
Measuring and Controlling Solution Degeneracy
across Task-Trained Recurrent Neural Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract
Task-trained recurrent neural networks (RNNs) are widely used in neuroscience1

and machine learning to model dynamical computations. To gain mechanistic2

insight into how neural systems solve tasks, prior work often reverse-engineers3

individual trained networks. However, different RNNs trained on the same task and4

achieving similar performance can exhibit strikingly different internal solutions—a5

phenomenon known as solution degeneracy. Here, we develop a unified framework6

to systematically quantify and control solution degeneracy across three levels:7

behavior, neural dynamics, and weight space. We apply this framework to 3,4008

RNNs trained on four neuroscience-relevant tasks while systematically varying task9

complexity, learning regime, network size, and regularization. We find that higher10

task complexity and stronger feature learning reduce degeneracy in neural dynamics11

but increase it in weight space, with mixed effects on behavior. In contrast, larger12

networks and structural regularization reduce degeneracy at all three levels. These13

findings empirically validate the Contravariance Principle and provide practical14

guidance for researchers aiming to tailor RNN solutions—whether to uncover15

shared neural mechanisms or to model individual variability observed in biological16

systems. This work provides a principled framework for quantifying and controlling17

solution degeneracy in task-trained RNNs, offering new tools for building more18

interpretable and biologically grounded models of neural computation.19

1 Introduction20

Recurrent neural networks (RNNs) are widely used in machine learning and computational neuro-21

science to model dynamical processes [1, 2, 3, 4, 5, 6]. Traditionally, the study of task-trained RNNs22

has focused on reverse-engineering a single trained model, implicitly assuming that networks trained23

on the same task would converge to similar solutions—even when initialized or trained differently.24

However, recent work has shown that this assumption does not hold universally, and the solution space25

of task-trained RNNs can be highly degenerate: networks may achieve the same level of training26

loss, yet differ in out-of-distribution (OOD) behavior, internal representations, neural dynamics, and27

connectivity [7, 8, 9, 10, 11].28

These raise fundamental questions about the solution space of task-trained RNNs: What factors29

govern the solution degeneracy across independently trained RNNs? Despite extensive work in30

feedforward networks showing how different initializations and stochastic training can yield divergent31

solutions, RNNs still lack a systematic and unified understanding of the factors that govern solution32

degeneracy [12, 13, 14, 15, 16, 17, 18, 19, 20]. Cao and Yamins [21] proposed the Contravariance33

Principle, which posits that as the computational objective (i.e., the task) becomes more complex, the34

solution space should become less dispersed. While this principle is intuitive and compelling, it has35

thus far remained largely theoretical and has not been directly validated through empirical studies.36

In this paper, we introduce a unified framework for quantifying solution degeneracy at three levels: be-37

havior, neural dynamics, and weight space. As illustrated in Figure 1 , we quantify degeneracy across38

behavior, dynamics, and weights, and examine how it is shaped by four key factors. Leveraging this39

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

framework, we isolate four key factors that control solution degeneracy—task complexity, learning40

regime, network width, and structural regularization. By systematically varying task complexity,41

learning regime, network width, and regularization, we map how each factor shapes degeneracy42

across behavior, dynamics, and weights.43

Factors controlling solution degeneracy

Behavioral
degeneracy

Dynamical
degeneracy

Task
complexity

Learning
regime

Structural
regularization

Network sizeSolution degeneracy

Weight
degeneracy

Figure 1: Key factors shape degeneracy
across behavior, dynamics, and weights.

We find that as task complexity increases—whether via44

more input–output channels, higher memory demand, or45

auxiliary objectives—or as networks undergo stronger fea-46

ture learning, their neural dynamics become more consis-47

tent, while their weight configurations grow more variable.48

In contrast, increasing network size or imposing structural49

regularization during training reduces variability at both50

the dynamics and weight levels. At the behavioral level,51

each of these factors reliably modulates behavioral degen-52

eracy; however, the relationship between behavioral and53

dynamical degeneracy is not always consistent.54

2 Methods55

Model architecture and training. We use discrete-time nonlinear vanilla RNNs with update56

ht = tanh (Whht−1 +Wxxt + b) where ht ∈ Rn is the hidden state, xt ∈ Rm is the input,57

Wh ∈ Rn×n and Wx ∈ Rn×m are the recurrent and input weight matrices. A linear readout maps58

ht to outputs. Networks are trained with BPTT (Adam optimizer, no weight decay) [22]. For each59

task, we train 50 seeds with 128 hidden units, initializing Wh,Wx ∼ U(−1/
√
n, 1/

√
n). Training60

continues until networks reach a near-asymptotic training loss threshold, after which we allow 361

epochs’ patience period and stop training to assess degeneracy across solutions (Appendix G).62

Tasks. We evaluate four neuroscience-relevant tasks eliciting distinct dynamics: pattern recognition63

(N-Bit Flip-Flop), delayed decision-making (Delayed Discrimination), pattern generation (Sine Wave64

Generation), and evidence accumulation (Path Integration). Task details and example neural dynamics65

required to solve the tasks are in Appendix A and F .66

Degeneracy metrics. Behavioral degeneracy measures the variability in network responses to out-of-67

distribution (OOD) inputs. We measure OOD performance as the mean squared error of all converged68

networks under a temporal generalization condition (double the delay for Delayed Discrimination;69

double the trial length otherwise). Behavioral degeneracy is the standard deviation of the OOD losses.70

Dynamical degeneracy quantifies the average pairwise difference in networks’ neural dynamics71

through Dynamical Similarity Analysis (DSA) [23]. DSA compares the topological structure of dy-72

namical systems and has been shown to be more robust to noise and better at identifying behaviorally73

relevant differences than prior metrics such as Procrustes Analysis and Central Kernel Alignment [24].74

For a pair of networks X and Y , DSA identifies a linear forward operator for each system—Ax and75

Ay—which maps neural activity from one time step to the next. These operators are then compared up76

to a rotation. The DSA distance between two systems is computed by minimizing the Frobenius norm77

between the operators, up to rotation: dDSA(Ax, Ay) = minC∈O(n)

∥∥Ax − CAyC
−1

∥∥
F
, where78

O(n) is the orthogonal group. We define dynamical degeneracy as the average DSA distance across79

all network pairs. Additional details are provided in Appendix I.80

Weight degeneracy is defined as a permutation-invariant Frobenius distance between recurrent weights81

dPIF(W1,W2) = minP∈P(n)

∥∥W1 −P⊤W2P
∥∥
F
, normalized by parameter count when compar-82

ing different widths (Appendix I.2).83

3 Results84

3.1 Task complexity modulates degeneracy across levels85

We varied task complexity by increasing the number of independent input–output channels of each86

task, which effectively duplicated the task across dimensions and increased the representational87

load of networks by forcing them to multitask. Higher task complexity constrains the space of88

viable dynamical solutions, leading to tighter clustering and greater similarity across independently89

trained networks (Fig. 2AB). At the behavioral level, networks trained on more complex tasks90

consistently showed greater consistency and lower variability in their responses to OOD test inputs91

2

(Fig 2D). Together, the results at the behavioral and dynamical levels support the Contravariance92

Principle, which posits an inverse relationship between task complexity and the dispersion of network93

solutions [21]. At the weight level, however, we found that pairwise distances between converged94

RNNs’ weight matrices increased consistently with task complexity (Figure 2C), which likely reflects95

increased dispersion of local minima in weight space for harder tasks [25, 26, 27, 28, 29, 30, 31]. In96

Appendix B, we explore two alternative approaches of varying task complexity: increasing the task’s97

memory demand and adding auxiliary objectives. We find that the trends in solution degeneracy hold98

consistently across these approaches.

A B

C

D

3BFF

8BFF

16BFF

32BFF

Figure 2: Higher task complexity reduces dynamical and behavioral degeneracy, but increases
weight degeneracy. (A) Two-dimensional MDS embedding of network dynamics shows that inde-
pendently trained networks converge to more similar trajectories as task complexity increases. (B)
Dynamical, (C) weight, and (D) behavioral degeneracy across 50 networks as a function of task
complexity. Shaded area indicates ±1 standard error.99

3.2 Controlling feature learning reshapes degeneracy across levels100

In deep learning theory, neural networks can operate in either a lazy or rich learning regime [32, 33,101

34, 35]. In the lazy regime, weights and internal features remain largely unchanged during training.102

In the rich (feature learning) regime, networks reshape their hidden representations and weights to103

capture task-specific structure [32, 36, 37, 33].104

Feature Learning Effect Network Size EffectA B

Figure 3: (A) Stronger feature learning reduces dynamical
degeneracy but increases weight and behavioral degeneracy. (B)
Larger networks reduce degeneracy across weight, dynamics,
and behavior. Panels show degeneracy at the dynamical, weight,
and behavioral levels (top to bottom). Shaded area indicates ±1
standard error.

Intuitively, when networks105

undergoes strong feature learn-106

ing, they converge to more107

consistent task-specific neural108

dynamics, leading to lower109

dynamical degeneracy. To110

causally test whether feature111

learning affects solution de-112

generacy, we used a principled113

parameterization known as114

maximum update parameter-115

ization (µP), where a single116

hyperparameter—γ—controls117

the strength of feature learn-118

ing: higher γ values induce119

a richer feature-learning120

regime [35, 32, 34, 33].121

More specifically, the net-122

work output is scaled as123

f(t) = 1
γNWreadoutϕ(h(t)). A detailed explanation of µP and its relationship to the standard124

parameterization is in Appendix L and M. For each task, we trained networks with multiple γ values125

and confirmed that larger γ consistently induces stronger feature learning(Appendix N).126

We observed that stronger feature learning reduced degeneracy at the dynamical level but increased127

it at the weight level (consistent for all four tasks, see Appendix D). This finding aligns with prior128

3

work in feedforward networks, where feature learning was shown to reduce the variance of the neural129

tangent kernel across converged models [38]. Notably, stronger feature learning was shown to push130

networks to travel farther from their initialization [39, 36], resulting in more dispersed final weights131

and higher weight degeneracy. At the behavioral level, however, increasing feature-learning strength132

leads networks to overfit the training distribution (Appendix K.2). We hypothesize that stronger133

feature learning exacerbates overfitting, increasing both average OOD loss and the variability of OOD134

behavior across models (Figure 8) [40, 41, 42, 43].135

3.3 Larger networks yield more consistent solutions across levels136

Although larger networks may yield more consistent solutions via self-averaging and improved137

convergence [44, 45, 46, 47, 48], this outcome is not guaranteed without controlling for feature138

learning, as increasing network width pushes models towards the lazy regime, where feature learning139

is suppressed [49, 37, 32, 33, 34]. To disentangle these competing effects, we again use the µP140

parameterization, which holds feature learning strength constant (via fixed γ) while scaling width.141

Across all tasks, larger networks consistently exhibit lower degeneracy at the weight, dynamical, and142

behavioral levels, producing more consistent solutions across random seeds (Figure 9; results hold143

consistent for all four tasks, see Appendix E). This pattern aligns with findings in vision and language144

models, where wider networks converge to more similar internal representations [50, 51, 52, 53, 54].145

3.4 Structural regularization reduces solution degeneracy146

Figure 4: Low-rank and sparsity regu-
larization reduce solution degeneracy
across all levels. Shaded area indicates
±1 standard error.

Low-rank and sparsity constraints are widely used struc-147

tural regularizers in neuroscience-inspired modeling and148

efficient machine learning [4, 55, 56, 57, 58]. A low-rank149

penalty compresses the weight matrices into a few dom-150

inant modes, while an ℓ1 penalty drives many parameters151

to zero and induces sparsity. In both cases, task-irrelevant152

features are pruned, nudging independently initialized153

networks toward more consistent solutions on the same154

task. To test this idea, we augmented the task loss with155

either a nuclear-norm penalty on the recurrent weights156

L = Ltask + λrank
∑r

i=1 σi, where σi are the singular157

values of the recurrent matrix, or an ℓ1 sparsity penalty:158

L = Ltask + λℓ1

∑
i |wi|. We focused on the Delayed Dis-159

crimination task to control for baseline difficulty, but both160

regularizers consistently reduced degeneracy across all lev-161

els—and similar effects hold in other tasks (Appendix P,162

Figure 4).163

4 Discussion164

Table 1: Summary of how each factor affects solution degeneracy. Arrows indicate the direction
of change for each level as the factor increases. Contravariant factors shift dynamic and weight
degeneracy in opposite direction; covariant factors shift them in the same directions.

Factor Dynamics Weights Behavior
Higher Task complexity (contravariant) ↓↓↓ ↑↑↑ ↓↓↓
More Feature learning (contravariant) ↓↓↓ ↑↑↑ ↑↑↑
Larger Network size (covariant) ↓↓↓ ↓↓↓ ↓↓↓
Regularization (covariant) ↓↓↓ ↓↓↓ ↓↓↓

We present a unified framework for quantifying solution degeneracy in task-trained RNNs, identify165

the key factors that shape the solution landscape. In both machine learning and neuroscience, the166

optimal level of degeneracy may vary depending on the specific research questions being investigated.167

This framework offers practical guidance for tailoring training to a given goal—whether encouraging168

consistency across models [59], or promoting diversity across learned solutions [60, 61, 62].169

4

References170

[1] David Sussillo. Neural circuits as computational dynamical systems. Current opinion in171

neurobiology, 25:156–163, 2014.172

[2] Kanaka Rajan, Christopher D Harvey, and David W Tank. Recurrent network models of173

sequence generation and memory. Neuron, 90(1):128–142, 2016.174

[3] Omri Barak. Recurrent neural networks as versatile tools of neuroscience research. 46:1–6.175

ISSN 09594388. doi: 10.1016/j.conb.2017.06.003. URL https://linkinghub.elsevier.176

com/retrieve/pii/S0959438817300429.177

[4] Francesca Mastrogiuseppe and Srdjan Ostojic. Linking connectivity, dynamics, and com-178

putations in low-rank recurrent neural networks. Neuron, 99(3):609–623.e29, 2018. doi:179

10.1016/j.neuron.2018.07.003.180

[5] Saurabh Vyas, Matthew D Golub, David Sussillo, and Krishna V Shenoy. Computation through181

neural population dynamics. Annual Review of Neuroscience, 43:249–275, 2020.182

[6] Laura N. Driscoll, Krishna Shenoy, and David Sussillo. Flexible multitask computation in183

recurrent networks utilizes shared dynamical motifs. Nature Neuroscience, 27(7):1349–1363,184

July 2024. ISSN 1097-6256, 1546-1726. doi: 10.1038/s41593-024-01668-6. URL https:185

//www.nature.com/articles/s41593-024-01668-6.186

[7] Elia Turner, Kabir V Dabholkar, and Omri Barak. Charting and navigating the space of187

solutions for recurrent neural networks. Advances in Neural Information Processing Systems,188

34:25320–25333, 2021.189

[8] Aniruddh R Galgali, Maneesh Sahani, and Valerio Mante. Residual dynamics resolves recurrent190

contributions to neural computation. Nature Neuroscience, 26(2):326–338, 2023.191

[9] Gita Gholamrezaei and Ian Q. Whishaw. Individual differences in skilled reaching for food192

related to increased number of gestures: Evidence for goal and habit learning of skilled193

reaching. 123(4):863–874. ISSN 1939-0084, 0735-7044. doi: 10.1037/a0016369. URL194

http://doi.apa.org/getdoi.cfm?doi=10.1037/a0016369.195

[10] Peiran Gao, Eric Trautmann, Byron Yu, Gopal Santhanam, Stephen Ryu, Krishna Shenoy, and196

Surya Ganguli. A theory of multineuronal dimensionality, dynamics and measurement. URL197

http://biorxiv.org/lookup/doi/10.1101/214262.198

[11] Johannes Mehrer, Courtney J. Spoerer, Nikolaus Kriegeskorte, and Tim C. Kietzmann. Individ-199

ual differences among deep neural network models. 11(1):5725. ISSN 2041-1723. doi: 10.1038/200

s41467-020-19632-w. URL http://www.nature.com/articles/s41467-020-19632-w.201

[12] Abhranil Das and Ila R Fiete. Systematic errors in connectivity inferred from activity in strongly202

recurrent networks. Nature Neuroscience, 23(10):1286–1296, 2020.203

[13] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-204

ward neural networks. In Proceedings of the thirteenth international conference on artificial205

intelligence and statistics, pages 249–256. JMLR Workshop and Conference Proceedings, 2010.206

[14] Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep ensembles: A loss landscape207

perspective. arXiv preprint arXiv:1912.02757, 2019.208

[15] Ian J. Goodfellow, Oriol Vinyals, and Andrew M. Saxe. Qualitatively characterizing neural209

network optimization problems, 2015. URL https://arxiv.org/abs/1412.6544.210

[16] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss211

landscape of neural nets, 2018. URL https://arxiv.org/abs/1712.09913.212

[17] Stanisław Jastrzębski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua213

Bengio, and Amos Storkey. Three factors influencing minima in sgd, 2018. URL https:214

//arxiv.org/abs/1711.04623.215

5

https://linkinghub.elsevier.com/retrieve/pii/S0959438817300429
https://linkinghub.elsevier.com/retrieve/pii/S0959438817300429
https://linkinghub.elsevier.com/retrieve/pii/S0959438817300429
https://www.nature.com/articles/s41593-024-01668-6
https://www.nature.com/articles/s41593-024-01668-6
https://www.nature.com/articles/s41593-024-01668-6
http://doi.apa.org/getdoi.cfm?doi=10.1037/a0016369
http://biorxiv.org/lookup/doi/10.1101/214262
http://www.nature.com/articles/s41467-020-19632-w
https://arxiv.org/abs/1412.6544
https://arxiv.org/abs/1712.09913
https://arxiv.org/abs/1711.04623
https://arxiv.org/abs/1711.04623
https://arxiv.org/abs/1711.04623

[18] Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian216

Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradient217

descent into wide valleys, 2017. URL https://arxiv.org/abs/1611.01838.218

[19] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable219

neural networks, 2019. URL https://arxiv.org/abs/1803.03635.220

[20] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural221

network representations revisited, 2019. URL https://arxiv.org/abs/1905.00414.222

[21] Rosa Cao and Daniel Yamins. Explanatory models in neuroscience, part 2: Functional intelligi-223

bility and the contravariance principle. Cognitive Systems Research, 85:101200, 2024.224

[22] Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of225

the IEEE, 78(10):1550–1560, 1990.226

[23] Mitchell Ostrow, Adam Eisen, Leo Kozachkov, and Ila Fiete. Beyond Geometry: Comparing227

the Temporal Structure of Computation in Neural Circuits with Dynamical Similarity Analysis,228

October 2023. URL http://arxiv.org/abs/2306.10168. arXiv:2306.10168 [cs, q-bio].229

[24] Quentin Guilhot, Michał J Wójcik, Jascha Achterberg, and Rui Ponte Costa. Dynamical230

similarity analysis uniquely captures how computations develop in RNNs, 2025. URL https:231

//openreview.net/forum?id=pXPIQsV1St.232

[25] Ian J. Goodfellow, Oriol Vinyals, and Andrew M. Saxe. Qualitatively characterizing neural233

network optimization problems. In International Conference on Learning Representations234

(ICLR), 2015. arXiv:1412.6544.235

[26] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode236

connectivity and the lottery ticket hypothesis. In Proceedings of the 37th International Confer-237

ence on Machine Learning (ICML), pages 3259–3269. PMLR, 2020.238

[27] James R. Lucas, Juhan Bae, Michael R. Zhang, Stanislav Fort, Richard Zemel, and Roger B.239

Grosse. On monotonic linear interpolation of neural network parameters. In Proceedings of the240

38th International Conference on Machine Learning (ICML), pages 7168–7179. PMLR, 2021.241

[28] Stanislav Fort and Stanislaw Jastrzebski. Large scale structure of neural network loss landscapes.242

In Advances in Neural Information Processing Systems (NeurIPS), volume 32, 2019.243

[29] Alessandro Achille, Giovanni Paolini, and Stefano Soatto. Where is the information in a deep244

neural network? CoRR, abs/1905.12213, 2019.245

[30] Xingyu Qu and Samuel Horvath. Rethink model re-basin and the linear mode connectivity.246

arXiv preprint arXiv:2402.05966, 2024.247

[31] Andrew Ly and Pulin Gong. Optimization on multifractal loss landscapes explains a diverse248

range of geometrical and dynamical properties of deep learning. Nature Communications, 16249

(3252), 2025. doi: 10.1038/s41467-025-58532-9.250

[32] Léon Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable program-251

ming. Advances in Neural Information Processing Systems, 32:2938–2950, 2019.252

[33] Bryan Woodworth, Suriya Gunasekar, Jason D. Lee, Nathan Srebro, Srinadh Bhojanapalli, Rina253

Khanna, Aaron Chatterji, and Martin Jaggi. Kernel and rich regimes in deep learning. Journal254

of Machine Learning Research, 21(243):1–48, 2020.255

[34] Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature and256

lazy training in deep neural networks. Journal of Statistical Mechanics: Theory and Experiment,257

2020(11):113301, 2020. doi: 10.1088/1742-5468/abc4de.258

[35] Blake Bordelon and Cengiz Pehlevan. Self-Consistent Dynamical Field Theory of Kernel259

Evolution in Wide Neural Networks, October 2022. URL http://arxiv.org/abs/2205.260

09653. arXiv:2205.09653 [stat].261

6

https://arxiv.org/abs/1611.01838
https://arxiv.org/abs/1803.03635
https://arxiv.org/abs/1905.00414
http://arxiv.org/abs/2306.10168
https://openreview.net/forum?id=pXPIQsV1St
https://openreview.net/forum?id=pXPIQsV1St
https://openreview.net/forum?id=pXPIQsV1St
http://arxiv.org/abs/2205.09653
http://arxiv.org/abs/2205.09653
http://arxiv.org/abs/2205.09653

[36] Thomas George, Guillaume Lajoie, and Aristide Baratin. Lazy vs hasty: Linearization262

in deep networks impacts learning schedule based on example difficulty. arXiv preprint263

arXiv:2209.09658, 2022. URL https://arxiv.org/abs/2209.09658.264

[37] Jaehoon Lee, Yuval Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington, and265

Jascha Sohl-Dickstein. Wide neural networks of any depth evolve as linear models under266

gradient descent. In Advances in Neural Information Processing Systems, volume 32, pages267

8572–8583, 2019.268

[38] Blake Bordelon and Cengiz Pehlevan. Dynamics of finite width Kernel and prediction fluctua-269

tions in mean field neural networks*. Journal of Statistical Mechanics: Theory and Experiment,270

2024(10):104021, October 2024. ISSN 1742-5468. doi: 10.1088/1742-5468/ad642b. URL271

https://iopscience.iop.org/article/10.1088/1742-5468/ad642b.272

[39] Yuhan Helena Liu, Aristide Baratin, Jonathan Cornford, Stefan Mihalas, Eric Shea-Brown,273

and Guillaume Lajoie. How connectivity structure shapes rich and lazy learning in neural274

circuits. arXiv preprint arXiv:2310.08513, 2023. doi: 10.48550/arXiv.2310.08513. URL275

https://arxiv.org/abs/2310.08513.276

[40] Yamini Bansal, Preetum Nakkiran, and Boaz Barak. Revisiting model stitching to compare277

neural representations. arXiv preprint arXiv:2106.07682, 2021. URL https://arxiv.org/278

abs/2106.07682.279

[41] Sunny Duan, Loïc Matthey, André Saraiva, Nicholas Watters, Christopher P. Burgess, Alexan-280

der Lerchner, and Irina Higgins. Unsupervised model selection for variational disentangled281

representation learning. arXiv preprint arXiv:1905.12614, 2020. URL https://arxiv.org/282

abs/1905.12614.283

[42] Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The platonic representation284

hypothesis. arXiv preprint arXiv:2405.07987, 2024. URL https://arxiv.org/abs/2405.285

07987.286

[43] Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. Convergent learning:287

Do different neural networks learn the same representations? arXiv preprint arXiv:1511.07543,288

2016. URL https://arxiv.org/abs/1511.07543.289

[44] Kenji Kawaguchi. Deep learning without poor local minima. In Advances in Neural Information290

Processing Systems 29, pages 586–594, 2016.291

[45] Quynh Nguyen and Matthias Hein. The loss surface of deep and wide neural networks. CoRR,292

abs/1704.08045, 2017.293

[46] Simon S. Du, Jason D. Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds294

global minima of deep neural networks. CoRR, abs/1811.03804, 2018.295

[47] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning296

via over-parameterization. In Proceedings of the 36th International Conference on Machine297

Learning, pages 242–252, 2019.298

[48] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient descent optimizes299

over-parameterized deep relu networks. CoRR, abs/1811.08888, 2018.300

[49] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and301

generalization in neural networks. In Advances in Neural Information Processing Systems,302

volume 31, 2018.303

[50] Ari S. Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in304

neural networks with canonical correlation. In NeurIPS, 2018.305

[51] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural306

network representations revisited. In ICML, 2019.307

[52] Maithra et al. Raghu. Svcca: Singular vector canonical correlation analysis for deep learning308

dynamics. In NeurIPS, 2017.309

7

https://arxiv.org/abs/2209.09658
https://iopscience.iop.org/article/10.1088/1742-5468/ad642b
https://arxiv.org/abs/2310.08513
https://arxiv.org/abs/2106.07682
https://arxiv.org/abs/2106.07682
https://arxiv.org/abs/2106.07682
https://arxiv.org/abs/1905.12614
https://arxiv.org/abs/1905.12614
https://arxiv.org/abs/1905.12614
https://arxiv.org/abs/2405.07987
https://arxiv.org/abs/2405.07987
https://arxiv.org/abs/2405.07987
https://arxiv.org/abs/1511.07543

[53] Fred Wolf, Rainer Engelken, Maximilian Puelma-Touzel, Juan Daniel Flórez Weidinger, and310

Andreas Neef. Dynamical models of cortical circuits. 25:228–236. ISSN 09594388. doi:311

10.1016/j.conb.2014.01.017. URL https://linkinghub.elsevier.com/retrieve/pii/312

S0959438814000324.313

[54] Felix et al. Klabunde. Contrasim – analyzing neural representations based on contrastive314

learning. In ICLR, 2024.315

[55] Manuel Beiran, Alexis Dubreuil, Adrian Valente, Francesca Mastrogiuseppe, and Srdjan Ostojic.316

Shaping dynamics with multiple populations in low-rank recurrent networks. arXiv preprint317

arXiv:2007.02062, 2020. doi: 10.48550/arXiv.2007.02062.318

[56] Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field properties by319

learning a sparse code for natural images. Nature, 381(6583):607–609, 1996. doi: 10.1038/320

381607a0.321

[57] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections322

for efficient neural networks. In Advances in Neural Information Processing Systems, pages323

1135–1143, 2015. doi: 10.48550/arXiv.1506.02626.324

[58] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks.325

In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics,326

volume 15, pages 315–323, 2011.327

[59] D Kepple, Rainer Engelken, and Kanaka Rajan. Curriculum learning as a tool to uncover328

learning principles in the brain. In International Conference on Learning Representations, 2022.329

[60] Samuel Liebana Garcia, Aeron Laffere, Chiara Toschi, Louisa Schilling, Jacek Podlaski,330

Matthias Fritsche, Peter Zatka-Haas, Yulong Li, Rafal Bogacz, Andrew Saxe, and Armin331

Lak. Striatal dopamine reflects individual long-term learning trajectories, December 2023. URL332

http://biorxiv.org/lookup/doi/10.1101/2023.12.14.571653.333

[61] Valeria Fascianelli, Aldo Battista, Fabio Stefanini, Satoshi Tsujimoto, Aldo Genovesio, and334

Stefano Fusi. Neural representational geometries reflect behavioral differences in monkeys and335

recurrent neural networks. Nature Communications, 15(1):6479, August 2024. ISSN 2041-336

1723. doi: 10.1038/s41467-024-50503-w. URL https://www.nature.com/articles/337

s41467-024-50503-w.338

[62] A Pan-Vazquez, Y Sanchez Araujo, B McMannon, M Louka, A Bandi, L Haetzel, International339

Brain Laboratory, JW Pillow, ND Daw, and IB Witten. Pre-existing visual responses in a340

projection-defined dopamine population explain individual learning trajectories, 2024. URL341

https://europepmc.org/article/PPR/PPR811803.342

[63] Peter J Schmid. Dynamic mode decomposition and its variants. Annual Review of Fluid343

Mechanics, 54(1):225–254, 2022.344

[64] Peter H. Schönemann. A generalized solution of the orthogonal procrustes problem. Psychome-345

trika, 31(1):1–10, Mar 1966. doi: 10.1007/BF02289451.346

[65] Chris Ding, Tao Li, and Michael I. Jordan. Nonnegative matrix factorization for combinatorial347

optimization: Spectral clustering, graph matching, and clique finding. In Proceedings of the348

Eighth IEEE International Conference on Data Mining (ICDM ’08), pages 183–192. IEEE,349

2008. doi: 10.1109/ICDM.2008.130.350

[66] Fanwang Meng, Michael G. Richer, Alireza Tehrani, Jonathan La, Taewon David Kim, P. W.351

Ayers, and Farnaz Heidar-Zadeh. Procrustes: A python library to find transformations that352

maximize the similarity between matrices. Computer Physics Communications, 276:108334,353

2022. doi: 10.1016/j.cpc.2022.108334. URL https://www.sciencedirect.com/science/354

article/pii/S0010465522000522.355

[67] Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick356

Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large357

neural networks via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.358

doi: 10.48550/arXiv.2203.03466. Accepted at NeurIPS 2021.359

8

https://linkinghub.elsevier.com/retrieve/pii/S0959438814000324
https://linkinghub.elsevier.com/retrieve/pii/S0959438814000324
https://linkinghub.elsevier.com/retrieve/pii/S0959438814000324
http://biorxiv.org/lookup/doi/10.1101/2023.12.14.571653
https://www.nature.com/articles/s41467-024-50503-w
https://www.nature.com/articles/s41467-024-50503-w
https://www.nature.com/articles/s41467-024-50503-w
https://europepmc.org/article/PPR/PPR811803
https://www.sciencedirect.com/science/article/pii/S0010465522000522
https://www.sciencedirect.com/science/article/pii/S0010465522000522
https://www.sciencedirect.com/science/article/pii/S0010465522000522

[68] Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs vi: Feature learning in360

infinite-depth neural networks. arXiv preprint arXiv:2310.02244, 2023. doi: 10.48550/arXiv.361

2310.02244. Accepted at ICLR 2024.362

[69] Kenneth D Miller and Francesco Fumarola. Mathematical equivalence of two common forms363

of firing rate models of neural networks. Neural computation, 24(1):25–31, 2012.364

9

A Task descriptions365

Freq (Hz)B

A

Figure 5: Our task suite spans memory, integration, pattern generation, and decision-making.
Each task is designed to place distinct demands on the network’s dynamics. N-Bit Flip-Flop:
The network must remember the last nonzero input on each of N independent channels. Delayed
Discrimination: The network compares the magnitude of two pulses, separated by a variable delay,
and outputs their sign difference. Sine Wave Generation: A static input specifies a target frequency,
and the network generates the corresponding sine wave over time. Path Integration: The network
integrates velocity inputs to track position in a bounded 2D or 3D arena (schematic shows 2D case).

N-Bit Flip-Flop Task Each RNN receives N independent input channels taking values in366

{−1, 0,+1}, which switch with probability pswitch. The network has N output channels that must367

retain the most recent nonzero input on their respective channels. The network dynamics form 2N368

fixed points, corresponding to all binary combinations of {−1,+1}N .369

Delayed Discrimination Task The network receives two pulses of amplitudes f1, f2 ∈ [2, 10],370

separated by a variable delay t ∈ [5, 20] time steps, and must output sign(f2 − f1). In the N -channel371

variant, comparisons are made independently across channels. The network forms task-relevant fixed372

points to retain the amplitude of f1 during the delay period.373

Sine Wave Generation The network receives a static input specifying a target frequency f ∈374

[1, 30] and must generate the corresponding sine wave sin(2πft) over time. We define Nfreq target375

frequencies, evenly spaced within the range [1, 30], and use them during training. In the N -channel376

variant, each input channel specifies a frequency, and the corresponding output channel generates377

a sine wave at that frequency. For each frequency, the network dynamics form and traverse a limit378

cycle that produces the corresponding sine wave.379

Path Integration Task Starting from a random position in 2D, the network receives angular direction380

θ and speed v at each time step and updates its position estimate. In the 3D variant, the network takes381

as input azimuth θ, elevation ϕ, and speed v, and outputs updated (x, y, z) position. The network382

performs path integration by accumulating velocity vectors based on the input directions and speeds.383

After training, the network forms a Euclidean map of the environment in its internal state space.384

B Additional axes of task complexity385

In the main text, we controlled task complexity by varying the number of independent input–output386

channels, effectively duplicating the task across dimensions. Here, we explore two alternative387

approaches: increasing the task’s memory demand and adding auxiliary objectives.388

Changing memory demand. Of the four tasks, only Delayed Discrimination requires extended389

memory, as its performance depends on maintaining the first stimulus across a variable delay. See390

Appendix H for a quantification of each task’s memory demand. We increased the memory load in391

Delayed Discrimination by lengthening the delay period. This manipulation reduced degeneracy392

10

at the dynamical and behavioral levels but increased it at the weight level, mirroring the effect of393

increasing task dimensionality (Figure 6A).394

A

B

CChanging memory demand

Adding auxiliary loss

Figure 6: Memory demand and auxiliary loss modulate degeneracy in distinct ways. In
the Delayed Discrimination task, both manipulations reduce dynamical and behavioral degeneracy
while increasing weight degeneracy. The auxiliary loss also induces additional line attractors in the
network’s dynamics, as shown in (C).

Adding auxiliary loss. We next examined how adding an auxiliary loss affects solution degeneracy395

in the Delayed Discrimination task. Specifically, the network outputs both the sign and the magnitude396

of the difference between two stimulus values (f2−f1), using separate output channels for each. This397

manipulation added a second output channel and increased memory demand by requiring the network398

to track the magnitude of the difference between incoming stimuli. Consistent with our hypothesis,399

this manipulation reduced dynamical and behavioral degeneracy while increasing weight degeneracy400

(Figure 6B). Crucially, the auxiliary loss induced additional line attractors in the network dynamics,401

further structuring internal trajectories and aligning neural responses across networks (Figure 6C).402

While the auxiliary loss increases both output dimensionality and temporal memory demand, we403

interpret its effect holistically as a structured increase in task complexity.404

C Higher task complexity induces more feature learning405

We hypothesize that the increased weight degeneracy observed in harder tasks reflects stronger feature406

learning. Specifically, harder tasks may force network weights to travel farther from their initialization.407

If more complex task variants, like those in Section 3.1, truly induce greater feature learning, then408

networks should traverse a greater distance in weight space, resulting in more dispersed final weights.409

To test this idea, we measured feature learning strength in networks trained on different task variants410

using two complementary metrics [39, 36]: Weight-change norm: ∥WT −W0∥F , where larger411

values indicate stronger feature learning. Kernel alignment (KA): measures the directional change of412

the neural tangent kernel (NTK) before and after training: KA
(
K(f),K(0)

)
=

Tr
(
K(f)K(0)

)∥∥K(f)
∥∥
F

∥∥K(0)
∥∥
F

,413

where K = ∇W ŷ⊤∇W ŷ. Lower KA indicates greater NTK rotation and thus stronger feature414

learning.415

More complex tasks consistently drive stronger feature learning and greater dispersion in weight416

space, as reflected by increasing weight-change norm and decreasing kernel alignment across all417

tasks (Figure 7).418

11

Figure 7: More complex tasks drive stronger feature learning in RNNs. Increased input–output
dimensionality leads to higher weight-change norms and lower kernel alignment. Error bars indicate
±1 standard error.

12

D Feature learning effect for all tasks419

Figure 8: Stronger feature learning reduces dynamical degeneracy but increases weight and
behavioral degeneracy. Panels show degeneracy at the dynamical, weight, and behavioral levels
(top to bottom). Shaded area indicates ±1 standard error.

E Network size effect for all tasks420

Figure 9: Larger networks reduce degeneracy across weight, dynamics, and behavior. Control-
ling for feature learning strength, wider RNNs yield more consistent solutions across all three levels
of analysis. Panels show degeneracy at the dynamical, weight, and behavioral levels (top to bottom).
Shaded area indicates ±1 standard error.

F Task details421

F.1 N-Bit Flip Flop422

Task Parameter Value
Probability of flip 0.3
Number of time steps 100

13

F.2 Delayed Discrimination423

Task Parameter Value
Number of time steps 60
Max delay 20
Lowest stimulus value 2
Highest stimulus value 10

F.3 Sine Wave Generation424

Task Parameter Value
Number of time steps 100
Time step size 0.01
Lowest frequency 1
Highest frequency 30
Number of frequencies 100

F.4 Path Integration425

Task Parameter Value
Number of time steps 100
Maximum speed (vmax) 0.4
Direction increment std (θstd / ϕstd) π/10
Speed increment std 0.1
Noise std 0.0001
Mean stop duration 30
Mean go duration 50
Environment size (per side) 10

G Training details426

G.1 N-Bit Flip Flop427

Training Hyperparameter Value
Optimizer Adam
Learning rate 0.001
Learning rate scheduler None
Max epochs 300
Steps per epoch 128
Batch size 256
Early stopping threshold 0.001
Patience 3
Time constant (µP) 1

14

G.2 Delayed Discrimination428

Training Hyperparameter Value
Optimizer Adam
Learning rate 0.001
Learning rate scheduler CosineAnnealingWarmRestarts
Max epochs 500
Steps per epoch 128
Batch size 256
Early stopping threshold 0.01
Patience 3
Time constant (µP) 0.1

G.3 Sine Wave Generation429

Training Hyperparameter Value
Optimizer Adam
Learning rate 0.0005
Learning rate scheduler None
Max epochs 500
Steps per epoch 128
Batch size 32
Early stopping threshold 0.05
Patience 3
Time constant (µP) 1

G.4 Path Integration430

Training Hyperparameter Value
Optimizer Adam
Learning rate 0.001
Learning rate scheduler ReduceLROnPlateau
Learning rate decay factor 0.5
Learning rate decay patience 40
Max epochs 1000
Steps per epoch 128
Batch size 64
Early stopping threshold 0.05
Patience 3
Time constant (µP) 0.1

H Memory demand of each task431

In this section, we quantify each task’s memory demand by measuring how far back in time its inputs432

influence the next output. Specifically, for each candidate history length h, we build feature vectors433

s
(h)
t = [xt−h+1, . . . , xt; yt] ∈ Rh din+dout ,

and train a two-layer MLP to predict the subsequent target yt+1. We then evaluate the held-out434

mean-squared error MSE(h), averaged over multiple random initializations. We identify the smallest435

history length h∗ at which the error curve plateaus or has a minimum, and take h∗ as the task’s436

intrinsic memory demand.437

15

From the results, we can see that the N-Bits Flip-Flop task requires only one time-step of mem-438

ory—exactly what’s needed to recall the most recent nonzero input in each channel. The Sine Wave439

Generation task demands two time-steps, reflecting the need to track both phase and direction of440

change. Path Integration likewise only needs one time-step, since the current position plus instanta-441

neous velocity and heading suffice to predict the next position. Delayed Discrimination is the only442

memory-intensive task: our method estimates a memory demand of 25 time-steps, which happens443

to be the time interval between the offset of the first stimulus and the onset of the response period,444

during which the network needs to first keep track of the amplitude of the first stimulus and then its445

decision.446

Figure 10: Memory demand of each task. The held-out mean-squared error MSE(h) of a two-layer
MLP predictor is plotted against history length h. The intrinsic memory demand h∗, defined by the
plateau or minimum of each curve, is 1 for the N-Bits Flip-Flop and Path Integration tasks, 2 for Sine
Wave Generation, and 25 for Delayed Discrimination—matching the inter-stimulus delay interval in
that task.

I More details on the degeneracy metrics447

I.1 Dynamical Degeneracy448

Briefly, DSA proceeds as follows: Given two RNNs with hidden states h1(t) ∈ Rn and h2(t) ∈ Rn,449

we first generate a delay-embedded matrix, H1 and H2 of the hidden states in their original state450

space. Next, for each delay-embedded matrix, we use Dynamic Mode Decomposition (DMD) [63]451

to extract linear forward operators A1 and A2 of the two systems’ dynamics. Finally, a Procrustes452

distance between the two matrices A1 and A2 is used to quantify the dissimilarity between the two453

dynamical systems and provide an overall DSA score, defined as:454

dProcrustes(A1,A2) = min
Q∈O(n)

∥A1 −QA2Q
−1∥F

where Q is a rotation matrix from the orthogonal group O(n) and ∥ · ∥F is the Frobenius norm. This455

metric quantifies how dissimilar the dynamics of the two RNNs are after accounting for orthogonal456

transformations. We quantify Dynamical Degeneracy across many RNNs as the average pairwise457

distance between pairs of RNN neural-dynamics (hidden-state trajectories).458

After training, we extract each network’s hidden-state activations for every trial in the training set,459

yielding a tensor of shape (trials × time steps × neurons). We collapse the first two dimensions and460

yield a matrix of size (trials × time steps)× neurons. We then apply PCA to retain the components461

that explain 99% of the variance to remove noisy and low-variance dimensions of the hidden state462

trajectories. Next, we perform a grid search over candidate delay lags, with a minimum lag of 1463

and a maximum lag of 30, selecting the lag that minimizes the reconstruction error of DSA on the464

dimensionality reduced trajectories. Finally, we fit DSA with full rank and the optimal lag to these465

PCA-projected trajectories and compute the pairwise DSA distances between all networks.466

I.2 Weight degeneracy467

We computed the pairwise distance between the recurrent matrices from different networks using468

Two-sided Permutation with One Transformation [64, 65] function from the Procrustes Python469

package [66].470

16

J Representational degeneracy471

We further quantified solution degeneracy at the representational level—that is, the variability in472

each network’s internal feature space when presented with the same input dataset—using Singular473

Vector Canonical Correlation Analysis (SVCCA). SVCCA works by first applying singular value474

decomposition (SVD) to each network’s activation matrix, isolating the principal components that475

capture most of its variance, and then performing canonical correlation analysis (CCA) to find476

the maximally correlated directions between the two reduced subspaces. The resulting canonical477

correlations therefore measure how similarly two networks represent the same inputs: high average478

correlations imply low representational degeneracy (i.e., shared feature subspaces), whereas lower479

correlations reveal greater divergence in what the models learn. We define the representational480

degeneracy (labeled as the SVCCA distance below) as481

drepr(Ax, Ay) = 1 − SVCCA
(
Ax, Ay

)
.

Figure 11: Representational degeneracy, as measured by the average SVCCA distance between
networks, does not necessarily change uniformly as we vary task complexity, feature learning
strength, network size, and regularization strength.

We found that as we vary the four factors that robustly control the dynamical degeneracy across482

task-trained RNNs, the representational-level degeneracy isn’t necessarily constrained by those same483

factors in the same way. In RNNs, task-relevant computations are implemented at the level of484

17

network’s dynamics instead of static representations, and RNNs that implement similar temporal485

dynamics can have disparate representaional geometry. Therefore, it is expected that task complexity,486

learning regime, and network size change the task-relevant computations learned by the networks487

by affecting their neural dynamics instead of representations. DSA captures the dynamical aspect488

of the neural computation by fitting a forward operator matrix A that maps the network’s activity at489

one time step to the next, therefore directly capturing the temporal evolution of neural activities. By490

contrast, SVCCA aligns the principal subspaces of activation vectors at each time point but treats491

those vectors as independent samples—it never examines how one state evolves into the next. As a492

result, SVCCA measures only static representational similarity and cannot account for the temporal493

dependencies that underlie RNN computations. Nonetheless, we expect SVCCA might be more494

helpful in measuring the solution degeneracy in feedforward networks.495

K Detailed characterization of OOD generalization performance496

In addition to showing the behavioral degeneracy in the main text, here we provide a more detailed497

characterization of the OOD behavior of networks by showing the mean versus standard deviation,498

and the distribution of the OOD losses.499

K.1 Changing task complexity500

Figure 12: Detailed characterization of the OOD performance of networks while changing task
complexity.

18

K.2 Changing feature learning strength501

Figure 13: Detailed characterization of the OOD performance of networks while changing feature
learning strength. Across Delayed Discrimination, Sine Wave Generation, and Path Integration tasks,
networks trained with larger γ – and thus undergoing stronger feature learning – exhibit higher mean
OOD generalization loss together with higher variability, potentially reflecting overfitting to the
training task.

K.3 Changing network size502

Figure 14: Detailed characterization of the OOD performance of networks while changing network
size.

19

K.4 Changing regularization strength503

K.4.1 Low-rank regularization504

Figure 15: Detailed characterization of the OOD performance of networks while changing low-rank
regularization strength.

K.4.2 Sparsity (L1) regularization505

Figure 16: Detailed characterization of the OOD performance of networks while changing sparsity
(L1) regularization strength.

L A short introduction to Maximal Update Parameterization (µP)506

Under the NTK parametrization, as the network width goes to infinity, the network operates in the507

lazy regime, where its functional evolution is well-approximated by a first-order Taylor expansion508

around the initial parameters [49, 37, 32, 33]. In this limit feature learning is suppressed and training509

dynamics are governed by the fixed Neural Tangent Kernel (NTK).510

To preserve non-trivial feature learning at large width, the Maximal Update Parametrization (µP)511

rescales both the weight initialisation and the learning rate. µP keeps three quantities width-invariant512

at every layer—(i) the norm/variance of activations (ii) the norm/variance of the gradients, and (iii)513

the parameter updates applied by the optimizer [67, 68, 34, 35].514

20

For recurrent neural networks, under Stochastic Gradient Descent (SGD), the network output, initial-515

ization, and learning rates are scaled as516

f =
1

γ0N
w⃗ · ϕ

(
h
)
, (1)

∂th = −h +
1√
N

J ϕ
(
h
)
, Jij ∼ N (0, 1), (2)

ηSGD = η0 γ
2
0 N. (3)

Under Adam optimizer, the network output, initialization, and learning rates are scaled as517

f =
1

γ0N
w⃗ · ϕ

(
h
)
, (4)

∂th = −h +
1

N
J ϕ

(
h
)
, Jij ∼ N (0, N), (5)

ηAdam = η0 γ0. (6)

M Theoretical relationship between parameterizations518

We compare two RNN formalisms used in different parts of the main manuscript: a standard discrete-519

time RNN trained with fixed learning rate and conventional initialization, and a µP-style RNN trained520

with leaky integrator dynamics and width-aware scaling.521

In the standard discrete-time RNN, the hidden activations are updated as522

h(t+ 1) = ϕ
(
Whh(t) +Wxx(t)

)
,

In µP RNNs, the hidden activations are updated as523

h(t+ 1)− h(t) = τ
(
−h(t) +

1

N
Jϕ(h(t)) + Ux(t)

)
When τ = 1,524

h(t+ 1)− h(t) = −h(t) +
1

N
Jϕ(h(t)) + Ux(t)

525

h(t+ 1) =
1

N
Jϕ(h(t)) + Ux(t)

Aside from the overall scaling factor, the difference between the two parameterizations lies in the526

placement of the non-linearity:527

• Standard RNN: ϕ is applied post-activation, i.e. after the recurrent and input terms are528

linearly combined,529

• µP RNN: ϕ is applied pre-activation; i.e. before the recurrent weight matrix, so the hidden530

state is first non-linearized and then linearly combined531

Miller and Fumarola [69] demonstrated that two classes of continuous-time firing-rate models532

which differ in their placement of the non-linearity are mathematically equivalent under a change of533

variables:534

v-model τ
dv

dt
= −v + Ĩ(t) +Wf(v)

r-model: τ
dr

dt
= −r + f(Wr + I(t))

with equivalence holding under the transformation v(t) = Wr(t) + I(t) and Ĩ(t) = I(t) + τ dI
dt ,535

assuming matched initial conditions.536

Briefly, they show that Wr + I evolves according to the v-equation as follows:537

21

v(t) = Wr(t) + I(t)

dv

dt
=

d

dt

(
Wr(t) + I(t)

)
= W

dr

dt
+

dI

dt

= W

(
1

τ
(−r + f(Wr + I))

)
+

dI

dt

τ
dv

dt
= −Wr +Wf(Wr + I) + τ

dI

dt

= −(v − I) +Wf(v) + τ
dI

dt

= −v + I + τ
dI

dt
+Wf(v)

τ
dv

dt
= −v + Ĩ(t) +Wf(v)

This mapping applies directly to RNNs viewed as continuous-time dynamical systems and helps538

relate v-type µP-style RNNs to standard discrete-time RNNs. It suggests that the µP RNN (in v-type539

form) and the standard RNN (in r-type form) can be treated as different parameterizations of the same540

underlying dynamical system when:541

• Initialization scales are matched542

• The learning rate is scaled appropriately with γ543

• Output weight norms are adjusted according to width544

In summary, while a theoretical equivalence exists, it is contingent on consistent scaling across all545

components of the model. In this manuscript, we use the standard discrete-time RNNs due to its546

practical relevance for task-driven modeling community, while switching to µP to isolate the effect547

of feature learning and network size. Additionally, we confirm that the feature learning and network548

size effects on degeneracy hold qualitatively the same in standard discrete-time RNNs, unless where549

altering network width induces unstable and lazier learning in larger networks (Figure Q and R).550

22

N Verifying larger γ reliably induces stronger feature learning in µP551

In µP parameterization, the parameter γ interpolates between lazy training and rich, feature-learning552

dynamics, without itself being the absolute magnitude of feature learning. Here, we assess feature-553

learning strength in RNNs under varying γ using two complementary metrics:554

Weight-change norm which measures the magnitude of weight change throughout training. A larger555

weight change norm indicates that the network undergoes richer learning or more feature learning.556

∥WT −W0∥F
N

,

where N is the number of parameters in the weight matrices being compared.557

Kernel alignment (KA), which measures the directional change of the neural tangent kernel (NTK)558

before and after training. A lower KA score corresponds to a larger NTK rotation and thus stronger559

feature learning.560

KA
(
K(f),K(0)

)
=

Tr
(
K(f)K(0)

)∥∥K(f)
∥∥
F

∥∥K(0)
∥∥
F

, K = ∇W ŷ⊤∇W ŷ.

We demonstrate that higher γ indeed amplifies feature learning inside the network.561

N.1 N-BFF562

Figure 17: Weight change norm and kernel alignment for networks trained on the 3-Bits Flip Flop
task as we vary γ. On the left panels, we show the per-seed metrics where connected dots of the same
color are networks of identical initialization trained with different γ. On the right panels, we show
the mean and standard error of the metrics across 50 networks. For larger γ, the weights move further
from their initializations as shown by the larger weight change norm, and their NTK evolves more
distinct from the network’s NTK at initialization as shown by the reduced KA. Both indicate stronger
feature learning for networks trained under larger γ.

23

N.2 Delayed Discrimination563

Figure 18: Stronger feature learning for networks trained under larger γ on the Delayed Discrimination
task.

N.3 Sine Wave Generation564

Figure 19: Stronger feature learning for networks trained under larger γ on the Sine Wave Generation
task.

24

N.4 Path Integration565

Figure 20: Stronger feature learning for networks trained under larger γ on the Path Integration task.

O Verifying µP reliably controls for feature learning across network width566

Here, we only use Kernel Alignment to assess the feature learning strength in the networks since567

the unnormalized weight-change norm ∥WT −W0∥F scales directly with matrix size (therefore568

network size) and there exists no obvious way to normalize across different dimensions. In our earlier569

analysis where we compared weight-change norms at varying γ, network size remained fixed, so those570

Frobenius-norm measures were directly comparable. We found that, for all tasks except Delayed571

Discrimination, the change in mean KA across different network sizes remains extremely small (less572

than 0.1), which demonstrates that µP parameterization with the same γ has effectively controlled573

for feature learning strength across network sizes. On Delayed Discrimination, the networks undergo574

slightly lazier learning for larger network sizes. Nevertheless, we still include Delayed Discrimination575

in our analyses of solution degeneracy to ensure our conclusions remain robust even when µP can’t576

perfectly equalize feature-learning strength across widths. As shown in the main paper, lazier learning577

regime generally increases dynamical degeneracy; yet, larger networks which exhibit lazier learning578

in the N-BFF task actually display lower dynamical degeneracy. This reversed trend confirms that the579

changes in solution degeneracy arise from network size itself, not from residual variation in feature580

learning strength.581

O.1 N-BFF582

Figure 21: Kernel alignment (KA) for different network width on the 3 Bits Flip-Flop task. (Lower
KA implies more feature learning.)

25

O.2 Delayed Discrimination583

Figure 22: Kernel alignment for different network width on the Delayed Discrimination task.

O.3 Sine Wave Generation584

Figure 23: Kernel alignment for different network width on the Sine Wave Generation task.

O.4 Path Integration585

Figure 24: Kernel alignment for different network width on the Path Integration task.

26

P Regularization’s effect on degeneracy for all tasks586

In addition to showing regularization’s effect on degeneracy in Delayed Discrimination task in the587

main paper, here we show that heavier low-rank regularization and sparsity regularization also reliably588

reduce solution degeneracy across neural dynamics, weights, and OOD behavior in the other three589

tasks.590

P.1 Low-rank regularization591

Figure 25: Low-rank regularization reduces degeneracy across neural dynamics, weight, and OOD
behavior on the N-BFF, Sinewave Generation, and Path Integration task.

P.2 Sparsity regularization592

Figure 26: Sparsity regularization reduces degeneracy across neural dynamics, weight, and OOD
behavior on the N-BFF, Sinewave Generation, and Path Integration task.

27

Q Test feature learning effect on degeneracy in standard parameterization593

While µP lets us systematically vary feature-learning strength to study its impact on solution594

degeneracy, we confirm that the same qualitative pattern appears in standard discrete-time RNNs:595

stronger feature learning lowers dynamical degeneracy and raises weight degeneracy (Figure 27).596

To manipulate feature-learning strength in these ordinary RNNs we applied the γ-trick—scaling the597

network’s outputs by γ—and multiplied the learning rate by the same factor. With width fixed, these598

two operations replicate the effective changes induced by µP . Figure 28 shows that this combination599

reliably tunes feature-learning strength. Besides weight-change norm and kernel alignment, we also600

report representation alignment (RA), giving a more fine-grained view of how much the learned601

features deviate from their initialization [39]. Representation alignment is the directional change of602

the network’s represenational dissimilarity matrix before and after training, and is defined by603

RA
(
R(T), R(0)

)
:=

Tr
(
R(T)R(0)

)
∥R(T)∥ ∥R(0)∥

, R := H⊤H,

A lower RA means more change in the network’s representation of inputs before and after training,604

and indicates stronger feature learning.605

Figure 27: Stronger feature learning reliably decreases dynamical degeneracy while increasing weight
degeneracy in standard discrete-time RNNs.

28

Figure 28: Larger γ reliably induces stronger feature learning in standard discrete-time RNNs.

29

R Test network size effect on degeneracy in standard parameterization606

When we vary network width, both the standard parameterization andµP parameterization display607

the same overall pattern: larger networks exhibit lower dynamical and weight degeneracy. An608

exception arises in the 3BFF task, where feature learning becomes unstable and collapses in the wider609

models. In that setting we instead see higher dynamical degeneracy, which we suspect because the610

feature learning effect (lazier learning leads to higher dynamical degeneracy) dominates the network611

size effect.612

Figure 29: Larger network sizes lead to lower dynamical and weight degeneracy, except in the case
where feature learning is unstable across width (in N-BFF).

Figure 30: When changing network width in standard discrete-time RNNs, feature learning strength
remains stable across width except in N-BFF, where notably lazier learning happens in the widest
network.

30

S Disclosure of compute resources613

In this study, we conducted 50 independent training runs on each of four tasks, systematically614

sweeping four factors that modulate solution degeneracy—task complexity (15 experiments), learning615

regime (15 experiments), network size (12 experiments), and regularization strength (26 experiments),616

resulting in a total of 3400 networks. Each experiment was allocated 5 NVIDIA V100/A100 GPUs, 32617

CPU cores, 256 GB of RAM, and a 4-hour wall-clock limit, for a total compute cost of approximately618

68 000 GPU-hours.619

31

	Introduction
	Methods
	Results
	Task complexity modulates degeneracy across levels
	Controlling feature learning reshapes degeneracy across levels
	Larger networks yield more consistent solutions across levels
	Structural regularization reduces solution degeneracy

	Discussion
	Task descriptions
	Additional axes of task complexity
	Higher task complexity induces more feature learning
	Feature learning effect for all tasks
	Network size effect for all tasks
	Task details
	N-Bit Flip Flop
	Delayed Discrimination
	Sine Wave Generation
	Path Integration

	Training details
	N-Bit Flip Flop
	Delayed Discrimination
	Sine Wave Generation
	Path Integration

	Memory demand of each task
	More details on the degeneracy metrics
	Dynamical Degeneracy
	Weight degeneracy

	Representational degeneracy
	Detailed characterization of OOD generalization performance
	Changing task complexity
	Changing feature learning strength
	Changing network size
	Changing regularization strength
	Low-rank regularization
	Sparsity (L1) regularization

	A short introduction to Maximal Update Parameterization (P)
	Theoretical relationship between parameterizations
	Verifying larger reliably induces stronger feature learning in P
	N-BFF
	Delayed Discrimination
	Sine Wave Generation
	Path Integration

	Verifying P reliably controls for feature learning across network width
	N-BFF
	Delayed Discrimination
	Sine Wave Generation
	Path Integration

	Regularization's effect on degeneracy for all tasks
	Low-rank regularization
	Sparsity regularization

	Test feature learning effect on degeneracy in standard parameterization
	Test network size effect on degeneracy in standard parameterization
	Disclosure of compute resources

