10) 79.38 49.28 48.68 32.40 41.46 18.18 28.29
AWP [30] (10) 80.32 49.06 48.89 32.88 40.27 19.17 27.56
ATES [22] (10) 80.95 49.57 49.12 32.44 42.21 18.36 29.07
TRADES [31] (8) 80.53 49.63 49.42 33.32 40.94 19.27 27.82
ExAT-PGD [21] (11) 80.68 50.06 49.52 32.47 41.10 17.81 27.23
ExAT + AWP (10) 80.18 49.87 49.69 33.51 41.04 20.04 28.40
AWP [30] (8) 80.47 50.06 49.87 33.47 41.05 19.66 28.51
OA-AT (Ours) 80.24 51.40 50.88 36.01 43.20 22.73 31.16

Gain w.r.t. AWP −0.23 +1.34 +1.01 +2.54 +2.15 +3.07 +2.65

CIFAR-100 (ResNet-18)

AWP [30] 59.88 25.81 25.52 14.80 20.24 8.72 12.80
OA-AT (Ours) 60.27 26.41 26.00 16.28 21.47 10.47 14.60

Gain w.r.t. AWP +0.39 +0.60 +0.48 +1.48 +1.23 +1.75 +1.80

We start with an initial ε value of 4/255 upto one-fourth
the training epochs, and ramp up this value linearly to a
value of 16/255 at the last epoch. We use 5 attack steps
when ε = 4/255 and 10 attack steps later. We perform
standard adversarial training upto ε = 12/255 as the attacks
in this range are imperceptible. Beyond this, we start in-
corporating separate training losses for Oracle-Invariant
and Oracle-Sensitive samples in alternate training itera-
tions. Oracle-Sensitive samples are generated by maximiz-
ing Cross-Entropy loss in a PGD attack formulation. Rather
than enforcing the predictions of such attacks to be similar
to the original image, we allow the network to be partially
sensitive to such attacks by training them to be similar to a
convex combination of predictions on the clean image and
perturbed samples at larger (1.5 · εmax) bounds as shown:
Ladv = KL

(
fθ(xi+ δ̃i) || α fθ(xi)+(1−α) fθ(xi+ δ̂i)

)
Here δ̃i is the perturbation at the varying epsilon value ε̃,
and δ̂i is the perturbation at 24/255. This results in better
robustness-accuracy trade-off as shown in Table-A1. In the
other alternate iteration, we use the LPIPS metric to generate
strong and efficient Oracle-Invariant attacks during training.
We perform exponential weight-averaging of the network
being trained and use this for computing the LPIPS metric
for improved and stable results (Table-A1). We increase α
and λ over training, as the nature of attacks changes with
varying ε. The use of both Oracle-Invariant (OI) and Oracle-
Sensitive (OS) samples ensures robustness to OI samples
while allowing sensitivity to partially OS samples.

5. Experiments and Results
We compare performance of the proposed approach with
the existing defenses discussed in Sec.2 on the CIFAR-10
[16] dataset in Table-1. We train all models on ResNet-18
architecture for 110 epochs. For each baseline, we find the
best set of hyperparameters to achieve clean accuracy of
around 80% to ensure a fair comparison across all meth-

Table 2. CIFAR-10: Performance (%) of the proposed defense
OA-AT (Ours) compared to the strongest baseline, AWP-TRADES
(AWP) [30] against various attacks with different ε bounds

Method Model Clean AA
(8/255)

Square
(12/255)

AA
(12/255)

Square
(16/255)

AA
(16/255)

AWP RN-18 80.47 49.87 41.05 33.19 28.51 19.23
Ours RN-18 80.24 50.88 43.20 35.39 31.16 22.00
AWP RN-34 83.89 52.44 42.84 34.61 29.22 19.69
Ours RN-34 84.07 53.22 45.03 36.31 32.47 22.00

AWP WRN-34 85.19 55.69 46.48 38.05 32.68 23.46
Ours WRN-34 85.54 55.67 48.15 38.13 35.20 22.92
AWP + WA WRN-34 85.10 55.87 46.52 37.97 32.50 23.27
Ours + WA WRN-34 85.67 55.93 48.79 39.06 35.76 24.05

ods. We also perform baseline training across various ε
values and report the best baselines in Table-1. We observe
that baseline defenses do not perform well when trained
using large ε bounds such as 16/255 (Table-A2). We report
adversarial robustness against the strongest known attacks,
AutoAttack (AA) [8] and GAMA PGD-100 (GAMA) [23]
for ε = 8/255 in order to obtain the worst-case robust ac-
curacy. For larger bounds such as 12/255 and 16/255, we
primarily aim for robustness against the Square attack [2],
as it is the strongest known Oracle-Invariant attack. We
compare the proposed approach against the strongest base-
line AWP-TRADES [30] on CIFAR-100 in Table-1 (ref.
Table-A3 for detailed results), and on CIFAR-10 with larger
capacity models in Table-2. We observe significant gains
with the use of AutoAugment [9, 24] on CIFAR-100, and
additionally with Model Weight Averaging (WA) [14, 12, 6]
at larger model capacities. To ensure a fair comparison, we
consider these for the AWP baseline as well.

Results: The proposed defense achieves consistent gains
across all metrics considered in Sec.3.3 (AutoAttack [8] at
ε = 8/255 and Square attack [2] at larger ε bounds). Al-
though we train the model for achieving robustness at larger
ε bounds, we achieve an improvement in the robustness at
ε = 8/255 as well, which is not observed in any of the
existing methods (Table-A2). We evaluate the proposed de-
fense against diverse attacks (Table-A4) and sanity checks
(Sec.A5) to ensure the absence of gradient masking.

6. Conclusions
We explore the idea of robustness beyond perceptual limits
in an `p norm based threat model. We first discuss the ideal
goals of an adversarial defense at larger perturbation bounds,
and further propose a novel defense, Oracle-Aligned Adver-
sarial Training (OA-AT) that aims to align model predictions
with that of an Oracle during training. The key aspects of
the defense include the use of LPIPS metric for generating
Oracle-Invariant attacks during training, and the use of a
convex combination of clean and adversarial image predic-
tions as targets for Oracle-Sensitive samples. We achieve
significant gains in robustness at low and moderate pertur-
bation bounds, and a better robustness-accuracy trade-off.
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Appendix

A1. Oracle-Invariant Attacks
Square Attack: The strongest Oracle-Invariant examples
are generated using the Square attack [2]. These images
are Oracle-Invariant since this is a query-based attack and
does not use gradients from any model for attack generation.
However this attack uses 5000 queries, and is a computa-
tionally expensive attack. Hence this attack cannot be used
for adversarial training, although it is one of the best attacks
for evaluations. We note that reducing the number of queries
makes it computationally efficient, however it also reduces
the effectiveness of the attack significantly.

PGD based Attacks: While the most efficient attack that is
widely used for adversarial training is the PGD 10-step at-
tack, it cannot be used for the generation of Oracle-Invariant
samples as adversarially trained models have perceptually
aligned gradients, and tend to produce Oracle-Sensitive
samples. Therefore, we explore some variants of the PGD
attack to make the generated perturbations Oracle-Invariant.
We denote the Cross-Entropy loss on a data sample x with
ground truth label y using LCE(x, y). We explore the ad-
dition of regularizers to the Cross-Entropy loss weighted
by a factor of λX in each case. The value of λX is chosen
as the minimum value which transforms the PGD attacks
from Oracle-Sensitive to Oracle-Invariant. This results in
the strongest possible Oracle-Invariant attacks.

Discriminator based PGD Attack: We train a discrimi-
nator to distinguish between Oracle-Invariant and Oracle-
Sensitive adversarial examples, and further maximize the
below loss for the generation of Oracle-Invariant attacks:

LCE(x, y)− λDisc · LBCE(x̂,OI) (A1)

Here LBCE(x̂,OI) is the Binary Cross-Entropy loss of the
adversarial example x̂ w.r.t. the label corresponding to an
Oracle-Invariant (OI) attack. We train the discriminator to
distinguish between two input distributions; the first corre-
sponding to images concatenated channel-wise with their
respective Oracle-Sensitive perturbations, and a second dis-
tribution where perturbations are shuffled across images in
the batch. This ensures that the discriminator relies on the
spatial correlation between the image and its correspond-
ing perturbation for the classification task, rather than the
properties of the perturbation itself. The attack in Eq.A1
therefore attempts to break the most salient property of
Oracle-Sensitive attacks, which is the spatial correlation
between an image and its perturbation.
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Figure A1. LPIPS distance between clean and adversarially per-
turbed images. Attacks generated from PGD-AT [18, 19] model
(Oracle-Sensitive) and Normally Trained model (Oracle-Invariant)
are considered. (a) PGD-AT ResNet-18 model is used for compu-
tation of LPIPS distance (b) Normally Trained AlexNet model is
used for computation of LPIPS distance. PGD-AT model based
LPIPS distance is useful to distinguish between Oracle-Sensitive
and Oracle-Invariant attacks.

LPIPS based PGD Attack: We propose to use the
Learned Perceptual Image Patch Similarity (LPIPS) mea-
sure for the generation of Oracle-Sensitive attacks, as it is
known to match well with perceptual similarity [32, 17].
As shown in Fig.A1, while the standard AlexNet model
that is used in prior work [17] fails to distinguish between
Oracle-Invariant and Oracle-Sensitive samples, an adversar-
ially trained model is able to distinguish between the two
types of attacks effectively. In this plot, we consider attacks
generated from a PGD-AT [18, 19] model (Fig.1(c-e)) as
Oracle-Sensitive attacks, and attacks generated from a Nor-
mally Trained model (Fig.1(h)) as Oracle-Invariant attacks.
We therefore propose to minimize the LPIPS distance be-
tween the natural and perturbed images, in addition to the
maximization of Cross-Entropy loss for attack generation
as shown below:

LCE(x, y)− λLPIPS · LPIPS(x, x̂) (A2)

We choose λLPIPS as the minimum value that transforms
the PGD attack from Oracle-Sensitive to Oracle-Invariant
(OI), to generate strong OI attacks. This is further fine-
tuned during training to achieve the optimal robustness-
accuracy trade-off. As shown in Fig.A2, setting λLPIPS to
1 changes adversarial examples from Oracle-Sensitive to
Oracle-Invariant, as they look similar to the correspond-
ing original images shown in Fig.A2(a). This can be ob-
served more distinctly at perturbation bounds of 24/255 and
32/255. The perturbations in Fig.A2(c) are smooth, while
those in (e) and (g) are not. This shows that the addition of
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Figure A2. Oracle-Invariant adversarial examples generated using the LPIPS based PGD attack in Eq.A2 across various perturbation
bounds. White-box attacks and predictions on the model trained using the proposed OA-AT defense on the CIFAR-10 dataset with
ResNet-18 architecture are shown: (a) Original Unperturbed image, (b, h, k) Adversarial examples generated using the standard PGD
10-step attack, (d, f, i, j, l, m) LPIPS based PGD attack generated within perturbation bounds of 16/255 (d, f), 24/255 (i, j) and 32/255
(l, m) by setting the value of λLPIPS to 1 and 2, (c, e, g) Perturbations corresponding to (b), (d) and (f) respectively.

0 1 2 3 4 5
Coefficient of LPIPS loss term 

 (a)

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

OA-AT (Ours)
AWP

0 2 4 6 8
Coefficient of Discriminator loss term

 (b)

20

25

30

35

40

45

50

55

Ac
cu

ra
cy

 (%
)

Figure A3. Comparison of the proposed model with the best base-
line, AWP [30] trained on CIFAR-10 with ResNet-18 architecture,
against attacks of varying strength and Oracle sensitivity con-
strained within perturbation bound of ε = 16/255. (a) LPIPS
based regularizer, and (b) Discriminator based regularizer are used
for generating Oracle-Invariant attacks respectively. As the co-
efficient of the regularizer increases, the attack transforms from
Oracle-Sensitive to Oracle-Invariant. The proposed method (OA-
AT) achieves improved accuracy compared to AWP.

the LPIPS term helps in making the perturbations Oracle-
Invariant. Very large coefficients of the LPIPS term make
the attack weak as can be seen in Fig.A2(f, j, m) where the
model prediction is same as the true label. We therefore set
the value of λLPIPS to 1 to obtain strong Oracle-Invariant
attacks.

As shown in Table-A1, while we obtain the best results using
the LPIPS based PGD attack for training (E1), the use of
discriminator based PGD attack (E6) also results in a better
robustness-accuracy trade-off when compared to E2, where
there is no explicit regularizer to ensure the generation of

Oracle-Invariant attacks.

Evaluation of the proposed defense against Oracle-
Invariant Attacks: We compare the performance of the
proposed defense OA-AT with the strongest baseline AWP
[30] against the two proposed Oracle-Invariant attacks,
LPIPS based attack and Discriminator based attack in
Fig.A3 (a) and (b) respectively. We vary the coefficient
of the regularizers used in the generation of attacks, λDisc
(Eq.A1) and λLPIPS (Eq.A2) in each of the plots. As we
increase the coefficient, the attack transforms from Oracle-
Sensitive to Oracle-Invariant. The proposed method (OA-
AT) achieves improved accuracy when compared to the
AWP [30] baseline.

A2. Details on the Datasets used
We evaluate the proposed approach on the CIFAR-10 and
CIFAR-100 [16] datasets. The two datasets consist of RGB
images of spatial dimension 32×32, and contain 10 and 100
distinct classes respectively. CIFAR-10 is the most widely
used benchmark dataset to perform a comparative analy-
sis across different adversarial defense and attack methods.
CIFAR-100 is a challenging dataset to achieve adversarial
robustness given the large number of diverse classes that
are interrelated. Each of these datasets consists of 50,000
training images and 10,000 test images. We split the origi-
nal training set to create a validation set of 1,000 images in
CIFAR-10 and 2,500 images in CIFAR-100. We ensure that
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Algorithm A1 Oracle-Aligned Adversarial Training
1: Input: Deep Neural Network fθ with parameters θ,

Training Data {xi, yi}Mi=1, Epochs T , Learning Rate
η, Perturbation budget εmax, Adversarial Perturbation
function A(x, y, `, ε) which maximises loss `

2: for epoch = 1 to T do
3: ε̃ = max{εmax/4, εmax · epoch/T}
4: for i = 1 to M do
5: δi ∼ U(−min(ε̃, εmax/4),min(ε̃, εmax/4))
6: if ε̃ < 3/4 · εmax then
7: ` = `CE(fθ(xi + δi), yi)

8: δ̃i = A(xi, yi, `, ε̃)

9: Ladv = KL
(
fθ(xi + δ̃i)||fθ(xi)

)
10: else if i% 2 = 0 then
11: ` = `CE(fθ(xi + δi), yi)

12: δ̂i = A(xi, yi, `, 1.5 · εmax)

13: δ̃i = Π∞(δ̂i, ε̃)

14: Ladv = KL
(
fθ(xi + δ̃i) ||

α · fθ(xi) + (1− α) · fθ(xi + δ̂i)
)

15: else
16: δi ∼ U(−ε̃, ε̃ )
17: ` = `CE(fθ(xi + δi), yi)−LPIPS(xi, xi + δi)
18: δ̃i = A(xi, yi, `, ε̃)

19: Ladv = KL
(
fθ(xi + δ̃i)||fθ(xi)

)
20: end if
21: L = `CE(fθ(xi), yi) + Ladv
22: θ = θ − η · ∇θL
23: end for
24: end for

the validation split is balanced equally across all classes,
and use the remaining images for training. To ensure a fair
comparison, we use the same split for training the proposed
defense as well as other baseline approaches. For both
datasets, we consider the `∞ threat model of radius 8/255
to be representative of imperceptible perturbations, that is,
the Oracle label does not change within this set. Further, we
consider the `∞ threat model of radius 16/255 to investigate
robustness within moderate magnitude perturbation bounds.

A3. Details on Training
The algorithm for the proposed method as explained in Sec.4
is presented in Algorithm-A1. We use a varying ε schedule
and start training on perturbations of magnitude ε = 4/255.
This results in marginally better performance when com-
pared to ramping up the value of ε from 0 (E8 of Table-A1).
For CIFAR-10 training on ResNet-18, we set the weight of
the adversarial loss Ladv in L21 of Alg.A1 (β parameter of
TRADES [31]) to 1.5 for the first three-quarters of training,
and then linearly increase it from 1.5 to 3 in the moder-
ate perturbation regime, where ε is linearly increased from

12/255 to 16/255. In this moderate perturbation regime,
we also linearly increase the coefficient of the LPIPS dis-
tance (Alg.A1, L17) from 0 to 1, and linearly decrease the
α parameter used in the convex combination of softmax
prediction (Alg.A1, L14) from 1 to 0.8. This results in a
smooth transition from adversarial training on imperceptible
attacks to attacks with larger perturbation bounds. We set
the weight decay to 5e-4.

For all our experiments, we use the cosine learning rate
schedule with 0.2 as the maximum learning rate. We use
SGD optimizer with momentum of 0.9, and train for 110
epochs. We compute the LPIPS distance using an exponen-
tial weight averaged model with τ = 0.995. We note from
Table-A1 that the use of weight-averaged model results in
better performance when compared to using the model be-
ing trained for the same (E5). This also leads to more stable
results across reruns.

We utilise AutoAugment [9] for training on CIFAR-100, and
for CIFAR-10 training on large model capacities. We apply
AutoAugment with a probability of 0.5 for CIFAR-100, and
for the CIFAR-10 model trained on ResNet-34. Since the
extent of overfitting is higher for large model capacities, we
use AutoAugment with p = 1 on WideResNet-34-10. While
the use of AutoAugment helps in overcoming overfitting,
it could also negatively impact robust accuracy due to the
drift between the training and test distributions. We observe
a drop in robust accuracy on the CIFAR-10 dataset with the
use of AutoAugment (E11, E12 in Table-A1), while there is
a boost in the clean accuracy. On similar lines, we observe
a drop in robust accuracy on the CIFAR-100 dataset as well,
when we increase the probability of applying AutoAugment
from 0.5 (E11 in Table-A1) to 1 (E12 in Table-A1).

To investigate the stability of the proposed approach, we
train a ResNet-18 network multiple times by using differ-
ent random initialization of network parameters. We ob-
serve that the proposed approach is indeed stable, with stan-
dard deviation of 0.167, 0.115, 0.180 and 0.143 for clean
accuracy, GAMA PGD-100 accuracies with ε = 8/255
and 16/255, and accuracy against the Square attack with
ε = 16/255 respectively over three independent training
runs on CIFAR-10. We also observe that the last epoch is
consistently the best performing model for the ResNet-18
architecture. Nonetheless, we still utilise early stopping
on the validation set using PGD 7-step accuracy for all the
baselines to enable a fair comparison overall.

A3.1. Ablation Study

In order to study the impact of different components of the
proposed defense, we present a detailed ablative study using
ResNet-18 models in Table-A1. We present results on the
CIFAR-10 and CIFAR-100 datasets, with E1 representing
the proposed approach. First, we study the efficacy of the
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Table A1. CIFAR-10, CIFAR-100: Ablation experiments on ResNet-18 architecture to highlight the importance of various aspects in the
proposed defense OA-AT. Performance (%) against attacks with different ε bounds is reported.

CIFAR-10 CIFAR-100

Method Clean GAMA
(8/255)

GAMA
(16/255)

Square
(16/255) Clean GAMA

(8/255)
GAMA

(16/255)
Square
(16/255)

E1: OAAT (Ours) 80.24 51.40 22.73 31.16 60.27 26.41 10.47 14.60
E2: LPIPS weight = 0 78.47 50.60 24.05 31.37 58.47 25.94 10.91 14.66
E3: Alpha = 1 79.29 50.60 23.65 31.23 58.84 26.15 10.97 14.89
E4: Alpha = 1, LPIPS weight = 0 77.16 50.49 24.93 32.01 57.77 25.92 11.33 15.03
E5: Using Current model (without WA) for LPIPS 80.50 50.75 22.90 30.76 59.54 26.23 10.50 14.86
E6: Using Discriminator instead of LPIPS (OI Attack) 80.56 50.75 22.13 31.17 58.84 26.35 10.64 14.82
E7: Without 2*eps perturbations for AWP 79.96 50.50 22.61 30.60 60.18 26.27 10.15 14.20
E8: Increasing epsilon from the beginning 80.34 50.77 22.57 30.80 60.51 26.34 10.37 14.61
E9: Maximizing KL div in the AWP step 81.19 49.77 21.17 29.39 59.48 25.03 7.93 13.34
E10: Without AutoAugment 80.24 51.40 22.73 31.16 58.08 25.81 10.40 14.31
E11: With AutoAugment (p=0.5) 81.59 50.40 21.59 30.84 60.27 26.41 10.47 14.60
E12: With AutoAugment (p=1) 81.74 48.15 18.92 28.31 60.19 25.32 9.24 13.78

LPIPS metric in generating Oracle-Invariant attacks. In ex-
periment E2, we train a model without LPIPS by setting
its coefficient to zero. While the resulting model achieves
a slight boost in robust accuracy at ε = 16/255 due to
the use of stronger attacks for training, there is a consider-
able drop in clean accuracy, and a corresponding drop in
robust accuracy at ε = 8/255 as well. We observe a similar
trend by setting the value of α to 1 as shown in E3, and by
combining E2 and E3 as shown in E4. We note that E4 is
similar to standard adversarial training, where the model
attempts to learn consistent predictions in the ε ball around
every data sample. While this works well for large ε attacks
(ε = 16/255), it leads to poor clean accuracy as shown in
the first partition of Table-A2.

As discussed in Sec.4, we maximize loss on xi + 2 · δ̃i
(where δ̃i is the attack) in the additional weight perturbation
step. We present results by using the standard ε limit for
the weight perturbation step as well, in E7. This leads to a
drop across all metrics, indicating the importance of using
large magnitude perturbations in the weight perturbation
step for producing a flatter loss surface that leads to better
generalization to the test set. Different from the standard
TRADES formulation, we maximize Cross-Entropy loss
for attack generation in the proposed method. From E9 we
note that the use of KL divergence leads to a drop in robust
accuracy since the KL divergence based attack is weaker.
This is consistent with the observation by Gowal et al. [12].

A4. Detailed Results
In Tables-A2 and A3, we present results of different defense
methods such as AWP-TRADES [30], TRADES [31], PGD-
AT [18], ExAT [21], ATES [22] and FAT [1], evaluated
across a wide range of adversarial attacks. We present eval-
uations on the Black-Box FGSM attack [11] and a suite of
White-Box attacks, on `∞ constraint sets of different radii:

8/255, 12/255 and 16/255. The white-box evaluations con-
sist of the single-step Randomized-FGSM (R-FGSM) attack
[27], the GAMA PGD-100 attack [23] and AutoAttack [8],
with the latter two being amongst the strongest of attacks
known to date. Lastly, we also present evaluations on the
Square attack [2] for ε = 12/255 and 16/255 in order to
evaluate performance on Oracle-Invariant samples at large
perturbation bounds.

CIFAR-10: To enable a fair comparison of the proposed
approach with existing methods, we present comprehen-
sive results of various defenses trained with different attack
strengths in Table-A2. In the first partition of the table, we
present baselines trained using attacks constrained within
an `∞ bound of 16/255. While these models do achieve
competitive robustness on adversaries of attack strength
ε = 8/255, 12/255 and 16/255, they achieve significantly
lower accuracy on clean samples which limits their use
in practical scenarios. Thus, for better comparative analy-
sis that accounts for the robustness-accuracy trade-off, we
present results of the existing methods with hyperparameters
and attack strengths tuned to achieve the best robust perfor-
mance, while maintaining clean accuracy close to 80% as
commonly observed on the CIFAR-10 dataset on ResNet-
18 architecture, in the second partition of Table-A2. We
observe that the proposed method OA-AT consistently out-
performs other approaches on all three metrics described in
Sec.3.3, by achieving enhanced performance at ε = 8/255
and 16/255, while striking a favourable robustness-accuracy
trade-off as well. The proposed defense achieves better ro-
bust performance even on the standard `∞ constraint set of
8/255 when compared to existing approaches, despite being
trained on larger perturbations sets.

CIFAR-100: In Table-A3, we present results on models
trained on the highly-challenging CIFAR-100 dataset. Since
this dataset contains relatively fewer training images per
class, we seek to enhance performance further by incorpo-
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Table A2. CIFAR-10: Performance (%) of the proposed defense OA-AT against attacks with different ε bounds, when compared to the
following baselines: AWP [30], ExAT [21], TRADES [31], ATES [22], PGD-AT [18] and FAT [1]. AWP [30] is the strongest baseline.
The first partition shows defenses trained on ε = 16/255. Training on large perturbation bounds results in very poor Clean Accuracy. The
second partition consists of baselines tuned to achieve clean accuracy close to 80%. These are sorted by AutoAttack accuracy [8] (AA
8/255). The proposed defense achieves significant gains in accuracy across all attacks.

Method Attack ε
(Training)

Clean FGSM (BB)
(8/255)

R-FGSM
(8/255)

GAMA
(8/255)

AA
(8/255)

FGSM (BB)
(12/255)

R-FGSM
(12/255)

GAMA
(12/255)

Square
(12/255)

FGSM (BB)
(16/255)

R-FGSM
(16/255)

GAMA
(16/255)

Square
(16/255)

TRADES 16/255 75.30 73.26 53.10 35.64 35.12 72.13 44.27 20.24 30.11 70.76 36.99 10.10 18.87
AWP 16/255 71.63 69.71 54.53 40.85 40.55 68.65 47.13 27.06 34.42 67.42 40.89 15.92 24.16
PGD-AT 16/255 64.93 63.65 55.47 46.66 46.21 62.81 51.05 36.95 40.53 61.70 46.40 26.73 32.25
FAT 16/255 75.27 73.44 60.25 47.68 47.34 72.22 53.17 34.31 39.79 70.73 46.88 22.93 29.47
ExAT+AWP 16/255 75.28 73.27 60.02 47.63 47.46 71.81 52.38 34.42 39.62 70.47 45.39 22.61 28.79
ATES 16/255 66.78 65.60 56.79 47.89 47.52 64.64 51.71 37.47 42.07 63.75 47.28 26.50 32.55
ExAT + PGD 16/255 72.04 70.68 59.99 49.24 48.80 69.66 53.96 36.68 41.93 68.04 48.37 23.01 30.21

FAT 12/255 80.27 77.87 61.46 45.42 45.13 76.69 52.33 29.08 36.71 74.79 44.56 16.18 24.59
FAT 8/255 84.36 82.20 64.06 48.41 48.14 80.32 55.41 29.39 39.48 78.13 47.50 15.18 25.07
ATES 8/255 84.29 82.39 65.66 49.14 48.56 80.81 55.59 29.36 40.68 78.48 47.03 14.70 25.88
PGD-AT 8/255 81.12 78.94 63.48 49.03 48.58 77.19 54.42 30.84 40.82 74.37 46.28 15.77 26.47
PGD-AT 10/255 79.38 77.89 62.78 49.28 48.68 76.60 54.76 32.40 41.46 74.75 47.46 18.18 28.29
AWP 10/255 80.32 77.87 62.33 49.06 48.89 76.33 53.83 32.88 40.27 74.13 45.51 19.17 27.56
ATES 10/255 80.95 79.22 63.95 49.57 49.12 77.77 55.37 32.44 42.21 75.51 48.12 18.36 29.07
TRADES 8/255 80.53 78.58 63.69 49.63 49.42 77.20 55.48 33.32 40.94 75.05 47.92 19.27 27.82
ExAT + PGD 11/255 80.68 79.07 63.58 50.06 49.52 77.98 55.92 32.47 41.10 76.12 48.37 17.81 27.23
ExAT + AWP 10/255 80.18 78.04 63.15 49.87 49.69 76.34 54.64 33.51 41.04 74.37 46.54 20.04 28.40
AWP 8/255 80.47 78.22 63.32 50.06 49.87 76.88 54.61 33.47 41.05 74.42 46.16 19.66 28.51
OA-AT (Ours) 16/255 80.24 78.54 65.00 51.40 50.88 77.34 57.68 36.01 43.20 75.72 51.13 22.73 31.16

Gain w.r.t. AWP −0.23 +0.32 +1.68 +1.34 +1.01 +0.46 +3.07 +2.54 +2.15 +1.30 +4.97 +3.07 +2.65

Table A3. CIFAR-100: Performance (%) of the proposed defense OA-AT against attacks with different ε bounds, when compared to the
following baselines: AWP [30], ExAT [21], TRADES [31], ATES [22], PGD-AT [18] and FAT [1]. AWP [30] is the strongest baseline.
The baselines are sorted by AutoAttack accuracy [8] (AA 8/255). The proposed defense achieves significant gains in accuracy against the
strongest attacks across all ε bounds. Since the proposed defense uses AutoAugment [9] as the augmentation strategy, we present results
on the strongest baseline AWP [30] with AutoAugment as well.

Method Attack ε
(Training)

Clean FGSM (BB)
(8/255)

R-FGSM
(8/255)

GAMA
(8/255)

AA
(8/255)

FGSM (BB)
(12/255)

R-FGSM
(12/255)

GAMA
(12/255)

Square
(12/255)

FGSM (BB)
(16/255)

R-FGSM
(16/255)

GAMA
(16/255)

Square
(16/255)

FAT 8/255 56.61 52.10 34.76 23.36 23.20 49.54 27.77 13.96 18.21 46.01 22.52 8.30 11.56
TRADES 8/255 58.27 54.33 36.20 23.67 23.47 51.64 28.55 13.88 18.46 48.46 22.78 8.31 11.89
PGD-AT 8/255 57.43 53.71 37.66 24.81 24.33 50.90 30.07 13.51 19.62 47.43 23.18 7.40 11.64
ATES 8/255 57.54 53.62 37.05 25.08 24.72 50.84 29.18 13.75 19.42 47.35 22.89 7.59 11.40
ExAT-PGD 9/255 57.46 53.56 38.48 25.25 24.93 51.43 30.60 15.12 20.40 48.15 24.21 8.37 12.47
ExAT-AWP 10/255 57.76 53.46 37.84 25.55 25.27 50.42 30.39 14.98 19.72 46.99 24.48 9.07 12.68
AWP 8/255 58.81 54.13 37.92 25.51 25.30 50.72 30.40 14.71 19.82 46.66 23.96 8.68 12.44
AWP (with AutoAug.) 8/255 59.88 55.62 39.10 25.81 25.52 52.75 31.11 14.80 20.24 49.44 24.99 8.72 12.80
OA-AT (Ours) (with AutoAug.) 16/255 60.27 56.27 40.24 26.41 26.00 53.86 33.78 16.28 21.47 51.11 28.02 10.47 14.60

Gain w.r.t. AWP (with AutoAug.) +0.39 +0.65 +1.14 +0.60 +0.48 +1.11 +2.67 +1.48 +1.23 +1.67 +3.03 +1.75 +1.80

rating the augmentation technique, AutoAugment [9, 24].
To enable fair comparison, we incorporate AutoAugment
for the strongest baseline, AWP [30] as well. We observe
that the proposed method consistently performs better than
existing approaches by significant margins, both in terms
of clean accuracy, as well as robustness against adversarial
attacks conforming to the three distinct constraint sets. Fur-
ther, this also confirms that the proposed method scales well
to large, complex datasets, while maintaining a consistent
advantage in performance compared to other approaches.

A5. Gradient Masking Checks
As discussed by Athalye et al. [3], we present various checks
to ensure the absence of Gradient Masking in the proposed
defense. In Fig.A4(a,c), we observe that the accuracy of the
proposed defense on the CIFAR-10 and CIFAR-100 datasets

monotonically decreases to zero against 7-step PGD white-
box attacks as the perturbation budget is increased. This
shows that gradient based attacks indeed serve as a good
indicator of robust performance, as strong adversaries of
large perturbation sizes achieve zero accuracy, indicating
the absence of gradient masking. In Fig.A4(b,d), we plot
the Cross-Entropy loss against FGSM attacks with varying
perturbation budget. We observe that the loss increases
linearly, thereby suggesting that the first-order Taylor ap-
proximation to the loss surface indeed remains effective in
the local neighbourhood of sample images, again indicating
the absence of gradient masking.

We verify that the model achieves higher robust accuracy
against weaker Black-box attacks, as compared to strong
gradient based attacks such as GAMA or AutoAttack in
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Figure A4. Accuracy and Loss plots on a 1000-sample class-balanced subset of the respective test-sets of CIFAR-10 and CIFAR-100
datasets. (a, c) Plots showing the trend of Accuracy (%) against PGD-7 step attacks across variation in attack perturbation bound (ε) on
CIFAR-10 and CIFAR-100 datasets with ResNet-18 architecture. As the perturbation bound increases, accuracy against white-box attacks
goes to 0, indicating the absence of gradient masking [3] (b, d) Plots showing the variation of Cross-Entropy Loss on FGSM attack [11]
against variation in the attack perturbation bound (ε) on CIFAR-10 and CIFAR-100 datasets. As the perturbation bound increases, loss
increases linearly, indicating the absence of gradient masking [3]

Table A4. Evaluation against various attacks with a perturba-
tion bound of ε = 8/255 on CIFAR-10: Performance (%) of the
proposed defense OA-AT against various attacks (sorted by Robust
Accuracy) to ensure the absence of gradient masking. †Includes
5000-queries of Square attack.

Attack No. of Steps No. of restarts Robust Accuracy (%)

AutoAttack† [8] 100 20 50.88
GAMA-MT [23] 100 5 50.90
ODS (98 +2 steps) [26] 100 100 50.94
MDMT attack [15] 100 10 51.19
Logit-Scaling attack [4, 13] 100 20 51.26
GAMA-PGD [23] 100 1 51.40
MD attack [15] 100 1 51.47
PGD-50 (1000 RR) [18] 50 1000 55.37
PGD-1000 [18] 1000 1 56.15

Tables-A2,A3. We also observe that adversaries that con-
form to larger constraint sets are stronger than their coun-
terparts that are restricted to smaller epsilon bounds, as
expected.

In Table-A4, we perform exhaustive evaluations using var-
ious attack techniques to further verify the absence of gra-
dient masking. In addition to AutoAttack [8] which in
itself consists of an ensemble of four attacks- AutoPGD
with Cross-Entropy and Difference-of-Logits loss, the FAB
attack [7] and Square Attack [2], we present evaluations
against strong multi-targeted attacks such as GAMA-MT
[23] and the MDMT attack [15] which specifically target
other classes during optimization. We also consider the un-
targeted versions of the latter two attacks, the GAMA-PGD
and MD attack respectively. We also present robustness
against the ODS attack [26] with 100 restarts, which diversi-
fies the input random noise based on the output predictions
in order to obtain results which are less dependent on the
sampled random noise used for attack initialization. Next,
the Logit-Scaling attack [4, 13] helps yield robust evalua-
tions that are less dependent on the exact scale of output
logits predicted by the network, and is seen to be effective

on some defenses which exhibit gradient masking. However,
we observe that the proposed method is robust against all
such attacks, with the lowest accuracy being attained on the
AutoAttack ensemble.

Furthermore, we evaluate the model on PGD 50-step attack
run with 1000 restarts. The robust accuracy saturates with
increasing restarts, with the final accuracy still being higher
than that achieved on AutoAttack. Lastly, we observe that
the PGD-1000 attack is not very strong, confirming that the
accuracy does not continually decrease as the number of
steps used in the attack increases. Thus, we observe that
the proposed approach is robust against a diverse set of
attack methods, thereby confirming the absence of gradient
masking and verifying that the model is truly robust.


