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ABSTRACT

Conventionally, supervised fine-tuning (SFT) is treated as a simple imitation learn-
ing process that only trains a policy to imitate expert behavior on demonstration
datasets. In this work, we challenge this view by establishing a fundamental
equivalence between SFT and Inverse Reinforcement Learning. We prove that
the SFT objective is a special case of Inverse Q-Learning, which implies that the
SFT process does not just learn a policy, but also an implicit, dense, token-level
reward model that explains the expert demonstrations. We then show how to
recover this dense reward signal directly from the SFT model by formulating a
baseline-relative reward function. The availability of such a dense reward model
offers numerous benefits, providing granular credit assignment for each token
generated. We demonstrate one key application by using these recovered rewards
to further improve the policy with reinforcement learning. Our method, Dense-Path
REINFORCE, consistently outperforms the original SFT models on instruction-
following benchmarks. This work reframes SFT not merely as policy imitation but
as a powerful reward learning mechanism, opening new possibilities for leveraging
expert demonstrations.

1 INTRODUCTION

Large Language Models (LLMs) (Liu et al., 2024; Comanici et al., 2025; Achiam et al., 2023)
have rapidly developed from research prototypes to general-purpose assistants that plan, reason, and
generate helpful responses across domains. A significant driver of these capabilities is post-training
on demonstrations—often called Learning from Demonstrations (LfD)—where a pretrained model
is refined to follow expert responses (Ouyang et al., 2022; Chen et al., 2024). In practice, LfD
is implemented almost exclusively as Supervised Fine-Tuning (SFT): teacher-forced maximum
likelihood on expert tokens conditioned on prompts. Because SFT matches expert sequences, it is
commonly framed as imitation learning (Xiao et al., 2024; Shaikh et al.; Sun, 2024) in which the
model learns only to mimic expert behavior.

This paper argues that the imitation-only view is incomplete. We show that, under standard assump-
tions for token-level generation, SFT admits a precise interpretation through the lens of Inverse
Reinforcement Learning (IRL) (Ng & Russell, 2000). Specifically, on the token Markov decision pro-
cess (MDP) without discount, the token-level SFT objective is equivalent to optimizing the reduced
objective of Inverse Soft-Q Learning (IQ-Learn) (Garg et al., 2021). In this view, SFT does more than
fit a policy: it implicitly learns a dense token-level reward that rationalizes expert demonstrations,
aligning SFT with the credit-assignment perspective of MaxEnt IRL and GAIL (Ziebart et al., 2008;
Ho & Ermon, 2016).

The IQ-Learn perspective also yields a valid recipe for further improving an SFT policy. First, we
prove a dual-contraction property of the IQ-Learn saddle: the error of the reward estimation is
bounded by the policy’s occupancy error, so a reasonably accurate policy implies an even more
stable reward estimation (near the saddle). Second, we show how to recover a dense reward directly
from the trained SFT model. Using the soft-optimality identity and potential-based shaping (Ng
et al., 1999), the teacher’s token log-probability decomposes as the task reward plus a telescoping
potential value function. This implies two design choices. (i) We eliminate the value term via shaping,
which keeps the token reward dense and avoids tricky value estimation. (ii) To avoid the length
bias of raw log-likelihoods (non-positive by construction) and stabilize credit assignment, we use a
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baseline-relative reward where baseline is a checkpoint during SFT training. This choice measures
incremental performance gained during SFT and empirically reduces variance. Together, these results
justify a simple reinforcement step that stays in the LfD setting: we optimize the SFT policy with
token-level, undiscounted REINFORCE (Williams, 1992; Ahmadian et al., 2024) using the dense
baseline-relative reward.

We evaluate this recipe on four pretrained LLMs and four public instruction-following benchmarks
using the same demonstration data for SFT and RL. Despite operating strictly in the LfD setting, the
resulting policy improves over the SFT model in head-to-head win rate and standardized multi-turn
scores, showing competitiveness with other LfD baselines such as SPIN (Chen et al., 2024) and
GSIL (Xiao et al., 2024).

Our primary contributions are as follows: (i) We establish formal equivalence between token-level
SFT and the reduced objective of IQ-Learn on the token MDP, reframing SFT as implicit dense reward
learning rather than pure imitation. (ii) We prove that near the IRL saddle, the reward estimation error
is bounded by the policy occupancy error, explaining why rewards recovered from an SFT policy can
be more stable than the policy itself. (iii) We construct meaningful token-level rewards through reward
shaping theory and the strategic selection of a reward baseline. (iv) We instantiate these insights in
a minimal reinforcement learning algorithm that uses token-level, undiscounted baseline-relative
reward as the learning objective. (v) Across four pretrained backbones and four instruction-following
evaluations, this method consistently improves over SFT and matches or exceeds other LfD baselines.

2 RELATED WORK

Independent and contemporaneous (posted earlier) work: reward signals inside LLMs. Before
this work, Li et al. (2025) also argues that LLMs contain useful token-level reward signals through the
lens of IRL. While we share the same theoretical framework on the equivalence of IRL and SFT, the
theoretical part of our work was developed independently before the publication of their work. Their
experimental focus is to extract sentence-level rewards through aggregation of token-level rewards,
often from instruction-tuned LLMs, and then use the aggregated reward for policy improvement and
reward-based pair-wise classification. Our setting and emphasis are different: we operate in LfD
with pretrained backbones and develop a shaping- and baseline-based reward construction that makes
dense rewards workable for policy improvement in practice.

Imitation learning and LfD for LLMs. Beyond direct cloning, several LfD approaches leverage
self-generated data to improve a policy without requiring explicit preference pairs. These methods
reframe the learning problem to go beyond the simple negative log-likelihood objective of SFT: SPIN
uses self-play fine-tuning to convert weaker models into stronger ones (Chen et al., 2024). (Li et al.,
2024) found that SPIN is a special case of IRL; however, they still focus on the gap between policy
and expert at the sample level. GSIL also uses both real demonstration data and self-generated model
data, but formulates the problem from an imitation learning perspective (Xiao et al., 2024). Our work
differs in both analysis and mechanism: we remain strictly in the LfD setting, but re-interpret SFT
through an IRL lens (SFT ≡ IQ-Learn on the token MDP).

Preference-based post-training (RLHF, DPO family, GRPO). Another line of work treats post-
training as optimization from pairwise human (or AI) preferences. PPO-based RLHF (Ouyang et al.,
2022) fits a reward model and then optimizes the policy with reinforcement learning. DPO (Rafailov
et al., 2023) replaces explicit reward learning and online rollouts with a direct, classification-style
objective. Recent GRPO-style methods explore preference optimization without an explicit critic:
group relative policy optimization has been used in scaling efforts to stabilize on-policy updates via
group-normalized advantages (Shao et al., 2024). These methods require preference data or verifiable
rewards and thus are outside our scope.

Connection of reinforcement learning and SFT. Xiao et al. establishes a theoretical connection
between reinforcement learning and imitation learning, revealing that RLHF implicitly performs
imitation learning on the preference data distribution. Qin & Springenberg (2025) unifies SFT with
RL through importance sampling. These studies are somewhat related to our work, but they primarily
focus on the relationship between RL and SFT, whereas we analyze SFT from the perspective of IRL.
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3 PRELIMINARIES

This section introduces the minimal background needed to follow our methodology and proofs.
We formalize the token-level MDP for autoregressive generation, recall the entropy-regularized
optimality equations, restate MaxEnt IRL in an occupancy form, explain the Q-space reduction used
by IQ-Learn.

Problem setup and notation. We model generation as a finite-horizon token MDP (S,A, f, ρ0)
with deterministic concatenation f(s, a) = s|a and horizon H . A state st is the prompt plus the
tokens generated so far, the action at is the next token, and an LLM induces a policy π(a | s). We
write the (state–action) occupancy measure of policy π as

ρπ(s, a) =

H−1∑
t=0

Pr
π
(st = s, at = a), ⟨ρπ, r⟩ :=

∑
s,a

ρπ(s, a) r(s, a).

For any real-valued function Q : S×A → R, define the soft value V (s) = log
∑

a expQ(s, a) and
the Boltzmann policy πQ(a | s) ∝ expQ(s, a) (temperature fixed to 1 throughout).

Soft-optimality equations. In entropy-regularized control (Haarnoja et al., 2017), optimizing
Ea∼π(·|s)[Q

⋆(s, a)]− βH(π(· | s)) over π(· | s) yields the familiar logit form of the optimal policy
and value:

π⋆(a | s) = exp
(

1
β

(
Q⋆(s, a)− V ⋆(s)

))
, V ⋆(s) = β log

∑
a∈A

exp
(
1
βQ

⋆(s, a)
)
. (1)

That is, π⋆(· | s) is the Boltzmann distribution over Q⋆(s, ·) and V ⋆(s) is the corresponding log-
partition. A full derivation is provided in Appendix A.2.

MaxEnt IRL in occupancy space. Maximum-entropy IRL seeks a reward r that rationalizes
expert behavior by comparing expert and learner occupancies while keeping the policy stochastic via
entropy Ziebart et al. (2008); Ho & Ermon (2016):

L(π, r) = ⟨ρE − ρπ, r⟩ − H(π) − ψ(r). (2)

Here ψ is a convex regularizer on rewards (for identifiability/stability). The saddle point of (2)
matches occupancies (ρπ⋆ = ρE) and produces a reward r⋆ unique up to potential-based shaping.

IQ-Learn: a Q-space reduction. IQ-Learn re-parameterizes the IRL objective so that, after
minimizing over π, one optimizes a concave functional of Q Garg et al. (2021). The policy minimizer
is πQ(a | s) = exp(Q(s, a) − V (s)), and the reduced objective J∗(Q) aggregates the “soft-
advantage” Q(s, a)− V (f(s, a)) along expert trajectories. On a deterministic token tree (f(s, a) =
s′), telescoping arguments become particularly simple and will later allow us to show that token-level
SFT is equivalent to maximizing J∗(Q) under a linear conjugate (Step 1).

4 METHODOLOGY

High-level outline. Our methodology follows three steps. (S1) We show that the token-level SFT
objective is equivalent to the reduced IQ-Learn objective under a mild regularizer. (S2) Within the
IRL/IQL framework, we prove that the reward estimation error is controlled by the policy error in
occupancy space. (S3) We extract a baseline-relative, log-likelihood based dense reward (Chan et al.,
2024) from the SFT model and show that any improvement on this proxy transfers to improvement
under the true objective.

4.1 STEP 1: SFT IS EQUIVALENT TO A SPECIAL CASE OF IQ-LEARN

Statement. Let J∗(Q) denote the reduced IQ-Learn objective after minimizing over π (Garg et al.,
2021). On the token MDP with γ = 1 and a linear conjugate (i.e., no extra reward regularization
beyond convexity), maximizing J∗(Q) is equivalent to maximizing the teacher-forced log-likelihood
on expert tokens:

max
Q

J∗(Q) ≡ max
Q

E(s,a)∼ρE

[
log πQ(a | s)

]
,

3
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where πQ(a | s) ∝ expQ(s, a) and V (s) = log
∑

a e
Q(s,a).

Intuition. The reduction J∗(Q) aggregates a “soft-advantage” term of the form Q(s, a)−V (f(s, a))
along expert trajectories. On a deterministic token sequence, the value contributions telescope
across time, and the identity log πQ(a | s) = Q(s, a) − V (s) converts the objective into the SFT
log-likelihood.
Proposition 1 (SFT ≡ IQ-Learn with a linear conjugate). On the token MDP with discount
rate γ = 1, maximizing J∗(Q) is equivalent to minimizing the token-level SFT loss LSFT(θ) =
E(s,a)∼ρE

[− log πθ(a | s)], where πθ(a | s) ∝ expQθ(s, a).

Proof. See Appendix A.4 for a complete derivation via telescoping and the identity log πQ = Q− V .

Takeaway. SFT is not only policy imitation: it is exactly the Q-space objective of an IQ-Learn
instance on the token MDP. Consequently, SFT logits can be treated as a Q-function without leaving
the IRL/IQL lens, consistent with the token-level perspective in From r to Q∗ (Rafailov et al.).

4.2 STEP 2: REWARD ERROR IS CONTROLLED BY POLICY ERROR (IRL VIEW)

We adopt the convex-analytic IRL objective (Ho & Ermon, 2016):

L(π, r) = ⟨ρE − ρπ, r⟩ − H(π) − ψ(r). (3)

Let r⋆ be a reward at the IRL saddle. For any π, let the reward best response be r̂(π) :=
argmaxr L(π, r). Measure the policy error by επ := ∥ρπ − ρE∥∗ and the reward error by
εr := ∥r̂(π)− r⋆∥, where ∥ · ∥ and ∥ · ∥∗ are dual norms.
Theorem 2 (Dual contraction: reward error ≤ policy error). If ψ is µ-strongly convex in ∥ · ∥, then
for any policy π, ∥∥r̂(π)− r⋆∥∥ ≤ 1

µ

∥∥ρπ − ρE∥∥∗.
Proof. By first-order optimality for the reward player,∇ψ(r̂(π)) = ρE−ρπ and∇ψ(r⋆) = ρE−ρπ⋆ .
At the saddle ρπ⋆ = ρE , so∇ψ(r⋆) = 0 and hence∇ψ(r̂(π))−∇ψ(r⋆) = ρE−ρπ . Strong convexity
implies µ-strong monotonicity of∇ψ; applying Hölder’s inequality in dual norms yields the claim.
See Appendix A.6 for details.

Takeaway. Learning a reward is at least as stable as learning the policy near the saddle—precisely
the property we need before using the (SFT-derived) reward to further improve the policy.

4.3 STEP 3: FROM AN SFT-DERIVED DENSE REWARD TO POLICY IMPROVEMENT

(A) Using SFT logits as a reward via potential shaping. Combining the soft Bellman identity with
log πSFT(a | s) = QSFT(s, a)− VSFT(s) yields

log πSFT(at | st) = r(st, at) +
(
VSFT(st+1)− VSFT(st)

)
, (4)

so log πSFT is a shaped version of the task reward and shares the same optimal policies (Ng et al.,
1999). This lets us use SFT logits as dense token rewards without explicitly estimating values.

(B) Why we eliminate V and choose REINFORCE. For γ = 1, Step 1 guarantees the SFT↔IQ-
Learn equivalence; however, Monte-Carlo returns for early tokens are larger in magnitude than for
later tokens:

H−1∑
k=t

log πSFT(ak | sk) =
H−1∑
k=t

r(sk, ak) − VSFT(st) (VSFT(sH) = 0),

so returns differ by a state-dependent constant −VSFT(st). Fitting a critic (as in PPO) to such
heteroskedastic targets is difficult, especially if VSFT is noisy. Using REINFORCE avoids a critic
entirely; Appendix A.8 shows that the policy gradient with reward log πSFT equals that with reward r
up to a baseline bt(st) = VSFT(st).

(C) A baseline-relative dense reward. Directly maximizing
∑

t log πSFT(at | st) favors short
sequences (token log-probabilities are non-positive). We therefore use

r̂(s, a) = log πSFT(a | s) − log πref(a | s), (5)

4
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Figure 1: Credit assignment in Dense-Path REINFORCE (Best viewed in color). We provide two
answers to a math question. The left is the correct response, and on the right is our modified response.
Each token is colored according to the baseline-relative dense reward as expressed in Eq. (5) (darker
red means higher reward), using the trained SFT model and SFT checkpoint. We see that the model
correctly identifies the erroneous number, without much change to the reward value of the other
tokens, which indicates the ability to do credit assignment.

where πref is a SFT checkpoint with half training samples. This cancels length bias, measures
incremental competence, and empirically reduces variance. Appendix A.9 bounds the return shift by
∥VSFT − Vref∥∞.

Illustrative example. We provide two visualizations in Figure 1 to intuitively demonstrate how r̂
performs credit assignment at the token level. The reward is calculated by SFT-trained LLaMA-3.1-
8B and its checkpoint as the baseline. The original question is: “Eliza’s rate per hour for the first 40
hours she works each week is $10. She also receives overtime pay at 1.2 times her regular hourly
rate. If Eliza worked for 45 hours this week, how much are her earnings for this week?” The left side
shows the correct answer, while the right displays our modified incorrect answer. When calculating
overtime pay, the incorrect answer erroneously added 1.2 times to the original amount, leading to an
incorrect result. Analysis reveals that multiplying 5 by 2.2 resulted in a low reward assigned to the
integer part “2”, indicating the proposed reward can identify this as an erroneous step. Furthermore,
although the subsequent calculations in the incorrect answer are correct, the final result remains
wrong, so the assigned reward is lower than that for the correct answer. Additionally, we observe that
the “5” in the third row receives a relatively high reward. This “5” does not actually appear in the
original question; it skips a calculation step (“45-40”) to derive overtime hours. Nevertheless, r̂ still
accurately identifies this as a valid step.

(D) Safe improvement: transferring proxy gains to true gains. Let π′ be an update that increases
the proxy return by ∆r̂ := Jr̂(π

′)− Jr̂(π) ≥ m. The performance-difference identity in occupancy
space gives

Jr(π
′)− Jr(π) ≥ m − 2H ∥r − r̂∥∞, (6)

since ∥ρπ′ − ρπ∥1 ≤ 2H for a length-H token MDP. See Appendix A.7 for a complete proof.

Takeaway. (1) log πSFT is a shaped version of the task reward, so it is a valid dense token reward; (2)
An SFT checkpoint baseline stabilizes learning and removes the EOS pathology; (3) any optimizer
that increases the proxy return (REINFORCE in our case) safely improves the true objective once the
proxy is accurate enough.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Data. We adopt Open-Orca and subsample 100k (prompt, demonstration) pairs for SFT and for
the RL rollouts (same prompts; no new prompts are introduced in RL). Open-Orca is a large-scale
open dataset derived from FLAN-style sources augmented with synthetic expert demonstration from
LLMs (Mukherjee et al., 2023). Using the same pool of prompts ensures the effect of our dense,
baseline-relative reward does not come from newly introduced prompts.

Backbones (pretrained only). To ensure that learning signals from SFT-style demonstrations re-
main informative, we evaluate only on foundation (pretrain) checkpoints (not instruction-tuned). Con-
cretely, we use four sizes/families representative of current open models: LLaMA-3.1-8B (Dubey

5
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Algorithm 1 Dense-Path REINFORCE

Require: Expert dataset DE , base model θbase, total SFT steps N , horizon H , baseline fraction
α ∈ (0, 1) (default 0.5), discount γ ← 1, KL weight λKL ≥ 0

Ensure: Fine-tuned policy πϕ
1: SFT stage: Fine-tune θbase on DE for N steps; set teacher πSFT ← πθN . Save the checkpoint

with half training steps as reference πref ← πθ⌊αN⌋ .
2: Initialize actor: πϕ ← πSFT; freeze πSFT and πref .
3: for training iteration = 1, 2, . . . do
4: Sample a batch of prompts {xi}Bi=1; roll out trajectories τi = (s0, a0, . . . , sTi−1, aTi−1) using

πϕ.
5: for all tokens (st, at) in each τi do
6: Baseline-relative token reward (Eq. (5)): r̂t ← log πSFT(at | st) − log πref(at | st)
7: end for
8: Per-token returns: For each trajectory i, compute Gt ←

∑Ti−1
k=t r̂k for all t.

9: Total objective (token-level):

L(ϕ) = − 1

B

B∑
i=1

Ti−1∑
t=0

log πϕ(at | st)Gt

10: Gradient step: Update ϕ by Adam on∇ϕL(ϕ).
11: end for

et al., 2024), Qwen-2.5-7B (Yang et al., 2024), Mistral-7B-v0.1 (Jiang et al., 2024), and
Gemma-3-4B (Team et al., 2025).

Baselines. We compare with: (i) SFT (teacher-forced cross-entropy on the 100k set); (ii) SPIN
(self-play fine-tuning from demonstrations) (Chen et al., 2024); (iii) GSIL (self-imitation learning
on demonstrations) (Xiao et al., 2024); and (iv) SR (sentence-level REINFORCE): it uses the same
baseline-relative reward as our method but assigns the entire trajectory return only at EOS, i.e., a
sparse reward delivered once per sequence (conceptually close to PPO-style sparse credit assignment).
We also test the performance of PPO using sentence-level baseline-relative reward as reward signals,
but it doesn’t show significant differences with REINFORCE. All baselines use the same prompts
and demonstrations.

Our method. We implement the REINFORCE variant described in §4.3 with token-level re-
turns (undiscounted, γ = 1), and baseline-relative dense rewards r̂(s, a) = log πSFT(a |
s) − log πref(a | s) (SFT checkpoint as πref ). We employ a modern RLHF stack based on Open-
RLHF’s REINFORCE++ implementation (KL regularization, clipping, and standard stability tricks)
(Hu et al., 2024; 2025).

Evaluation. We use four public instruction-following evaluations: AlpacaEval(Li et al., 2023),
Arena-Hard (Li et al.), LIMA prompts (Zhou et al., 2023), and MT-Bench (standardized 1–10
scoring) (Zheng et al., 2023). For AlpacaEval, Arena-Hard, and LIMA, we report pairwise win rate
versus the SFT model using GPT-4o as the judge (temperature 0; ties count as 0.5) (Achiam et al.,
2023). For MT-Bench, we report the standard 1–10 score using the official scripts. Following the
general test setting for instruction following tasks, decoding uses a temperature 0.7 with a fixed
max generation length. To minimize tuning bias, all backbones share the same hyperparameters
(Appendix Table 4); this avoids per-model over-tuning.

5.2 MAIN RESULTS

Detailed analysis of Table 1. (i) LfD gains across backbones. Across all four pretrained back-
bones, our token-level method (DPR) improves over the SFT policy on the three win-rate benchmarks
and MT-Bench scores, confirming that dense, baseline-relative rewards extracted from SFT logits
can further upgrade the policy without introducing new prompts. Typical gains over SFT range from
single digits on easier benchmarks to double digits on harder benchmarks (e.g., Arena-Hard).

6
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Table 1: Instruction following results across four pretrained backbones. For AlpacaEval, Arena-
Hard, and LIMA, we report GPT-4o win rate (%) versus the SFT model. For MT-Bench, we report
the standard 1–10 score. All methods train on the same 100k Open-Orca samples. Bold = best,
underline = second best, per model group.

Method AlpacaEval Arena-Hard LIMA MT-Bench
GPT-4o Win Rate (%) ↑ Score (1–10) ↑

LLaMA-3.1-8B
SFT - - - 5.74
SPIN 55.2 53.3 53.0 5.81
GSIL 58.1 56.7 61.0 5.92
SR 57.9 60.3 60.8 5.96
DPR 60.6 62.5 62.7 6.01

Qwen-2.5-7B
SFT - - - 6.83
SPIN 55.5 51.4 57.5 6.98
GSIL 56.2 53.3 56.2 7.01
SR 55.9 54.6 54.0 7.09
DPR 57.3 55.2 59.8 7.29

Mistral-v0.1-7B
SFT - - - 5.23
SPIN 58.3 55.0 53.0 5.45
GSIL 59.2 54.8 54.0 5.43
SR 46.6 49.8 47.3 5.14
DPR 61.0 60.7 59.3 5.65

Gemma-3-4B
SFT - - - 5.32
SPIN 58.6 54.7 58.7 5.47
GSIL 60.3 57.1 60.8 5.56
SR 65.6 58.0 64.5 5.48
DPR 66.7 58.9 66.8 5.54

(ii) Dense vs. sparse credit assignment. Relative to SR (EOS-only return), DPR achieves systemati-
cally higher win rates and MT-Bench scores, supporting the hypothesis that token-level returns (with
γ=1) offer better credit assignment than sparse, trajectory-level returns. Notably on Mistral-v0.1-7B,
DPR has a large gap vs. SR on four benchmarks, indicating that per-token shaping is especially
beneficial when the base model underfits demonstrations.

(iii) LfD baselines (SPIN/GSIL). Compared with SPIN and GSIL, both LfD methods that also use
only demonstrations, DPR is competitive or superior on most benchmarks. The advantage is most
pronounced on Arena-Hard, which is known to better separate models and correlate with Arena
human preferences. This suggests that our reward extraction provides a stronger, more stable learning
signal than self-play or self-imitation on the same prompt/demonstration pool.

(iv) MT-Bench improvements are consistent though modest. On MT-Bench (1–10), DPR shows
small but consistent absolute gains over SFT across backbones (typically +0.2 to +0.5), in line
with the expectation that general multi-turn quality improves when local token decisions are better
rewarded.

5.3 ABLATION STUDY

Findings. (a) Effect of eliminating V . Compared to w/DPR, w/V drops on all backbones and
metrics (typically by 2–7 win-rate points), corroborating our theory that the potential term V induces
position-dependent return shifts that are hard to fit and unnecessary under γ=1 (cf. §4.3 and Ap-
pendix A.8). (b) Necessity of the baseline. Removing the SFT checkpoint baseline (wo/Baseline)
causes large drops (often 10–15 win-rate points). This matches the EOS pathology: because token
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Table 2: Ablations on reward shaping and baseline. w/DPR: our full method. w/V: do not eliminate
the potential term V (i.e., optimize with raw reward r(st, at) = log πSFT(at | st) +

(
VSFT(st) −

VSFT(st+1)
)
, without using shaping to cancel VSFT(st) − VSFT(st+1). wo/Baseline: remove the

halfway SFT baseline (use only log πSFT as reward). Across backbones and benchmarks, w/V
consistently underperforms w/DPR, indicating that V is noisy and its position-dependent returns
harm stability; wo/Baseline degrades substantially, consistent with the EOS pathology and length
bias discussed in §4.3.

Variant AlpacaEval ↑ Arena-Hard ↑ LIMA ↑ MT-Bench ↑
LLaMA-3.1-8B
w/DPR 60.6 62.5 62.7 6.01
w/V 58.8 59.3 59.7 5.83
wo/Baseline 49.8 46.4 46.0 5.67

Qwen-2.5-7B
w/DPR 57.3 55.2 59.8 7.29
w/V 55.0 52.9 58.0 7.12
wo/Baseline 46.6 44.9 45.7 6.59

Mistral-7B-v0.1
w/DPR 61.0 60.7 59.3 5.65
w/V 53.9 51.8 52.3 5.47
wo/Baseline 44.5 40.3 42.7 5.14

Gemma-3-4B
w/DPR 66.7 58.9 66.8 5.54
w/V 63.5 56.0 62.2 5.51
wo/Baseline 50.6 48.1 48.8 5.26

Figure 2: The effect of reward discount-rate (γ ∈ {0.93, 0.94, ..., 1.00}) across four backbones.
Performance (win rate vs. SFT, higher is better) peaks at the undiscounted setting γ=1.0. This
is consistent with our analysis: (i) the SFT↔IQ-Learn equivalence is derived for γ=1; (ii) with
discounting, early tokens are over-rewarded relative to later ones, weakening token-level credit
assignment.

log-probs are non-positive, shorter sequences spuriously obtain larger undiscounted returns without
the baseline correction; the baseline cancels this length bias and stabilizes updates.

5.4 SENSITIVITY ANALYSES

The effect of reward discount rate. Undiscounted returns preserve the telescoping structure that
underpins our shaping equivalence and avoid compressing late-token contributions. Empirically, as
shown in Figure 2, moving from γ<1 to 1.0 improves the win rate consistently across models, with
larger gains for weaker backbones (e.g., Mistral-7B-v0.1) where late-token guidance matters more.

The effect of baseline checkpoint selection. As shown in Figure 3, across backbones, the perfor-
mance curve is roughly unimodal with a maximum near the checkpoint with around half of the total
training samples. This supports the interpretation of our reward as “incremental competence” gained
during SFT: too early, the baseline is not competitive enough; too late, the gap collapses and the
proxy reward diminishes.

8
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Figure 3: Baseline checkpoint selection. We vary the baseline πref along the SFT training trajectory
(x-axis: SFT progress), keeping all else fixed. A baseline trained with around half of the total training
samples yields the best results. Intuitively, an early baseline is too weak, over-inflating rewards and
increasing variance; a late baseline is too close to the full SFT, shrinking log πSFT− log πref and
reducing signal-to-noise. The midpoint balances magnitude and discriminativeness, consistent with
our bound in Appendix A.9.

(a) Visualization of the average KL divergence and
reward of responses after DPR training.

(b) We vary the generation temperature of both DPR
and the SFT baseline when evaluated on the LIMA
benchmark.

The effect of evaluation temperature. As depicted in Figure 4b, taking the LIMA benchmark
as an example, our algorithm demonstrates significant improvements over SFT across different
sampling temperatures during evaluation, indicating its robustness to sampling temperature variations.
Furthermore, we observe that although the win rate slightly decreases when the sampling temperature
is set to 1, it remains markedly superior to the SFT model. This suggests that our model not only
enhances sampling efficiency in high-confidence regions but also achieves notable improvements in
other areas.

Analysis of KL divergence and reward with respect to response length. Previous studies have
found that the majority of the contribution from post-training algorithms might be concentrated in
the initial response tokens (Qi et al.). As the response length increases, the contribution of these
algorithms may begin to diminish. Correspondingly, in our algorithm, this may be related to the
discount rate, as a larger discount rate might exacerbate this phenomenon. To substantiate this
observation, we compared the response rewards and KL divergence as a function of length when the
discount rate was set to 1 and 0.95. As shown in the Figure 4a, the KL divergence decreases rapidly
with increasing length. When the discount rate is 1, the model still retains a high reward within a
limited KL budget. However, when the discount rate is 0.95, the model exhibits a more pronounced
decline in reward. The results indicate that the phenomenon of rewards decreasing with length does
indeed exist, but rewards without discounts can mitigate it to some extent.

6 CONCLUSION

This paper revisits LfD for LLMs through the lens of IRL. We show that the token-level SFT objective
is equivalent to the reduced objective of IQ-Learning. In this view, SFT not only fits a policy but also
encodes a dense token-level reward signal in its logits. Building on this equivalence, we propose DPR,
a REINFORCE variant that uses dense baseline-relative rewards from the SFT model. Empirically,
across four pretrained backbones and four public instruction-following benchmarks, DPR consistently
surpasses the SFT baseline and is competitive with other LfD methods.
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Appendix
A FULL PROOFS AND TECHNICAL DETAILS

A.1 NOTATION, BASIC ASSUMPTIONS, AND IDENTITIES

We work on the finite-horizon token MDP (S,A, f, ρ0) with deterministic transition f(s, a) = s|a
and horizon H . A trajectory is τ = (s0, a0, . . . , sH) with st+1 = f(st, at) and sH terminal (EOS or
max length). For any policy π, the occupancy measure is

ρπ(s, a) =

H−1∑
t=0

Pr
π
(st = s, at = a), ⟨ρπ, r⟩ =

∑
s,a

ρπ(s, a) r(s, a).

For a function Q : S ×A → R, define the log-partition (soft value) and Boltzmann policy

V (s) = β log
∑
a∈A

eQ(s,a)/β , πQ(a | s) = exp
(

1
β

(
Q(s, a)− V (s)

))
,

with fixed temperature β > 0 (we use β = 1 when not stated). We frequently use the identity

log πQ(a | s) = 1
β

(
Q(s, a)− V (s)

)
. (7)

A.2 DERIVATION OF EQ. (1) (OPTIMAL SOFT POLICY AND VALUE)

Setup. Fix a state s. Consider the convex optimization problem

max
π(·|s)∈∆(A)

∑
a

π(a | s)Q⋆(s, a) − β
∑
a

π(a | s) log π(a | s),

subject to (i)
∑

a π(a | s) = 1, (ii) π(a | s) ≥ 0 for all a. The objective is strictly concave in π(· | s)
because the negative entropy −

∑
π log π is strictly convex and we maximize its negation; hence the

maximizer is unique.

KKT conditions. Form the Lagrangian

L(π, λ, {νa}) =
∑
a

π(a | s)Q⋆(s, a)−β
∑
a

π(a | s) log π(a | s)+λ
(∑

a

π(a | s)−1
)
+
∑
a

νa π(a | s),

with multipliers λ ∈ R for the simplex constraint and νa ≥ 0 for non-negativity. Stationarity for
every a gives

∂L
∂π(a | s)

= Q⋆(s, a)− β
(
1 + log π(a | s)

)
+ λ+ νa = 0.

Complementary slackness: if π⋆(a | s) > 0, then νa = 0. Since the optimum has full support under
finite β > 0 (the entropy term forces interior optimum), we set νa = 0 for all a and obtain

log π⋆(a | s) = 1
β

(
Q⋆(s, a) + λ− β

)
.

Exponentiating and normalizing by the constraint yields

π⋆(a | s) = exp(Q⋆(s, a)/β)∑
a′ exp(Q⋆(s, a′)/β)

.

Defining V ⋆(s) := β log
∑

a′ exp(Q⋆(s, a′)/β) gives the stated softmax policy and the value expres-
sion in Eq. (1). This completes the derivation.

A.3 FROM MAXENT IRL TO THE IQ-LEARN REDUCED OBJECTIVE J∗(Q)

In this section, we give a minimal proof modified from IQ-Learn (Garg et al., 2021). We recall the
MaxEnt IRL saddle objective

L(π, r) = ⟨ρE − ρπ, r⟩ − H(π) − ψ(r), (8)
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with a convex reward regularizer ψ for identifiability/stability (Ziebart et al., 2008; Ho & Ermon,
2016). For a fixed Q, minimizing L over π with the soft entropy yields the Boltzmann policy πQ in
(7); the corresponding reduced objective over Q (IQ-Learn) is

J∗(Q) = E(s,a)∼ρE

[
Q(s, a)− V (f(s, a))

]
− Es0∼ρ0

[
V (s0)

]
, (9)

where V is the log-partition induced by Q and f is the deterministic environment transition. For
completeness, we expand all steps below.

Detailed derivation. Write the inner minimization over π at each state s:

min
π(·|s)∈∆

{
−
∑
a

π(a | s)Q(s, a) + β
∑
a

π(a | s) log π(a | s)
}
= − max

π(·|s)

{∑
a

π(a | s)Q(s, a)−βH(π(· | s))
}
.

By Sec. A.2, the maximizer is πQ(· | s) and the maximized value equals the log-partition V (s):

max
π(·|s)

{∑
a

π(a | s)Q(s, a)− βH(π(· | s))
}

= V (s).

Plugging back into (8) and unrolling the entropy term over time yields

min
π
L(π, r) = ⟨ρE − ρπQ

, r⟩ −
H−1∑
t=0

Est

[
V (st)

]
− ψ(r).

In IQ-Learn we eliminate r in favor of Q using the soft Bellman identity (see next subsection): for
γ = 1 and deterministic f , Q(st, at) = r(st, at) + V (st+1) and hence

⟨ρE , r⟩ = E(s,a)∼ρE

[
Q(s, a)− V (f(s, a))

]
.

The ρπQ
-term cancels at the saddle (where ρπ⋆ = ρE), and the initial-state entropy contributes

−Es0∼ρ0
[V (s0)], leading exactly to (9).

A.4 PROOF OF PROP. 1: SFT IS EQUIVALENT TO MAXIMIZING J∗(Q)

We now show that, on the LLM environment with γ = 1 and linear conjugate (no extra reward
regularization beyond convexity), maximizing J∗(Q) equals maximizing the SFT log-likelihood.
Starting from (9),

H−1∑
t=0

(
Q(st, at)− V (f(st, at))

)
=

H−1∑
t=0

(
Q(st, at)− V (st+1)

)
.

Add and subtract V (st) termwise, then regroup:

H−1∑
t=0

(
Q(st, at)− V (st)

)
+

H−1∑
t=0

(
V (st)− V (st+1)

)
=

H−1∑
t=0

log πQ(at | st) + V (s0)− V (sH),

where we used (7). With the terminal state V (sH) = 0, take expectation over expert trajectories and
subtract E[V (s0)] (the last term of (9)) to obtain

J∗(Q) = Eτ∼ρE

[H−1∑
t=0

log πQ(at | st)
]
.

Maximizing the objective of IQ-Learn is exactly maximizing the teacher-forced log-likelihood of
expert tokens, i.e., minimizing the token-level SFT cross-entropy. This proves the proposition.

A.5 DERIVATION OF EQ. (4): SFT LOGITS AS A SHAPED REWARD

We derive the identity used in §3 (Eq. (4)):

log πSFT(at | st) = r(st, at) + V (st+1)− V (st)

under the soft-control model with γ = 1 and deterministic transition st+1 = f(st, at).
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Soft Bellman equations (finite horizon). For any (st, at),

Q(st, at) = r(st, at) + V (st+1), V (st) = β log
∑
a

exp
(

1
βQ(st, a)

)
.

Subtract V (st) from both sides of the first equation and divide by β:
1
β

(
Q(st, at)− V (st)

)
= 1

β r(st, at) + 1
β

(
V (st+1)− V (st)

)
.

Using (7) on the left gives exactly Eq. (4) (with β = 1). No approximation is used.

Telescoping of returns and why we remove V . Summing Eq. (4) from t to H − 1 (with V (sH) =
0),

H−1∑
k=t

log πSFT(ak | sk) =
H−1∑
k=t

r(sk, ak) − V (st).

Thus under γ = 1, log-prob returns differ from true returns by a state-dependent constant −V (st).
This constant shift (i) proves that using log πSFT as reward yields the same policy gradient as using r
(Sec. A.8), and (ii) motivates eliminating V via potential-based shaping to reduce variance and length
bias (Sec. A.9).

A.6 DUAL CONTRACTION: REWARD ERROR IS BOUNDED BY POLICY (OCCUPANCY) ERROR

We restate the IRL objective (8) and define the reward best response r̂(π) = argmaxr L(π, r). Let
r⋆ be any reward at the IRL saddle (unique up to shaping). Assume ψ is µ-strongly convex in norm
∥ · ∥. We prove

∥r̂(π)− r⋆∥ ≤ 1
µ ∥ρπ − ρE∥∗

where ∥ · ∥∗ is the dual norm to ∥ · ∥.

First-order conditions and strong monotonicity. Optimality of the reward player yields
∇ψ(r̂(π)) = ρE − ρπ, ∇ψ(r⋆) = ρE − ρπ⋆ .

At the saddle ρπ⋆ = ρE , so ∇ψ(r⋆) = 0 and hence
∇ψ(r̂(π))−∇ψ(r⋆) = ρE − ρπ.

By strong convexity, ∇ψ is µ-strongly monotone:
⟨r̂(π)− r⋆, ∇ψ(r̂(π))−∇ψ(r⋆)⟩ ≥ µ ∥r̂(π)− r⋆∥2.

Combine the last two displays and apply Hölder’s inequality in dual norms:
µ ∥r̂(π)− r⋆∥2 ≤ ⟨r̂(π)− r⋆, ρE − ρπ⟩ ≤ ∥r̂(π)− r⋆∥ ∥ρπ − ρE∥∗.

If r̂(π) ̸= r⋆, divide both sides by ∥r̂(π)− r⋆∥; otherwise the bound is trivial. This proves the claim.

A.7 SAFE IMPROVEMENT UNDER A PROXY REWARD (FULL PROOF OF EQ. (6))

Let Jr(π) := ⟨ρπ, r⟩ be the return under reward r. For any rewards r, r̂ and policies π, π′,
Jr(π

′)− Jr(π) = ⟨ρπ′ − ρπ, r⟩ = ⟨ρπ′ − ρπ, r̂⟩ + ⟨ρπ′ − ρπ, r − r̂⟩.
The first term equals Jr̂(π′)− Jr̂(π). For the second term, apply Hölder with ℓ1/ℓ∞ duality:∣∣⟨ρπ′ − ρπ, r − r̂⟩

∣∣ ≤ ∥ρπ′ − ρπ∥1 ∥r − r̂∥∞.
It remains to upper bound ∥ρπ′ − ρπ∥1. Writing pπt (s, a) = Prπ(st = s, at = a),

∥ρπ′ − ρπ∥1 =
∑
s,a

∣∣∣∣∣
H−1∑
t=0

(
pπ

′

t (s, a)− pπt (s, a)
)∣∣∣∣∣ ≤

H−1∑
t=0

∑
s,a

∣∣pπ′

t (s, a)− pπt (s, a)
∣∣

=

H−1∑
t=0

∥pπ
′

t − pπt ∥TV · 2 ≤ 2H,

since each p·t is a probability distribution over (s, a) (total variation ≤ 2). Therefore

Jr(π
′)− Jr(π) ≥

(
Jr̂(π

′)− Jr̂(π)
)
− 2H ∥r − r̂∥∞.

Setting m := Jr̂(π
′)− Jr̂(π) gives Eq. (6).
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A.8 POLICY-GRADIENT EQUIVALENCE UNDER γ = 1 (REINFORCE BASELINE IDENTITY)

Let rt := r(st, at) and define the shaped reward r̃t := log πSFT(at | st) = rt + (Vt+1 − Vt) with
VH = 0. Define returns from step t:

Gt =

H−1∑
k=t

rk, G̃t =

H−1∑
k=t

r̃k = Gt − Vt.

The REINFORCE gradients are

∇Jr(π) = E

[
H−1∑
t=0

∇ log π(at | st)Gt

]
, ∇Jr̃(π) = E

[
H−1∑
t=0

∇ log π(at | st) G̃t

]
.

For any function bt(st), using the law of iterated expectations and the identity Ea∼π(·|s)[∇ log π(a |
s)] = ∇

∑
a π(a | s) = 0, we have

E
[
∇ log π(at | st) bt(st)

]
= 0.

Choosing bt = Vt yields ∇Jr̃(π) = ∇Jr(π). Thus the policy gradient under log πSFT equals that
under r, up to a state-only baseline that does not require fitting a critic.

A.9 CHECKPOINT BASELINE TIGHTNESS AND DYNAMIC RANGE REDUCTION

Consider the baseline-relative reward

r̂(s, a) = log πSFT(a | s) − log πref(a | s), V̂ (s) := VSFT(s)− Vref(s).

By Sec. A.5, the corresponding return from step t differs by −V̂ (st). Hence for any trajectory and t,∣∣G̃SFT
t − G̃ref

t

∣∣ =
∣∣V̂ (st)

∣∣ ≤ ∥V̂ ∥∞.
If πref is an SFT checkpoint, empirically ∥V̂ ∥∞ is small because the two values remain close along the
training path. The dynamic range of token returns is thus reduced by at least range(VSFT)− ∥V̂ ∥∞,
stabilizing updates and mitigating EOS/length bias (see also the toy pathology in App. A.11).

A.10 POTENTIAL-BASED SHAPING INVARIANCE (FINITE-HORIZON, DETERMINISTIC
ENVIRONMENT)

Define a shaped reward rF (s, a) = r(s, a) + F (s′)− F (s) with s′ = f(s, a) and any F : S → R.
Consider the soft Q-values for γ = 1:

QF (s, a) = rF (s, a) + V F (s′) = r(s, a) + F (s′)− F (s)︸ ︷︷ ︸
shaping

+V F (s′).

Define Ṽ (s) := V F (s) + F (s). Then

QF (s, a)− Ṽ (s) = r(s, a) + V F (s′)− V F (s) = Q(s, a)− V (s),

where the last equality follows because the soft Bellman backup V (·) = log
∑

a e
Q(·,a) is invariant

to adding the same F to all action-logits at a state. Therefore, by (7),

πQF (a | s) = πQ(a | s) for all (s, a).

Thus potential-based shaping preserves the optimal policy and all on-policy distributions (Ng et al.,
1999).

A.11 EOS/LENGTH PATHOLOGY WITHOUT A BASELINE: A TOY PROOF

Assume at each nonterminal state s there are actions {EOS}∪Acont and consider the proxy objective
without baseline:

Jnaive(π) = Eπ

[ T−1∑
t=0

log πSFT(at | st)
]
, T = (random stopping time at EOS).
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Suppose (mild) that log πSFT(EOS | s) ≥ maxa∈Acont
log πSFT(a | s) for all s in a subset of

high measure under π. Then any deviation that delays EOS will, in expectation, decrease the sum
of log-probs (since each additional token contributes a non-positive term no larger than the EOS
log-prob). Therefore maximizing Jnaive prefers immediate EOS whenever it is locally the highest-
probability token; this formalizes the “short-output bias” and motivates the baseline subtraction
log πSFT − log πref .

B ADDITIONAL EXPERIMENTAL DETAILS

Table 3: Hyperparameters used across all backbones for SFT.

Component Value Component Value
Learning rate 5e-6 Global Batch size 256
Max prompt length 1024 Max gen length 1024
Warmup ratio 0.03 Optimizer Adam

Table 4: Hyperparameters used across all backbones for DPR.

Component Value Component Value
Learning rate 5e-7 Global Batch size 128
Max prompt length 1024 Max gen length 1024
KL weight 1e-5 Warmup ratio 0.03
Reward discount rate 1 rollout temperature 1
Rollout Batch Size 1024 Value clip 0.2
Samples per prompt 1 Optimizer Adam

C THE USE OF LARGE LANGUAGE MODELS

We employed LLM to assist with paper writing, primarily for vocabulary and grammar checks, while
utilizing Copilot for code completion in writing research code. All text or code generated by LLM or
Copilot undergoes secondary verification or unit testing by authors to ensure accuracy. We affirm that
the LLM did not participate in any research sections beyond writing and coding assistance.
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