
Contextual Stochastic Bilevel Optimization

Yifan Hu∗

EPFL & ETH Zürich
Switzerland

Jie Wang
Gatech

United States

Yao Xie
Gatech

United States

Andreas Krause
ETH Zürich
Switzerland

Daniel Kuhn
EPFL

Switzerland

Abstract

We introduce contextual stochastic bilevel optimization (CSBO) – a stochastic
bilevel optimization framework with the lower-level problem minimizing an ex-
pectation conditioned on some contextual information and the upper-level decision
variable. This framework extends classical stochastic bilevel optimization when
the lower-level decision maker responds optimally not only to the decision of
the upper-level decision maker but also to some side information and when there
are multiple or even infinite many followers. It captures important applications
such as meta-learning, personalized federated learning, end-to-end learning, and
Wasserstein distributionally robust optimization with side information (WDRO-SI).
Due to the presence of contextual information, existing single-loop methods for
classical stochastic bilevel optimization are unable to converge. To overcome this
challenge, we introduce an efficient double-loop gradient method based on the
Multilevel Monte-Carlo (MLMC) technique and establish its sample and computa-
tional complexities. When specialized to stochastic nonconvex optimization, our
method matches existing lower bounds. For meta-learning, the complexity of our
method does not depend on the number of tasks. Numerical experiments further
validate our theoretical results.

1 Introduction

A contextual stochastic bilevel optimization (CSBO) problem differs from a classical stochastic
bilevel optimization problem only in that its lower-level problem is conditioned on a given context ξ.

min
x∈Rdx

F (x) := Eξ∼Pξ,η∼Pη|ξ [f(x, y
∗(x; ξ); η, ξ)] (upper level)

where y∗(x; ξ) := argminy∈RdyEη∼Pη|ξ [g(x, y; η, ξ)] ∀ ξ and x. (lower level)
(1)

Here ξ ∼ Pξ and η ∼ Pη|ξ are random vectors, with Pη|ξ denoting the conditional distribution
of η for a given ξ. The dimensions of the upper-level decision variable x and the lower-level
decision variable y are dx and dy , respectively. The functions f and g are continuously differentiable
in (x, y) for any given sample pair (ξ, η). The function f(x, y; η, ξ) can be nonconvex in x, but
the function g(x, y; η, ξ) must be strongly convex in y for any given x, η and ξ. Thus, y∗(x; ξ)
is the unique minimizer of the strongly convex lower-level problem for any given x and ξ. Note
that, on its own, the lower-level problem can be viewed as a contextual stochastic optimization
problem [Bertsimas and Kallus, 2020] parametrized in x. We assume that the joint distribution of ξ
and η is unknown. However, we assume that we have access to any number of independent and
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identically distributed (i.i.d.) samples from Pξ, and for any given realization of ξ, we can generate
any number of i.i.d. samples from the conditional distribution Pη|ξ. The bilevel structure generally
makes the objective function F (x) nonconvex in the decision variable x, except for few special cases.
Thus we aim to develop efficient gradient-based algorithms for finding an ϵ-stationary point of the
nonconvex objective function F , i.e., a point x̂ satisfying the inequality E∥∇F (x̂)∥2 ≤ ϵ2.

CSBO generalizes the widely studied class of stochastic bilevel optimization (SBO) problems
[Ghadimi and Wang, 2018] whose lower-level problem minimizes an unconditional expectation.

min
x∈Rdx

Eξ∼Pξ
[f(x, y∗(x); ξ)]

where y∗(x) := argminy∈RdyEη∼Pη [g(x, y; η)].
(2)

Indeed, (2) is a special case of CSBO if the upper- and lower-level objective functions are stochasti-
cally independent. Another special case of CSBO is the conditional stochastic optimization (CSO)
problem [Hu et al., 2020a,b, He and Kasiviswanathan, 2023, Goda and Kitade, 2023] representable as

min
x∈Rdx

Eξ∼Pξ
[f(x,Eη∼Pη|ξ [h(x; η, ξ)]; ξ)]. (3)

Indeed, (3) is a special case of CSBO if we set g(x, y; η, ξ) = ∥y − h(x; η, ξ)∥2, in which case the
lower-level problem admits the unique closed-form solution y∗(x, ξ) = EPη|ξ [h(x; η, ξ)].

Applications. Despite the wide applicability of SBO to various machine learning and game theory
paradigms, SBO cannot capture two important cases. The first case involves the lower-level decision
maker responding optimally not only to the upper-level decision x but also to some side information
ξ like weather, spatial, and temporal information. The second case involves multiple lower-level
decision makers, especially when the total number is large. CSBO well captures these two settings
and encompasses various important machine learning paradigms as special cases, including meta-
learning [Rajeswaran et al., 2019], personalized federated learning [Shamsian et al., 2021, Xing
et al., 2022, Wang et al., 2023a], hierarchical representation learning [Yao et al., 2019], end-to-
end learning [Donti et al., 2017, Sadana et al., 2023, Rychener et al., 2023, Grigas et al., 2021],
Sinkhorn distributionally robust optimization (DRO) [Wang et al., 2023b], Wasserstein DRO with
side information [Yang et al., 2022], information retrieval [Qiu et al., 2022], contrastive learning [Qiu
et al., 2023], and instrumental variable regression [Muandet et al., 2020]. Below we provide a detailed
discussion of meta-learning, personalized federated learning, and end-to-end learning.

Meta-Learning and Personalized Federated Learning. Both applications can be viewed asspecial
cases of CSBO. For meta-learning with M tasks or personalized federated learning with M users,
the goal is to find a common regularization center θ shared by all tasks or all users.

min
x

Ei∼µEDtest
i ∼ρi

[
li(y

∗
i (x), D

test
i )

]
(upper level)

where y∗i (x) = argminyi EDtrain
i ∼ρi

[
li(yi, D

train
i ) +

λ

2
∥yi − x∥2

]
,∀i ∈ [M ], x. (lower level)

(4)
Here, µ is the empirical uniform distribution on [M ]. The upper-level problem minimizes the
generalization loss for all tasks/all users by tuning the joint regularization center x, and the lower-
level problem finds an optimal regularization parameter xi close to x for each individual task or user.
Note that M may be as large as O(103) in meta-learning and as large as O(109) in personalized
federated learning. Thus, it is crucial to design methods with complexity bounds independent of M .

End-to-End Learning. Traditionally, applications from inventory control to online advertising
involve a two-step approach: first estimating a demand function or the click-through rate, and then
making decisions based on this estimation. End-to-end learning streamlines this into a single-step
method, allowing the optimization to account for estimation errors, thereby enabling more informed
decisions. This can be framed as a special case of CSBO, where the upper-level problem seeks the best
estimator, while the lower-level problem makes optimal decisions based on the upper-level estimator
and the contextual information ξ. For example, in online advertising, x represents the click-through
rate estimator, and y∗(x; ξ) denotes the optimal advertisement display for a customer characterized
by the feature vector ξ. For a comprehensive review, see the recent survey paper [Sadana et al., 2023].

Challenges. Given the wide applicability of CSBO, it is expedient to look for efficient solution
algorithms. Unfortunately, when extended to CSBO, existing algorithms for SBO or CSO either
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suffer from sub-optimal convergence rates or are entirely unable to handle the contextual informa-
tion. Indeed, a major challenge of CSBO is to estimate y∗(x; ξ) for (typically) uncountably many
realizations of ξ. In the following, we explain in more detail why existing methods fail.

If the lower-level problem is strongly convex, then SBO can be addressed with numerous efficient
single-loop algorithms [Guo and Yang, 2021, Guo et al., 2021, Chen et al., 2022a, 2021, Hong
et al., 2023, Yang et al., 2021]. Indeed, as the unique minimizer y∗(x) of the lower-level problem
in (2) depends only on the upper-level decision variable x, these algorithms can sequentially update
the upper- and lower-level decision variables x and y in a single loop while ensuring that the
sequence {yt}t approximates {y∗(xt)}t. Specifically, these approaches leverage the approximation

y∗(xt+1)− y∗(xt) ≈ ∇y∗(xt)⊤(xt+1 − xt),

which is accurate if x is updated using small stepsizes. However, these algorithms generically
fail to converge on CSBO problems because the minimizer y∗(x; ξ) of the lower-level problem
in (1) additionally depends on the context ξ, i.e., each realization of ξ corresponds to a lower-level
constraint. Consequently, there can be infinitely many lower-level constraints. It is unclear how
samples from Pη|ξ corresponding to a fixed context ξ can be reused to estimate the minimizer y∗(x; ξ′)
corresponding to a different context ξ′. Since gradient-based methods sample ξt independently in
each iteration t, no single sequence {yt}t can approximate the function {y∗(xt, ξt)}t. Guo and Yang
[2021] and Hu et al. [2023] analyze a special case of the CSBO problem (1), in which ξ is supported
on M points as shown in (4). However, the sample complexity of their algorithm grows linearly
with M . In contrast, we develop methods for general CSBO problems and show that their sample
complexities are independent of the support of ξ.

SBO problems can also be addressed with double-loop stochastic gradient descent (DL-SGD),
which solve the lower-level problem to approximate optimality before updating the upper-level
decision variable [Ji et al., 2021, Ghadimi and Wang, 2018]. We will show that these DL-SGD
algorithms can be extended to CSBO problems and will analyze their sample complexity as well as
their computational complexity. Unfortunately, it turns out that, when applied to CSBO problems,
DL-SGD incurs high per-iteration sampling and computational costs to obtain a low-bias gradient
estimator for F . More precisely, solving the contextual lower-level problem to ϵ-optimality for a
fixed ξ requires O(ϵ−2) samples from Pη|ξ and gradient estimators for the function g, which leads to
a Õ(ϵ−6) total sample and computational complexity to obtain an ϵ-stationary point of F .

Methodology. Given these observations indicating that existing methods can fail or be sub-optimal
for solving the CSBO problem, we next discuss the motivation for our algorithm design. Our goal
is to build gradient estimators that share the same small bias as DL-SGD but require much fewer
samples and incur a much lower computational cost at the expense of a slightly increased variance.

To obtain estimators with low bias, variance, and a low sampling and computational cost, we
propose here a multilevel Monte Carlo (MLMC) approach [Giles, 2015, Hu et al., 2021, Asi et al.,
2021], which is reminiscent of the control variate technique, and combine it with inverse propensity
weighting [Glynn and Quinn, 2010]. We refer to the proposed method as random truncated MLMC
(RT-MLMC) and demonstrate that the RT-MLMC estimator for ∇F requires only O(1) samples
from Pη|ξ. This is a significant improvement vis-à-vis DL-SGD, which requires O(ϵ−2) samples.
Consequently, the sample complexity as well as the gradient complexity over g (i.e., the number
g-gradient evaluations) of RT-MLMC for finding an ϵ-stationary point of F is given by Õ(ϵ−4).

While the idea of using MLMC in stochastic optimization is not new [Hu et al., 2021, Asi et al.,
2021], the construction of MLMC gradient estimators for CSBO and the analysis of the variance of
the RT-MLMC gradient estimators are novel contributions of this work.

1.1 Our Contributions

• We introduce CSBO as a unifying framework for a broad range of machine learning tasks and
optimization problems. We propose two methods, DL-SGD and RT-MLMC, and analyze their
complexities; see Table 1 for a summary. When specialized to SBO and CSO problems, RT-MLMC
displays the same performance as the state-of-the-art algorithms for SBO [Chen et al., 2021]
and CSO [Hu et al., 2021], respectively. When specialized to classical stochastic nonconvex
optimization, RT-MLMC matches the lower bounds by Arjevani et al. [2023].
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Table 1: Complexity of the RT-MLMC and DL-SGD algorithms for finding an ϵ-stationary point
of F . The sample complexity refers to the total number of samples from Pξ as well as Pη|ξ.

Nonconvex CSBO Sample Complexity Gradient Complexity of g and f Per-iteration Memory Cost

RT-MLMC Õ(ϵ−4) Õ(ϵ−4) | Õ(ϵ−4) O(dx + dy)

DL-SGD Õ(ϵ−6) Õ(ϵ−6) | Õ(ϵ−4) O(dx + dy)

• For meta-learning with M tasks, the complexity bounds of RT-MLMC are constant in M . Thus,
RT-MLMC outperforms the methods by Guo and Yang [2021] and Hu et al. [2023] when M is
large. For Wasserstein DRO with side information [Yang et al., 2022], existing methods only cater
for affine and non-parametric decision rules. In contrast, RT-MLMC allows for neural network
approximations. We also present the first sample and gradient complexity bounds for WDRO-SI.

• For meta-learning and Wasserstein DRO with side information, our experiments show that the
RT-MLMC gradient estimator can be computed an order of magnitude faster than the DL-SGD
gradient estimator, especially when the contextual lower-level problem is solved to higher accuracy.

Preliminaries For any function ψ : Rdx × Rdy with arguments x ∈ Rdx and y ∈ Rdy , we use ∇ψ,
∇1ψ and ∇2ψ to denote the gradients of ψ with respect to (x, y), x and y, respectively. Similarly,
we use ∇2ψ, ∇2

11ψ and ∇2
22 to denote Hessians of ψ with respect to (x, y), x and y, respectively.

In addition, ∇2
12ψ stands for the (dx × dy)-matrix with entries ∂2xiyjψ. A function φ : Rd → R

is L-Lipschitz continuous if |φ(x) − φ(x′)| ≤ L∥x − x′∥ for all x, x′ ∈ Rd, and it is S-Lipschitz
smooth if it is continuously differentiable and satisfies ∥∇φ(x) − ∇φ(x′)∥ ≤ S∥x − x′∥ for
all x, x′ ∈ Rd. In addition, φ is called µ-strongly convex if it is continuously differentiable and if
φ(x)− φ(x′)−∇φ(x′)⊤(x− x′) ≥ µ

2 ∥x− x′∥2 for all x, x′ ∈ Rd. The identity matrix is denoted
by I . Finally, we use Õ(·) as a variant of the classical O(·) symbol that hides logarithmic factors.

2 Algorithms for Contextual Stochastic Bilevel Optimization
Throughout the paper, we make the following assumptions. Similar assumptions appear in the SBO
literature [Ghadimi and Wang, 2018, Guo and Yang, 2021, Chen et al., 2022a, 2021, Hong et al.,
2023].
Assumption 2.1. The CSBO problem (1) satisfies the following regularity conditions:

(i) f is continuously differentiable in x and y for any fixed η and ξ, and g is twice continuously
differentiable in x and y for any fixed η and ξ.

(ii) g is µg-strongly convex in y for any fixed x, η and ξ.

(iii) f , g, ∇f , ∇g and ∇2g are Lf,0, Lg,0, Lf,1, Lg,1 and Lg,2-Lipschitz continuous in (x, y) for
any fixed η and ξ, respectively.

(iv) If (η, ξ) ∼ P(η,ξ), then ∇f(x, y; η, ξ) is an unbiased estimator for ∇E(η,ξ)∼P(η,ξ)
[f(x, y; η, ξ)]

with variance σ2
f uniformly across all x and y. Also, if η ∼ Pη|ξ, then ∇g(x, y; η, ξ) is an

unbiased estimator for ∇Eη∼Pη|ξ [g(x, y; η, ξ)] with variance σ2
g,1, and ∇2g(x, y; η, ξ) is an un-

biased estimator for ∇2Eη∼Pη|ξ [g(x, y; η, ξ)] with variance σ2
g,1 uniformly across all x, y and ξ.

Assumption 2.1 ensures that problem (1) is well-defined. In particular, by slightly adapting the
proofs of [Ghadimi and Wang, 2018, Lemma 2.2] and [Hong et al., 2023, Lemma 2], it allows us
to show that F is LF -Lipschitz continuous as well as SF -Lipschitz smooth for some LF , SF > 0.
Assumptions 2.1 (i-iii) also imply that the gradients of f and g with respect (x, y) can be interchanged
with the expectations with respect to (η, ξ) ∼ Pη,ξ and η ∼ Pη|ξ. Hence, Assumptions 2.1 (i-iii)
readily imply the unbiasedness of the gradient estimators imposed in Assumption 2.1 (iv). In fact,
only the uniform variance bounds do not already follow from Assumptions 2.1 (i-iii).

In order to design SGD-type algorithms for problem (1), we first construct gradient estimators for F .
To this end, we observe that the Jacobian ∇1y

∗(x; ξ) ∈ Rdx×dy exists and is Lipschitz continuous
in x for any fixed ξ thanks to [Chen et al., 2021, Lemma 2]. By the chain rule, we therefore have

∇F (x) = E(η,ξ)∼P(η,ξ)

[
∇1f(x, y

∗(x; ξ); η, ξ) +∇1y
∗(x; ξ)⊤∇2f(x, y

∗(x; ξ); η, ξ)
]
.
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Algorithm 1 EpochSGD(K,x, ξ, y01)

Input: ♯ of epochs K, sample ξ, upper-level decision x, initial iterate y01 .
1: for k = 1 to K do
2: for j = 0 to 2k − 1 do
3: Sample ηjk from Pη|ξ and update yj+1

k = yjk − β02
−k∇2g(x, y

j
k; η

j
k, ξ).

4: end for
5: Update y0k+1 = 2−k

∑2k−1
j=0 yjk.

6: end for
Output: y01 , y0K , and y0K+1.

By following a similar procedure as in [Ghadimi and Wang, 2018], we can derive an explicit formula
for ∇1y

∗(x; ξ) (for details we refer to Appendix B) and substitute it into the above equation to obtain

∇F (x) = E(η,ξ)∼P(η,ξ)

[
∇1f(x, y

∗(x; ξ); η, ξ)

−
(
Eη′∼Pη|ξ∇

2
12g(x, y

∗(x; ξ); η′, ξ)
)
Λ(x, y∗(x; ξ); ξ)∇2f(x, y

∗(x; ξ); η, ξ)
]
,

where Λ(x, y; ξ) = (Eη∼Pη|ξ∇2
22g(x, y; η, ξ))

−1. Thus, the main challenges of constructing a
gradient estimator are to compute and store the minimizer y∗(x, ξ) as well as the inverse expected
Hessian matrix Λ(x, y; ξ) for all (potentially uncountably many) realizations of ξ. Computing these
two objects exactly would be too expensive. In the remainder of this section, we thus derive estimators
for y∗(x; ξ) and Λ(x, y; ξ), and we combine these two estimators to construct an estimator for ∇F (x).
Estimating y∗(x; ξ). We estimate y∗(x; ξ) using the gradient-based method EpochSGD by Hazan
and Kale [2014], Asi et al. [2021], which involves K epochs of increasing lengths. Each epoch
k = 1, . . . ,K starts from the average of the iterates computed in epoch k − 1 and then applies 2k
stochastic gradient steps to the lower-level problem with stepsize 2−k (see Algorithm 1). In the
following we use the output y0K+1 of Algorithm 1 with inputs K, x, ξ and y0 as an estimator for the
minimizer y∗(x; ξ) of the lower-level problem. We use EpochSGD for the following two reasons.
First, EpochSGD attains the optimal convergence rate for strongly convex stochastic optimization in
the gradient oracle model [Hazan and Kale, 2014]. In addition, it is widely used in practical machine
learning training procedures. Note that y∗(x; ξ) could also be estimated via classical SGD. Even
though this would lead to similar complexity results, the analysis would become more cumbersome.

Estimating Λ(x, y; ξ). Following [Ghadimi and Wang, 2018], one can estimate the inverse of an
expected random matrix A with 0 ≺ A ≺ I using a Neumann series argument. Specifically, we have

[EA∼PA
A]−1 =

∞∑
n′=0

(I − EA∼PA
A)n =

∞∑
n′=0

n′∏
n=1

EAn∼PA
(I −An) ≈

N∑
n′=0

n′∏
n=1

EAn∼PA
(I −An).

The truncated series on the right hand side provides a good approximation if N ≫ 1. Assump-
tion 2.1 (iii) implies that 0 ≺ ∇2

22g(x, y; ηn, ξ) ≺ 2Lg,1I . Hence, the above formula can be applied
to A = 1

2Lg,1
∇2

22g(x, y; ηn, ξ), which gives rise to an attractive estimator for Λ(x, y; ξ) of the form

Λ̂(x, y; ξ) :=


N

2Lg,1
I if N̂ = 0,

N
2Lg,1

∏N̂
n=1

(
I − 1

2Lg,1
∇2

22g(x, y; ηn, ξ)
)

if N̂ ≥ 1.
(5)

Here, N̂ is a random integer drawn uniformly from {0, 1, . . . , N − 1} that is independent of the
i.i.d. samples η1, . . . , ηN̂ from Pη|ξ. Chen et al. [2022b] showed that the estimator (5) displays the
following properties. Its bias decays exponentially with N , its variance grows quadratically with N ,
and its sampling cost grows linearly with N . Below we call N the approximation number.

Estimating ∇F (x) via DL-SGD. For any given K and N , we construct the DL-SGD estimator for
the gradient of F by using the following procedure: (i) generate a sample ξ from Pξ, (ii) generate
i.i.d. samples η′ and η′′ from the conditional distribution Pη|ξ, (iii) run EpochSGD as described in
Algorithm 1 with an arbitrary initial iterate y01 to obtain y0K+1, and (iv) construct Λ̂(x, y0K+1; ξ) as
in (5). Using these ingredients, we can now construct the DL-SGD gradient estimator as

v̂K(x) := ∇1f(x, y
0
K+1; η

′′, ξ)−∇2
12g(x, y

0
K+1; η

′, ξ)Λ̂(x, y0K+1; ξ)∇2f(x, y
0
K+1; η

′′, ξ). (6)
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Algorithm 2 SGD Framework
Input: ♯ of iterations T , stepsizes {αt}Tt=1, initial iterate x1.

1: for t = 1 to T do
2: Construct a gradient estimator v(xt) and update xt+1 = xt − αtv(xt).
3: end for

Output: x̂T uniformly sampled from {x1, ..., xT }.

In Lemma 2 below, we will analyze the bias and variance as well as the sampling and computational
costs of the DL-SGD gradient estimator. We will see that a small bias ∥E[v̂K ](x) −∇F (x)∥ ≤ ϵ
can be ensured by setting K = O(log(ϵ−1)), in which case EpochSGD computes O(ϵ−2) stochastic
gradients of g. From now on, we refer to Algorithm 2 with v(x) = v̂K(x) as the DL-SGD algorithm.

2.1 RT-MLMC Gradient Estimator
The bottleneck of evaluating the DL-SGD gradient estimators is the computation of y0K+1. The
computational costs can be reduced, however, by exploiting the telescoping sum property

v̂K(x) = v̂1(x) +
K∑
k=1

[v̂k+1(x)− v̂k(x)]

= v̂1(x) +

K∑
k=1

pk
v̂k+1(x)− v̂k(x)

pk
= v̂1(x) + Ek̂∼P

k̂

[ v̂k̂+1(x)− v̂k̂(x)

pk̂

]
,

where v̂k̂ is defined as in (6) with k = 1, . . . ,K replacing K, and where Pk̂ is a truncated geometric
distribution with Pk̂(k̂ = k) = pk ∝ 2−k for every k = 1, . . . ,K. This observation prompts us to
construct the RT-MLMC gradient estimator as

v̂(x) = v̂1(x) + p−1

k̂
(v̂k̂+1(x)− v̂k̂(x)). (7)

The RT-MLMC gradient estimator has three key properties:

• It is an unbiased estimator for the DL-SGD gradient estimator, i.e., Ek̂∼P
k̂
[v̂(x)] = v̂K(x).

• Evaluating v̂(x) requires computing y0k+1(x, ξ) with probability pk, which decays exponentially
with k. To ensure a small bias, we need to set K = O(log(ϵ−1)), and thus pK = O(ϵ). Hence,
most of the time, EpochSGD only needs to run over k ≪ K epochs. As a result, the average
sampling and computational costs are markedly smaller for RT-MLMC than for DL-SGD.

• Since v̂k+1(x) and v̂k(x) differ only in y0k+1 and y0k, both of which are generated by EpochSGD
and are thus highly correlated, v̂k+1(x)−v̂k(x) has a small variance thanks to a control variate ef-
fect [Nelson, 1990]. Hence, the variance of RT-MLMC is well-controlled, as shown in Lemma 2.

In Lemma 2 below, we will analyze the bias and variance as well as the sampling and computational
costs of the RT-MLMC gradient estimator. We will see that it requires only O(1) samples to ensure
that the bias drops to O(ϵ). This is in stark contrast to the DL-SGD estimator, which needs O(ϵ−2)
samples. The lower sample complexity and the corresponding lower computational cost come at
the expense of an increased variance of the order O(log(ϵ−1)). The construction of the RT-MLMC
gradient estimator is detailed in Algorithm 3. From now on, we refer to Algorithm 2 with v(x) = v̂(x)
as the RT-MLMC algorithm.

2.2 Memory and Arithmetic Operational Costs
The per-iteration memory and arithmetic operational cost of DL-SGD as well as RT-MLMC is
dominated by the cost of computing the matrix-vector product

ĉ(x, y; ξ) := ∇2
12g(x, y; η

′, ξ)Λ̂(x, y; ξ)∇2f(x, y; η
′′, ξ). (8)

By (5), Λ̂(x, y; ξ) is a product of N̂ matrices of the form I − 1/(2Lg,1)∇22g(x, y; ηn, ξ), and the
n-th matrix coincides with the gradient of (y − 1/(2Lg,1)∇2g(x, y; ηn, ξ)) with respect to y. We
can thus compute (8) recursively as follows. We first set v = ∇2f(x, y; η

′′, ξ). Next, we update v by
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Algorithm 3 RT-MLMC Gradient Estimator for Conditional Bilevel Optimization
Input: Iterate x, largest epoch number K, initialization y01 , approximation number N

1: Sample ξ from Pξ and sample N̂ uniformly from {0, . . . , N − 1}.
2: Sample k̂ from the truncated geometric distribution Pk̂.
3: Run EpochSGD(k̂, x, ξ, y01) and obtain y0

k̂+1
, y0
k̂
, and y01 .

4: Construct v̂k̂+1(x), v̂k̂(x), and v̂1(x) according to (6) and compute

v̂(x) = v̂1(x) + p−1

k̂
(v̂k̂+1(x)− v̂k̂(x)).

Output: v̂(x).

setting it to the gradient of (y− 1/(2Lg,1)∇2g(x, y; ηN̂ , ξ))
⊤v with respect to y, which is computed

via automatic differentiation. This yields v = (I − 1/(2Lg,1)∇22g(x, y; ηN̂ , ξ))∇2f(x, y; η
′′, ξ).

By using a backward recursion with respect to n, we can continue to multiply v from the left with the
other matrices in the expansion of Λ̂(x, y; ξ). This procedure is highly efficient because the memory
and arithmetic operational cost of computing the product of a Hessian matrix with a constant vector
via automatic differentiation is bounded—up to a universal constant—by the cost of computing the
gradient of the same function [Rajeswaran et al., 2019]. See Algorithm 4 in Appendix C for details.
The expected arithmetic operational costs of Algorithm 4 is O(Nd) and the memory cost is O(d).

3 Complexity Bounds

In this section we derive the sample and gradient complexities of the proposed algorithms. We first
analyze the error of the general SGD framework detailed in Algorithm 2.
Lemma 1 (Error Analysis of Algorithm 2). If Algorithm 2 is used to minimize an Lψ-Lipschitz
continuous and Sψ-Lipschitz smooth fucntion ψ(x) and if α ≤ 1/(2Sψ), then we have

E∥∇ψ(x̂T )∥2 ≤ 2A1

αT + 2
T

∑T
t=1

[
Lψ∥E[v(xt) − ∇ψ(xt)]∥ + SψαE∥v(xt) − ∇ψ(xt)∥2

]
,

where A1 := ψ(x1)−minx ψ(x).

Lemma 1 sightly generalizes [Rakhlin et al., 2012, Ghadimi et al., 2016, Bottou et al., 2018]. We defer
the proof to Appendix A. Thus, to prove convergence to a stationary point, we need to characterize
the bias, variance, and computational costs of the DL-SGD and the RT-MLMC gradient estimators.
Lemma 2 (Bias, Variance, Sampling Cost and Computational Cost). We have the following results.

• The biases of the DL-SGD and RT-MLMC estimators match and satisfy

∥Ev̂K(x)−∇F (x)∥ = ∥Ev̂(x)−∇F (x)∥ ≤ µ−1
g (1− µg/(2Lg,1))

N +O(N22−K/2),

and the corresponding variances satisfy Var(v̂K(x)) = O(N2) and Var(v̂(x)) = O(KN4).

• The numbers of samples and iterations needed by EpochSGD to build a DL-SGD estimator are
bounded by N + 2K+1 − 1 and 2K+1 − 1, respectively. The expected numbers of samples and
iterations needed for an RT-MLMC estimator are bounded by N + 3K and 3K, respectively.

Lemma 2 implies that setting N = O(log(ϵ−1)) and K = O(log(ϵ−1)) reduces the bias to O(ϵ).
In this case the RT-MLMC estimators have higher variances than the DL-SGD estimators, but their
variances are still of the order O(log(ϵ−1)). On the other hand, using RT-MLMC estimators reduces
the per-iteration sampling and computational costs from O(2K) = O(ϵ−2) to O(K) = O(log(ϵ−1)).

Note that Hu et al. [2021] characterize the properties of general MLMC estimators and derive their
complexity bounds. However, the proposed RT-MLMC estimators for CSBO problems are the first of
their kind. In addition, as we need to estimate the Hessian inverse Λ(x, y∗(x; ξ); ξ), our analysis is
more involved. In contrast to Asi et al. [2021], who use MLMC techniques for estimating projections
and proximal points, we use MLMC techniques for estimating gradients in bilevel optimization. The
following main theorem summarizes our complexity bounds.
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Figure 1: Test error of DL-SGD (left figure), RT-MLMC (right figure), and MAML against upper-level
iterations on meta-learning. K represents how accurately we solve the lower-level problem.

Theorem 1 (Complexity Bounds). If Assumption 2.1 holds, then Algorithm 2 based on the RT-
MLMC or the DL-SGD estimator outputs an ϵ-stationary point of F provided that N = O(log(ϵ−1)),
K = O(log(ϵ−1)), α = O(ϵ2) and T = O(ϵ−4). When using the RT-MLMC estimator, the sample
complexities of ξ and η as well as the gradient complexities of g and f are Õ(ϵ−4). When using the
DL-SGD estimator, the sample complexity of η and the gradient complexity of g are Õ(ϵ−6), while
and the sample complexity of ξ and the gradient complexity of f are Õ(ϵ−4).

Remark. Theorem 1 asserts that the sample complexity of η and the gradient complexity of g are
much smaller for RT-MLMC than for DL-SGD, while the gradient complexities of f are comparable.
When specialized to SBO or CSO problems, the complexity bounds of RT-MLMC match those of the
state-of-the-art algorithms ALEST for SBO problems [Chen et al., 2021] and MLMC-based methods
for CSO problems [Hu et al., 2021]. When restricted to classical stochastic nonconvex optimization,
the complexity bounds of RT-MLMC match the existing lower bounds [Arjevani et al., 2023]. These
observations further highlight the effectiveness of RT-MLMC across various settings.

4 Applications and Numerical Experiments

4.1 Meta-Learning
Optimization-based meta-learning [Finn et al., 2017, Rajeswaran et al., 2019] aims to find a common
shared regularization parameter for multiple similar yet different machine learning tasks in order
to avoid overfitting when training each task separately on their datasets that each only processes
a few data points. Recall Equation (4), the objective function of the optimization-based meta-
learning [Rajeswaran et al., 2019],

min
x

Ei∼µEDtest
i ∼ρi

[
li(y

∗
i (x), D

test
i )

]
where y∗i (x) = argminyi EDtrain

i ∼ρi
[
li(yi, D

train
i ) +

λ

2
∥yi − x∥2

]
,∀i ∈ [M ] and x.

(9)

where µ is the distribution over all M tasks, ρi is the distribution of data from the task i, Dtrain
i

and Dtest
i are the training and testing dataset of the task i, x is the shared parameter of all tasks and

y∗i (x) is the best parameter for a regularized objective of task i, li is a loss function that measures the
average loss on the dataset of the i-th task, and λ is the regularization parameter to ensure the optimal
solution obtained from the lower-level problem is not too far from the shared parameter obtained from
the upper-level problem. Note that such a problem also occurs in personalized federated learning
with each lower level being one user.

Note that the task distribution µ is usually replaced by averaging over all M tasks. In such cases,
existing works [Guo and Yang, 2021, Rajeswaran et al., 2019] only demonstrate a convergence rate
that scales linearly with the number of tasks M . In contrast, the sample complexity of our proposed
method does not depend on the number of tasks M , enabling substantially faster computation for
a larger M . The seminal work, Model-agnostic Meta-learning (MAML) [Finn et al., 2017], is an
approximation of Problem (9) via replacing y∗i (x) with one-step gradient update, i.e., ŷi(x) :=
x− λ−1∇li(x,Dtrain

i ).

We study the case where the loss function li(x,D),∀i is a multi-class logistic loss using a linear
classifier. The experiment is examined on tinyImageNet [Mnmoustafa, 2017] by pre-processing
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Figure 2: Left: Performance of our proposed RT-MLMC algorithm and BSVRBv2 against upper-level
iterations on meta-learning. Right: Performance of algorithms against the total computational time
on meta-learning.

it using the pre-trained ResNet-18 network [He et al., 2016] to extract linear features. Since the
network has learned a rich set of hierarchical features from the ImageNet dataset [Deng et al., 2009],
it typically extracts useful features for other image datasets. Note that each task consists of labels
of similar characteristics.

Table 2: The computation time of DL-SGD/RT-
MLMC gradient estimators on meta-learning.

K
DL-SGD RT-MLMC

Mean Variance Mean Variance
6 2.65e-02 6.34e-03 2.73e-02 1.46e-02
8 7.23e-02 7.77e-03 3.41e-02 1.85e-02
10 2.48e-01 2.75e-02 4.93e-02 4.06e-02
12 9.38e-01 3.71e-02 1.08e-01 5.44e-02

Figure 1 presents the average of logistic loss
evaluated on the test dataset against the number
of iterations, with each iteration representing
one upper-level update. From the plot, we see
that both DL-SGD and RT-MLMC methods tend
to have better generalization performance when
using a larger number of levels K. As shown
in Table 2, RT-MLMC is about 9 times faster to
compute the upper-level gradient estimator than
DL-SGD when K is large.

In contrast, the MAML baseline does not have superior performance since the one-step gradient
update does not solve the lower-level problem to approximate global optimality. In Appendix D.1,
we provide numerical results for a modified MAML algorithm with multiple gradient updates, which
achieves better performance compared to MAML but is still worse than our proposed method.

After the initial submission of the paper, a con-current work Hu et al. [2023] proposed two types
of algorithms (BSVRBv1 and BSVRBv2) that apply to the meta-learning formulation (9). Their
proposed algorithm BSVRBv1 is computationally expansive as it requires the exact computation of
the inverse of Hessian matrix (which is of size 5120× 5120 in this example) with respect to θ in each
iteration of the upper-level update. In the following, we compare the performance of our algorithm
with their proposed Hessian-free algorithm BSVRBv2 in Figure 2.

In the left plot of Figure 2, we examine the performance of RT-MLMC method and BSVRBv2

by running the same number of total epochs. It shows that RT-MLMC method has much better
performance in terms of test error. In the right plot of Figure 2, we examine the performance of
RT-MLMC method and BSVRBv2 by running the same amount of computational time. Although
the per-upper-level-iteration computational costs of BSVRBv2 is small, it takes a much longer time
for BSVRBv2 to achieve a similar test error as RT-MLMC.

4.2 Wasserstein DRO with Side Information

The WDRO-SI [Yang et al., 2022] studies robust stochastic optimization with side information [Bert-
simas and Kallus, 2020]. Let ξ denote the side information and η denote the randomness dependent
on ξ. The WDRO-SI seeks to find a parameterized mapping f(x; ξ) from the side information ξ to a
decision w that minimizes the expected loss w.r.t. η under the worst-case distributional shifts over
(ξ, η). Rigorously, with a penalty on the distributional robust constraint, WDRO-SI admits the form

min
x

max
P

{
E(ξ,η)∼P[l(f(x, ξ); η)]− λC(P,P0)

}
, (10)
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Figure 3: Test error on WDRO-SI against the number of upper-level updates for DL-SGD (left) and RT-MLMC
(middle). Figure (Right) compares WDRO-SI with ERM and Wasserstein DRO that do not incorporate side
information. m means the number of samples of Z generated from PZ|X for each realization of X .

where l(w; η) is the loss function dependent on the decision w and the random variable η, P0 is
the nominal distribution of (ξ, η) that usually takes the form of an empirical distribution, and C(·, ·)
is a casual transport distance between distributions [Yang et al., 2022, Definition 1] – a variant of
the Wasserstein distance that better captures the information from ξ. For distributionally robust
feature-based newsvendor problems [Zhang et al., 2023], the covariate ξ can be temporal, spatial, or
weather information, η is the random demand, f(x; ξ) denotes the ordering quantity for a given ξ,
and l(f(x; ξ); η) characterizes the loss if the ordering quantity f(x; ξ) does not match the demand η.

Incorporating the cost function of the casual transport distance used in [Yang et al., 2022] and utilizing
the dual form, the WDRO-SI problem in (10) can be reformulated as a special case of CSBO:

min
x

Eξ∼P0
ξ
Eη∼P0

η|ξ

[
l(f(x; y∗(x; ξ)), η)− λ∥y∗(x; ξ)− ξ∥2

]
(upper level)

where y∗(x; ξ) := argminξ̃ Eη∼P0
η|ξ

[
− l(f(x; ξ̃), η) + λ∥ξ − ξ̃∥2

]
, ∀ξ̃ and x. (lower level)

(11)

The original work [Yang et al., 2022] only allows affine function f or non-parametric approximation,
while our approach allows using neural network approximation such that f(x; ξ) is a neural network
parameterized by x. Using Theorem 1, we obtain the first sample and gradient complexities for
WDRO-SI. For the distributionally robust feature-based newsvendor problems, we compare the
performance of DL-SGD and RT-MLMC. We compare with ERM and WDRO, which do not
incorporate side information.

Fig. 3 (left) and (middle) present the results of test loss versus the number of upper-level iterations
for DL-SGD and RT-MLMC, respectively. From the plot, using a larger number of epochs K for the
lower-level problem generally admits lower testing loss values, i.e., better generalization performance.

Table 3: Computation time of DL-SGD/RT-
MLMC gradient estimators for WDRO-SI.

K
DL-SGD RT-MLMC

Mean Variance Mean Variance
2 1.27e-02 2.67e-03 5.04e-03 7.26e-04
4 5.25e-02 2.58e-03 1.25e-02 8.26e-03
6 1.68e-01 2.74e-03 2.02e-02 9.39e-03
8 4.63e-01 2.08e-03 3.41e-02 1.68e-02

Fig. 3 (right) highlights the importance of in-
corporating side information as the performance
of WDRO-SI outperforms the other two base-
lines. In addition, more observations of η for
a given side information ξ can enhance the per-
formance. Table 3 reports the computational
time for DL-SGD and RT-MLMC gradient esti-
mators, and RT-MLMC is significantly faster
since it properly balances the bias-variance-
computation trade-off for the gradient simula-
tion.

5 Conclusion
We introduced the class of contextual stochastic bilevel optimization problems, which involve a
contextual stochastic optimization problem at the lower level. In addition, we designed efficient
gradient-based solution schemes and analyzed their sample and gradient complexities. Numerical
results on two complementary applications showcase the expressiveness of the proposed problem
class as well as the efficiency of the proposed algorithms. Future research should address generalized
CSBO problems with constraints at the lower level, which will require alternative gradient estimators.
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Appendices
A Proofs of Technical Results

Proof of Lemma 1. Since the function ψ is Sψ-Lipschitz smooth, we have

Eψ(xt+1)− ψ(xt)

≤E∇ψ(xt)⊤(xt+1 − xt) +
Sψ
2
E∥xt+1 − xt∥2

=− αtE∇ψ(xt)⊤v(xt) +
Sψαt

2

2
E∥v(xt)∥2

≤− αtE∥∇ψ(xt)∥2 + αtE∇ψ(xt)⊤(∇ψ(xt)− v(xt))

+ Sψαt
2E∥v(xt)−∇ψ(xt)∥2 + Sψαt

2E∥∇ψ(xt)∥2

=− (αt − Sψαt
2)E∥∇ψ(xt)∥2 + αtE∇ψ(xt)⊤(∇ψ(xt)− v(xt)) + Sψαt

2E∥v(xt)−∇ψ(xt)∥2

=− (αt − Sψαt
2)E∥∇ψ(xt)∥2 + αtE[∇ψ(xt)⊤E[∇ψ(xt)− v(xt) | xt]]

+ Sψαt
2E∥v(xt)−∇ψ(xt)∥2

≤− αt/2E∥∇ψ(xt)∥2 + αtE[∇ψ(xt)⊤E[∇ψ(xt)− v(xt) | xt]] + Sψαt
2E∥v(xt)−∇ψ(xt)∥2

≤− αt/2E∥∇ψ(xt)∥2 + αtE[∥∇ψ(xt)∥∥E[∇ψ(xt)− v(xt) | xt]∥] + Sψαt
2E∥v(xt)−∇ψ(xt)∥2,

where the first inequality uses Lipschitz smoothness of ψ, the first equality uses the updates of the
SGD algorithm, the second inequality uses the Cauchy-Schwarz inequality, the third equality uses the
conditional expectation and the tower property, the third inequality uses the fact that αt ≤ 1/(2Sψ),
and the fourth inequality uses the Cauchy-Schwarz inequality.

Rearranging terms and setting αt = α, we have

E∥∇ψ(xt)∥2 ≤ 2(Eψ(xt)− Eψ(xt+1))

α

+ 2E∥∇ψ(xt)∥∥E[∇ψ(xt)− v(xt) | xt]∥+ 2SψαE∥v(xt)−∇ψ(xt)∥2.
Averaging from t = 1 to t = T , we have

E∥∇ψ(x̂T )∥2 =
1

T

T∑
t=1

E∥∇ψ(xt)∥2 ≤ 2(ψ(x1)−minx ψ(x))

αT

+
2

T

T∑
t=1

E∥∇ψ(xt)∥∥E[∇ψ(xt)− v(xt) | xt]∥+
2Sψα

T

T∑
t=1

E∥v(xt)−∇ψ(xt)∥2

≤ 2(ψ(x1)−minx ψ(x))

αT
+

2

T

T∑
t=1

[
Lψ∥E[∇ψ(xt)− v(xt)]∥+ SψαE∥v(xt)−∇ψ(xt)∥2

]
,

where the inequality holds as ψ is Lψ-Lipschitz continuous and thus ∥∇ψ(x)∥ ≤ Lψ for all x.

To demonstrate the bias, variance as well as sampling and computational costs for building DL-SGD
and RT-MLMC gradient estimators, we first show the iterate convergence of EpochSGD on the
lower-level minimization problem with the side information. The analysis follows similarly as [Hazan
and Kale, 2014, Asi et al., 2021].
Lemma 3 (Error of EpochSGD). For given x and ξ, the iterates y0K+1 of Algorithm 1 with β0 =

(4µg)
−1 satisfies

E∥y0K+1 − y∗(x; ξ)∥2 ≤ 2L2
g,0µ

−2
g 2−(K+1).

It is important to note that the initial stepsize, denoted as β0, doesn’t necessarily have to be equal
to (4µg)

−1. Indeed, equivalent results can be achieved with a constant β0 > 0. The choice of this
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specific β0 value is primarily to streamline the analysis. In reality, there are numerous instances
where the value of µg is unknown beforehand. Under such circumstances, one practical approach
could be to set β0 to a standard value, such as 0.4.

Proof of Lemma 3. Denote G(x, y; ξ) := Eη|ξg(x, y; η, ξ). For the ease of notation, throughout the
proof, E denotes taking full expectation conditioned on a given x and ξ. Utilizing the update of y in
the k-th epoch of EpochSGD algorithm, it holds for any y and any j = 0, . . . , 2k − 1 that

E∥yj+1
k − y∥2

=E∥yjk − βk∇2g(x, y
j
k; η

j
k, ξ)− y∥2

=E∥yjk − y∥2 + β2
kE∥∇2g(x, y

j
k; η

j
k, ξ)∥

2 − 2βkE∇2g(x, y
j
k; η

j
k, ξ)

⊤(yjk − y)

≤E∥yjk − y∥2 + β2
kL

2
g,0 − 2βk(EG(x, yjk; ξ)−G(x, y; ξ)),

where the inequality utilizes the convexity of g and G in y. Rearranging terms, the above inequality
yields

EG(x, yjk; ξ)−G(x, y; ξ) ≤
E∥yjk − y∥2 − E∥yj+1

k − y∥2

2βk
+
βkL

2
g,0

2
.

Summing up from j = 0 to j = 2k − 1 and dividing 2k on both sides, we obtain the relation

EG(x, y0k+1; ξ)−G(x, y; ξ)

≤ 1

2k

2k−1∑
j=0

EG(x, yjk; ξ)−G(x, y; ξ) ≤ E∥y0k − y∥2

2βk2k
+
βkL

2
g,0

2
,

(12)

where the inequality uses the convexity of G in y and Jensen’s inequality.

Since G(x, y; ξ) is µg-strongly convex in y for any given x and ξ, it holds that

G(x, y01 ; ξ)−G(x, y∗(x; ξ); ξ)

≤−∇2G(x, y
0
1 ; ξ)

⊤(y∗(x; ξ)− y01)−
µg
2
∥y∗(x; ξ)− y01∥2

≤max
y

{
−∇2G(x, y

0
1 ; ξ)

⊤(y − y01)−
µg
2
∥y − y01∥2

}
=
∥∇2G(x, y

0
1 ; ξ)∥2

2µg
≤
L2
g,0

2µg
.

Next, we use induction on k to show

EG(x, y0k; ξ)−G(x, y∗(x; ξ); ξ) ≤
L2
g,0

2kµg
.

The base step for k = 1 follows from the inequality established above. As for the induction step,
suppose that

EG(x, y0k; ξ)−G(x, y∗(x; ξ); ξ) ≤
L2
g,0

2kµg
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holds for some k ≥ n. Plugging y = y∗(x; ξ) into (12), we thus find

EG(x, y0k+1; ξ)−G(x, y∗(x; ξ); ξ) ≤E∥y0k − y∗(x; ξ)∥2

2βk2k
+
βkL

2
g,0

2

≤EG(x, y0k; ξ)−G(x, y∗(x; ξ); ξ)

µgβk2k
+
β0L

2
g,0

2K+1

=
EG(x, y0k; ξ)−G(x, y∗(x; ξ); ξ)

µgβ0
+
β0L

2
g,0

2K+1

≤
L2
g,0

µ2
gβ02

k
+
β0L

2
g,0

2k+1

=
L2
g,0

µg2k+2
+

L2
g,0

µg2k+3

≤
L2
g,0

µg2k+1
,

where the second inequality uses the strong convexity of G in y and the fact that y∗(x; ξ) minimizes
G, the first equality uses our assumption that βk = β0/2

k, the third inequality uses the induction
condition, and the second equality inequality uses the definition of β0 = (4µg)

−1. It concludes the
induction. Therefore, we have

EG(x, y0K+1; ξ)−G(x, y∗(x; ξ); ξ) ≤
L2
g,0

µg2K+1
.

By the µg-strong convexity of G(x, y, ; ξ) and the fact that y∗(x; ξ) is the minimizer, we thus have

E∥y0K+1 − y∗(x; ξ)∥2 ≤ 2

µg
EG(x, y0K+1; ξ)−G(x, y∗(x; ξ); ξ) ≤

L2
g,0

µ2
g2
K
.

Proof of Lemma 2. We first demonstrate the properties of the RT-MLMC gradient estimator and then
show that of the DL-SGD gradient estimator. To facilitate the analysis, we define

V (x) = EPξ,Pη|ξ

[
∇1f(x, y

∗(x; ξ); η, ξ)

−
(
EPη′|ξ∇

2
12g(x, y

∗(x; ξ); η′, ξ)
)
E{ηn}N̂

n=1∼Pη|ξ
[Λ̂(x, y∗(x; ξ); ξ)]∇2f(x, y

∗(x; ξ); η, ξ)
]
.

RT-MLMC gradient estimator By the triangle inequality, we have

∥Ev̂(x)−∇F (x)∥ ≤ ∥Ev̂(x)− V (x)∥+ ∥V (x)−∇F (x)∥.
From Chen et al. [2022b, Lemma 2.2], we know for given x, y, and ξ that

∥E{ηn}N̂
n=1∼Pη|ξ

[Λ̂(x, y; ξ)]− Λ(x, y; ξ)∥ ≤ 1

µg

(
1− µg

2Lg,1

)N
Utilizing Lipschitz continuity of ∇g and f , we know that

∥V (x)−∇F (x)∥ ≤ Lg,1Lf,0
µg

(
1− µg

2Lg,1

)N
.

On the other hand, by the definition of v̂(x), we have

Ev̂(x)− V (x)

=E∇1f(x, y
0
K+1; η, ξ)− E∇1f(x, y

∗(x; ξ); η, ξ)

+ E∇2
12g(x, y

0
K+1; η, ξ)

[
Λ̂(x, y0K+1; ξ)

]
∇2f(x, y

0
K+1; η, ξ)

− E∇2
12g(x, y

∗(x; ξ); η′, ξ)
[
Λ̂(x, y∗(x; ξ); ξ)

]
∇2f(x, y

∗(x; ξ); η′, ξ).
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By the Lipschitz continuity of ∇f and Lemma 3, we have∥∥∥E∇1f(x, y
0
K+1; η, ξ)− E∇1f(x, y

∗(x; ξ); η, ξ)
∥∥∥

≤Lf,1E∥y0K+1 − y∗(x; ξ)∥

≤Lf,1Lg,0
µg2K/2

.

Utilizing the Lipschitz continuity of ∇f , ∇g, and ∇2g in y, we have

∥Ev̂(x)− V (x)∥

≤Lf,1E∥y0K+1 − y∗(x; ξ)∥+ Lg,1Lf,1N

Lg,1
E∥y0K+1 − y∗(x; ξ)∥+ Lf,0Lg,2N

Lg,1
E∥y0K+1 − y∗(x; ξ)∥

+ Lf,0Lg,1
N

Lg,1

N∑
N ′=1

1

N ′N
′E∥y0K+1 − y∗(x; ξ)∥

≤Lf,1Lg,0
µg2K/2

+
(Lg,1Lf,1N

Lg,1
+
Lf,0Lg,2N

Lg,1
+ Lf,0Lg,1

N2

Lg,1

) Lg,0
µg2K/2

=O
( N2

2K/2

)
.

Next, we show the sampling and computational costs. To build up the RT-MLMC gradient estimator
v̂(x), we need one sample of ξ, and the number of samples of η from Pη|ξ is

N∑
N ′=1

1

N ′N
′ +

K∑
k=1

(2k+1 − 1)
2−k

1− 2−K−1
< N + 3K.

On average, the iteration needed for EpochSGD is
K∑
k=1

(2k+1 − 1)
2−k

1− 2−K−1
< 3K.

Next, we demonstrate the variance of v̂(x). Denote

HK(1) := ∇1f(x, y
0
K ; η′′, ξ),

HK(2) := ∇2
12g(x, y

0
K ; η′, ξ)

[
Λ̂(x, y0K ; ξ)

]
∇2f(x, y

0
K ; η′′, ξ),

H∗(1) := ∇1f(x, y
∗(x; ξ); η′′, ξ),

H∗(2) := ∇2
12g(x, y

∗(x; ξ); η′, ξ)
[
Λ̂(x, y∗(x; ξ); ξ)

]
∇2f(x, y

∗(x; ξ); η′′, ξ).

Thus one may rewrite v̂(x) and V (x) as

v̂(x) =
Hk+1(1)−Hk(1)−Hk+1(2) +Hk(2)

pk
+H1(1)−H1(2),

V (x) = E[H∗(1)−H∗(2)].

It holds that

E∥v̂(x)− Ev̂(x)∥2

≤E∥v̂(x)− V (x)∥2

≤2E∥v̂(x)−H1(1) +H1(2)∥2 + 2E∥H1(1)−H1(2)− V (x)∥2

≤4E
∥∥∥ 1

pk
(Hk+1(1)−Hk(1))

∥∥∥2 + 4E
∥∥∥ 1

pk
(Hk+1(2)−Hk(2))

∥∥∥2 + 2E∥H1(1)−H1(2)− V (x)∥2,

where the first inequality holds by the definition of variance, the second inequality holds by the
Cauchy-Schwarz inequality, the third inequality uses the Cauchy-Schwarz inequality and the definition

of v̂(x). It remains to analyze E
∥∥∥ 1
pk
(Hk+1(1) − Hk(1))

∥∥∥2, E
∥∥∥ 1
pk
(Hk+1(2) − Hk(2))

∥∥∥2, and

E∥H1(1)−H1(2)− V (x)∥2.
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• For the first term, we have

E
∥∥∥ 1

pk
(Hk+1(1)−Hk(1))

∥∥∥2
=

K∑
k=1

p−1
k E∥Hk+1(1)−Hk(1)∥2

≤
K∑
k=1

p−1
k L2

f,1E∥y0k+1 − y0k∥2

≤
K∑
k=1

p−1
k L2

f,12(E∥y0k+1 − y∗(x; ξ)∥+ E∥y∗(x; ξ)− y0k∥2)

≤
K∑
k=1

p−1
k L2

f,1

6L2
g,0

µ2
g2
k

≤KL2
f,1

6L2
g,0

µ2
g

,

where the first inequality uses the Lipschitz continuity of ∇f , the second inequality uses the
Cauchy-Schwarz inequality, the third inequality uses Lemma 3, and the last inequality uses the
definition of pk.

• For the second term, we may conduct a similar analysis.

E
∥∥∥ 1

pk
(Hk+1(2)−Hk(2))

∥∥∥2
=

K∑
k=1

p−1
k E∥Hk+1(2)−HK(2)∥2

≤
K∑
k=1

p−1
k 6

(
L2
f,1N

2 +
L2
f,0L

2
g,2N

2

L2
g,1

+ L2
f,0N

4
)
E∥y0K+1 − y0K∥2

≤
K∑
k=1

p−1
k 2

( L2
g,0

µ2
g2
K

+
L2
g,0

µ2
g2
K−1

)
6
(
L2
f,1N

2 +
L2
f,0L

2
g,2N

2

L2
g,1

+ L2
f,0N

4
)

=
36KL2

g,0

µ2
g

(
L2
f,1N

2 +
L2
f,0L

2
g,2N

2

L2
g,1

+ L2
f,0N

4
)
,

where the first inequality follows utilizing Lipschitz continuity of f , ∇f , ∇g, ∇2g in y, the
second inequality uses Lemma 3, and the last inequality uses the definition of pk.

• For the third term, we have

E∥H1(1)−H1(2)− V (x)∥2

≤2E∥H1(1)− EH∗(1)∥2 + 2E∥H1(2)− EH∗(2)∥2

Notice that

E∥H1(1)− EH∗(1)∥2

=E∥∇1f(x, y
0
1 ; η, ξ)− E∇1f(x, y

0
1 ; η, ξ)∥2

+ E∥E∇1f(x, y
0
1 ; η, ξ)− E∇1f(x, y

∗(x; ξ); η, ξ)∥2

≤σ2
f +

L2
f,1L

2
g,0

2µ2
g

,
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where the first equality holds as E∥a + b∥2 = E∥a∥2 + E∥b∥2 + 2Ea⊤b, and last inequality
holds by Lemma 3 and the Lipschitz continuity of ∇f . On the other hand, we have

E∥H1(2)− EH∗(2)∥2

=E∥H1(2)− EH1(2)∥2 + E∥EH1(2)− EH∗(2)∥2

≤E∥H1(2)∥2 + E∥EH1(2)− EH∗(2)∥2

≤L2
g,1L

2
f,0

N∑
N̂=1

1

N̂

N2

4Lg,1
+ 6

(
L2
f,1N

2 +
L2
f,0L

2
g,2N

2

L2
g,1

+ L2
f,0N

4
)L2

g,0

2µ2
g

=L2
g,1L

2
f,0

N2

4Lg,1
+ 6

(
L2
f,1N

2 +
L2
f,0L

2
g,2N

2

L2
g,1

+ L2
f,0N

4
)L2

g,0

2µ2
g

,

where the first equality uses E∥a+ b∥2 = E∥a∥2 + E∥b∥2 + 2Ea⊤b, and last inequality holds
by Lemma 3 and the Lipschitz continuity.

As a result, we conclude that the variance satisfies that

E∥v̂(x)− Ev̂(x)∥2 ≤ E∥v̂(x)− V (x)∥2 = O(KN4).

DL-SGD gradient estimators Note that Ev̂(x) = Ev̂K(x). Thus the bias follows directly from
the analysis of RT-MLMC.

Next, we consider the per-iteration sampling costs and the average number of iterations for the
EpochSGD. DL-SGD runs EpochSGD as a subroutine for 2K+1 − 1 number of iterations. Thus the
sampling cost on average is N + 2K+1 − 1.

Consider the variance of the DL-SGD method. Note that

v̂K(x) = HK+1(1)−HK+1(2)

Following a similar decomposition as we did for the third term in bounding the variance of RT-MLMC
estimators, we have

E∥v̂K(x)− Ev̂K(x)∥2

≤E∥v̂K(x)− V (x)∥2

≤2E∥HK+1(1)− EH∗(1)∥2 + 2E∥HK+1(2)− EH∗(2)∥2

≤2E∥HK+1(1)− EHK+1(1)∥2 + 2E∥EHK+1(1)− EH∗(1)∥2 + 2E∥HK+1(2)∥2

+ 2E∥EHK+1(2)− EH∗(2)∥2

≤2σ2
f +

L2
f,1L

2
g,0

2Kµ2
g

+ L2
g,1L

2
f,0

N2

2Lg,1
+ 12

(
L2
f,1N

2 +
L2
f,0L

2
g,2N

2

L2
g,1

+ L2
f,0N

4
) L2

g,0

2K+1µ2
g

=O(N2 +N42−K),

where the first inequality uses the definition of variance, the second inequality uses the Cauchy-
Schwarz inequality, and the third and the last equality uses Lipschitz continuity of f , ∇f and ∇g and
follows a similar argument as in bounding the third term for the variance of RT-MLMC estimators.
Note that to control the bias, we let both N and K to be of order O(log(ϵ−1)). Thus N2 is the
dominating term in the variance of DL-SGD gradient estimator.

Next, we demonstrate the proof of Theorem 1.

Proof of Theorem 1. We first demonstrate the analysis for RT-MLMC.
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RT-MLMC gradient method: combining Lemmas 1 and 2, we know that

E∥∇F (x̂T )∥2

≤2(EF (x1)−minx F (x))

αT
+

2

T

T∑
t=1

E∥∇F (xt)∥∥E[∇F (xt)− v̂(xt) | xt]∥

+
2SFα

T

T∑
t=1

E∥v̂(xt)−∇F (xt)∥2

≤2(EF (x1)−minx F (x))

αT
+

2

T

T∑
t=1

E∥∇F (xt)∥∥E[∇F (xt)− v̂(xt) | xt]∥

+
4SFα

T

T∑
t=1

E∥v̂(xt)− V (xt)∥2 +
4SFα

T

T∑
t=1

E∥V (xt)−∇F (xt)∥2

=O
( 1

αT
+ SF

1

µg

(
1− µg

2Lg,1

)N
+ SF

N2

µg2K/2
+ αSF

KN4

µ2
g

+ α
1

µ2
g

(
1− µg

2Lg,1

)2N)
.

To ensure that x̂T is an ϵ-stationarity point, it suffices to let the right hand side of the inequality
above to be O(ϵ2). Correspondingly, we set N = O(log(ϵ−1)), K = O(log(ϵ−2)), α = O(T−1/2),
and T = Õ(ϵ−4). As a result, the total sampling and the gradient complexity over g are of order
3KT = Õ(ϵ−4). Since at each upper iteration, we only compute one gradient of f , the gradient
complexity over f is T = Õ(ϵ−4).

Next, we demonstrate the analysis for DL-SGD.

DL-SGD gradient method: combining Lemmas 1 and 2, we have

E∥∇F (x̂T )∥2

≤2(EF (x1)−minx F (x))

αT
+

2

T

T∑
t=1

E∥∇F (xt)∥∥E[∇F (xt)− v̂K(xt) | xt]∥

+
2SFα

T

T∑
t=1

E∥v̂K(xt)−∇F (xt)∥2

≤2(EF (x1)−minx F (x))

αT
+

2

T

T∑
t=1

E∥∇F (xt)∥∥E[∇F (xt)− v̂K(xt) | xt]∥

+
4SFα

T

T∑
t=1

E∥v̂K(xt)− V (xt)∥2 +
4SFα

T

T∑
t=1

E∥V (xt)−∇F (xt)∥2

=O
( 1

αT
+ SF

1

µg

(
1− µg

2Lg,1

)N
+ SF

N2

µg2K/2
+ αSFN

2 + α
1

µ2
g

(
1− µg

2Lg,1

)2N)
.

To ensure that x̂T is an ϵ-stationarity point, it suffices to let N = O(log(ϵ−1)), K = O(log(ϵ−2)),
α = O(T−1/2), and T = Õ(ϵ−4). As a result, the sample complexity and the gradient complexity
over g is of order O(2KT ) = Õ(ϵ−6). At each upper iteration, we compute one gradient of f , and
thus the gradient complexity over f is T = Õ(ϵ−4).

B Computing ∇1y
∗(x; ξ)

To derive an explicit formula for ∇1y
∗(x; ξ), we use the first-order optimality condition of the

unconstrained lower-level problem. Indeed, as g(x, y; η, ξ) is strongly convex in y, for given x and ξ,
y∗(x; ξ) is the unique solution of the equation

EPη|ξ∇2g(x, y
∗(x; ξ); η, ξ) = 0.
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Taking gradients with respect to x on both sides and using the chain rule, we obtain

EPη|ξ

[
∇2

21g(x, y
∗(x; ξ); η, ξ) +∇2

22g(x, y
∗(x; ξ); η, ξ)∇1y

∗(x; ξ)

]
= 0.

Since g(x, y; η, ξ) is µg-strongly convex in y for any given x, η, and ξ, the expected Hessian matrix
EPη|ξ∇2

22g(x, y; η, ξ) ∈ Sdy+ is invertible, and thus we find

∇1y
∗(x; ξ)⊤ = −

(
EPη|ξ∇

2
12g(x, y

∗(x; ξ); η, ξ)
)(

EPη|ξ∇
2
22g(x, y

∗(x; ξ); η, ξ)
)−1

,

where EPη|ξ∇2
12g(x, y

∗(x; ξ); η, ξ) is in fact the transpose of EPη|ξ∇2
21g(x, y

∗(x; ξ); η, ξ).

C Efficient Implementation for Hessian Vector Products

Our goal is to compute ĉ(x, y; ξ) = ∇2
12g(x, y; η

′, ξ)Λ̂(x, y; ξ)∇2f(x, y; η
′′, ξ) in (8) efficiently.

Algorithm 4 Hessian Vector Implementation for Computing ĉ(x, y; ξ).

Input: Iteration points (x, y), samples ξ and η′, {ηn}N̂n=1, η
′′ ∼ Pη|ξ, N̂ ≥ 1.

1: Compute r0 = ∇2f(x, y; η
′′, ξ)

2: for n = 1 to N̂ do
3: Get Hessian-vector product vn = ∇2

22g(x, y; ηn, ξ)rn−1 via automatic differentiation on y
4: Update rn = rn−1 − 1

Lg,1
vn

5: end for
6: Update r′N3

= N
Lg,1

rN3

7: Get Hessian-vector product c = ∇2
12g(x, y; η

′, ξ)r′
N̂

via automatic differentiation on y
Output: c

Remark: Step 4 and 9 can be implemented at cost O(d) by as we compute ∇2g(x, y; ηn, ξ)rn−1

first and then differentiate over y to avoid calculating Hessian matrices directly.

D Implementation Details

In this section, we provide all relevant implementation details. We fine-tune the stepsize for all
approaches using the following strategy: we pick a fixed breakpoint denoted as t0 and adjust the
stepsize accordingly. Specifically, for the t-th outer iteration when t ≤ t0, the stepsize is set as
1/

√
t, while for iterations beyond t0, the stepsize is set as 1/t. We choose the breakpoint t0 such that

training loss remains relatively stable as the number of outer iterations approaches t0.

D.1 Meta-Learning

Let D = (a, b) denote the training or testing data, where a ∈ Rd represents the feature vector and
b ∈ [C] represents the label with C categories. In this section, the loss ℓi(x,D) is defined as a
multi-class logistic loss, given by:

L(x;D) = −bTx⊤a+ log
(
1⊤ex

⊤a
)
,

where the parameter x ∈ Rd×C stands for the linear classifier, b ∈ {0, 1}C stands for the correspond-
ing one-hot vector of the label b. The experiment utilizes the tinyImageNet dataset, which consists of
100,000 images belonging to 200 classes. After data pre-processing, each image has a dimension
of 512. For dataset splitting, we divide the dataset such that 90% of the images from each class are
assigned to the training set, while the remaining 10% belong to the testing set. The meta-learning
task comprises 20 tasks, with each task involving the classification of 10 classes. Additionally, we set
the hyper-parameter λ = 2.

Finally, we provide additional experiments for meta-learning in Figure 4. In the left plot, we
examine the performance of MAML by varying the stepsize of inner-level gradient update from
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{5e-3, 1e-2, 5e-2, 1e-1, 2e-1}. From the plot we can tell that when using small stepsize, MAML
tends to have similar performance whereas the performance of MAML tend to degrade when using
large stepsize. In the right plot, we examine the performance of m-step MAML against upper-level
iterations. The m-step MAML is an approximation of problem (4) via replacing yi(x) with the
m-step gradient update ŷi,m(x), which is defined recursively:

ŷi,0(x) = x, ŷi,k(x) = ŷi,k−1(x)− γ∇
[
li(ŷi,k−1(x), D

train
i,k−1) +

λ

2
∥ŷi,k−1(x)− x∥2

]
,

with stepsize γ and Dtrain
i,k−1 ∼ ρi for k = 1, . . . ,m. Here we take the number of gradient updates

at inner level m from {1, 4, 8, 12}. From the plot, we realize that multi-step MAML tends to have
better performance, but it still cannot outperform the RT-MLMC method.
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Figure 4: Left: Performance of one-step MAML against upper-level iterations on meta-learning.
Right: Performance of m-step MAML against upper-level iterations on meta-learning.

D.2 Wasserstein DRO with Side Information

In this subsection, we take the loss function

l(w, η) = h(w − η)+ + b(η − w)+,

where h > 0 is a constant representing the per-unit holding cost and b > 0 is a constant representing
the per-unit backlog cost. Since Assumption 2.1 does not hold for the objective function due to its
non-smooth structure, we approximate the loss function with the smoothed version

lβ(w, η) =
h

β
log(1 + eβ(w−η)) +

b

β
log(1 + eβ(η−w)),

where we specify the hyper-parameter β = 5 to balance the trade-off between loss function approxi-
mation and smoothness. The synthetic dataset in this part is generated in the following procedure:
the covariate ξ is sampled from the 100-dimensional uniform distribution supported on [−15, 15]100.
The demand η depends on ξ in a nonlinear way:

η = fNN(x; ξ) + ϵ, ϵ ∼ N (0, 1),

fNN(x; ξ) = 10 ∗ Sigmoid(W3 · ReLU(W2 · ReLU(W1ξ + b1) + b2) + b3),

where the neural network parameter x := (W1, b1, . . . ,W3, b3). In particular, the ground-truth
neural network parameter is generated using the uniform initialization procedure by calling
torch.nn.init.uniform_ in pytorch. We quantify the performance of a given θ using the testing
loss E(ξ,η)∼P∗ [l(f(x; ξ), η)], where the expectation is estimated using sample average approximation
based on 2 · 105 sample points. When creating training dataset, we generate M = 50 samples of
ξ, denoted as {ξi}i∈[M ] and for each xi, we generate m ∈ {10, 30, 50, 100} samples of η from the
conditional distribution Pη|ξi . When generating the left two plots of Fig. 3, we specify m = 100.

When solving the WDRO baseline, we consider the formulation

min
x

max
P

{
E(ξ,η)∼P[lβ(f(x; ξ); η)]− λW(P,P0)

}
, (13)
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with W(·, ·) being the standard Wasserstein distance using the same cost function as the casual
transport distance. We apply the SGD algorithm developed in [Sinha et al., 2018] to solve the WDRO
formulation. See Algorithm 5 for detailed implementation. The hyper-parameter λ for WDRO-SI or
WDRO formulation has been fine-tuned via grid search from the set {1, 10, 50, 100, 150} for optimal
performance.

Algorithm 5 Gradient Descent Ascent Heuristic for Solving (13)

Input: ♯ of outer iterations T and ♯ of inner iterations Tin, stepsizes {αt}Tt=1 and {βs}Tin
s=1, initial

iterate x1.
1: for t = 1 to T do
2: Sample (ξt, ηt) from P and initialize ξt1 = ξt.
3: for s = 1 to Tin do
4: Generate gs = ∇ξ[lβ(f(xt; ξ

t
s); η

t)− λ∥ξts − ξt∥2].
5: Update ξts+1 = ξts + βsAdam(ξts, gs).
6: end for
7: Compute Gt = ∇x[lβ(f(xt; ξ

t
Tin+1); η

t)].
8: Update xt+1 = xt − αtGt.
9: end for

Output: xT
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