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Abstract

Deep learning has revolutionized medical image segmentation, but it relies heavily on high-
quality annotations. The time, cost and expertise required to label images at the pixel-
level for each new task has slowed down widespread adoption of the paradigm. We pro-
pose Pix2Rep, a self-supervised learning (SSL) approach for few-shot segmentation, that
reduces the manual annotation burden by learning powerful pixel-level representations di-
rectly from unlabeled images. Pix2Rep is a novel pixel-level loss and pre-training paradigm
for contrastive SSL on whole images. It is applied to generic encoder-decoder deep learning
backbones (e.g., U-Net). Whereas most SSL methods enforce invariance of the learned
image-level representations under intensity and spatial image augmentations, Pix2Rep en-
forces equivariance of the pixel-level representations. We demonstrate the framework on
a task of cardiac MRI segmentation. Results show improved performance compared to
existing semi- and self-supervised approaches; and a 5-fold reduction in the annotation
burden for equivalent performance versus a fully supervised U-Net baseline. This includes
a 30% (resp. 31%) DICE improvement for one-shot segmentation under linear-probing
(resp. fine-tuning). Finally, we also integrate the novel Pix2Rep concept with the Barlow
Twins non-contrastive SSL, which leads to even better segmentation performance.

Keywords: Deep Learning, Segmentation, Self-Supervised Learning, Representation Learn-
ing, Cardiac MRI

1. Introduction

Medical image segmentation has seen tremendous progress with the advent of deep learn-
ing (Ronneberger et al., 2015; Milletari et al., 2016; Kamnitsas et al., 2017). The drawback
of this paradigm is its reliance on large quantities of data, annotated at the pixel-level, to
train strong segmentation models. These pixel-level annotations are costly to obtain, and
take precious time from medical experts.

To circumvent this burden, techniques have emerged in recent years that better exploit
more widely available unlabeled data. Semi-supervised approaches e.g., pseudo-labels (Lee,
2013; Bai et al., 2017; Tran et al., 2022) and mean teacher (Tarvainen and Valpola, 2017;
Yu et al., 2019), balance a supervised segmentation loss on a small labeled dataset with
a consistency loss on the larger unlabeled dataset, yielding improved segmentation. Other
semi-supervised approaches include Bayesian deep learning e.g., Dalca et al. (2018) intro-
duce anatomical priors that can be learnt using unlabeled or unpaired data.
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Self-Supervised Learning (SSL) follows an alternative route whereby deep representa-
tions are directly learned from unlabeled data. Early methods trained these representations
by solving pretext tasks e.g., relative position prediction (Doersch et al., 2015), image recol-
orization (Zhang et al., 2016), jigsaw puzzles (Noroozi and Favaro, 2016) or rotation predic-
tion (Gidaris et al., 2018). These methods are designed for image classification as a primary
downstream task, thus an image is encoded to an image-level vector representation. Many
recent methods for image-level representation learning coexist in the state-of-the-art, based
on contrastive learning (Chen et al., 2020; He et al., 2020), on redundancy-reduction (Zbon-
tar et al., 2021), on self-distillation (Grill et al., 2020; Caron et al., 2021), on Masked Image
Modeling (He et al., 2022) and many more.

We propose instead a framework for pixel-level (dense) representation learn-
ing, dubbed Pix2Rep, which can be used to pretrain encoder-decoder architectures,
such as U-Nets. Whereas most aforementioned methods rely on invariance under certain
intensity-based augmentations (brightness & contrast, Gaussian noise, etc.) and geometric
augmentations (crops), Pix2Rep is based on equivariance under geometric transformations.
For the task of cardiac MRI segmentation, we propose rotations and intensity rever-
sals as additional augmentations that further improve results. Finally, we investigate
the performance of Pix2Rep in various data regimes (one-shot, few-shot segmentation,
or large annotated data), both under linear probing and fine-tuning.

2. Related Work

Comparatively, fewer pixel-level representation learning methods have been proposed so far.
Kalapos and Gyires-Tóth (2023); Punn and Agarwal (2022) propose to pretrain a U-Net
encoder (a.k.a. its downsampling branch) using image-level SSL (BYOL/Barlow Twins).
The U-Net decoder however is randomly initialized before fine-tuning on the downstream
segmentation task. Tang et al. (2022) pretrain a Swin UNETR encoder using a combination
of image-level contrastive learning, pretext task and masked image modeling. Zeng et al.
(2021) exploit the positional information of slices within stacks for contrastive pretraining
of a U-Net encoder.

Chaitanya et al. (2020) manage pretraining of the first decoder layers by introducing
a local contrastive loss that relies on rough alignment of subject volumes. For contrastive
pretraining of the whole decoder (Xie et al., 2021), positive pairs of pixels need to be
defined. Zhong et al. (2021) constrain the two augmented views to differ only up to intensity
transformations, so as to form positive pairs from pixels at identical locations in the two
views. Hu et al. (2021); Zhao et al. (2021) regard as positive all pixels sharing the same label,
at the cost of pretraining only on the (potentially smaller amount of) labeled data. Wang
et al. (2021); Bardes et al. (2022) define pixels with highly similar features as positives.
The closest related work to our proposed approach are those of O. Pinheiro et al. (2020);
Yan et al. (2022); Goncharov et al. (2023), which define positive pairs to be pixels that
describe the same physical location in the scene on different augmented patches, that differ
up to intensity-based and geometric augmentations. Our framework targets equivariance
rather than equivalence to random spatial transforms and works at whole image level for
augmentations. O. Pinheiro et al. (2020) experiment on natural –not medical– images.
Goncharov et al. (2023); Yan et al. (2022) focus less on few-shot segmentation.

2



Dense SSL for Segmentation

𝐱

𝒗 𝒗′

𝒗! ∘𝜙"#

𝒉 𝒉′

𝒛′

𝒛

𝒛∘𝜙"#

𝜙~𝒯$

𝑡′~𝒯%
𝑡~𝒯%

𝑓(⋅)

𝑓(⋅)

𝑔(⋅)

𝑔(⋅)

Representation

Maximize	agreement

Figure 1: Pretraining of arbitrary encoder-decoder architectures f (e.g., U-Net). x an un-
labeled training image; ϕ ∼ Ts a random spatial transformation; t, t′ ∼ Ti two
random intensity transformations; g a projection head. We train pixel repre-
sentation maps output by f to be equivariant under ϕ and invariant to t, t′ by
maximizing agreement between the outputs of the two branches, via a pixel-level
contrastive loss.

3. Methods

We consider an arbitrary (trainable) neural network backbone f : RH×W×C 7→ RH×W×D

that maps input images to pixel representation maps. f can be any encoder-decoder net-
work and we opt for simplicity for a U-Net (Ronneberger et al., 2015), without its final
segmentation head (≡ typically 1 × 1 conv + softmax)1. f can be interpreted as embed-
ding C-dimensional input pixels to D-dimensional vector representations, accounting for
local and global context. At the core of the proposed self-supervised pretraining of f is
a contrastive loss which forces the pixel representations derived from f to be invariant
under the action of intensity augmentations and equivariant under the action of spatial
transformations. The method is summarized in Fig. 1.

Pix2Rep pretraining relies exclusively on an unlabeled dataset D ≜ {x ∈ RH×W×C}.
Apart from the encoder-decoder f(·) which extracts pixel-level representation maps, the
framework consists of three major components.

(1) For any input image x, a stochastic data augmentation module generates two random
intensity-based transformations t, t′ ∼ Ti (incl. brightness & contrast augmentation, Gaus-
sian noise, bias field, and intensity reversal), resulting in two views v ≜ t(x),v′ ≜ t′(x).
In addition, the stochastic data augmentation module generates a single random spatial

1. For downstream segmentation tasks, the segmentation head RH×W×D 7→ RH×W×K , with K the number
of classes, is plugged back at the end of the pretrained backbone
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transformation ϕ ∼ Ts (incl. zooms, flips, rotations), which is applied asymmetrically to
v,v′.

(2) A small projection head g : RH×W×D 7→ RH×W×d transfers pixel representation
maps to the space where the contrastive loss is applied. The projection head g(·) ≜ W (2) ∗
σ(W (1) ∗ ·) consists in a MLP with one hidden layer (where σ is a ReLu non-linearity),
implemented using 1×1 convolutions. We have experimented with deeper projection heads
(up to 3 hidden layers) without noticing significant benefits. Then:

• For the view v′: we first transform it to the new spatial viewpoint by applying ϕ,
yielding2 ϕ · v′ ≜ v′ ◦ ϕ−1 ∈ RH×W×C , then pass the spatially-transformed image
through g ◦ f , yielding z′ ≜ (g ◦ f)(ϕ · v′).

• For the view v: we first apply g◦f , yielding the pixel representation map z = (g◦f)(v),
before transporting z to the new viewpoint: ϕ · z = ϕ · (g ◦ f)(v).

Note that ϕ is applied exactly once along the two computational branches, hence ϕ · z =
ϕ · (g ◦ f)(t(x)) and z′ = (g ◦ f)(ϕ · t′(x))) share the same viewpoint.

(3) Thirdly, a contrastive loss L is defined for a pixel-level contrastive prediction task.
Given any pixel coordinate s ∈ R2, features (ϕ · z)(s) ∈ Rd and z′(s) ∈ Rd correspond to
the same anatomical point in the two views, thus they form natural positive pairs. Natural
negative pairs are obtained from samples from the same view at all other pixel coordinates,
or from other images in the minibatch at any pixel coordinate. However, creating one
positive pair per pixel coordinate would yield hundreds of thousands of positive pairs and
potentially billions of negative pairs.

Instead, we sample M random pixel coordinates {s(n)m }m=1...M independently for each
image 1 ≤ n ≤ Nb in the minibatch. For a given image x and a given coordinate s, we
obtain a positive pair of examples ui ≜ (ϕ ·z)(s), uj ≜ z′(s). The negative examples for this
positive pair (ui,uj) are obtained from the other NbM −1 pairs of positive examples across
all sampling coordinates and images in the minibatch. In total, this generates N ≜ NbM
positive pairs and 2(NbM − 1) negative examples for each positive pair. By analogy to
SimCLR (Chen et al., 2020), we use the InfoNCE loss li,j of Eq. (1) for each positive pair
(ui,uj):

li,j ≜ − log
exp (sim(ui,uj)/τ)∑2N

k=1 1[k ̸= i] exp (sim(ui,uk)/τ)
, (1)

where τ denotes a temperature parameter, and sim(u,u′) ≜ uTu′/∥u∥2∥u′∥2 denotes the
cosine similarity. The total loss is aggregated by summing over all li,j , including symmetriz-
ing the roles of i, j. Assuming without loss of generality that positive pairs have consecutive
indices i = 2k − 1 and j = 2k in the list of sampled pixels, this yields Eq. (2):

L ≜
1

2N

N∑
k=1

(l2k−1,2k + l2k,2k−1) . (2)

2. The action ϕ ·v′ of a spatial transformation ϕ on an image v′ is v′ ◦ϕ−1. This is well-known in the image
registration literature. Following standard practice, we randomly sample ϕ−1 directly (rather than ϕ)
to circumvent the numerical inversion.
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Figure 2: Pixel embedding similarity maps. Large images: query images in which we select
a query pixel (highlighted in red). For each query, we display two test images,
with the pixel closest (in embedding space) to the query pixel highlighted in red.
Similarity maps (cosine similarity between pixel embeddings) are also shown.

Pix2Rep-v2. The computational complexity of contrasting positive and negative pairs
of pixels limits us to sample M coordinates for the InfoNCE contrastive loss. Alternatively,
we propose to replace this contrastive loss with a loss based on Barlow Twins (Zbontar
et al., 2021): we call this variant Pix2Rep-v2. It minimizes the Barlow Twins loss defined
from the cross-correlation matrix C ∈ Rd×d between twin pixel embeddings (ϕ · z)(s) and
z′(s) ∈ Rd, aggregated over all pixel coordinates s and the whole minibatch. Although it
aggregates information from the whole pixel representation maps (rather than samples),
Pix2Rep-v2 has a reduced memory footprint compared to Pix2Rep’s contrastive loss.

Downstream segmentation. For a given segmentation task, we initialize the encoder-
decoder f with the pretrained weights (discarding the projection head g), and add a task-
specific, learnable segmentation head (1 × 1 conv + softmax), projecting pixel representa-
tions to class probabilities. We keep f frozen, and only train the segmentation head (called
linear probing), or allow f to be fine-tuned from the supervised data (called fine-tuning).

4. Experiments

We demonstrate the self-supervised pretraining on a downstream task of cardiac MRI seg-
mentation.

Data. The ACDC dataset (Bernard et al., 2018) consists of 3D short-axis cardiac cine
MR images of 150 subjects, including expert annotations at End-Systole and End-Diastole
for the left ventricle, right ventricle and myocardium. It is split into a training-validation
set (100 images) and a test set (50 images). Slices are intensity-normalized using min-max
normalization (using the 1st and 99th percentiles), cropped and resized to 128× 128.
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Figure 3: Proposed pretraining vs. fully-supervised baseline (same U-Net architecture).

Experimental setup and Evaluation. We use the provided split between training data
and test data. The test data (|Xts| = 50) is only used for the final evaluation. For pre-
training (via Pix2Rep or other approaches), we use the entirety of the raw training data
(|Xpre| = 100), without segmentation labels. For linear probing, fine-tuning, or fully-
supervised training, we reuse a smaller number of training images with their segmentation
labels (|Xtr| ∈ {1, 2, 5, 10, 20, 50, 100}). The slices in the stacks of Xtr are divided between
training data (90%) and validation data (10%).

We quantify the contribution of the Pix2Rep pretraining on the performance on a down-
stream segmentation task. The 3D Dice similarity coefficient is used as the evaluation met-
ric. We report the average Dice over the test set over the segmented structures. For each
evaluated method, each reported score is an average over five runs (training+test).

Comparison to other methods. A natural baseline is obtained by keeping the same
backbone U-Net, initialized with random (rather than pretrained) weights, then trained
using varying amounts of labeled data Xtr (|Xtr| ∈ {1, 2, 5, 10, 20, 50, 100}). We refer to it
as the fully-supervised baseline.

In addition, we compare with several methods in the state-of-the-art. We implement
a mean teacher (Tarvainen and Valpola, 2017) semi-supervised model (using the same U-
Net backbone), where the supervised loss applies to the available labeled slices, and the
unsupervised consistency loss uses all slices from the 100 raw training volumes. As for self-
supervised models, we compare to (1) encoder-only pretraining of the same U-Net backbone,
using image-level SimCLR, representative of Kalapos and Gyires-Tóth (2023); Punn and
Agarwal (2022); (2) encoder-decoder (Pix2Rep) pretraining without rotations (crops only)
and without intensity reversals as augmentations; and (3) the method of Chaitanya et al.
(2020). Unless stating otherwise, all self-supervised approaches use fine-tuning in the sec-
ond stage rather than linear probing, as this yields higher performance. For the proposed
approach, we report numbers both for linear-probing and fine-tuning.

6



Dense SSL for Segmentation

Backbone and Implementation details. We use a standard U-Net architecture consist-
ing of five DoubleConv encoding blocks ({Conv,BatchNorm,ReLu,Conv,BatchNorm,ReLu})
with MaxPooling downsampling and five DoubleConv decoding blocks with Trans-Conv

upsampling, starting with 128 feature maps and doubling after each block up to 2048 at
the bottleneck. We experimented with changing the number of feature maps in the last
layer (cf. ablation study), starting at 64, noting a monotonic improvement in performance
up to the maximum tested value of 1024. We report the performance for nft := 1024. For
the fully-supervised baseline instead, we noticed decreased performance above and below
nft := 128 and report performance for this setting.

The framework is implemented in PyTorch (https://github.com/pix2rep/). The spa-
tial transformation ϕ is applied in auto-differentiable manner via affine grid, grid sample.
Intensity reversal augmentations correspond to x̃ := 1−x. We pretrain using the proposed
approach for 200 epochs with the Adam optimizer. The batch size is set to 8, the number of
sampled pixels to 1000. The learning rate for the backbone is set to 5 ·10−4. For fine-tuning
(100 epochs), the learning rate of the backbone is set to 5 · 10−5 and of the classification
head to 10−2. For linear probing (100 epochs), the learning rate is set to 10−2.

Results. To gain qualitative insight into the learnt pixel representations, Fig. 2 plots the
cosine similarity between a query pixel embedding and other pixel embeddings in two other
representative images. The semantics of the anatomical structures are captured to some
extent, as pixels anatomically similar to the query pixel have the highest similarity with it.

Avg. Dice (ACDC), for |Xtr| set to:

Method: / |Xtr| := 1 2 5 10 20 50 100

Fully-supervised learning:

Baseline (U-Net) 53.5 67.3 79.2 83.1 90.6 92.8 93.1
Semi-supervised learning:

Mean Teacher 57.3 68.9 84.5 89.0 90.3 92.4 93.9
Self-supervised learning (+ Fine-tuning by default):

SimCLR pretraining 63.3 77.8 85.0 88.9 90.2 92.1 92.6
Chaitanya et al. (2020) 76.7 78.0 85.9 88.7 90.8 92.2 92.7
Proposed (w/o rot. & int. reversal) 77.7 80.4 87.9 90.2 92.2 93.3 94.3
Proposed (only Linear-probing) 83.3 85.7 87.0 87.7 88.6 89.3 89.6
Proposed 84.7 88.2 90.2 91.2 92.5 93.6 94.1

Combined method:

Proposed + Mean Teacher 86.1 89.7 91.1 91.9 92.7 93.8 94.2

Table 1: Comparison with the state-of-the-art on the test ACDC dataset (avg. Dice score),
for various amounts of labeled training data |Xtr|. Best results in bold and second
best underlined. Each score is averaged over five runs (see main text – Evaluation).

Table 1 summarizes the main results. The proposed dense contrastive pretraining yields
higher Dice than the fully-supervised baseline for all data regimes, as also shown in Fig. 3.
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The gap is largest for few-shot segmentation; there is a 29.8% (resp. 31.2%) improvement
in Dice for one-shot segmentation in linear probing (resp. fine-tuning). Of note is the lim-
ited drop in performance with linear probing even in the large data regime, highlighting
the quality of the unsupervised nonlinear pixel representations. With fine-tuning, there is
roughly a 5× reduction in the annotation burden for equivalent performance vs. the fully
supervised baseline. Pretraining also reduces the variability in performance resulting from
the choice of training subject, as shown by lower standard deviations in Fig. 3.

Ablation study. Table 2 shows the incremental contributions of various modifications on
the proposed framework, starting from a suboptimal setup, in the few-shot segmentation
setting (for |Xtr| = 5). The inclusion of image intensity reversals (i.e., x̃ := 1 − x) and
rotations as augmentations has a significant impact on performance.

Pix2Rep pretraining settings: Avg. Dice

Defaults w/ 10 epochs pretraining 39.7± 1.0
10 epochs → 100 epochs 51.2± 2.7
64 feature maps → 1024 feature maps 73.4± 0.9
Add ‘intensity reversal’ augmentation 82.5± 3.0
Add rotation augmentation 84.5± 1.0
Linear-probing → Fine-tuning 89.2± 1.3

Table 2: Ablation study (|Xtr| = 5). Self-supervised pretraining benefits from the increased
number of feature maps as well as from the additional augmentations.

Pix2Rep-v2. Table 3 reports results obtained with the non-contrastive variant Pix2Rep-v2,
which generally improves slightly over Pix2Rep.

Method: / |Xtr| := 1 2 5 10 20 50 100

w/ Linear probing 82.6 85.0 88.1 89.1 89.8 90.4 90.7
w/ Fine-tuning 85.6 88.4 91.1 92.0 92.6 93.4 94.0

Table 3: Avg. Dice score (ACDC dataset), for the proposed Pix2Rep-v2 approach. Num-
bers in bold when above their Pix2Rep counterpart.

5. Discussion & Conclusion

We have introduced Pix2Rep, a novel framework for pixel-level (dense) self-supervised rep-
resentation learning, that allows to pretrain encoder-decoder architectures such as U-Nets
directly from unlabeled images. We have shown performance gains on a downstream cardiac
MRI segmentation task. Especially in the few-shot segmentation regime for the most chal-
lenging structure, we got 83% Dice with 5 training subjects vs. 70% for the fully-supervised
baseline, and closest SOTA method 3% below. As future work, in addition to comparing
to Yan et al. (2022), we plan to evaluate the framework on various segmentation tasks and
assess the generalizability of learned representations for novel tasks (foundation model).
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Nicolas Padoy, Stefanie Speidel, Yefeng Zheng, and Caroline Essert, editors, Medical Im-
age Computing and Computer Assisted Intervention – MICCAI 2021, pages 221–230,
Cham, 2021. Springer International Publishing. ISBN 978-3-030-87196-3.

Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful image colorization. In Bastian
Leibe, Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer Vision – ECCV 2016,
pages 649–666, Cham, 2016. Springer International Publishing. ISBN 978-3-319-46487-9.

Xiangyun Zhao, Raviteja Vemulapalli, Philip Andrew Mansfield, Boqing Gong, Bradley
Green, Lior Shapira, and Ying Wu. Contrastive learning for label efficient semantic
segmentation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 10623–10633, October 2021.

12

https://proceedings.mlr.press/v139/zbontar21a.html


Dense SSL for Segmentation

Yuanyi Zhong, Bodi Yuan, Hong Wu, Zhiqiang Yuan, Jian Peng, and Yu-Xiong Wang.
Pixel contrastive-consistent semi-supervised semantic segmentation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pages 7273–7282,
October 2021.

13



Seince Le Folgoc Facury de Souza Angelini

Appendix A. Additional Results

Pix2Rep-v2 + Mean Teacher. As a combined method, we have also tested the com-
bination of pretraining via Pix2Rep-v2 with semi-supervised fine-tuning (Mean Teacher).
Results are provided in Table 4:

Method: / |Xtr| := 1 2 5 10 20 50 100

Pix2Rep-v2 + Mean Teacher 87.9 90.0 91.8 92.4 92.7 93.4 93.9

Table 4: Performance on the ACDC dataset of Pix2Rep-v2 followed by (Mean Teacher)
semi-supervised fine-tuning. Results are highlighted in bold when above the re-
sults reported in Table 1.

Appendix B. Dice Scores per Anatomical Structures

Table 1 reports the test Dice scores averaged over the four segmented structures: Left
Ventricle, Right Ventricle, Myocardium and Background. We report the corresponding
Dice scores over individual anatomical structures in Tables 5, 6, 7, 8.

LV Dice (ACDC), for |Xtr| set to:

Method: / |Xtr| := 1 2 5 10 20 50 100

Fully-supervised learning:

Baseline (U-Net) 49.2 70.2 82.7 87.4 93.7 95.0 95.6
Semi-supervised learning:

Mean Teacher 59.7 75.1 89.9 93.1 94.1 95.5 96.4
Self-supervised learning (+ Fine-tuning by default):

SimCLR pretraining 66.9 83.9 90.5 92.8 93.8 95.2 95.3
Chaitanya et al. (2020) 82.0 80.2 89.5 91.6 94.8 95.7 96.1
Proposed (w/o rot. & int. reversal) 84.1 84.2 92.2 93.9 95.0 95.8 96.2
Proposed (only Linear-probing) 88.6 90.2 91.3 92.0 92.5 93.1 93.4
Proposed 89.9 92.7 93.9 94.3 95.3 95.9 96.3

Combined method:

Proposed + Mean Teacher 91.2 93.2 94.3 95.3 95.7 96.3 96.1

Table 5: Comparison with the state-of-the-art on the test ACDC dataset, for various
amounts of labeled training data |Xtr|, in terms of Left Ventricle (LV) Dice over-
lap. Each score is averaged over five runs (see main text – Evaluation).

14



Dense SSL for Segmentation

RV Dice (ACDC), for |Xtr| set to:

Method: / |Xtr| := 1 2 5 10 20 50 100

Fully-supervised learning:

Baseline (U-Net) 41.1 54.9 69.8 74.5 84.8 88.5 88.8
Semi-supervised learning:

Mean Teacher 40.9 53.1 74.1 81.2 82.8 86.7 89.3
Self-supervised learning (+ Fine-tuning by default):

SimCLR pretraining 43.4 68.0 75.2 81.2 83.1 86.2 87.2
Chaitanya et al. (2020) 60.4 61.4 79.7 82.1 83.9 86.6 87.3
Proposed (w/o rot. & int. reversal) 57.9 69.6 80.3 83.8 87.2 89.2 91.5
Proposed (only Linear-probing) 71.0 74.7 77.2 78.4 80.1 81.2 81.8
Proposed 74.0 79.1 83.0 85.2 87.7 89.7 90.5

Combined method:

Proposed + Mean Teacher 75.2 81.9 84.6 85.9 87.5 89.4 90.4

Table 6: Comparison with the state-of-the-art on the test ACDC dataset, for various
amounts of labeled training data |Xtr|, in terms of Right Ventricle (RV) Dice
overlap. Each score is averaged over five runs (see main text – Evaluation).

MYO Dice (ACDC), for |Xtr| set to:

Method: / |Xtr| := 1 2 5 10 20 50 100

Fully-supervised learning:

Baseline (U-Net) 34.7 52.1 69.2 74.8 86.3 89.3 89.9
Semi-supervised learning:

Mean Teacher 46.0 59.0 78.1 84.3 86.2 89.4 91.3
Self-supervised learning (+ Fine-tuning by default):

SimCLR pretraining 53.1 64.5 77.8 84.4 86.5 88.9 89.8
Chaitanya et al. (2020) 65.4 71.0 74.8 81.7 84.7 87.1 87.8
Proposed (w/o rot. & int. reversal) 74.7 73.0 82.1 85.6 88.6 90.1 90.9
Proposed (only Linear-probing) 77.4 81.2 82.5 83.2 84.6 85.6 85.9
Proposed 78.3 83.7 86.3 87.5 88.9 90.4 91.0

Combined method:

Proposed + Mean Teacher 81.4 87.0 87.9 88.8 89.4 91.1 91.9

Table 7: Comparison with the state-of-the-art on the test ACDC dataset, for various
amounts of labeled training data |Xtr|, in terms of Myocardium (MYO) Dice
overlap. Each score is averaged over five runs (see main text – Evaluation).
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BG Dice (ACDC), for |Xtr| set to:

Method: / |Xtr| := 1 2 5 10 20 50 100

Fully-supervised learning:

Baseline (U-Net) 89.2 92.0 95.3 95.9 97.7 98.3 98.3
Semi-supervised learning:

Mean Teacher 82.5 88.3 95.9 97.2 97.4 98.1 98.5
Self-supervised learning (+ Fine-tuning by default):

SimCLR pretraining 89.7 94.9 96.4 97.3 97.5 98.0 98.2
Chaitanya et al. (2020) 99.2 99.3 99.5 99.6 99.7 99.7 99.7
Proposed (w/o rot. & int. reversal) 94.3 95.1 96.8 97.5 98.1 98.4 98.6
Proposed (only Linear-probing) 96.2 96.7 97.1 97.1 97.3 97.5 97.5
Proposed 96.6 97.2 97.6 97.9 98.2 98.5 98.6

Combined method:

Proposed + Mean Teacher 96.6 96.9 97.5 97.8 98.1 98.3 98.3

Table 8: Comparison with the state-of-the-art on the test ACDC dataset, for various
amounts of labeled training data |Xtr|, in terms of Dice overlap for the back-
ground (BG). Each score is averaged over five runs (see main text – Evaluation).

Appendix C. Visualization of the Pix2Rep Pixel Embeddings

To gain qualitative insights into the learned pixel representations, Fig. 4 graphically presents
pixel embeddings returned by our pretrained Pix2Rep model, learned without supervision
and prior to the fine-tuning stage of the downstream segmentation task.

Firstly, we show 2D t-SNE projections of all pixel embeddings for three test images,
color-coded by their true class (background, left ventricle, right ventricle, myocardium).
We can see that the four anatomical structures are well separated in the representation
space, despite not using any label supervision.

Secondly, we assign to each 2D t-SNE coordinate positions a color, according to a refer-
ence colormap shown at the top right of Fig. 4. Then, we color-code each pixel of each test
image by its color as obtained by this scheme (MRI image pixel 7→ pixel Pix2Rep embedding
7→ pixel embedding mapped to 2D coordinates after t-SNE projection 7→ pixel embedding
mapped to an individual color value with a 2D reference colormap applied on the 2D t-SNE

space 7→ colored pixel embedding displayed in original MRI image space). We remark that
visually, our Pix2Rep embedding leads to coarse segmentations of the cardiac structures,
again without involving any supervision with label annotations.
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Figure 4: Pix2Rep pixel-level embeddings. First and Second columns: test cardiac MRI
images and ground truth segmentations. Third column: 2D t-SNE coordinates of
Pix2Rep pixel embeddings. Fourth column: colored pixel embedding displayed
in original MRI image space. The reference colormap used to map 2D t-SNE

coordinates with individual colors is shown in the vignette on the top row example.
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