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ABSTRACT

Ambiguity, the state in which alternative interpretations are plausible
or even desirable, is an inexorable part of complex sensemaking.
Its challenges are compounded when analysis involves risk, is con-
strained, and needs to be shared with others. We report on several
studies with avalanche forecasters that illuminated these challenges
and identified how visualization designs can better support ambigu-
ity. Like many complex analysis domains, avalanche forecasting
relies on highly heterogeneous and incomplete data where the rele-
vance and meaning of such data is context-sensitive, dependant on
the knowledge and experiences of the observer, and mediated by the
complexities of communication and collaboration. In this paper, we
characterize challenges of ambiguous interpretation emerging from
data, analytic processes, and collaboration and communication and
describe several management strategies for ambiguity. Our findings
suggest several visual analytics design approaches that explicitly
address ambiguity in complex sensemaking around risk.

Index Terms: Human-centered computing—Visualization—
Visualization theory, concepts and paradigms

1 INTRODUCTION

Our work addresses the challenges of complex and collaborative
sensemaking in risk management: in particular, the domain of
avalanche forecasting responsible for analysis and prediction of
snow avalanches endangering human life and infrastructure. As
is the case with explaining and predicting other hazards (such as
weather or natural disasters), avalanche forecasting involves the con-
sideration and evaluation of alternative potential explanations that
account for data [29] and the communication of these predictions to
audiences widely varying in expertise. In this way, sensemaking is
deeply about managing ambiguity, the state of multiple alternative
meanings, and beyond simply accounting for missing information.
Existing forecasting tools and procedures do not capture all the cog-
nitive work forecasters do [51], motivating the design of better tools
to support them. Because ambiguity is an essential component of
their work environment, avalanche forecasters are an ideal study
group for visual analytics interventions that explicitly target these
challenges.

Visual analytics, “the science of analytical reasoning facilitated
by interactive visual interfaces” [16], is well-suited to address the
ambiguous sensemaking needs of avalanche forecasters. While visu-
alization research has largely been devoted to quantified uncertainty
or data uncertainty [8,11,17,20,33,34,47,50,63,70,73] researchers
are now considering broader issues of uncertainty related to reason-
ing [85], such as the interpretation of implicit errors [55, 65], the
importance of “hunches” in data interpretation [45] or the role of
alternatives in visual analysis [46]. We add to this growing body
of work in our exploration of the challenges of sensemaking un-
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der ambiguity in risk analyses and the consequent implications for
visualization designs.

In this paper we report work focused on two complementary
threads of accommodating ambiguity in risk analysis and prediction.
First, we seek a formative understanding of ambiguity in complex
and critical sensemaking. Through a set of studies with Avalanche
Canada, a public avalanche forecasting organization, we discovered
the critical role ambiguity plays in sensemaking and its constant
challenges for individual and collaborative analysis and communi-
cation. From these findings we characterized different sources of
ambiguity and interpretative strategies, grouped into issues related
to data, analytic process, and collaboration and communication.

Second, we describe how these findings informed initial visual
analytics designs that explore better support for the challenges of
ambiguous interpretation involving heterogeneous data-generating
processes. We developed these tools in close and constant collabora-
tion (participatory design) with forecasters. We then deployed them
as design probes before redesigns were subsequently incorporated
into daily practice, where we continue to observe their use. This eco-
logical approach continues to surface challenges and affordances of
supporting ambiguity in reasoning about risk in the collaborative and
critical environment of forecasting. Our design findings highlight
both the effective potential of visualizations and the caveats. Key
issues are the importance of multiple levels of data granularity,
appropriate context, the need for analytic provenance, and enrich-
ment [3]: the ability to capture both data and insights throughout
the process.

The key takeaway of our research is that ambiguity is distinct
from data uncertainty, requiring solutions that go beyond reduction
or removal. It is an essential component of sensemaking, but at the
same time presents specific challenges for analysis, collaboration,
and communication. We argue that ambiguity can and should be
designed for and not away [60], that even simple design choices
can serve to support or impede sensemaking involving ambiguity,
and that there is a need for more explicit ambiguity support in visual
analytics tools. In this paper, we contribute:

• Insights from 3 qualitative studies with avalanche forecasters
surfacing issues of ambiguity in sensemaking;

• A characterization of sources and strategies for ambiguity in
risk analysis and sensemaking; and

• A preliminary exploration of visual analytics design ap-
proaches to address ambiguity.

2 BACKGROUND

2.1 Public Avalanche Forecasting
Public avalanche forecasters assess avalanche hazards and communi-
cate the associated risks to the public through daily bulletins. These
natural disasters endanger the safety of humans and infrastructure
and require careful professional assessment to inform risk man-
agement in mountainous avalanche-prone areas. Forecasters try to
predict how present or future instabilities within the snowpack may
react to natural triggers, such as the weight of new snow, or human
triggers, such as the weight of a skier [54].



Avalanche forecasting is continuous and distributed across teams
[51] of forecasters who monitor avalanche conditions over an entire
winter season, iteratively updating their understanding with new
information [54]. While many forecasters have the benefit of work-
ing in the field and directly observing avalanche conditions, public
avalanche forecasters work remotely and rely heavily on field reports
produced by other organizations [60]. In Canada, such reports are
shared in the Canadian Avalanche Association’s Industry Informa-
tion Exchange (InfoEx) [25] by avalanche safety ‘operators’, such
as those overseeing railway or transportation corridors, ski resorts,
and helicopter skiing operations among others. While these data
are structured and defined using formal measurement and reporting
guidelines [2], they are gathered using a targeted sampling rather
than a random sampling approach [54]. Operators actively seek
instabilities in the snow. Consequently, forecasters have to glean
enough context about this process to understand what such data
mean (e.g. who reported it, where they went, what they saw, etc.).

Another challenge stems from the sparsity of data. For exam-
ple, remote weather stations used to validate meteorological fore-
casts [60] are very sparsely distributed when compared to the vari-
ability and heterogeneity of mountain weather [48]. Forecasters
mentally simulate the interactions of mountainous terrain and weath-
ers systems and their effects on snowpack from limited data. This
imaginative and speculative ability is a mark of competence and
expertise in avalanche forecasting [1] as well as weather forecast-
ing [67].

Forecasters formalize their judgements of avalanche hazards us-
ing a variety of qualitative measures such as a danger scale, likeli-
hood scale, potential destructive size, as well as different avalanche
types [76]. These assessments are then communicated to the pub-
lic through daily bulletins that are supplemented with additional
risk communications such as advice about how to avoid avalanche
hazards. The public varies in levels of expertise and consequently
varies in how they interpret even simple elements of bulletins such
as danger scales [21, 75]. Public avalanche forecasters rely heavily
on their knowledge, experience, and expert judgment to assess and
communicate avalanche hazards. The challenges of complexity, var-
ied interpretation, and uncertainty are similar to those involved in
risk prediction and communication of other extreme weather events
and natural disasters [7].

2.2 Sensemaking and Risk Prediction
Risk management work faces real-world time constraints, ill-
defined goals, distributed tasks and responsibilities, uncertainty,
and decision-making demands. The engineering of technological
solutions to deal with these issues requires close consideration of
the cognitive processes involved [30, 74]. Frequently in these do-
mains, for example in weather forecasting [29], several targeted
sensemaking strategies are employed. Generally, these involve the
setting of expectations to direct attention to cues that can signal
threats and a concurrent sensitivity to cues that deviate from these
expectations [82].

2.2.1 Anticipatory Thinking

One example relevant to the forecasting of avalanches is anticipatory
thinking: a functional form of mental preparation for potential risks
including those that may be highly unlikely but could result in severe
consequences [43]. Attention is actively managed and directed to
subtle and context-sensitive cues that may signal threats. There
are several types of anticipatory thinking. One, problem detection,
describes the process by which observers first become aware of an
issue that may require a course of action [40, 41]. The ability to
detect problems depends on how rich an observer’s understanding of
relevant patterns to compare against data is. This “pattern matching”
often involves monitoring multiple patterns or “frames” concurrently.
Anticipatory thinking also involves “trajectory tracking”, the extrap-

olation of trends into multiple alternative future scenarios as well as
planning for them. The imagination, exploration, and planning for
alternative scenarios is also known as mental simulation [38]. These
processes are vulnerable to psychological factors or biases such as a
tendency to explain away disconfirming evidence. However, stud-
ies with expert weather forecasters show such biases are countered
through the active adoption of a skeptical stance in analysis [40].

2.3 Sensemaking and Ambiguity
Sensemaking — the process by which meaning is constructed based
on available information and experience — is precipitated by in-
formation or events that violate expectations or are uncertain and
ambiguous [52, 81]. It is characterized by complexity. Complex-
ity involves dynamically evolving rules and interacting parts [28]
where comprehensive understanding is intractable [37] due to the
epistemological limitations of human observation [24]. These limita-
tions mean that complexity is more effectively dealt with holistically
rather than through mechanistic reduction to the sum of parts. Sense-
making addresses complexity and the concomitant uncertainties
through the flexible construction of narratives [18] where informa-
tional cues help determine what is relevant and which narratives or
explanations are coherent or acceptable to consider [12].

This “narrative mode” of thinking describes how signs, symbols,
representations, and their relationships are tied together into coherent
personal narratives authored by the observer [4]. A novel is merely
ink until it is read by someone and the same applies to the analysis of
data. Subplots and micro-narratives involving prior knowledge and
personal experiences are involved in the reading and making sense
of visualizations [61]. Just as a story involves competing narratives,
so too, in general, does sensemaking. This is because sensemaking
often starts with an existing explanation that is challenged by a
viable alternative [39]. Sensemaking is thus more about resolving
multiple potential meanings (ambiguity), rather than just accounting
for missing or uncertain information.

2.4 Ambiguity in Visualization Research
Visualization research has a longstanding tradition of character-
izing uncertainties relevant to the design of visual analytics sys-
tems [9, 49, 50, 79, 85]. Most visualization research has focused on
data uncertainties, but many acknowledge the importance and role
of interpretation and knowledge in uncertainty [20, 35, 49, 64, 85].
MacEachren discusses ambiguity through the lens of organizational
decision-making describing it as a “lack of an appropriate ‘frame of’
reference through which to interpret the information” and describes
equivocality as stemming from the diversity of possible interpreta-
tions [49]. Meanwhile, Boukhelifa et al. define ambiguity in terms of
multiplicities in the relationship between entities and names in data
as well as the differences in interpretation between collaborators [9].
Liu et al. present a framework for the exploration, interpretation,
and management of alternatives in visual analytics [46]. They group
alternatives into three types: cognitive (e.g. hypotheses, mental mod-
els, and interpretations), artifact (e.g. data, models, representations,
or tools), and execution (e.g. methods, code, and parameters). Ambi-
guity is most closely related to their concept of cognitive alternatives.
Researchers have discussed the challenges of ambiguity in natural
language interfaces for visual analytic tools and developed dedicated
mixed-initiative tools for user intent disambiguation [22, 31]. Most
prominent in existing visualization research is the discussion of am-
biguity in collaborative visual analytics where sharing of analysis is
often incomplete, lacking context, and therefore ambiguous [27].

There is much more to analysis than what is explicit in data.
Data are incomplete records of the phenomena they are intended to
represent and require prior knowledge as well speculation. This is
closely related to the notion of “implicit errors”, which are errors
inherent to a dataset but not explicitly represented within it [55, 65].
To better support sensemaking around implicit errors associated with



Figure 1: A timeline displaying the sequence in which studies were executed. Study 1 developed a formative understanding of avalanche
forecasting challenges and workflows represented in a thematic code structure. This code structure was applied to observational data in Study 2
to refine understanding. Findings from these studies were used to inform the design of visualization prototypes used in Study 3.

infectious disease statistics, McCurdy et al. used structured anno-
tations to help expert clinicians externalize knowledge about these
errors [55]. In an application for archeological analyses, Panagioti-
dou et al. developed visualization tools that explicitly represented
implicit errors [65]. Lin et al. use the term data hunch to describe
“a person’s knowledge about how representative data is of a phe-
nomenon of interest” and how issues like credibility, inclusion and
exclusion criteria, or directionality and magnitude of biases are con-
sidered in the analysis of data [45]. The authors outline a design
space for externalizing data hunches.

3 APPROACH

We carried out 3 studies with forecasters at Avalanche Canada (Fig-
ure 1), a public avalanche forecasting organization. Our goal was
to better understand the challenges of ambiguity in their sensemak-
ing and to identify where visual analytics might help. We began
with semi-structured interviews to understand how forecasters per-
ceive and describe the challenges of their work (Study 1). We then
conducted field observations of forecasters on site. Concurrently,
we video-recorded forecasters’ workstations and debriefed them
about analytical reasoning involving the use of existing technologies
(Study 2). This set of observations corroborated and enriched our
understanding of the themes we identified in the interview study
(Table 1). Subsequently, we implemented two fully functional visu-
alization prototypes in collaboration with the avalanche forecasters
and conducted retrospective interviews using these prototypes as
design probes (Study 3). The purpose of this last study was to bet-
ter understand how visual analytics interventions can address the
challenges of ambiguity.

Studies 1 and 2 were conducted on-premises at Avalanche Canada
while Study 3 was conducted remotely. In total, 12 avalanche fore-
casters participated in our studies (P1-P5 participated in Study 1,
P2-P8 in Study 2, and P2-P6 / P9-P12 in Study 3). 10 were male
and 2 were female, reflecting the gender balance of the organiza-
tion and industry. The forecasters came from varied and mixed
backgrounds. 8 had a background in professional mountain guid-
ing, 3 in engineering, 2 in natural sciences, and 2 in business and
communications.

We frame our findings according to issues of ambiguity dealing
with data, analytic process, or collaboration and communication.
Data are incomplete records of the phenomena they represent and
require nuanced and varying interpretations depending on the needs
and goals of analysis. Considering and evaluating alternative inter-
pretations is an essential part of sensemaking: the analytic process
of judging and adopting alternative interpretations presents potential
analytic paths through data. These paths can be difficult to navigate
as much of analysis is not explicitly captured. Finally, forecasters
each hold unique perspectives and thus alternative interpretations

that need to be resolved. They rely on communication strategies
that simplify complexity to retain clarity. This can obfuscate context
and introduce ambiguities that their collaborators have to reason
through. This structure arose from findings from our studies; we
apply it in our discussion of the design implications for potential
visual analytics solutions.

4 STUDY 1: FORECASTER WORK CHALLENGES

4.1 Procedure
We conducted semi-structured interviews with 5 professional
avalanche forecasters on Avalanche Canada premises in Revelstoke,
British Columbia. We asked about common work practices and
challenges in avalanche forecasting, the role of data and evidence,
the role of prior and tacit knowledge, issues of collaboration, and
issues of uncertainty. Participants were asked questions like: “Can
you walk me through a typical forecasting day?”, “What are the
biggest challenges in your work?”, or “What are some common
uncertainties you deal with?”. The interviews were audio-recorded
and then transcribed.

4.2 Analysis
Data were analyzed using thematic analysis [10]. Transcripts were
concurrently segmented [23] and coded according to emergent
themes by one coder. The codes were then refined in two passes.
These themes were then grouped into thematic categories (Table
1). Inter-rater reliability was measured with one other coder who
had a background in avalanche research and limited experience in
qualitative research methods using a transcript sample representing
10 percent of all data [23]. Simple agreement for high-level themes
was .89, Cohen’s Kappa was .81, and Krippendorff’s Alpha was .82.
For the sub-themes, simple agreement was .75, Cohen’s Kappa was
.70, and Krippendorff’s Alpha was .71.

4.3 Findings
4.3.1 Data Challenges and Practices
The data used in avalanche forecasting are uncertain, have
ambiguous expressions or meanings, and have biases. These
characteristics lead to ambiguity and a need to consider alternative
interpretations beyond what is explicit in data.

Forecasters told us one of their key challenges is the uncertainty
involved in data sparsity or missingness. Data are often explicitly
missing as is the case when remote sensors malfunction or fail
to transmit. “[Weather stations] that have good weather or wind
information are even less, and then that’s if they’re even reporting
[...]” (P4). Missingness might also be implicit having to be inferred
from the given situational context. “In a large storm that closes



highways and grounds helicopters, it’s very common the next day
to not get any avalanche observations... but the weather and your
personal experience very much suggests that there was going to be
an avalanche cycle...” (P1).

Forecasters rely on contextual information to understand how to
appropriately interpret data following circumstantial definitions.
Some of these contingencies are officially documented or ingrained
within formal procedures, while others are only learned through
extensive experience and knowledge. “The [...] courses do quite a
good job of standardizing those kinds of threshold amounts [...but]
people who have spent a lot of time on the coast [...] may think a 30
centimeter storm doesn’t really do very much...” (P1).

Common to many classifications of the complex natural world,
avalanche classifications overlap and are not mutually exclusive.
Technically accurate hazard assessments might include several over-
lapping avalanche types resulting in overly complex public commu-
nications. Instead, forecasters try to choose a subset of avalanche
types based on what may inform optimal risk mitigation strategies
by the public. “When you’re modeling the natural world, you take
shortcuts and there’s simplifications[...] they don’t occupy fully in-
dependent places [...] we sometimes have to have discussions about
whether we want to be technically accurate, or whether we want to
retain clarity [...] that starts to get quite complicated. [...] we look
for ways to simplify...” (P1).

The nuances of evidential reasoning and interpretation of data
in avalanche forecasting also extend to the risk-based conservative
bias common to forecasters. Some may be more or less conservative,
and forecasters have to factor in such considerations when weighing
evidence. “[A]nother forecaster would have said something like:

‘[...]they always call that a little more than what it actually is.’[...that]
may influence me to say: Okay, well, maybe I should not necessarily
discredit it, but I put less weight into it...” (P3).

4.3.2 Analytic Processes and Reasoning

Forecasters employ a variety of sensemaking strategies involving
speculation and imagination. They integrate their prior knowledge,
experiences, and contextual clues in data to synthesize understand-
ing and explore risk implications.

Forecasters synthesize, evaluate, and integrate information using
a simulation technique they described as mental projection. It is a
process of imagining oneself in the field to understand conditions
and their risk implications. “...that’s a technique that a lot of people
use to help forecast... kind of projecting yourself mentally, whether
you close your eyes or you just have some kind of image of the kind
of slopes, the kind of areas where the people are moving around [...]
I think that experiential part there is really relevant to the process...”
(P1). This might involve mentally converting biases such as wind
data from weather stations in windy locations. “[T]here can actually
not be that much wind in the park and you can have 60 kilometers
an hour winds at that station. [...]taking an input and then adjusting
it for myself...” (P2). It might also involve simulating alternative
future scenarios and their risk implications. “If things are a little
bit unusual, I [...] try and strip it down and build some kind of
synthetic profile either in my mind, or sometimes even do it on the
whiteboard [...] And then figure out the most likely, it’s usually a set
of scenarios...” (P1).

Forecasters describe their work as bayesian-like because they are
constantly updating their mental models with new information and
deliberately omitting weak or redundant evidence. They reported
having to immerse themselves in data over several days of their
shift to build confidence in their sense of understanding. This often
involves undirected explorations of general background information.
“...a day, you know, more likely two days to become fully sort of
understanding of what’s going on in your region [...] even if you can
read it all in a day, it takes a little time for it to sort of percolate and

for you to understand what that means...” (P1). To address identified
gaps in understanding forecasters actively seek contextual sources
of information. “I’ll [...] look for keywords like ’oh ya... skiing,
like, steep terrain in the Alpine, up to 40 degrees and just exposed
features. No problem.’ That tells me that not much is going on. Yeah,
people are confident...” (P2). As they conduct their assessments,
they iteratively update knowledge artifacts like the public bulletin
to match their current understanding. “I’m pretty iteratively making
small changes in the forecast [...] I’ll just move that right into the
forecasts, put it there, save, and I go back to what I was doing...”
(P2).

Unlike forecasters, operators directly observe avalanche condi-
tions in the field and thus have a richer understanding of the com-
plexities involved. As a result, forecasters use subtle cues in data
that can reveal the subjective hunches of operators to help them
appropriately frame their understanding of avalanche conditions.
“‘Okay, are these guys still concerned about this?’ That’s what really
matters to me more so than like the really nuanced low-level data...”
(P2).

4.3.3 Collaborative Challenges and Practices

Collaboration helps individual forecasters overcome the limitations
of their own knowledge by drawing on the collective knowledge
and experiences of their peers. At the same time, communicating
the complexity of their assessments in simple terms is a constant
challenge that creates ambiguities.

Forecasters vary in knowledge and experience which likely con-
tributes to some variations in interpretation. However, this diversity
is seen as an advantage as, collectively, it addresses the gaps in un-
derstanding any single forecaster may have. “[M]y experience may
be different from you know... another forecaster’s experience and
I can learn from that person [...] there’s those kinds of exchanges
that happen...” (P1). Forecasters share knowledge and solicit their
peers’ perspectives in daily discussions. “At two o’clock, we have
our pow-wow where we all kind of go through our hazards and our
problems. [...] it’s kind of like a peer review session...” (P3).

Professional exchanges with partnering operations help
avalanche forecasters enrich their understanding of how data are
produced in a variety of operational contexts. “[W]hether that’s
highways or ski hill, snowcat skiing, heli-skiing [...] there’s variabil-
ity between the individual operators... And the only way to really
fully understand is to go and spend a bit of time with that operator.
[...] We have professional exchanges go on...” (P1). Forecasters also
phone operators and reach out directly for clarification or if they are
uncertain about how they should be thinking about conditions. “[If
I] am potentially missing something or I just don’t feel comfortable
[...] I’ll start picking the phone up and trying to find people in the
area that can provide more, more insight...” (P3).

Collaboration allows forecasters to account for each other’s
knowledge gaps, at the same time, it presents challenges such as
communication of analysis. Forecasting relies on the continuity of
analysis. Shift-changes can disrupt this continuity and forecasters
struggle with communicating relevant details as part of the hand-off
process. “[T]here’s a lot of variability in different people and [...]
what sort of information they leave [...] that’s the first place I’ll look
[...] hoping that the [...] previous forecaster has left enough informa-
tion to start that picture...” (P3). To facilitate the hand-off process,
forecasters produce knowledge artifacts like dedicated hand-off
notes or detailed descriptions of snowpack stratigraphy. “[Talking
about hand-off notes] I am trying to take that ease and control that I
have at day four or five [...] and I give that to the next person, so they
don’t feel like they have to do their process of discovery from ground
zero essentially...” (P2). This is seen as a separate and additional
task often completed at the end of the day when forecasters are
fatigued. This is why documentation used in support of hand-off



Table 1: Thematic codes developed in Study 1 (semi-structured interviews) and applied to Study 2 (field observations and cued-recall debrief).
Thematic codes are organized and color-coded according to their relevance to different sources of ambiguity.

and collaboration is often incomplete.
Whether communicating to fellow forecasters or the public, cap-

turing complexity and nuance in simple and understandable terms is
a challenge. “To simplify it [...] that’s when you are kind of having
to use your own best judgment...” (P2). Forecasters must translate
their understanding and cater it to an audience that varies in under-
standing and expertise. This often involves exploring alternative
future scenarios, their implications, how an audience may interpret
what the forecaster is saying, and subsequently choosing a simple
communication strategy that comprehensively accounts for these
alternatives. “So instead of trying to write my forecasts like: ‘oh, if
we get 10 centimeters it will probably be okay, but if we get 20, then
it’ll probably come unglued’ [...] It’s like ‘just watch for conditions
to change as you increase with elevation [...] if it starts to feel stiff
or slabby underneath your feet [...] use that terrain feature to go
around it...” (P2).

5 STUDY 2: OBSERVING AVALANCHE ANALYTICS

The purpose of Study 2 was to observe forecaster workplace be-
haviours and their use of technology. We sought a richer understand-
ing of the challenges faced by forecasters and how visual analytics
interventions might help.

5.1 Procedure
We conducted field observations on Avalanche Canada premises
for a week., collecting field notes and audio recordings of daily
discussions. At the same time, we gathered observations using cued-
recall debrief (CRD), a situated recall method developed for use
in complex decision-making contexts [62] and adapted for human-
computer interaction [5]. 7 forecasters were observed in the field
and 4 were debriefed using CRD. Camcorders positioned behind
workstations in view of monitors and the desk surface captured
recordings of forecaster’s workday and their use of technology as
well as artifacts such as hand-written notes. At regular intervals,
video recordings were reviewed to identify timestamps where fore-
casters exhibited behaviours relevant to our research interests. At
the end of the workday, recordings were played back to forecasters
at marked timestamps, and forecasters were asked to explain their
thought processes and actions. We asked questions like: “Can you
explain what you were doing and thinking here?” These debrief
interviews were video recorded and transcribed.

5.2 Analysis
We applied the thematic coding scheme developed in Study 1 to notes
and transcripts in Study 2 (Table 1). This allowed us to compare

what forecasters say and what they actually do. Thematic coding
was applied by one coder in two passes.

5.3 Findings
5.3.1 Analytic Tooling
Forecasters rely heavily on text tables and information from disparate
web-based sources. They gather these resources in a map-based
web portal that organizes hyperlinks to such resources spatially
(Figure 2A). Data such as weather station telemetry representing
meteorological conditions are investigated in a bottom-up manner.
Telemetry from individual weather stations is viewed in a table
format and iteratively synthesized into a holistic understanding of
weather patterns. Similarly, professional field reports are generally
viewed in text tables (Figure 3A). Forecasters scan down columns of
tables to extract patterns and distributions from structured attributes
such as avalanches sizes. At the same time, they read across rows
of tables to extract details about individual reports to glean enough
context to understand their significance. We observed forecasters re-
purposing web-browser features to accomplish simple analytic tasks.
For instance, one forecaster opened several days of data in successive
windows to investigate temporal patterns and make comparisons.
This suggested forecasters could benefit from dedicated analytic
tools to support such tasks. To our surprise, we found that the
visualizations present in existing systems were seldom used. While it
was clear the forecasters could benefit from dedicated analytic tools,
the overwhelming use of text tables indicated this representational
form held some comparative advantage in sensemaking.

5.3.2 Talking About Data
Organizational knowledge relevant to the nuanced interpretation of
data is in large part oral tradition exchanged through the shared
practice and environment of work.

We observed several discussions that dealt with the topic of how
to interpret particular reports. For instance, one discussion dealt
with the interpretation of a report authored by an operator who was
known to have a conservative bias and what the implications of
this were for hazard assessments. In another discussion, a junior
forecaster with a guiding background described how they are coming
to understand the challenges of their new remote-work environment,
noting the nature of what types of information may be missing. “Af-
ter having worked this job [Avalanche Canada] ... I sort of realize
the big holes the operators leave in their writeups [...] because they
are having face to face conversations... and maybe not putting that
information into their writeup... saying this layer [of snow] does not



Figure 2: (A) Existing spatially oriented web portal linking to external weather station telemetry resources. Data from individual weather stations
are commonly viewed in a table format and synthesized in a bottom-up manner. (B) WxObs visualization prototype showing numerical aggregates
of weather station telemetry. Weather stations are viewed simultaneously using a conventional overview-first and top-down approach.

exist in our area may not be helpful to them, but it really helps us
here in this office...” (P8). How classifications and circumstantial
definitions are applied in hazard assessment and risk communica-
tion was also a frequent topic of conversation. “I like [X’s] point
yesterday, wind slabs in the alpine are kind of like cornices that you
find always... it is just a winter mountain hazard... it goes on the
bulletin when it is elevated to more than normal caution...” (P2).

5.3.3 Tacit Sensemaking and Analytic Processes

Early sensemaking processes, particularly those involving personal
experiences or trust, may be difficult to articulate out of context and
consequently, share with others.

When debriefing forecasters about their workday we found they
relied on the subjective hunches of operators that they personally
trusted and were more familiar with. This factored into how evidence
was weighed and the confidence forecasters had in it. “I feel good
about who was about in the operation. So, I felt that the test was
valid and valid information that I should be thinking about...” (P3).

We also found forecasters exploring general contextual informa-
tion to immerse themselves. They found it difficult to articulate how
they were using the information, reflecting characteristics of early
sensemaking processes [71]. “It was just to give me an orientation to
get my mental picture for forecasting [...] just a little bit of context...
I don’t know what that does for me exactly...” (P4).

5.3.4 Collaboration and Knowledge Artifacts

The bulletin serves as a knowledge artifact representing a forecast-
ers’ current understanding of avalanche conditions. The bulletin
scaffolds analysis and guides information search, particularly
during hand-off at shift changes. However, the reasons behind
specific changes to the bulletin are not always explicitly captured
leaving future collaborating forecasters to speculate about the
reasoning that might have been involved.

Forecasters don’t just iterate over their own bulletin over the
course of the day, they often carry forward the previous day’s bul-
letin even if another forecaster wrote it. We observed how forecasters
update it as they formulate their own new understanding. “I import
yesterday’s forecast... and I tweak my forecast so it matches my now-
cast...” (P6). The specific reasons behind these updates are not made
explicit, leaving the forecasters coming on shift to seek contextual
information to speculatively reconstruct their coworker’s evidential

reasoning process. “...so I reviewed a few avalanches to understand
what was driving those avalanches and why [anonymized] added
that persistent slab problem again...” (P6).

6 CO-DESIGNING VISUAL ANALYTIC SUPPORT

These findings guided us in developing visualization prototypes to
support core forecasting tasks. We deployed these visualizations as
design probes to examine how visual analytics interventions may aid
in addressing challenges of ambiguity. The first prototype (WxObs)
aggregates weather observations from remote weather stations in
order to help forecasters validate the previous day’s weather forecast
as well as to monitor evolving weather systems in real-time. The sec-
ond prototype (AvObs) uses field-reported avalanche observations
produced by avalanche safety operations sharing data in the InfoEx.
Avalanche observations are treated as key indicators of avalanche
hazards in avalanche forecasting. We designed and developed both
prototypes through several iterations from paper sketches to compu-
tational implementation in collaboration with avalanche forecasters.
Both tools were evaluated using think-aloud protocol throughout the
design process to explore how the tools support reasoning.

6.1 WxObs: Classic Design

Forecasters traditionally access weather station data through a
spatially-linked web portal that redirects to external resources where
data from individual weather stations are generally presented in text
tables (Figure 2A). Forecasters use this information to synthesize
patterns and distributions of various meteorological data such as
precipitation totals, wind speeds, and temperatures. However, we
found that their existing approach was challenged by the visual frag-
mentation and tediousness of accessing these disparate resources.
We used a classic visual analytics linked and interactive multi-view
design approach to streamline analysis and address this problem
(Figure 2B).

We designed a conventional visual analytic display following
Shneiderman’s “Overview first, zoom and filter, then details on de-
mand” visualization mantra [72]. Numerical aggregations of various
weather stations telemetry across time and space were displayed in
a variety of visualizations to provide forecasters with an “overview”
of the data. Multiple “levels of detail” and “scales of resolution” of
the data were captured across the display. All visualizations were
linked together interactively supporting “brushing”, “zooming”, and
“filtering” interactions across all corresponding displays. Individ-
ual marks visible in the spatial view allow tooltip interactions for



Figure 3: (A) Existing InfoEx interface displaying avalanche observation reports in a table format. Individual reports are read and analyzed in a
bottom-up manner. (B) AvObs visualization prototype displaying avalanche observation reports using glyphs placed in a variety of visualization
contexts. Individual reports are visible allowing critical contextual details to be discerned to inform understanding when there is a multiplicity of
interpretations.

“details-on-demand”.

6.2 AvObs: Breaking with Classics
Our second prototype, the AvObs tool (Figure 3B), uses daily field-
reported avalanche observations shared by avalanche safety oper-
ators on the InfoEx platform. These tables are generally viewed
in a tabular format. When we started designing this tool with the
avalanche forecasters, we used classic visualization principles based
on effectiveness and expressiveness [59] and common conventions
such as using numerical aggregations. We found that even simple
numerical aggregations like counts were problematic and inappro-
priate.

6.2.1 Disaggregated Data
We discovered several issues necessitating disaggregated views of
data. First, the data have ambiguous expressions where the same
data value may correspond to multiple meanings depending on con-
text and the communicative intent of the author. Second, data are
gathered using a targeted sampling approach rather than a random
sampling approach. The data generating process is not uniform
across the dataset and as a result, this challenges the methodological
utility of aggregate measures.

6.2.2 Glyphs for Ambiguous Data
Forecasters wanted to see individual reports while at the same time
being able to discern general patterns in the data. To address this
design constraint we used glyphs with circle marks representing
individual reports in a packed layout within a variety of visualization
contexts. Circle marks were encoded using important structured
data attributes within reports. The size of circles encoded typi-
cal avalanche size and the color encoded the number of observed
avalanches. Two color maps were used to distinguish numerical and
categorical values reflecting the need to preserve raw forms of data.
Brushing and linking as well as tooltip interactions reveal contextual
details allowing forecasters to discern how to interpret individual
reports. This glyph-based approach operates at multiple scales of
resolution allowing forecasters to visually aggregate data to discern
patterns. Glyphs are known to support several visual aggregation
operations such as summarizing data, detecting outliers, detecting
trends, or segmenting data into clusters [78].

6.2.3 Desirable Difficulty
Early versions of the AvObs visualization prototype used bar charts
that forecasters found difficult to interpret. They expressed concerns
about visualizations giving them a false sense of precision and

disarming the level of scrutiny forecasters usually apply to these
data. We deliberately chose to use a visual design that we thought
would break this sense of precision by introducing deliberate effort
in decoding visualizations. We chose size and color as opposed
to position which is commonly thought to be decoded more accu-
rately [15] and, depending on the task, is often more perceptually
salient [78]. In addition, combining visual features such as size and
color is more difficult than using either alone [26]. In this way, we
are explicitly violating the principle of perceptual effectiveness to
provoke more deliberate consideration of the data, grounded in the
concept of “desirable difficulty”.

The benefits of introducing cognitive difficulties have been dis-
cussed in the context of geovisualization and risk-based decisions
[13] and are well-documented in studies of human learning [84].
In visualization research, desirable difficulty has been framed as a
trade-off between the cognitive efficiency derived from pre-attentive
processing and improved learning through more active processing
of information [32]. By reducing the fluency with which patterns
in visualizations are read, more active and attentive processing of
these patterns can stimulate “self-explanations” [14] where infer-
ences about missing information are generated to fill in gaps or
prior knowledge is integrated with new information to account for
potential discrepancies. We conjecture our relatively more imprecise
visualization design introduces visual complexity that induces addi-
tional effort, attention, and careful consideration of how perceived
patterns should be interpreted. This is particularly important when
ambiguity is a relevant consideration. By relying on quicker or more
efficient information processing, one may be led to treat a visual
display at face value and forego the consideration of alternative
interpretations that may apply.

Beyond factors related to low-level perceptual processing, we
conjecture that our chosen design serves as an effective metaphor
for the messy nature of such data. Researchers have discussed how
precise, easy-to-read, and minimalist designs can impart a sense of
authority or objectivity [36] that may not always be warranted. The
rhetorical force of visualizations to convince viewers that a clean
visualization is an objective and perfectly truthful representation of
the world can be detrimental when considering the messiness and
complexity of many real-world data. Our deliberately messy design
may serve as a reminder, much as tables do, that such data require
additional scrutiny and interrogation from multiple perspectives.



7 STUDY 3: EXPLORING VISUALIZATIONS

7.1 Procedure
The visualization prototypes were evaluated using retrospective in-
terviews. The avalanche observations prototype used simulated
synthetic and historical data from past seasons and was never used
operationally. The weather stations prototype used real-time data
and was used operationally in the second half of the winter forecast-
ing season. 7 forecasters had input on the design and development of
prototypes while one simply commented on their experiences using
them.

At the end of the forecasting season, we conducted semi-
structured interviews asking forecasters to reflect on the prototypes,
how they addressed the challenges of data, how they affected their
work, and what needs remained unfulfilled. Interviews were con-
ducted remotely using video conference tools. We used our pro-
totypes as artifacts in the interview to prompt the forecaster’s re-
flections. The interviews were video-recorded and transcribed. We
summarize our key findings with quotes extracted from transcripts
below

7.2 Findings
7.2.1 Many Possible Interpretations
The operational use of the WxObs prototype highlighted how analy-
sis of weather station telemetry presents issues of data uncertainty
that give rise to ambiguity. They are sparsely distributed relative to
the large spatial areas they are used to represent [48] and they are
subject to a variety of sensor and transmission errors caused by envi-
ronmental factors. Presently, there is no comprehensive automated
quality assurance procedure that accounts for all possible errors in
the data [57]. Diagnosing errors and how individual weather sta-
tions come to represent broader weather patterns is a matter handled
through the forecaster’s judgment and interpretation. Forecasters
normally use text tables to view each weather station’s telemetry
individually and progressively build up an understanding of weather
patterns. This bottom-up approach stands in contrast to our top-
down and overview-first visualization designs. Our visualization
prototypes employed visualizations of aggregate measures, multiple
granularities of data, interactions including brushing and filtering,
and tooltips to view the details of individual weather station teleme-
try (Figure 2B). Our visualization prototype introduced a new and
unfamiliar analytic approach that challenged forecasters. “I’ve
always looked at the data in a pretty disaggregated way [...] What
I’m having to learn is to kind of let go of that, needing to see the
disaggregated view first so that I can aggregate the data in my brain
so to speak...” (P12).

Similar challenges arose in the AvObs tool (Figure 3B). The
human-reported avalanche observations follow reporting standards
that, while structured, require a thorough understanding of context
for interpretation. “...the InfoEx system and the standards... they
kind of define the box that we all work in [...] how you use them...
context drives that. You might use a certain approach... data that are
obviously within that general framework or box that we’ve created,
but you might not use them exactly the same way...” (P12). The
same datum may be interpreted in a variety of ways and displays
need to reveal the appropriate details for readers to discern what is
appropriate.

7.2.2 The Need for Raw Data
Both data sources and prototype tools highlight a need for fluid
interaction with underlying raw data. In the WxObs tool, many who
are used to seeing raw data in a tabular format raised issues of
trust as they could not apply the same visual scanning strategies to
detect errors in data. “[I]t largely stems from the trustworthiness of
the data [...addressing the use of spreadsheets] I like things in their
raw format just for my own sake [...] my own stamp of approval. [...]

I guess it’s easy for my eyes to decode differences or irregularities.
You should be able to visualize the data and get the same output.
I don’t know why. I just use tables...” (P1). Others also used raw
data tables but did so to scaffold the learning of data processing
mechanics and the affordances of the visualizations as analytic tools.
“[...] having that [raw data table] side by side with the visualization
helped me to interpret: Okay, what’s the visualization trying to tell
me here?” (P4).

Similar issues surfaced with the AvObs tool. Early design itera-
tions employing bar charts were seen as an impediment to sensemak-
ing. Meanwhile, the glyph-based design was thought to hold more
methodological utility as it more closely resembled and supported
their mental model of how to analyze these data. “I like seeing the
individual events more than the aggregate... It seems like full of flaws
and limitations to kind of summarize all the [avalanche] activity with
one number...” (P11). Despite our prototype using individual marks
to represent each individual report, some forecasters still wanted the
ability to see table-based displays. We speculate that this, similar
to the WxObs tool, is due to issues of trust and learning how tacit
analytic procedures associated with existing table-based views are
or are not supported in the AvObs tool.

7.2.3 Forecaster Reflections
Forecasters who adopted the WxObs visualizations more readily in
their work found the tool provided them with a richer and deeper
understanding of meteorological phenomena than traditional data ta-
bles alone. Drawing a historical comparison to the role of computers
in meteorology, forecasters view visualizations as a stepping stone in
a transitional phase towards more data-driven modeling. “[T]here
was a transitional phase there where the computer was more an
aid to help the forecaster make some initial assumptions... then the
forecaster would tweak the forecast and actually write the forecast
manually still... and now we’re to the point where that really isn’t
the case...” (P12).

Meanwhile, forecasters reported feeling satisfied with how the
AvObs visualization prototype represented and supported their an-
alytical processes. “[The visualization] helps to smooth the data
[...] and just at a glance [...] but it’s not smoothing where I can’t
then [...] tease out nuances[...] I feel like it’s really true to the data,
which is a collection of individual points, kind of disparate points
from across a forecasting region...” (P2).

8 DISCUSSION

Throughout our 3 studies, we found that critical issues of ambiguity
arise in three contexts: the data, the process of analysis, and the
challenges of communicating both data and interpretation to both co-
workers and the general public. We unpack the role of ambiguity, the
concomitant challenges, and strategies used to deal with ambiguity
in each of these contexts. Our findings highlight the need for more
effective design interventions. We discuss each in turn.

8.1 Sources of Ambiguity
8.1.1 Data
Ambiguity emerges from data because they are incomplete simplifi-
cations of the complex phenomena they represent. Ambiguity may
be involved in the expression of data or how representative data are
of phenomena of interest. Whether reasoning about multiple types of
data uncertainty in weather station telemetry or what field-reported
avalanche observations mean for avalanche conditions more broadly,
forecasters use their knowledge, experience, and cues within the
data to explore plausible explanations that account for what they
see. Here, provoking alternative interpretations serves a productive
purpose in analysis.

Forecasters try to capture relevant nuances of interpretation about
specific data through daily discussions. Often this might serve
to disambiguate meaning by providing an optimal or appropriate



framing for the data. For instance, the understanding that weather
stations at windy locations will need adjustment when trying to
understand broader wind patterns. We note that the forecasters’
corpus of organizational knowledge is predominantly oral tradition
exchanged in application to the immediate demands of work. Such
a mechanism for knowledge exchange is vulnerable to information
loss.

8.1.2 Analytic Process
Ambiguity both serves a productive purpose in analytic processes
and presents challenges for the management and navigation of anal-
yses. Alternative interpretations are explored as part of sensemaking
often taking the form of alternative scenarios in risk analysis and risk
prediction. Either through mental visualization or explicit sketches,
forecasters provoke and imagine alternative scenarios to explore
potential risks or explanations of data.

The judgments and analytic choices made during analysis repre-
sent alternative potential analytic paths through data. As forecasters
weigh evidence and update their understanding of avalanche con-
ditions, they iteratively adjust knowledge artifacts to match their
understanding. However, the evidential reasoning process behind
their judgments is often left uncaptured and may be difficult to
reconstruct. This poses challenges for managing analysis as it may
be unclear what work is completed and what remains to be done.

8.1.3 Collaboration and Communication
Forecasters each hold a unique perspective and interpretive lens pre-
senting a form of ambiguity. Forecasters use strategies like regular
discussions or hand-off notes to exchange knowledge and disam-
biguate how to interpret each other’s assessments by capturing
their reasoning processes. However, given the additional effort of
this task and the difficulty in anticipating what may be relevant, such
information is often not completed. This leaves forecasters having
to speculate about their colleagues’ reasoning processes.

Forecasters translate their own complex understanding of
avalanche conditions in simple terms to ensure that members of
the public, whether novice or expert, can apply appropriate risk-
management strategies. In doing so, forecasters mitigate the risks
of potential scenarios the public might encounter or the confusion
that might result from overly technical communications. Quite of-
ten, this means reconciling alternatives. For instance, in a situation
where two avalanche problem types require the same risk mitiga-
tion strategies, forecasters will use one of them and supplement any
further guidance that might be necessary using plain and actionable
language. The myriad of ways to communicate hazards presents its
own form of ambiguity. Moreover, individual forecasters differ in
how they judge avalanche hazards and apply assessments [44, 77].

8.2 Design Implications
8.2.1 When to Break the Rules
Conventional visualization design principles value precision-based
visual variable effectiveness rankings as a basis for design decisions.
However, as others have highlighted [6], this is an oversimplification
of how visualizations are used. Visual pattern detection and visual
thinking extend far beyond the precise extraction of singular values,
and more importantly, displays that optimize for precision may have
detrimental effects on other types of operations. With the need for
close scrutiny of data and the potential for alternative interpretations,
overly precise displays can give a false sense of precision and forfeit
the perceived need for further scrutiny.

Our research has also highlighted that while the traditional
’overview first’ mantra certainly has value in this application, it
leaves a need for more fluid access and control to underlying raw
data without overly onerous interactions. The properties of these
data, like their ambiguous expressions or the varying data-generating
processes, challenge conventional visualization approaches which

can hide critical details that cue appropriate framing for data. While
our designs shifted some focus to these cues, the need for bottom-up
raw-data-driven processes was still highlighted in the feedback we
received.

When dealing with heterogeneous and ambiguous data, designers
should consider design approaches that best support the sensemaking
processes involved rather than relying on conventional visualization
mantras with a one size fits all approach. This reflects a broader need
for improved guidance of how the affordances of visualization design
can support the relevant cognitive processes needed for specific
problem solving and sensemaking tasks. To do so, a characterization
of what tasks can be supported by visualizations needs to move
beyond what can be measured in lab experiments (e.g. low-level
perceptual processes or decoding statistical properties of data). We
suggest that a “macrocognitive” lens [42], one that values ecological
validity and the complexities involved rather than strict control of
variables, may help researchers identify such tasks.

8.2.2 Desirable Difficulty
Introducing cognitive difficulties in the context of visualization is
thought to improve the memorability of insights [32]. Our research
suggests that enabling or encouraging sensemaking around ambigu-
ity is another beneficial outcome. There may be other benefits of
introducing difficulties in visualization that remain to be identified.

8.2.3 Access to Raw Data Supports Sensemaking
Through our design study, we learned that visual displays of het-
erogeneous and ambiguous data should aim to reveal the relevant
contextual details necessary to discern appropriate interpretations.
Abstractions like numerical aggregations can occlude such details
and impede sensemaking. Instead, we recommend designs such as
unit visualizations that support visual aggregations or those showing
the relevant granularity of data alongside numerical aggregations
(in tables, for instance). This allows alternative interpretations to be
provoked when trying to understand how data come to represent a
phenomenon of interest. In addition, access to raw data can support
the process of learning and adopting new analytic tools by revealing
underlying data processing mechanics [3]. Hasty transitions to new
analytic systems risk the loss of a host of implicit procedural knowl-
edge that may not be supported by new approaches. This can cause
issues of trust. Showing raw data alongside more abstracted views
of the same data can aid comprehension of new tools and allow users
to evaluate their affordances.

8.2.4 Capture Ambiguities Explicitly
We argue that design solutions need to extend beyond the represen-
tation of existing data. Managing an analysis with many contin-
gencies and nuances of interpretation is difficult and is vulnerable
to information loss, particularly when analysis is shared. To better
serve the analysis at hand and to improve collaborative analysis,
we suggest that the nuances of data interpretation should be cap-
tured explicitly during analysis. This would serve to characterize
ambiguities through the externalization of relevant knowledge and
the enrichment of data. We must take care these interventions re-
main lightweight and contextually anchored to avoid undue effort.
We draw inspiration from the concept of “active reading”, where
knowledge generated during the process of reading is captured with
external representations such as computationally-enabled markup
and annotations [56]. Researchers have demonstrated that such
techniques can be extended to analysis using visualizations [68, 80].
Annotations are a general-purpose technique that has been applied
as a strategy to deal with ambiguity [9] as well as implicit errors [55].
This suggests annotations could be more specifically tailored and
extended to address the challenges of ambiguity. Other forms of
markup [3], including annotations, employed for the nuanced inter-
pretation of data are often embedded in the ubiquitous spreadsheet,



perhaps the most widespread analytic tool. Tables are flexible and
allow direct interaction with data which might explain why users
often turn to them to support complex sensemaking. The affordances
of tables are well-suited to deal with the challenges of ambiguity
and may serve to guide the design of visual analytics systems in
applications dealing with such challenges.

8.2.5 Externalizations Can Be Vague
Ambiguity is often the start of a sensemaking process. At such early
stages, understanding may be inchoate and difficult to articulate,
calling into question the utility of highly detailed capture mecha-
nisms such as annotations. In collaborative analysis, it is difficult
to anticipate the needs of others. Collaborators might only form an
intuition about a problem that may be important for others to be
aware of [40]. This is because the relevance of any such problem is
context-sensitive [82]. Standardized protocols for sharing analysis
often fail because designers of such protocols cannot adequately
account for and predict all the unique information or complexity
that might arise [66]. These considerations are important whether
collaboration is with others or oneself at a future point in time.

There may be more simple capture mechanisms that can address
the difficulties of articulating complexity. Passive capture mecha-
nisms such as interaction logs provide one lightweight and context-
sensitive solution. Interaction logs have been used to infer reasoning
processes [19] and are frequently discussed as approaches for docu-
menting analytic provenance [83]. Interaction logs, however, only
show behaviours and are indirect indicators of reasoning processes.
User-controlled markup may still be necessary to capture what is rel-
evant. Researchers in clinical healthcare settings have supplemented
hand-off protocols with vague metrics like gut feelings about a pa-
tient, time spent with a patient, or how medical equipment in a room
has been moved around to take advantage of practitioners’ shared
work environment and culture [58]. We can take inspiration from
this work. To capitalize on the shared digital working environment,
simple markup such as tagging of data or representations may be all
that is necessary to signify ambiguity. Tags may signify important
pieces of evidence, how evidence is weighed and relates to assess-
ments, or may simply serve to raise awareness of ambiguity and
prevent it from being lost and risking potential misinterpretation.
Forecasters can use their shared working environment to maintain
context and capture ambiguities without having to precisely artic-
ulate them. Awareness of uncertainty is critical for ensuring trust
in findings [69] and we argue the same applies to awareness of
ambiguity.

8.2.6 Data Enrichment Requires Metadata Management
The use of more explicit data enrichment and ambiguity capture
raises the question of how long captured data should persist as part
of the working environment. Such markup may only be relevant
for one working session and one individual. It might be relevant
across several working days and for multiple collaborators. Or, it
might take a more permanent form in a corpus of organizational
knowledge. Designers should consider ways to control or account
for the persistence of captured data.

Metadata created during analysis within a visual analytics system
are bound to a representation rather than the underlying database.
This raises questions about how such metadata may be queried,
retrieved, or reused in contexts outside of the one they are created in
and originally bound to. Designers need to consider how metadata
can be reused and translated across analytic contexts.

8.2.7 Unstructured Metadata Require Schematization
Ad-hoc data enrichment and ambiguity capture pose some practical
challenges when scaling. Annotations tend to produce large amounts
of unstructured data that can be difficult to reuse. Such data require
a schematization mechanism to make them tractable for future reuse.

Mechanisms for eliciting such data may be structured ahead of
time, for example through survey-like questionnaires. Meta-data
gathered at the time of elicitation, such as timestamps or application
states [53], might also provide some structure. Alternatively, natural
language processing approaches such as ontology-learning may lend
themselves to schematizing such meta-data. However, we stress that
the use of such algorithms should maintain transparency and give
supervisory control to users. As we have learned in our design study,
even simple statistical abstractions can obfuscate details paramount
to reasoning about ambiguity. Further, highly complex technological
solutions are more vulnerable to failure [82]. Consequently, the use
of automation or algorithms should be carefully designed to make
data processing transparent in support of human comprehension.

8.2.8 Baby and the Bathwater

Our experiences developing visualization prototypes for avalanche
forecasters have highlighted the costs associated with introducing
new analytic tools. The forecasters have developed visual reasoning
strategies for interrogating data in table formats. Many of these
procedures and processes are likely tacit and simply a natural habit
that has been developed. When introducing new tools, even basic
visualizations, there is a transitional period. A process of evaluating
what capabilities are gained or supported, and which ones might not
be supported needs to occur in practice. Until a thorough understand-
ing of how a new analytic tool fits within the broader sensemaking
toolkit, issues of trust will persist.

Computationally-enabled analytic tools are becoming ever-more
sophisticated and complex. While there are real benefits to such
powerful tools, designers need to consider the learning and unlearn-
ing of procedures associated with the adoption of new approaches.
This is a common and obvious concern in the implementation of
new systems. However, it is one that should be given more attention
as it is often forgotten. This is particularly important in applications
involving risk-based decision-making and time constraints where
there are severe consequences for misinformed decisions.

9 LIMITATIONS

We note that while our first study had additional coders to test reli-
ability, data from subsequent studies were analyzed by one coder
only. Our comprehension of the challenges that forecasters face
was incorporated in prototypes within our design study and the
feedback forecasters provided throughout our close collaboration
served as a form of validation of our understanding. This presents
obvious limitations in the reliability of our findings. However, such
challenges are common in the development of long-term, qualita-
tive, and ethnographically inspired research aimed at deep domain
understanding.

10 CONCLUSION

We have presented findings from a set of qualitative studies with
public avalanche forecasters. Our research highlights that ambigu-
ity presents challenges and unmet needs in critical and complex
sensemaking. We propose a formative characterization of ambi-
guity across three levels of abstraction in analysis: data, analytic
process, and collaboration and communication. The key lesson
of our research is that ambiguity should be explicitly considered
and designed for. While even simple visualization design choices
can serve to enable or impede sensemaking around ambiguity, we
argue for more targeted and explicit approaches. Our findings may
inform future research and the design of tools in other complex
risk-management domains such as extreme weather forecasting or
the forecasting of other natural disasters. This work represents a
preliminary attempt to characterize ambiguity and define a design
space for visual analytics, but many questions remain unexplored.
Further study is necessary to evaluate our existing and proposed



design solutions to more rigorously understand their impact and how
they address the challenges of ambiguity.
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