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ABSTRACT

Activation functions are essential to introduce nonlinearity into neural networks,
with the Rectified Linear Unit (ReLU) often favored for its simplicity and effec-
tiveness. Motivated by the structural similarity between a single layer of the Feed-
forward Neural Network (FNN) and a single iteration of the Projected Gradient
Descent (PGD) algorithm, a standard approach for solving constrained optimiza-
tion problems, we consider ReLU as a projection from R onto the nonnegative
half-line R+. Building on this interpretation, we extend ReLU by substituting it
with a generalized projection operator onto a convex cone, such as the Second-
Order Cone (SOC) projection, thereby naturally extending it to a Multivariate
Projection Unit (MPU), an activation function with multiple inputs and multiple
outputs. We further provide a mathematical proof establishing that FNNs acti-
vated by SOC projections outperform those utilizing ReLU in terms of expressive
power. Experimental evaluations on widely-adopted architectures further corrob-
orate MPU’s effectiveness against a broader range of existing activation functions.

1 INTRODUCTION

Activation functions are pivotal in neural networks. They introduce nonlinearity, enable the net-
works to learn complex functions and, consequently, influence both the expressivity and learnability
of the model (Ramachandran et al., 2017; Hendrycks & Gimpel, 2023). Notably, many common ac-
tivation functions employed in deep learning, such as the Rectified Linear Unit (ReLU), the sigmoid
function, and the tanh function, are Single-Input Single-Output (SISO) functions, as they map each
element of the input tensor independently to a corresponding output. While this structure is proven
to be empirically effective, there raises natural questions: How to extend SISO activation functions
to Multi-Input Multi-Output (MIMO) ones, and is this extension advantageous?

This paper explores this question based on the relationship between a single layer of the FNN and
a single iteration of the Projected Gradient Descent (PGD) algorithm, commonly used for solving
optimization problems like Quadratic Programming (QP). Specifically, a single layer of the FNN
activated by ReLU can replicate a single iteration of the PGD process for linearly constrained QP
problems due to their shared two-step architecture: first, a linear transformation and second, a pro-
jection operation, where ReLU is viewed as the projection from R to the nonnegative half line R+.
However, we theoretically prove that any shallow FNN utilizing ReLU cannot faithfully represent
a single iteration of PGD for more generalized cone programming problems, where the problem is
rooted in the fact that the SISO ReLU function cannot represent the MIMO cone projection in the
PGD iteration.

This observation motivates us to extend the SISO ReLU function to MIMO activation functions for
a potential increase in expressive capability. We focus on the projection into the convex cone op-
erator, named as Multivariate Projection Unit (MPU), which is the source of nonlinearity in PGD
iterations. The superior expressiveness of the MPU over ReLU is both proved theoretically and val-
idated empirically through experiments on multidimensional function fitting, illustrating the neces-
sity for extension from SISO to MIMO activation functions. Additional experiments are conducted
to compare the proposed MPU with existing activation functions on popular architectures, such as
convolutional neural networks and transformers. The results demonstrate that the proposed MPU
outperforms ReLU, achieving testing accuracy on par with or surpassing other existing activation
functions.
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(a) Structural parallel between FNN and PGD.

(d) FNN activated by Projection onto the cone. (e) FNN activated by ReLU. 
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Figure 1: The method proposed in this paper. (a) The structural similarity between a single iteration
of the PGD algorithm and a single layer of the shallow FNN; (b) ReLU can be considered as the
projection from R onto the nonnegative half line R+; (c) Visualization of the projection function
from R2 onto the cone C

(2)
α in R2; (d) The architecture of the shallow FNN with the multivariate

activation function; (e) The architecture of the shallow FNN with the ReLU activation function.

Furthermore, PGD can be viewed as a specific instance of the broader proximal gradient descent al-
gorithm, where the projection function serves as a particular type of the proximal operator. Notably,
a range of existing activation functions, including ReLU, sigmoid, tanh and softmax, which is a mul-
tivariate nonlinear function widely adopted in the transformer architecture, are already recognized
as proximal operators (Combettes & Pesquet, 2019). Augmenting this body of work, we establish
that the Leaky version of these proximal functions are also proximal operators leveraging the notion
of Moreau’s envelope. However, we note that an abundance of proximal operators remains untapped
as activation functions. This observation points a future direction to the exploration of proximal op-
erators as activation functions. A comprehensive list of both SISO and MIMO proximal operators is
available at proximity-operator website (2023).

In summary, the contributions of this paper are threefold:

• Viewing ReLU as a univariate projection function, we propose to generalize the SISO ReLU
function to a Multivariate Projection Unit (MPU) by substituting the projection onto Rn

+ with the
projection to more complicated shapes such as the second order cones.

• Our cone projection function possesses stronger expressive power than the ReLU activation func-
tion, which is both theoretically proved and experimentally validated.

• By drawing the connection between PGD and the FNN, it can be shown that a significant amount
of the nonlinear functions adopted in literature are indeed proximal operators, which brings a
future research direction on exploring new nonlinearities based on other proximal operators.

2 MULTIVARIATE ACTIVATION FUNCTION

In this section, we explain our rationale for interpreting the ReLU function as a projection mech-
anism, thereby introducing the MPU as an activation function. Moreover, we theoretically show
that the proposed cone-based MPU possess greater expressive power than the single-valued ReLU
function.

2.1 MOTIVATION: SHALLOW FNN AND PROJECTED GRADIENT DESCENT

This subsection establishes the underlying connection between one iteration of the Projected Gra-
dient Descent (PGD) algorithm and the shallow FNN, thereby considering the ReLU function as a
projection operator.
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Figure 2: The cone C
(3)
α in R3 and some examples on the intersection between the cone C

(3)
α and

some 2-dimensional planes.

In the context of neural networks, a neuron represents a specific mapping defined as follows:

Neuron(x) = σ(w⊤x+ b),

where x ∈ Rn is the input vector, w ∈ Rn is the weight vector, b ∈ R denotes the bias term, and
σ : R → R is the activation function. One of the most commonly employed activation functions in
deep neural networks is the ReLU function: ReLU(x) = max(x, 0).

In modern neural networks like the classic Feedforward Neural Network (FNN), each layer com-
prises an array of neurons where the activation function operates independently. Formally, for the
l-th layer of an FNN, given input x(l−1) ∈ R(nl−1) and output x(l) ∈ Rnl , the transformation can
be described by

x(l) = ReLU(W (l)x(l−1) + b(l)),

where the ReLU function is applied element-wise. Let us define z(l) ≜ W (l)x(l−1) + b(l).

On the other hand, the projected gradient descent method (Parikh & Boyd, 2014) is an efficacious
approach for numerically solving optimization problems that take the following form:

min
x

1

2
x⊤Px+ q⊤x, s.t. x ∈ S, (1)

where x, q ∈ Rn, P ∈ Rn×n ≻ 0 and S ⊂ Rn. This canonical form can model many types of
optimization problems. For example, choosing the set S as a polyhedron defined by a set of linear
inequality constraints:

Hx ≤ r, (2)

where H ∈ Rnin×n, r ∈ Rnin , the problem in equation 1 is the canonical form of the Quadratic
Programming (QP) problem, which serves as a cornerstone optimization paradigm with extensive
applicability in machine learning and control systems.

Proposition 1 (Projected Gradient Descent (Parikh & Boyd, 2014)). If a proper step size γ > 0 is
chosen, such that ∥I − γP∥2 < 1, then the problem in equation 1 can be solved by repeating the
following two steps until convergence:

z(l) = (I − γP )x(l−1) − γq,

x(l) = ΠS(z
(l)),

(3)

where ΠS is the projection operator from Rn to the set S.

First, we have the following theorem that shows FNN with ReLU can represent the projected gradi-
ent descent for a particular form of the QP problem, and the proof is provided in Appendix A.

Theorem 1. The PGD for solving the problem in equation 1 with S = Rnl
+ can be represented by a

single-layer FNN with ReLU activation function, i.e.,

x(1) = ReLU(W (1)x(0) + b(1)), (4)

where W (1) = I − γP, b(1) = −γq.
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Remark 1. We find that some other algorithms for solving equation 1 with S being a polyhedral
cone, such as the ADMM (Alternating Direction Method of Multiplier) algorithm (Boyd et al., 2011)
and the PDHG (Primal-Dual Hybrid Gradient) algorithm (Chambolle & Pock, 2011), can also be
represented by the shallow FNN with ReLU activation function.

By this theorem, the overall PGD iteration can be exactly represented by an Recurrent Neural Net-
work (RNN) with ReLU activation function (or equivalently, an FNN where each layer has the same
weights and biases).
Corollary 1. The PGD in equation 3 with M iterations can be represented by an RNN with ReLU
activation function, i.e.,

x(l) = ReLU(Wx(l−1) + b),

where x(l) denotes the hidden state in the l-th layer, and W = I − γP, b = −γq.

Remarkably, this theorem aligns the architecture of a single-layer FNN activated by ReLU with a
single iteration of PGD, shown in Fig. 1(a). This structural connection motivates us to view ReLU
as a projection, thereby stimulating explorations into alternative choices for the set S in optimization
problem equation 1.
Example 1. Upon setting S as the polyhedron P−1,1 = {x ∈ Rn : xi ∈ [−1, 1]}, the iteration
in equation 3 can be represented by an FNN incorporating the hard sigmoid function (Courbariaux
et al., 2015).

Note that the particular optimization problems mentioned in Example 1 are all QP problems. In the
general case where the set S is the polyhedron defined by the linear inequality constraints in equa-
tion 2, the optimization problem in equation 1 becomes the canonical form of the QP problem. For
such instances, each iteration in PGD also contains a linear step followed by a projection step, where
the projection is onto the polyhedron defined by equation 2.

Furthermore, let us define the n-dimensional second-order cone as C(n) in Rn, i.e.,

C(n) = {x ∈ Rn | ∥Ax+ d∥2 ≤ r⊤x+ d},
where A ∈ Rn×n,d, r ∈ Rn, l ∈ R. It is well-recognized that any QP problem can be recast as an
equivalent Second-Order Cone Programming (SOCP) problem:

min
x

c⊤x, s.t. x ∈ C(n), (5)

but the inverse is not necessarily true. Here, the set S in equation 1 is chosen as C(n). Considering
the PGD of the SOCP problem, one can observe that it still contains a linear transformation step
along with a projection step. However, the projection is now to the cone C(n).

Each SOCP problem further admits an equivalent Semi-Definite Programming (SDP) formulation.
The PGD for the SDP problem retains a similar structural composition to the FNN, except that the
nonlinear transformation is now a projection onto the positive semi-definite cone Sn+.

In summary, let PP denote the set of optimization problems described by equation 1, with the set S in
the constraint chosen as P, the optimization problems mentioned above has the following inclusion
relationship:

PRn
+︸︷︷︸

Problem that can be represented by FNN+ReLU

⊂ PHx≤l︸ ︷︷ ︸
QP

⊂ PC(n)︸ ︷︷ ︸
SOCP

⊂ PSn+︸︷︷︸
SDP

.

2.2 METHOD

Previously, we establish in Theorem 1 that a single-layer FNN with ReLU activation function can
represent the PGD algorithm corresponding to a particular form of the QP problem. However, we
find that this single-layer FNN activated by ReLU cannot represent the PGD algorithm for the SOCP
problem, and the proof is reported in Section 2.3 for brevity.

Based on this observation, we propose to extend the typical univariate ReLU activation to more
general projection functions, i.e., the Multivariate Projection Unit (MPU).
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Definition 1 (MPU). The (m-dimensional) Multivariate Projection Unit (MPU) is defined as the
nonlinear projection function to the set S ⊂ Rm:

PS : Rm → S.

In this paper, we discuss a special case by choosing the activation function to be the projection onto
the second-order cone in Rm, the projection function corresponding to the SOCP problem. Here,
the dimension m can be chosen to be 2, 3, · · · and is not restricted to the width of each layer nl. To
this end, the resulting activation function becomes a multi-input multi-output function.
Definition 2 (m-dimensional second-order cone with half-apex angle α). We define the m-
dimensional convex cone C

(m)
α in Rm as the convex cone centered at the origin with the axis

x1 = x2 = · · · = xm, and half-apex angle α ∈ (0, π
2 ), i.e.,

C(m)
α = {x ∈ Rm | ∥h∥2 ≤ tan(α)t},

where t = 1√
m
1⊤
mx,h = x− t√

m
1m.

Specifically, we select S as C
(m)
α for m = 2 or m = 3. The cones C

(2)
α and C

(3)
α are visualized

in Fig. 1(b) and Fig. 2(a) respectively. The explicit calculation of the cone C
(α)
m is derived in Ap-

pendix B. Moreover, the discussion on the different choices of the cones, as well as the analysis on
the computational complexity are provided in Appendix G and Appendix H, respectively.

To incorporate the activation function Π
C

(m)
α

(x) into the l-th layer of a neural network, the input
tensor z(l) ∈ Rb×nl,1×nl,2×···×nl,kl is first reshaped into a 2-dimensional vector z̃(l) ∈ Rb×ñl−1 ,
where b represents the batch size and ñl−1 = nl−1,1nl−1,2 · · ·nl−1,kl

. Subsequently, the entries
z̃(l):, p : ⌊nl

m ⌋m+ p, p = 1, · · · ,m−1 are partitioned into ⌊nl

m ⌋ sets, each processed by a projection
unit Π

C
(m)
α

. For the residual nl mod m dimensions, two options are available: either zero-padding

m − nl mod m dimensions followed by a projection through C
(m)
α , or direct passage through the

ReLU function. Empirical evidence suggests a marginal superiority of the former approach, which
is thus employed in subsequent experiments. Furthermore, the explicit calculation of the projection
function Π

C
(m)
α

is derived in Appendix B, the implementation details are introduced in Appendix E
and the choice of the cone parameters is also discussed in Appendix G.

In the following section, we theoretically discuss the expressive power of the FNN activated by the
cone C

(m)
α and its relationship with that of the FNN activated by the ReLU function.

2.3 EXPRESSIVE CAPABILITY OF FNN WITH CONE ACTIVATION

In this subsection, we take the activation function of the FNN as the projection function to the
second-order cone, and prove that the resulting neural network indeed has stronger representation
power than the FNN with ReLU activation functions. The complete proof of the theorem is reported
in Appendix D for brevity.
Theorem 2 (Expressive capability for projection to cones and ReLU). The projection onto the m-
dimensional cone C

(m)
α can represent the one dimensional ReLU function, i.e.,

Π
C

(m)
α

(x1) = ReLU(x),

where 1 is an m-dimensional vector of all ones.

On the other hand, ∀α ∈ (0, π
2 ) and tanα ̸=

√
m− 1, no shallow FNN with ReLU activation

function can faithfully represent the projection to C
(m)
α . In other words, for any shallow FNN with

width d1 and parameters W (1) ∈ Rd1×m,W (2) ∈ Rm×d1 , b(1) ∈ Rd1 and b(2) ∈ R2, the following
equality cannot be true for all x ∈ Rm,

W (2)ReLU(W (1)x+ b(1)) + b(2) = Π
C

(m)
α

(x).

Remark 2. Theorem 2 is not contradictory with the well-known Universal Approximation Theorem,
which posits that any continuous function defined on a compact set can be approximated to an ar-
bitrarily small error by a shallow FNN equipped with activation functions such as ReLU, while in
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Theorem 2, we require the exact representation on the entire space. As a result, it is possible for a
shallow FNN equipped with ReLU to approximate an MPU on a compact set to a small error. How-
ever, this may result in an explosion of the width of the FNN, which is further validated empirically
in Section 4.
Remark 3. Theorem 2 further shows that a shallow FNN with a hidden dimension d1 and acti-
vated by ReLU can be reparametrized to an equivalent shallow FNN, activated by projection onto
C

(m)
α ,m = 2, 3, · · · , with hidden dimension not exceeding md1. However, for a fair comparison,

we use architectures with the same width for different activation functions in the experiments later.

3 EXTENSION: DESIGN ACTIVATION FUNCTIONS WITH PROXIMAL
OPERATORS

The Projected Gradient Descent (PGD) algorithm presented in Section 2.1 serves as a specific in-
stance of the more general proximal gradient descent algorithm (Parikh & Boyd, 2014), which is
a powerful tool for numerically solving convex optimization problems, especially for those with
non-smooth objective functions. Subsequently, we briefly introduce the proximal gradient descent
algorithm and demonstrate that the architecture of each solver iteration aligns with that of a single
layer of an FNN. Consider optimization problems taking the following form:

min
x

x⊤Px+ q⊤x+ g(x), (6)

where g(x) : Rn → R is a proper, lower semi-continuous convex function. To numerically solve
this problem, we first introduce the notion of proximal operator:
Definition 3 (Proximal operator). Let f : Rn → R be a convex function. The proximal operator
Proxf of f is defined as a mapping from Rn to Rn:

Proxf (x) = argmin
y∈Rn

{
f(y) +

1

2
∥y − x∥2

}
. (7)

For example, the proximal operator of the indicator function:

IS(x) ≜
{

0, x ∈ S,
+∞, x /∈ S,

(8)

is the projection operator to the set S:
ProxIS(x) = ΠS(x). (9)

Proposition 2 (Proximal gradient descent (Parikh & Boyd, 2014)). If a proper step size γ > 0 is
chosen, such that ∥I − γP∥2 < 1, then the problem in equation 6 can be numerically solved by
repeating the following two steps until convergence:

z(l) = (I − γP )x(l−1) − γq,

x(l) = Proxg(z
(l)).

(10)

For example, all the problems introduced in Section 2.1 can be written as the following form:

min
x

x⊤Px+ q⊤x+ IS(x), (11)

and the corresponding proximal gradient descent algorithm reduces to the projected gradient descent
introduced in Proposition 1. Therefore, analogous to the relationship presented in Section 2.1, the
architecture of the proximal gradient descent algorithm also aligns with that of a layer of FNN, which
leads to a natural question of whether certain activation functions can be interpreted as proximal
operators. Indeed, this connection between activation functions and proximal operators has been
observed in the literature (Combettes & Pesquet, 2019), and besides ReLU, many other activation
functions are proximal operators:
Example 2. • The sigmoid function is the proximal operator of the following function:

x log(x) + (1− x) log(1− x)− 1

2
x2, x ∈ (0, 1)

0, x ∈ {0, 1}
+∞, otherwise.

(12)
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• The tanh activation function is the proximal operator of the following function:xarctanh(x) +
1

2
(ln(1− x2)− x2), |x| < 1,

+∞, otherwise.
(13)

• The soft thresholding function (Pan et al., 2022) is the proximal operator of the vector
1-norm ∥ · ∥1.

• The softmax function is the proximal operator of the negative entropy function (Combettes
& Pesquet, 2019).

More examples can be referred to Combettes & Pesquet (2019), which gives a comprehensive list of
activation functions and their corresponding proximal operators.

In addition to these observations, we further provide a framework to represent the Leaky version of
an activation function as a proximal operator, utilizing the concept of Moreau envelope.
Definition 4 (Moreau envelope). The Moreau envelope of a proper lower semi-continuous convex
function f from a Hilbert space V to (−∞,+∞] is defined as

Mλf (x) = inf
v∈V

(
f(v) +

1

2λ
∥v − x∥2

)
, (14)

where λ ∈ R is a parameter of the envelope.

Let us define the Leaky version of the activation function f : R → R as 1
λ+1f(x) +

λ
λ+1x, then we

have the following result, where the proof is reported in Appendix C.
Theorem 3. For a parameter λ, if an activation function f : R → R can be written as the proximal
operator of a function (λ+ 1)g : R → (−∞,+∞], i.e., f = Prox(λ+1)g, then the Leaky version of
f is the proximal operator of the Moreau envelope Mλg .

4 EXPERIMENT

In this section, we perform experiments to validate the expressive power of our proposed MPU.
Specifically, we employ three sets of experiments: (1) a set of experiments on multidimensional
function fitting via shallow FNN to demonstrate the expressive power of our proposed MPU, (2)
experiments on both CIFAR10 (Krizhevsky et al., 2009) and ImageNet-1k (Deng et al., 2009) to
validate the performance of our proposed MPU on ResNet (He et al., 2016), and (3) experiments
about the vision transformer Deit (Touvron et al., 2021) on ImageNet-1k (Deng et al., 2009) to
demonstrate the performance of the proposed MPU. We also provide an estimation of computational
complexity in terms of MACS, i.e., Multiply-Accumulate Operations. It should be noted that despite
our prior theoretical analysis suggesting that a wider FNN activated by cone projection is required
for accurate emulation of an FNN with ReLU activation, we retain the original architecture widths
across all activation functions in our experiments for a fair comparison. The implementation details
of the proposed MPU for all architectures are provided in Appendix E.

4.1 MULTIDIMENSIONAL FUNCTION FITTING VIA FNN

Before delving into experiments involving deep architectures, we first validate the expressive power
of the proposed MPU on multidimensional function fitting, which serves as a numerical validation
of our previous theoretical results. For this purpose, we compare the approximation capabilities
of MPU against ReLU, PReLU, Leaky ReLU, top-50% Winner-Takes-All (WTA), MaxOut, and
CReLU in shallow FNNs across two distinct functions, where the first function represents an FNN
activated by a “true” multidimensional function, while the second serves as an FNN employing a
“pseudo” multidimensional function for comparison:

1. A shallow FNN activated by the projection Π
C

(2)

π/3

(x) from R2 to the cone C(2)
π/3 (visualized

in Fig. 1(b));
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2. A shallow FNN with the two activation functions, both Leaky ReLUs.

In all experiments, we use the same weight matrix, which is normalized to have a 2-norm of 1. By
randomly sampling input vectors x ∈ R2 uniformly over the square region [−10, 10]×[−10, 10], we
acquire 40000 samples for training and 10000 samples for testing. The corresponding outputs are
then computed by evaluating these inputs through the target functions under approximation. Each
model, activated by either univariate functions or MPU, employs a shallow FNN architecture and is
trained using Stochastic Gradient Descent (SGD) with a momentum of 0.9 for 50 epochs. Learning
rates of 5× 10−4 and 0.001 are applied for the approximation of C(2)

π/3 and the 2-dimensional Leaky
ReLU, respectively. These rates are finalized after a grid search over the set 10−4, 5× 10−4, 0.001.
Each experimental setup is executed three times under distinct random seeds 1, 2, 3. The average
loss values across these runs are then computed and illustrated in Fig. 3. Moreover, to accommodate
the Single-Input Multiple-Output (SIMO) function CReLU and the Multiple-Input Single-Output
(MISO) function Maxout, the structure of the corresponding FNN must be altered. In our experi-
mentation, the input dimension for the FNN utilizing CReLU and the output dimension for the FNN
employing Maxout are maintained equal to those of the other FNNs (denoted as the dimension of
hidden states in Figure 3). To align with the CReLU activation function, we select the input dimen-
sion of the Maxout function to be twice that of the output dimension. As a result, the number of
parameters for FNNs incorporating both CReLU and Maxout is 1.5 times that of the other FNNs.

10 20 30 40

10−4

0.001

0.01

0.1

Dimension of hidden states

M
SE

10 20 30 40

10−4

0.001

0.01

0.1

Dimension of hidden states
M
SE

ReLU

LeakyReLU

PReLU

Π
C

(2)
α

Maxout

CReLU

WTA

Figure 3: The Mean Squared approximation Error (MSE) of
the projection Π

C
(2)

π/3

(x) and the 2-dimensional Leaky ReLU

function by the FNN activated by univariate functions and
the MPU plotted in a log plot w.r.t. different hidden states.
Left: The approximation error for the FNN with the projec-
tion Π

C
(2)

π/3

(x). Right: The approximation error for the FNN

activated by the 2-dimensional Leaky ReLU function.

The experimental outcomes reveal
that FNNs activated by both univari-
ate functions and MPU exhibit satis-
factory performance in approximat-
ing the “pseudo” multidimensional
function (the 2-dimensional Leaky
ReLU). In contrast, the FNNs uti-
lizing the SISO activation functions
display a limitation in accurately ap-
proximating the projection operator
Π

C
(2)

π/3

(x). This experimental result

aligns with our prior theoretical re-
sults, thereby illustrating the neces-
sity of employing MPU as activation
functions.

4.2 CONVOLUTIONAL NEURAL NETWORKS EXPERIMENTS

We first testify the performance of the proposed activation function on ResNet18 (He et al., 2016) on
CIFAR10 (Krizhevsky et al., 2009), and the implementation details are provided in Appendix E. The
network is trained for 200 epochs with a batch size of 128, and the learning rate is initialized to 0.1
and decayed in a cosine annealing manner (Loshchilov & Hutter, 2016). The optimizer is chosen as
SGD, setting weight decay to 0.0005 and the momentum to 0.9. These hyperparameters employed
are directly inherited, without any modification, from the State-Of-The-Art (SOTA) ResNet training
configuration (Pytorch-CIFAR-Github-repository, 2023) optimized for ReLU activation. The results
are summarized in Table 1. It should be noted that the performance of the SIMO CReLU function
and the MISO Maxout function is not evaluated within the classic ResNet architecture due to the
requisite alternation of the network structure to integrate these functions. Given that convolutional
neural networks exhibit significant structural dependencies, it remains unclear whether observed
impacts are attributable to the activation functions or to the modifications in the architecture.

From the results in Table 1, we observe that our MPU, along with Leaky MPU, achieves clearly
improved performance on CIFAR10, with a maximum increment of 0.18 compared to the origi-
nal ReLU either in terms of the mean or the maximum test accuracy. Our performance also beats
LeakyReLU and PReLU, which are also variants of ReLU, and top-50% WTA. The computational
complexity of our proposed activation function is comparable to that of ReLU and Leaky ReLU. To
further validate the increments of MPU, we also conduct experiments on ResNet34 and ResNet50
with ReLU. By comparing ResNet18 with MPU and ResNet34 / ResNet50 with ReLU, we observe
that MPU boosts the performance of ResNet18 to a level comparable to that of ResNet34 / ResNet50

8
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Table 1: Test accuracy of ResNet18 on CIFAR10. Test accuracy of ResNet34 and ResNet50 is also
provided as a reference. Computational complexity is measured by mean MACS (over 200 epochs),
i.e., Multiply–Accumulate Operations, with batch size 128. We highlight the best and the second
best in bold and with underlining, respectively.

Network Activation Test Accuracy (3 seeds) Test Accuracy (Max) Mean MACS

ResNet18

ReLU 95.35 ± 0.10 95.47 71.17G
Leaky ReLU 95.48 ± 0.04 (+ 0.13) 95.53 (+ 0.06) 71.24G

PReLU 94.36 ± 0.18 (- 0.99) 94.60 (- 0.75) 71.17G
WTA 95.36 ± 0.02 ( + 0.01) 95.38 (- 0.09) 71.24G

MPU (Π
C

(2)
α

) 95.51 ± 0.10 (+ 0.16) 95.60 (+ 0.13) 71.56G
Leaky MPU (Π

C
(2)
α

) 95.53 ± 0.03 (+ 0.18) 95.56 (+ 0.09) 71.56G
MPU (Π

C
(3)
α

) 95.37 ± 0.21 (+ 0.02) 95.53 (+ 0.06) 71.54G

ResNet34 ReLU 95.62 ± 0.02 (+ 0.27) 95.63 (+ 0.16) 148.53G
ResNet50 ReLU 95.42 ± 0.18 (+ 0.07) 95.62 (+ 0.15) 166.56G

but without largely increasing computational complexity. These results demonstrate the effective-
ness of our proposed activation function on ResNet18.

Table 2: Test accuracy of ResNet18 on Im-
ageNet.

Activation Test Accuracy

ReLU 69.90
Leaky ReLU 70.32 (+ 0.42)

PReLU 68.95 (- 0.95)

WTA 66.74 (- 3.16)

MPU (Π
C

(2)
α

) 70.00 (+ 0.10)

Leaky MPU (Π
C

(2)
α

) 70.18 (+ 0.28)

MPU (Π
C

(3)
α

) 69.64 (- 0.26)

We also benchmark the performance of the proposed
activation function on ResNet18 (He et al., 2016) and
ImageNet-1k (Deng et al., 2009). The network is
trained on 8 GPU cards for 100 epochs with a batch
size of 32 on each GPU, and the learning rate is ini-
tialized to 0.1 and decayed at epochs 30, 60, and 90,
respectively, with a ratio of 0.1. The optimizer is cho-
sen as SGD, setting weight decay to 0.0001 and the
momentum to 0.9. These hyperparameters employed
are directly inherited from the SOTA training config-
uration (MMPretrain-Github-repository, 2023) for the
ResNet architectures utilizing ReLU activation on Im-
ageNet, without any modifications. The results are
summarized in Table 2. We observe that, as a generalization of ReLU, our MPU with Π

C
(2)
α

achieves
better test accuracy on ImageNet than ReLU.

Moreover, we also implement the proposed MPU on the classic vision transformer Deit-tiny (Tou-
vron et al., 2021). The experiment result and the comparison between the proposed method and
ReLU are reported in Appendix F due to space limit.

5 CONCLUSION

The paper extends the SISO activation functions in neural networks by introducing the MPU as a
MIMO activation function. This extension is inspired by the structural similarity between a shallow
FNN and a single iteration of the PGD algorithm. We provide rigorous theoretical proofs which
show that FNNs incorporating the MPU outperform those utilizing ReLU in terms of expressive
power. Moreover, by considering activation functions as proximal operators, we prove that their
Leaky variants also retain this proximal property, e.g., the Leaky ReLU function. This indicates
potential avenues for future research into a broader class of proximal operators, both SISO and
MIMO, as activation functions.

In the experiment section, we conduct empirical validations of our proposed MPU, which include
multidimensional function fitting using shallow FNNs and evaluations on CNN architectures with
CIFAR10 and ImageNet-1k datasets. We observe MPU’s superior performance on multidimen-
sional function fitting and CIFAR10 image classification. However, the promotion of performance
on ImageNet-1k is limited, which calls for additional investigation. Our future works include i) em-
pirical applications of MPU on other tasks, e.g., object detection and semantic segmentation, ii) the
optimizer designed for the MIMO activation functions, iii) design optimal nonlinearities in neural
networks based on proximal operators.
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A PROOF OF THEOREM 1

Proof. First, the linear transformation in equation 3 can be achieved by choosing the W (1) and b(1)

in the theorem.

For the second process, we use the following property:

ΠRnl
+
(z(l)) = max(0, z(l)) = ReLU(z(l)),

where both the max operator and the ReLU function are calculated element-wise. Thus, the second
process can be represented by the ReLU activation function.

B PROJECTION TO n-DIMENSIONAL CONE

Theorem 4 (Projection to n-dimensional cone). For any n-dimensional cone C(n)
α ⊂ Rn with center

0n, half apex angle α ∈ [0, π
2 ] and axis passing through (1, 1, · · · , 1), the projection Π

C
(n)
α

(x) can
be computed via the following procedure:

1. Compute the height scalar t ∈ R and the vector h ∈ Rn, which is visualized in Fig. 4a:

t =
1√
n
1⊤
n x, h = x− t√

n
1n. (15)

2. Compute the projection: Let

s =
tan(α)∥h∥+ t

tan2(α) + 1
,

then

Π
C

(n)
α

(x) =


x, ∥h∥ ≤ tan(α)t,

0, tan(α)∥h∥ ≤ −t,

s

(
1n√
n
+

tan(α)h

∥h∥

)
, otherwise.

(16)

Proof. First, we compute the height scalar t and the vector h visualized in Fig. 4a. The expression of
t can be directly obtained via definition of the projection from x to the axis line that passes through
the point (1, 1, · · · , 1):

t =
1⊤
nx

∥1n∥
,

and the vector h can then be computed by subtracting the vector t from x:

h = x− t
1n

∥1n∥
.

The case where ∥h∥ ≤ tan(α)t (the point x falls in the region R1) is trivial, since its projection is
exactly itself.

The case where tan(α)∥h∥ ≤ −t (the point x falls in the region R3) is also trivial, since the
projection of x to the cone C

(n)
α is exactly 0n.
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x

y

Cα

x

h
t

R1

R2

R′
2R3

(a) The visualization concerning the meaning of the
height scalar t and the vector h.

h

1n

l

α
xx̌

(b) Illustration of the plane spanned by 1n and h.

In the following, we focus on case where ∥h∥ > tan(α)t and tan(α)∥h∥ > −t (the point x falls
into the region R2 and R′

2), so that the projection of x to the cone C(n)
α is not trivial. Let us consider

the plane spanned by 1n and h, which is visualized in Fig. 4b. The projection of x to the cone is
equivalent to its projection to the boundary of the cone that lies in the plane l. Let us denote the
projection of x onto the line l as the vector x̌. Then, simple geometric analysis shows that the length
of the vector x̌ is

s ≜ ∥x̌∥ =
tan(α)∥h∥+ t

tan2(α) + 1
.

Therefore, the coordinate of the point x̌ in the original n-dimensional space is

x̌ = ∥x̌∥
(

1n√
n
+ tan(α)

h

∥h∥

)
= s

(
1n√
n
+

tan(α)h

∥h∥

)
.

C PROOF OF THEOREM 3

Proof. Let V = R, and suppose f is the proximal operator of g, then the Moreau envelope

Mλg(y) = min
v∈R

(
g(v) +

1

2λ
(v − y)2

)
,

and the proximal operator of Mλg is written as

ProxMλg
(x) = argmin

y∈R
min
v∈R

(
g(v) +

1

2λ
(v − y)2 +

1

2
(y − x)2

)
.

Notice that the outer minimization can be solved explicitly as

y∗(x) =
1

λ+ 1
v∗(x) +

λ

λ+ 1
x,

and the inner minimization is equivalent to

min
v∈R

g(v) +
1

2(λ+ 1)
(v − x)2.

According to the definition of the proximal operator, the minimizer v is the proximal operator of the
function (λ+ 1)g taking value at x:

v∗(x) = Prox(λ+1)g(x).

Thus, we have

ProxMλg
(x) =

λ

λ+ 1
x+

1

λ+ 1
Prox(λ+1)g(x) =

λ

λ+ 1
x+

1

λ+ 1
f(x).

For example, if we take λ = 1
99 , we can see that

ProxM1/99IR+
(x) = 0.99ReLU(x) + 0.01x,

which coincides with the Leaky ReLU.
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D PROOF OF THEOREM 2

Theorem 1. The projection to the two dimensional cone Cα can represent one dimensional ReLU
function. However, any shallow FNN equipped with ReLU activation function cannot represent the
projection to the two dimensional cone Cα.

Proof. We first prove the simple case for the cone C
(2)
α in R2.

First, we prove that the projection to the two dimensional cone C(2)
α with half apex angle α ∈ [0, π

2 ]
can represent one dimensional ReLU function. Let us consider the projection function restricted to
the line x1 = x2, which is exactly the 1-dimensional ReLU, visualized in Fig. 5a.

Next, we show that any shallow FNN with arbitrary width cannot represent the 2-dimensional cone
C

(2)
α . Let us consider a shallow FNN with the ReLU activation function, n0 inputs, n1 hidden units

and n2 outputs and is written as:

ϕ(x(0)) ≜ x(2) = W (2)σ(W (1)x(0) + b1) + b2, (17)

where σ = ReLU is calculated element-wise, W (1) ∈ Rn1×2,W (2) ∈ R2×n1 , b1 ∈ Rn1 , b2 ∈ R2.
Moreover, we denote the projection function to the 2-dimensional cone C(2)

α as Π
C

(2)
α

: R2 → C
(2)
α .

The proof is decomposed into two steps. First, we consider the case where b1 = 0, and x(0) belongs
to a compact set Dr = {x ∈ R2 : ∥x∥2 ≤ r2} for an arbitrary r > 0. Notice that for the ReLU
activation function,

σ(x)− σ(−x) = x. (18)

Thus, we have

ϕ(x(0))− ϕ(−x(0)) = W (2)W (1)x(0), (19)

which is linear w.r.t. x(0).

x1

x2

C
(2)
α

(a) The projection on the line
x1 = x2. This shows
that the projection to the 2-
dimensional cone C

(2)
α contains

the 1-dimensional ReLU.

x1

x2

C
(2)
α

R1

R2

R′
2R3

(b) Visualization of the cone C(2)
α

where α ∈ [0, π
4
).

x1

x2

C
(2)
α

R1R2

R′
2R3

(c) Visualization of the cone C(2)
α

where α ∈ (π
4
, π
2
].

However, for the projection function Π
C

(2)
α

, we assert that it is nonlinear w.r.t. x(0). To see this, we
shall consider the following two cases:

1. α ∈ [0, π/4), visualized in Fig. 5b.

The position of the point pair (x,−x) has four different cases: the two points fall in the
region pair (R1,R3), (R2,R3), (R2,R′

2) or (R′
2,R3) respectively. Due to symmetry, we
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only consider the case where x falls in the upper half plane. Thus,

Π
C

(2)
α

(x(0))−Π
C

(2)
α

(−x(0)) =



s

(
1n√
n
+ tan(α)

[
1
−1

])
, x ∈ R′

2,−x ∈ R3,

x(0), x ∈ R1,−x ∈ R3,

s

(
1n√
n
+ tan(α)

[
−1
1

])
, x ∈ R2,−x ∈ R3,

2s tan(α)

[
−1
1

]
, x ∈ R2,−x ∈ R′

2,

−s

(
1n√
n
+ tan(α)

[
1
−1

])
, x ∈ R3,−x ∈ R′

2,

(20)
with s = tan(α)∥h∥+t

tan2(α)+1 . Notice that both h and t are linear w.r.t. x(0). Thus, the vector norm

∥h∥ is nonlinear w.r.t. x(0). Therefore, we can conclude that the function Π
C

(2)
α

(x(0)) −
Π

C
(2)
α

(−x(0)) is nonlinear w.r.t. the input vector x(0).

2. α ∈ (π4 ,
π
2 ], visualized in Fig. 5c.

The position of the point pair (x,−x) has four different cases: the two points fall in the
region pair (R1,R2), (R1,R3), (R1,R′

2) or (R2,R′
2) respectively. Due to symmetry, we

only consider the case where x falls in the upper half plane. Thus,

Π
C

(2)
α

(x(0))−Π
C

(2)
α

(−x(0)) =



x(0) − s

(
1n√
n
+ tan(α)

[
−1
1

])
, x ∈ R1,−x ∈ R2,

x(0), x ∈ R1,−x ∈ R3,

x(0) − s

(
1n√
n
+ tan(α)

[
1
−1

])
, x ∈ R1,−x ∈ R′

2,

2s tan(α)

[
−1
1

]
, x ∈ R2,−x ∈ R′

2,

s

(
1n√
n
+ tan(α)

[
−1
1

])
− x(0), x ∈ R2,−x ∈ R1,

(21)
with s = tan(α)∥h∥+t

tan2(α)+1 . Notice that both h and t are linear w.r.t. x(0). Thus, the vector norm

∥h∥ is nonlinear w.r.t. x(0). Therefore, we can conclude that the function Π
C

(2)
α

(x(0)) −
Π

C
(2)
α

(−x(0)) is nonlinear w.r.t. the input vector x(0).

In both cases, the resulting function Π
C

(2)
α

(x(0))−Π
C

(2)
α

(−x(0)) is nonlinear w.r.t. the input vector
x(0). Thus, we can see that the shallow FNN with ReLU function and bias b1 = 0 cannot exactly
express the projection to the 2-dimensional cone C(2)

α in the compact set Dr for any arbitrary r > 0.

Next, we consider the case where b1 ̸= 0. In this case, consider the following limit:

lim sup
t→∞

tσ(W (1)x(0) + b(1))

t
= σ(W (1)x(0)),

where the division and the limit are both taken element-wise. Therefore, equation 19 still holds if
we replace x(0) with tx(0) for sufficiently large t.

However, one can observe from equation 20 and equation 21 that the projection to the 2-dimensional
cone C

(2)
α is nonlinear w.r.t x(0) in both cases. Therefore, we can conclude that the shallow FNN

network with ReLU activation function cannot exactly represent the projection function Π
C

(2)
α

to the

2-dimensional cone C
(2)
α .

Next, we prove the general case for the convex cone C
(m)
α . The proof of the first part in the lemma

is exactly the same as that in Theorem 2. Thus, we only focus on the second part.
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First, we still consider the case where the bias of the FNN is zero. Similar to the proof of Theo-
rem 2, it remains to find a region where the projection function Π

C
(m)
α

is nonlinear w.r.t. x(0). This
statement is easy to verify by considering the expression of the projection function explicitly written
in Theorem 4. Moreover, the extension to the case where the bias is nonzero is similar to the proof
for the 2-dimensional case, and is omitted here.

E IMPLEMENTATION DETAILS

E.1 EXPLICIT CALCULATION OF THE CONE

The projection to the cone C
(n)
α with n = 2, 3, · · · , i.e., MPU, can be computed via the following

theorem, and its proof is provided in Appendix B for brevity.

Theorem 4 (Projection to n-dimensional cone). For any n-dimensional cone C(n)
α ⊂ Rn with center

0n, half apex angle α ∈ [0, π
2 ] and axis passing through (1, 1, · · · , 1), the projection Π

C
(n)
α

(x) can
be computed via the following procedure:

1. Compute the height scalar t ∈ R and the vector h ∈ Rn, which is visualized in Fig. 4a:

t =
1√
n
1⊤
n x, h = x− t√

n
1n. (22)

2. Compute the projection: Let

s =
tan(α)∥h∥+ t

tan2(α) + 1
,

then

Π
C

(n)
α

(x) =


x, ∥h∥ ≤ tan(α)t,

0, tan(α)∥h∥ ≤ −t,

s

(
1n√
n
+

tan(α)h

∥h∥

)
, otherwise.

(23)

Consequently, the Leaky version of the projection to cone C(n)
α with n = 2, 3, · · · , i.e., Leaky MPU,

can be computed by 0.99Π
C

(n)
α

(x) + 0.01x.

The further details for the choice of the cone is discussed in Appendix G.

The multidimensional function fitting experiment is implemented in Python using the PyTorch
package (Paszke et al., 2019). The code is self-written and is available in the submitted zip file.

The experiment of ResNet18 on CIFAR10 is mostly based on the code in https://github.
com/kuangliu/pytorch-cifar, which reaches the highest accuracy in all the repositories
for ResNet that we investigate. The hyperparameters that we use in our experiment are all directly
adopted from the repository without any modifications. The code is available in the submitted zip
file.

The experiment of both ResNet18 and the Deit-tiny architectures on ImageNet-1k dataset are based
on the code in https://github.com/open-mmlab/mmpretrain. The hyperparameters
that we use in our experiment are all directly adopted from the repository without any modifications.

F MORE EXPERIMENTS

Finally, the proposed activation function is tested on a vision transformer Deit (Touvron et al., 2021)
on ImageNet-1k (Deng et al., 2009). The network is trained on 8 GPU cards for 500 epochs with a
batch size of 128 on each GPU, and the learning rate is kept as 0.001 during the first 20 epochs, and
then a Cosine Annealing learning rate schedule is employed in the rest of the training phase, and the
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minimum learning rate is set to 10−5. We choose the optimizer as AdamW, setting weight decay to
0.05, ϵ to 10−8 and betas to (0.9, 0.999). The results are summarized in Table 3.

Moreover, to further illustrate the performance of the proposed MPU on a deeper architecture, we
test the ReLU, Leaky ReLU and the proposed MPU on the ResNet101 architecture on CIFAR10,
and the results are summarized in Table 4.

Furthermore, as can be seen from Table 1, the inclusion of the proposed MPU slightly introduces an
increase on the MACS. To facilitate a fair comparison of the proposed MPU against ReLU and other
activation functions, we conducted additional experiments on the ResNet18 architecture, adjusting
the number of training epochs for these functions to ensure their mean Multiply-Accumulate Oper-
ations (MACS) exceeded that of the MPU. The results are summarized in Table 5. We also slightly
increase the depth of the ResNet18 architecture by adding one more basic block to form ResNet18+,
increasing the resulting MACS of the ReLU, Leaky ReLU, PReLU and WTA for fair comparison.
The results are shown in Table 6.

Table 3: Test accuracy of Deit-tiny on ImageNet-1k.

Activation Functions Top-1 Accuracy

ReLU 74.99
Proj to C

(2)
α 74.86

Proj to C
(3)
α 75.06

Table 4: Test accuracy of ResNet101 on CIFAR10.

Activation Test Accuracy (3 seeds) Test Accuracy (Max)

ReLU 95.62 ± 0.11 95.70
Leaky ReLU 95.57 ± 0.34 (- 0.05) 95.88 (+ 0.18)

MPU (Π
C

(2)
α

) 95.08 ± 0.53 (- 0.54) 95.69 (- 0.01)

Leaky MPU (Π
C

(2)
α

) 95.78 ± 0.18 (+ 0.16) 95.91 (+ 0.21)

MPU (Π
C

(3)
α

) 95.60 ± 0.05 (- 0.02) 95.64 (- 0.06)

Table 5: Test accuracy of ResNet18 on CIFAR10. Test accuracy of ResNet34 and ResNet50 is
also provided as a reference. Computational complexity is measured by mean MACS (over 200
epochs) with batch size 128. We highlight the best and the second best in bold and with underlining,
respectively.

Network Activation Test Accuracy (3 seeds) Test Accuracy (Max) Mean MACS

ResNet18

ReLU 95.35 ± 0.10 95.47 71.17G
ReLU (+2 epochs) 95.41 ± 0.12 (+ 0.06) 95.51 (+ 0.04) 71.88G

Leaky ReLU 95.48 ± 0.04 (+ 0.13) 95.53 (+ 0.06) 71.24G
Leaky ReLU (+2 epochs) 95.25 ± 0.09 (- 0.10) 95.35 (- 0.12) 71.95G

PReLU 94.36 ± 0.18 (- 0.99) 94.60 (- 0.75) 71.17G
PReLU (+2 epochs) 94.59 ± 0.01 (- 0.76) 94.60 (- 0.75) 71.88G

WTA 95.36 ± 0.02 ( + 0.01) 95.38 (- 0.09) 71.24G
WTA (+2 epochs) 95.23 ± 0.11 ( - 0.12) 95.35 (- 0.12) 71.95G

MPU (Π
C

(2)
α

) 95.51 ± 0.10 (+ 0.16) 95.60 (+ 0.13) 71.56G
Leaky MPU (Π

C
(2)
α

) 95.53 ± 0.03 (+ 0.18) 95.56 (+ 0.09) 71.56G
MPU (Π

C
(3)
α

) 95.37 ± 0.21 (+ 0.02) 95.53 (+ 0.06) 71.54G

ResNet34 ReLU 95.62 ± 0.02 (+ 0.27) 95.63 (+ 0.16) 148.53G
ResNet50 ReLU 95.42 ± 0.18 (+ 0.07) 95.62 (+ 0.15) 166.56G
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Table 6: Test accuracy of ResNet18 and the modified ResNet18+ on CIFAR10. We add one more
basic block in ResNet18 structure to form the ResNet18+ architecture. Test accuracy of ResNet34
and ResNet50 is also provided as a reference. Computational complexity is measured by mean
MACS (over 200 epochs), with batch size 128. We highlight the best and the second best in bold
and with underlining, respectively.

Network Activation Test Accuracy (3 seeds) Test Accuracy (Max) Mean MACS

ResNet18

ReLU 95.35 ± 0.10 95.47 71.17G
Leaky ReLU 95.48 ± 0.04 (+ 0.13) 95.53 (+ 0.06) 71.24G

PReLU 94.36 ± 0.18 (- 0.99) 94.60 (- 0.75) 71.17G
WTA 95.36 ± 0.02 ( + 0.01) 95.38 (- 0.09) 71.24G

MPU (Π
C

(2)
α

) 95.51 ± 0.10 (+ 0.16) 95.60 (+ 0.13) 71.56G
Leaky MPU (Π

C
(2)
α

) 95.53 ± 0.03 (+ 0.18) 95.56 (+ 0.09) 71.56G
MPU (Π

C
(3)
α

) 95.37 ± 0.21 (+ 0.02) 95.53 (+ 0.06) 71.54G

ResNet18+

ReLU 95.36 ± 0.23 (+ 0.01) 95.63 (+ 0.16) 80.84G
Leaky ReLU 95.26 ± 0.14 (- 0.09) 95.40 (- 0.07) 80.91G

PReLU 94.72 ± 0.43 (- 0.63) 95.10 (- 0.37) 80.85G
WTA 95.25 ± 0.04 (- 0.10) 95.30 (- 0.17) 80.90G

ResNet34 ReLU 95.62 ± 0.02 (+ 0.27) 95.63 (+ 0.16) 148.53G
ResNet50 ReLU 95.42 ± 0.18 (+ 0.07) 95.62 (+ 0.15) 166.56G

G DISCUSSIONS ON CHOICE OF CONES

The structure of the convex cone can be determined by the following three factors:

• The vertex and axis of the cone;
• The dimension of the cone m;
• The half-apex angle α.

And we shall discuss the choice of the three factors above in the following. First, the different
choices of the vertex can be simply achieved by shifting the cone, which can be accomplished by
the linear unit after the activation function. Thus, we fix the vertex of the cone as the origin of
the Rm space without loss of generality. Similar idea can also be seen in most activation function
design, such as the celebrated ReLU, sigmoid, tanh and so on. Moreover, we choose the axis of the
cone as the line that passes through the point (1, 1, · · · , 1), for the symmetry of all input channels.
The axis of the cone can also be rotated by the linear unit after the activation function.

We then discuss the impact of the dimension m of the cone on the proposed MPU.

First, we show the following theoretical result on the expressive capability for different choice of m:
Proposition 3. For m1 < m2, the single FNN layer equipped with the projection function Π

C
(m1)
α

can be be represented by that with the projection function Π
C

(m2)
α

.

The proof of the proposition is almost the same as that of Theorem 2 and is omitted here for sim-
plicity.

Therefore, as we increase the dimension of the cone m, the expressive power of the single cone
increases.

However, when embedding the proposed MPU in an existing architecture without changing the
width of each layer, the dimension of the cone m impacts the following three aspects:

• The expressive capability of each single cone (increases as m increases);
• The number of cones in a single layer (decreases as m increases);
• Computational complexity (increases as m increases).

Therefore, there naturally raises a tradeoff among the three aspects mentioned above. And the prac-
tical choice of m should be determined by the empirical performances of the experiments. For the
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ResNet18 case, we perform experiments on multiple choices of m, and the results are summarized
in Table 7. We can summarize from the results that the best choice of m is m = 2 for ResNet18 on
CIFAR10.

Table 7: Test accuracy of ResNet18 on CIFAR10 for cones with different dimensions m.

Activation Test Accuracy (3 seeds) Test Accuracy (Max)

ReLU 95.35 ± 0.10 95.47
Leaky ReLU 95.48 ± 0.04 (+ 0.13) 95.53 (+ 0.06)

2-dimensional MPU (Π
C

(2)
α

) 95.51 ± 0.10 (+ 0.16) 95.60 (+ 0.13)

2-dimensional Leaky MPU (Π
C

(2)
α

) 95.53 ± 0.03 (+ 0.18) 95.56 (+ 0.09)

3-dimensional MPU (Π
C

(3)
α

) 95.37 ± 0.21 (+ 0.02) 95.53 (+ 0.06)

4-dimensional MPU (Π
C

(4)
α

) 94.78 ± 0.08 (- 0.57) 94.85 (- 0.62)

5-dimensional MPU (Π
C

(5)
α

) 94.81 ± 0.16 (- 0.54) 94.92 (- 0.55)

6-dimensional MPU (Π
C

(6)
α

) 94.40 ± 0.18 (- 0.95) 94.57 (- 0.90)

Finally, we set the half-apex angle α as a learnable parameter and is kept the same for each layer.
Thus, by optimizing this parameter α via the training data, this parameter determines the compres-
sion ratio of each layer.

H COMPUTATIONAL COMPLEXITY

According to the explicit calculation of the MPU in Theorem 4, we summarize the worst-case com-
putational complexity for a single m-dimensional MPU in Table 8. The result shows that the overall
computational complexity of the general m-dimensional MPU grows linearly w.r.t. its dimension
m. Moreover, the computation of the MPU can be simplified for m = 2, as the projection is now
to a polyhedral instead of a cone. The simplified computational complexity is also shown in Ta-
ble 8. Note that in practice, we replace m single-input single-output activation functions with a
single MPU, so that the computational complexity in Table 8 should be compared to m single-input
single-output activation functions. Moreover, the element-wise computation, such as plus, minus
and multiplication operations can be easily parallelized on GPU.

Table 8: Worst-case computational complexity of each operations for the MPU and its relationship
with the dimension m of the MPU.

Operation Frequency Frequency (m = 2)

+ 3m− 1 2m = 4
− m m = 2
× m+ 4 4
÷ m+ 3 m+ 3 = 5√

1 0
Compare (ReLU) 2 3
Overall 7m+ 9 4m+ 10 = 18

I RELATED WORKS

The most used activation function is ReLU (Nair & Hinton, 2010; Agarap, 2019). It largely mitigates
the “gradient vanishing” problem of previously used sigmoid or tanh units (Maas et al., 2013). This
issue occurs as the gradients approach 0 when the sigmoid or tanh is saturated. Recently, various
activation functions have been proposed. These methods can be roughly categorized into four
classes:

• Univariate fixed activations: LeakyReLU (Maas et al., 2013) proposes to allow for a small, non-
zero gradient when the unit is not active, and Sitzmann et al. (2020) introduce periodic activation
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functions to improve implicit neural representations. Dauphin et al. (2017) propose to use Gated
Linear Units (GLU) and Gated Tanh Units (GTU) to improve language modeling, SiLU (Elfwing
et al., 2017) propose to use sigmoid function weighted by its input, while Exponential Linear
Unit (ELU) (Clevert et al., 2016) keeps the positive arguments but set constant values for negative
ones, and GELU (Hendrycks & Gimpel, 2023) mitigates overfitting by introducing stochastic
regularizers.

• Univariate trainable activations: For example, PReLU (He et al., 2015) explores to learn the
parameters of the rectifiers actively, Swith (Ramachandran et al., 2017) searches for candidate
activations, and Kernel-based Activation Function (KAF) (Scardapane et al., 2019) that uses an
ensembled kernel function. Other variations of ReLU include PELU (Trottier et al., 2018) and
FReLU (Qiu et al., 2018). Though the above and most existing activations are SISO, some multi-
variate activations have been proposed.

• Multivariate fixed activations: Concatenated ReLU (CReLU (Shang et al., 2016)) takes the con-
catenation of two ReLU functions as the output, which is single-input multi-output (SIMO). Max-
Out (Goodfellow et al., 2013) and its variant Probabilistic MaxOut (Springenberg & Riedmiller,
2014) takes the maximum of several linear functions as the output, which is multi-input single-
output (MISO). Local Winner-Take-All subnetwork (LWTA) (Srivastava et al., 2013) and top-k
Winner-Takes-All (WTA) (Xiao et al.) incorporate competitions to enhance multivariate activa-
tions. Other nonlinear layers such as softmax and batch norm (Ioffe & Szegedy, 2015) are also
considered multivariate nonlinearities. Moreover, complex-valued activations also serve as multi-
variate activations (Bassey et al., 2021), e.g., multi-valued neuron (MVN) (Aizenberg et al., 1971)
and cardioid activations (Virtue et al., 2017).

• Multivariate trainable activations: Network In Network (NIN) (Lin et al., 2014), that compute
more abstract features for local patches in each convolutional layer, and its variant Convolution in
Convolution (CIC) (Pang et al., 2018), which are multi-input multi-output (MIMO).

In this work, MPU is also a trainable activation that generalizes ReLU to MIMO.
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