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ABSTRACT

Virtual Reality (VR) games require players to translate high-level semantic actions
into precise device manipulations using controllers and head-mounted displays
(HMDs). While humans intuitively perform this translation based on common
sense and embodied understanding, whether Large Language Models (LLMs) can
effectively replicate this ability remains underexplored. This paper introduces
a benchmark, ComboBench, evaluating LLMs’ capability to translate semantic
actions into VR device manipulation sequences across 262 scenarios from four
popular VR games: Half-Life: Alyx, Into the Radius, Moss: Book II, and Vivecraft.
We evaluate twelve LLMs, including GPT-3.5, GPT-4, GPT-40, GPT-5.1, Gemini-
1.5-Pro, Gemini-3-Pro, Claude-Sonnet-4.5, Grok-4, GLM-4-Flash, LLaMA-3-8B,
LLaMA-3-70B, and Mixtral-8x7B, compared against annotated ground truth and
human performance. Our results reveal that while top-performing models like
Gemini-3-Pro demonstrate strong task decomposition capabilities, they still strug-
gle with procedural reasoning and spatial understanding compared to humans.
Performance varies significantly across games, suggesting sensitivity to interaction
complexity. Few-shot examples substantially improve performance, indicating
potential for targeted enhancement of LLMs’ VR manipulation capabilities. We re-
lease all materials at https://sites.google.com/view/combobench.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable proficiency in general-purpose
task solving (Qin et al.l [2023), conquering complex domains such as code (Lee et al., [2024} |Lam
et al., 2025) or math (Lu et al., 2024} problems. While they exhibit increasingly more human-like
characteristics (Huang et al.} 2024; [Liang et al., 2023)), an essential attribute of human intelligence is
still underexplored: the ability to rapidly learn and apply unfamiliar concepts by leveraging common
sense, prior experiences, and a repertoire of cognitive skills.

This is particularly evident in novel interactive environments like video games, where players quickly
master device manipulations (atomic actions) and combine them to achieve complex semantic goals.
Virtual Reality (VR) games elevate this challenge. They demand not only the execution of atomic
actions via physical devices (e.g., Head-Mounted Displays (HMDs) and controllers) but also the
inference of complex, often uninstructed, semantic actions. For instance, in Half-Life: Alyx (Valvel
2020), when asked to “surrender,” players might instinctively raise their controller-held hands even if
not explicitly taught.

Such translation of high-level intent into a sequence of physical device manipulations engages a
suite of cognitive abilities: (1) Task decomposition: Breaking down a high-level semantic action
(e.g., “tame the horse” and “plant wheat”) into a coherent series of intermediate steps. (2) Procedural
reasoning: Understanding the logical and temporal order of these steps, including prerequisite
conditions or concurrent actions (e.g., the need to till soil before planting seeds). (3) Spatial reasoning
& contextual awareness: Interpreting instructions within a 3D spatial context (e.g., “move HMD
towards the Creeper” and “crouch through the gap”) and understanding environmental cues or object
states (e.g., recognizing a door is open/closed and acting accordingly). (4) Object interaction & tool
use understanding: Correctly mapping intended sub-actions to specific VR device manipulations
(e.g., knowing which button to press to “use” an item, and how to manipulate a controller to simulate
“swinging” a tool like a pickaxe). This involves understanding the affordances of virtual objects
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and tools. (5) Motor action mapping & VR procedural transfer: Translating abstract actions (e.g.,
“press,” “move,” and “trigger”) into specific, executable VR controller commands, potentially by
adapting from provided examples or general knowledge of VR interaction paradigms. This touches
upon a form of simulated embodied reasoning. (6) Judgment of termination/continuation conditions:
Recognizing when a sub-task or a looped action is complete (e.g., “mine until the block breaks” and
“water until the plant grows”). Therefore, playing VR games serves as a rich testbed for evaluating
if LLMs can bridge this gap between abstract understanding and grounded, physical interaction.
Importantly, ComboBench is designed as a text-to-action benchmark: models receive only textual
descriptions of high-level goals and must generate textual sequences of device manipulations. No
visual or other multimodal inputs are provided, isolating the pure linguistic reasoning capability.

Virtual reality provides a distinctive testbed for evaluating embodied reasoning in large language
models. While domains such as robotics and web agents also involve long-horizon decision-making,
VR occupies a practical middle ground that foregrounds the core challenge of translating abstract
linguistic intent into precise, physically grounded, and spatially coherent motor commands. Compared
to physical robotics, VR enables complex, physics-based interactions without incurring real-world
safety risks, hardware costs, or slow experimental cycles, thereby supporting rapid, scalable, and
perfectly reproducible evaluation of embodied control. Relative to web or other digital agents that
primarily operate over discrete symbolic actions (e.g., button clicks), VR requires reasoning in
continuous 3D space, sensitivity to object affordances, and modeling of the temporal dynamics of
manipulation, demanding a form of simulated embodiment not captured by many existing agent
benchmarks. ComboBench is thus designed not as a generic long-horizon benchmark, but specifically
to probe the interface where abstract knowledge must be realized as grounded physical action—a
capability that is central to the development of general-purpose agents.

To systematically evaluate LLMs’ ability to perform this crucial translation, we introduce Com-
boBench, which stands for Cognitive-Oriented Manipulation Benchmark for game combos using
physical VR devices. It comprises 262 scenarios derived from four popular VR games: Vivecraft (Vive+
craft, 2013)) (Minecraft in VR), Half-Life: Alyx (Valve,|[2020), Moss: Book II (Polyarc||2022), and
Into the Radius (CMGames| [2019). Each scenario presents a high-level semantic action, and the
ground truth consists of a fine-grained sequence of VR device manipulations required to achieve it.
These sequences are annotated by experienced VR players, allowing us to analyze LLM-generated
outputs at the step-level and map their successes and failures to the aforementioned cognitive abilities.
For example, failing to “press the X button” after “moving the HMD towards the Creeper” might
indicate a lapse in procedural reasoning or object interaction understanding for that specific step.

We evaluate twelve LLMs, including GPT-3.5 (OpenAl, 2022), GPT-4 (OpenAl, [2023), GPT-
40 (Hurst et al., 2024), GPT-5.1 (OpenAll [2025)), Gemini-1.5-Pro (Team et al., [2024), Gemini-3-
Pro (Google} 2025)), Claude-Sonnet-4.5 (Anthropicl [2025)), Grok-4 (xAlL[2025), GLM-4-Flash (GLM
et al., 2024), LLaMA-3-8B (Grattafiori et al., 2024), LLaMA-3-70B (Grattafior1 et al., 2024), and
Mixtral-8x7B (Jiang et al.|[2023)). We design a multi-dimensional scoring approach that assesses: (1)
high-level semantic action understanding, (2) procedural step correctness, and (3) device-specific
manipulation accuracy, allowing for fine-grained analysis of where each model succeeds or struggles
in the translation process. Our findings reveal significant variation in model performance across
cognitive capabilities. All models demonstrate strong task decomposition abilities but show pro-
nounced weaknesses in motor action mapping and procedural reasoning. Gemini-3-Pro exhibits the
most balanced performance across capabilities, while even advanced models like GPT-5.1 struggle
with spatial reasoning compared to human performance. Few-shot examples substantially improve
outcomes, particularly for procedural understanding, with diminishing returns beyond three examples.
Performance also varies considerably across games, with models generally performing better in
environments with more consistent interaction patterns (Vivecraft) than those requiring nuanced
controller manipulations (Half-Life: Alyx). These results highlight specific cognitive gaps in current
LLMs’ ability to perform simulated embodied reasoning for VR interactions and identify targeted
areas for improvement toward more capable virtual agents. Our contributions are:

* We introduce ComboBench, the first benchmark designed to evaluate LLMs’ fine-grained cog-
nitive abilities in translating high-level text semantic actions into text VR device manipulations,
comprising 262 human-annotated scenarios from four diverse VR games.

* We define a set of key cognitive abilities crucial for VR interaction and design ComboBench to
enable step-level analysis of LLM performance against these dimensions.
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* We conduct a comprehensive evaluation of twelve state-of-the-art LLMs, providing a nuanced
analysis of their strengths and weaknesses across these cognitive abilities and offering insights into
the current frontiers of LLM-driven VR interaction.

2 COMBOBENCH DESIGN AND CURATION

2.1 COGNITIVE CAPABILITY TAXONOMY DEVELOPMENT

To ground our evaluation in cognitive theory, we collaborated with three experts in cognitive science
and educational psychology who specialize in spatial cognition, procedural learning, and embodied
interaction. Building on their feedback and an analysis of representative VR interaction scenarios
from our benchmark, we converged on six core cognitive capabilities that are critical for translating
semantic goals into VR device manipulations: (1) task decomposition, i.e., breaking high-level goals
into sequentially ordered sub-tasks; (2) procedural reasoning, i.e., understanding causal relationships
and temporal dependencies between actions; (3) spatial reasoning and contextual awareness, i.e.,
interpreting spatial layouts and environmental cues to guide action selection; (4) object interaction
and tool-use understanding, i.e., inferring the affordances and functional properties of virtual objects;
(5) motor action mapping and VR procedural transfer, i.e., mapping abstract action descriptions to
concrete controller operations; and (6) judgment of termination and continuation conditions, i.e.,
recognizing when an action sequence has achieved its goal or requires repetition. These six dimensions
form the taxonomy that underpins our subsequent analyses of LLM and human performance.

Taxonomy Refinement. Following the interviews, we synthesized the experts’ insights through
thematic analysis. Areas of consensus were directly incorporated into our taxonomy, while divergent
perspectives were reconciled through follow-up consultations. This iterative process resulted in the
identification of six core capability dimensions that comprehensively capture the cognitive demands of
VR interaction: (1) Task decomposition: The ability to break down high-level goals into sequentially
ordered sub-tasks. (2) Procedural reasoning: Understanding causal relationships between actions
and their temporal dependencies. (3) Spatial reasoning & contextual Awareness: Processing spatial
relationships and interpreting environmental cues for action selection. (4) Object interaction & tool
use understanding: Comprehending affordances and functional properties of virtual objects. (5)
Motor action mapping & VR procedural transfer: Translating conceptual actions into specific physical
device manipulations. (6) Judgment of termination/continuation conditions: Recognizing completion
states or conditions requiring repeated action.

2.2  GAME SELECTION CRITERIA AND PROCESS

To ensure a diverse and relevant set of VR interaction paradigms, we selected games based on a
systematic process. First, we queried the Steam store (web| 2023)) filtering for titles tagged as “VR
Only” and available in “English,” sorting the results by user review scores in descending order. We
then iteratively examined games from this ranked list, focusing on their primary genre as categorized
by Steam. To ensure genre diversity, we prioritized games from genres not yet represented in our
collection. A crucial selection criterion was the availability of comprehensive textual walkthroughs.
For each candidate game, we searched for detailed guides using keywords such as “walkthrough,”
“guide,” or “tutorial.” A walkthrough was deemed sufficiently detailed if it provided unambiguous,
step-by-step instructions enabling the completion of core game objectives or specific complex
tasks. Following this methodology, we selected four popular and critically acclaimed VR games
representing distinct genres and interaction styles for ComboBench: (1) Vivecraft (Vivecratt, 2013)
(Open-world sandbox, crafting) (2) Half-Life: Alyx (Valvel 2020) (First-person shooter, puzzle-
solving, physics-based interaction) (3) Moss: Book II (Polyarc,|2022)) (Third-person action-adventure,
puzzle-platformer) (4) Into the Radius (CMGames|, 2019)) (First-person survival shooter, exploration)
Such selection provides a rich variety of control schemes and task complexities for evaluating LLMs.

2.3 SCENARIO DEFINITION: SEMANTIC ACTION IDENTIFICATION

For all selected games, eight data annotators, comprising undergraduate and postgraduate computer
science students with at least two years of programming experience and sufficient knowledge about
VR games, manually identified salient semantic actions from the collected textual walkthroughs.
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Goal: Attack using the sword G
Ame scene

Decomposed subtasks Device manipulation
-3 N P 1. Move your left controller to let your HMD face it.
Check if the sword is in 2. Check your hotbar, if the sword is in your hotbar, start
hotbar alreﬂdy from the 9th step directly; if not, start from the 3rd step.

<

. Press your X button.
. Move your right controller towards the sword. v
. Press your right trigger.
. Move your right controller towards your hotbar.
12. Move your HMD towards the mob you want to attack.
13. Move your left joystick to approach the mob.
7
Attack 14. Move {'our r.ight cn.ntml]er to aim at your target. N
15. Press your right trigger.

. Press your right trigger.
Figure 1: Device Manipulation Example for Task: “Attack using the sword” (Vivecraft)

If not, take the sword
into hotbar

PR Y

. Press your X button.

9. Move vour left controller to let vour HMD face it.

10. Move your right controller towards the sword on your
hotbar.

11. Press your right trigger.

Equip the sword

7

Find a target

Good Model Output

Poor Model Output

1. Ensure your arms are extended and ready to strike, mimicking a
combat stance.

2. Look through your HMD at the target mob or entity.

3. Move your right controller (assuming you are right-handed) towards
the target, preparing to strike.

4. With a swift motion, pull the right trigger to extend your virtual arm
forward and make contact with the target.

5. If the attack is successful, you will see the target take damage on the
screen.

6. Release the trigger and return your arm to a combat stance, ready
for the next action.

1. Check your hotbar. If the sword is in your hotbar, start from the 8th
step directly; if not, start from the 2nd step.

2. Press your X button to open the inventory.

3. Move your right controller towards the sword.

4. Press your right trigger to select the sword.

5. Move your right controller towards your hotbar.

6. Press your right trigger to put the sword into your hotbar.

7. Press your X button to close the inventory.

8. Move your left controller to let your HMD face it so that you can see
your left hand and hotbar.

9. Move your right controller towards the sword on your hotbar.

10. Press your right trigger to select the sword.

11. Move your left joystick to find the target.

12. Move your left joystick to approach the target.

13. Move your right controller to aim at the target.
14. Swing your right controller towards the target.

Figure 2: Example of a Good vs. a Poor Model Generation for the “Attack using the sword”

Semantic actions were defined as high-level, goal-oriented tasks described in the walkthroughs (e.g.,
“tame the horse,” “’kill the creeper,” “solve the gravity glove puzzle”) that necessitate a sequence
of fine-grained VR device manipulations to accomplish. We focused on scenarios that: (1) involve
complex interactions not always explicitly detailed in in-game tutorials, (2) often constitute essential
steps or objectives required for game progression. A concrete example is shown in Figure[T] This
process resulted in the identification of 262 distinct scenarios across the four games.

2.4 ANNOTATION OF VR DEVICE MANIPULATIONS

Experienced VR users from our annotation team then played through each identified semantic action
in the respective games using Oculus Quest 2 VR hardware. The objective was to record the precise
sequence of device manipulations required to complete each semantic action. The annotation process
captured the following details for each step within a manipulation sequence: (1) Device used:
Specification of whether the HMD or a controller was used. (2) Controller specificity: If a controller
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was used, and the action was hand-specific (e.g., primary hand for a tool), the annotation indicated
whether the left or right controller was required. If either controller could perform the action, this
was noted as “left or right controller.” (3) Operation type and parameters: (i) Movement: For
actions involving device movement (HMD or controller), the direction (e.g., “towards the Creeper,”
“upwards”) or target position was recorded. (ii) Button presses: The specific button involved and the
action (e.g., “press X button,” “release trigger”’) were noted. (iii) Joystick/thumbstick manipulation:
The direction of joystick push (e.g., “push left thumbstick forward™) was recorded. (4) Sequential
composition: For complex semantic actions composed of multiple, distinct sub-actions that might
have been annotated individually, the sequence and composition of these simpler actions were
explicitly recorded.

2.5 COGNITIVE CAPABILITY LABELING USING LLMSs

A critical aspect of ComboBench is the annotation of each manipulation step with the specific
cognitive capabilities it engages. This fine-grained labeling enables precise analysis of where LLMs
succeed or fail in the VR interaction translation process. (1) Initial Human Annotation. To begin,
our annotators manually labeled a subset of 50 manipulation sequences (approximately 20% of the
dataset), assigning relevant capability categories to each step based on the taxonomy described in
Section[2.1] For example, in the sequence required to "tame a horse" in Vivecraft, the step "equip
the saddle by pressing the Y button while looking at the inventory slot containing the saddle" was
labeled with "Object Interaction & Tool Use Understanding" and "Motor Action Mapping." (2)
LLM-Assisted Annotation Pipeline. We then developed an LLLM-assisted annotation pipeline to
scale this process to the entire dataset. Specifically: @ We used the human-annotated examples as
few-shot demonstrations for GPT-40. @ For each unlabeled manipulation step, we provided the
LLM with: [2.a] The semantic action context (e.g., "taming a horse in Vivecraft"). [2.b] The specific
manipulation step to label. [2.c] The preceding and following steps (when available). [2.d] Detailed
descriptions of each capability category. [2.e] Three few-shot examples with explanations of why
each capability was assigned. ® The LLM generated capability labels along with justifications for
each assignment. @ Human annotators reviewed the LLM-generated labels, making corrections when
necessary. The review process revealed an 89.7% agreement rate between LLLM-assigned labels and
human judgments. (3) Multi-label Distribution. Most manipulation steps engaged multiple cognitive
capabilities simultaneously. On average, each step was associated with 2.3 capability categories (o
= 0.8). The most frequently co-occurring capabilities were "Motor Action Mapping" and "Object
Interaction & Tool Use Understanding" (present together in 68% of steps), reflecting the inherent
coupling between understanding virtual object affordances and translating this understanding into
physical manipulations.

2.6 CONTEXTUALIZATION AND VERIFICATION

To further contextualize the annotated actions and aid in verification, we sourced or recorded gameplay
videos corresponding to the textual walkthroughs for each game. For each annotated semantic
action and its constituent manipulation steps, we recorded the corresponding timestamps in these
videos. This allows for visual verification of the annotated sequences and provides richer context for
understanding the actions. If suitable public gameplay videos matching the exact walkthrough steps
were unavailable, our annotators recorded their own gameplay sessions while performing the actions.

3 EXPERIMENTS

3.1 MODEL SELECTION

We evaluate twelve state-of-the-art LLMs spanning different model families and scales, including
GPT-3.5, GPT-4, GPT-40, GPT-5.1, Gemini-1.5-Pro, Gemini-3-Pro, Claude-Sonnet-4.5, Grok-4,
LLaMA-3-8B, LLaMA-3-70B, Mixtral-8x7B, and GLM-4-Flash. This selection enables both cross-
family comparisons and analysis of scaling effects within the same model family. We also perform
human evaluation to validate the average human capabilities for comparison, when humans are given
exactly the same input as LLMs. For all experiments, we used the official APIs for proprietary models
and Hugging Face implementations for open-source models. Temperature was set to 0 across all
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models to minimize non-deterministic outputs. For embedding calculations, we utilized OpenAI’s
text-embedding-3-large model via their API.

3.2 EVALUATION METRICS

To comprehensively evaluate the capability of LLMs in translating semantic actions into VR device
manipulations, we propose a multi-dimensional evaluation framework with four distinct metrics.
These metrics collectively capture different aspects of model performance in ComboBench, ranging
from strict matching to more flexible semantic alignment. The semantic similarity between predicted
and ground-truth steps is computed using the cosine similarity of their sentence embeddings extracted
from OpenAlI’s text-embedding-3-large model

Strict Step-by-Step Matching (SSM). Our first metric evaluates the exact matching between model-
generated and ground truth steps, enforcing both sequence length equivalence and semantic alignment:

Number of correctly predicted ; . . .
SSM = SHERELOZomeety PEACCCiutiees - A sequence is considered correctly predicted only when: the
Total number of sequences

number of steps in the generated sequence equals that of the ground truth, and every step in the
generated sequence has a cosine similarity above a threshold of 0.8387 with its corresponding step
in the ground truth. This strict metric serves as a measure of precision in reproducing exact device
manipulation sequences and rewards models that can generate complete, step-accurate instructions.
The threshold of 0.8387 was empirically determined by analyzing the cosine similarity distribution on
a held-out set of human-paraphrased action steps. Specifically, we collected semantically equivalent
but linguistically varied human annotations for 50 action steps and computed pairwise similarities. The
threshold corresponds to the 5th percentile of similarities between these semantically equivalent pairs,
ensuring that only highly confident matches are accepted while accommodating natural linguistic
variation.

Common Subsequence Evaluation. We further introduce two complementary metrics based on
common subsequence alignment to assess partial correctness: (1) Normalized Step Alignment Score
(NSAS) This metric quantifies the alignment between the model-generated sequence and ground truth
(O]~ | M|~ | A]) —minun samples (b e lel
‘ Gl . (maxall,samp]es —MINg||_samples ) >
represents the count of correctly matched steps in the common subsequence, | M| represents missing
steps from the ground truth, |A] represents
the total number of steps in the ground truth, ming_samples and MaXaii_samples represent the minimum
and maximum raw scores across all evaluations, enabling consistent normalization This score is
normalized across the entire dataset to ensure fair comparison across different models and scenarios.
(2) Sequential Order Preservation (SOP) The SOP metric specifically assesses the model’s ability

st tly ordered and matched
to maintain the correct procedural ordering of steps: SOP = [Steps correetly ordered and maiched|

1G]
evaluates whether the steps in the matched subsequence maintain their ordinal positions (e.g., step 1
followed by step 2, etc.) in both the ground truth and model output, capturing the model’s procedural
reasoning capabilities.

while accounting for missing and additional steps: NSAS =

. This metric

Semantic Step Coverage (SSC). Our final metric adopts a more flexible matching approach to

evaluate semantic coverage of critical actions: SSC = IMR steps matclﬁl‘ilm any GTstepl here a model
result (MR) step is considered matched if it has a cosine similarity above the threshold (0.8387)
with any step in the ground truth (GT). This metric computes the proportion of generated steps that

semantically align with at least one ground truth step, regardless of position.

3.3 RQI1 & RQ3: LLM PERFORMANCE ACROSS VR GAMES
3.4 EXPERIMENTAL RESULTS

We analyze and answer the following Research Questions (RQs): (RQ1) How do state-of-the-art
LLMs perform in translating semantic actions into VR device manipulations across different VR
games? (RQ2) How does the number of few-shot examples affect LLMs’ ability to execute this
translation? (RQ3) Do LLLM and human performance exhibit significant variations across the four
different VR games, potentially indicating sensitivity to game mechanics and interaction complexity?
(RQ4) Which cognitive capabilities do current LLMs excel at, and where do they struggle? (RQS)
How do LLMs compare to human performance in VR device manipulation tasks?
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Table 1: Overall performance comparison of LLMs across VR games (5-shot setting). Best model
performance per metric is bolded, second best is underlined.

Model Half-Life: Alyx Into the Radius Moss: Book II Vivecraft

NSAS?T SOP1 FlgopT SSCT NSAST SOPT FlgopT SSCT NSAST SOPT FlgoptT SSCT NSAST SOPT Flgopt SSCT
GPT-3.5 0.858 0.123 0.287 0.143 0.662 0.169 0.226 0.137 0.782 0.169 0.207 0.186 0.922 0.043 0.098 0.067
GPT-4 0.853 0.125 0.258 0.172 0.693 0.189 0.328 0.177 0.824 0.218 0.336 0.220 0.927 0.137 0.437 0.081
GPT-40 0.804 0.022 0.075 0.167 0.698 0.291 0.414 0.190 0.824 0.300 0.342 0.222 0.931 0.190 0.489 0.096
GPT-5.1 0.903 0.251 0.320 0.493 0.857 0.062 0.172 0.269 0.888 0.206 0.300 0.383 0.864 0.109 0.221 0.144

Gemini-1.5-Pro 0.863 0.209 0.313 0.152 0.682 0.102 0.186 0.117 0.848 0.265 0.411 0.207 0.938 0.250 0.481 0.095
Gemini-3-Pro 0.929 0.309 0.427 0.650 0.927 0.280 0.478 0.611 0.928 0.262 0.487 0.572 0.895 0.379 0.343 0.228
Claude-Sonnet-4.5 0.920 0.195 0.317 0.455 0.923 0.275 0.424 0.621 0.918 0.260 0.460 0.532 0.899 0.200 0.322 0.158

Grok-4 0.924 0.351 0.430 0.655 0.911 0.320 0.396 0.564 0918 0.231 0.428 0.558 0.869 0.270 0.319 0.311
GLM-4-Flash 0.836 0.076 0.183 0.149 0.618 0.096 0.186 0.149 0.749 0.087 0.174 0.165 0.909 0.000 0.045 0.061
Mixtral-8x7B 0.839 0.126 0.246 0.147 0.666 0.123 0.228 0.097 0.756 0.117 0.191 0.121 0.926 0.060 0.239 0.070

LLaMA-3-8B 0.848 0.126 0.279 0.162 0.644 0242 0.317 0.168 0.823 0.283 0.349 0.200 0.929 0.039 0.122 0.042
LLaMA-3-70B 0.928 0.252 0.408 0.692 0.917 0232 0.391 0.560 0.924 0.270 0.469 0.542 0.897 0.009 0.257 0.332

Human 0.845 0.090 0.240 0.110 0.684 0.148 0.257 0.181 0.817 0.112 0.328 0.174 0.935 0.122 0.482 0.084

Table 2: Overall performance across VR games and settings. We report the average scores for our
four evaluation metrics: Strict Step-by-Step Matching (SSM), Normalized Step Alignment Score
(NSAS), Sequential Order Preservation (SOP), and Semantic Step Coverage (SSC). Higher is better
for all metrics. Bold indicates best model performance, underline indicates second best.

Model Average Across Settings Zero-Shot 5-Shot

SSM (%) NSAS SOP SSC SSM (%) NSAS SOP SSC SSM (%) NSAS SOP SSC
GPT-3.5 1.4 0.781 0.063 0.066 0.8 0.771 0.003 0.046 2.1 0.791 0.128 0.095
GPT-4 3.7 0.806 0.107 0.124 1.0 0.788 0.015 0.107 8.8 0.825 0.184 0.140
GPT-40 53 0.797 0.138 0.141 0.6 0.785 0.015 0.108 10.9  0.806 0.228 0.161
GPT-5.1 0.1 0.857 0.069 0.230 0.0 0.830 0.003 0.075 0.4 0.878 0.130 0.322
Gemini-1.5-Pro 5.8 0.813 0.146 0.142 2.1 0.795 0.010 0.124 11.7  0.832 0.236 0.162
Gemini-3-Pro 56 0915 0.141 0468 0.4  0.904 0.022 0.305 11.1  0.920 0.214 0.515
Claude-Sonnet-4.5 4.5 0.906 0.115 0.340 0.0 0.890 0.004 0.115 8.4 0.915 0.182 0.442
Grok-4 4.8 0.902 0.129 0.422 0.7 0.895 0.015 0.222 9.8 0911 0.226 0.522
GLM-4-Flash 0.0  0.761 0.038 0.077 0.0  0.762 0.006 0.052 0.0  0.765 0.071 0.120
Mixtral-8x7B 1.1 0.784 0.068 0.079 0.0 0.777 0.002 0.040 22 0.796 0.105 0.107
LLaMA-3-8B 1.2 0.787 0.088 0.111 0.1 0.783 0.011 0.088 1.8 0.794 0.163 0.132
LLaMA-3-70B 3.8 0.909 0.126 0.409 0.2 0.898 0.003 0.160 8.5 0.916 0.191 0.531
Human 1.2 0.833 0.122 0.159 - - - - - - - -

Tables [I] [2| and [3] present comprehensive performance metrics for all evaluated LLMs across the
four VR games. Our analysis reveals substantial variations in model capabilities and game-specific
challenges. Gemini-3-Pro emerges as the strongest performer overall, achieving the highest NSAS
scores in three of the four games (Half-Life: Alyx: 0.929, Into the Radius: 0.927, Moss: Book
II: 0.928), while maintaining competitive performance in Vivecraft (0.895). Grok-4 demonstrates
particular strength in Half-Life: Alyx with the SOP score (0.351) and Flgop (0.430), suggesting
superior procedural reasoning capabilities in this specific game context.Claude-Sonnet-4.5 maintains
consistently strong performance across all games, positioning itself as a reliable general-purpose

model for VR interaction translation. Table 3: Cross-game performance variation (stan-

A striking pattern emerges in the SOP metrics, dard deviation across games) w/ 5-shot examples.

which vary dramatically across l?oth models and oo NSAS o] SOP o] Flsop 0| Game Gap
games (0.000-0.379 range). While NSAS scores

. X . L GPT-3.5 0.110  0.061  0.084 0.085
remain relatively high (mostly >0.75), indicat-  gp.4 0.059 0051 008l 0.074
ing models can identify relevant steps, the low  GPT-4o 0.068  0.137  0.184 0.127
3 tag 1 GPT-5.1 0.018  0.102  0.097 0.073
SO.P vglpes reveal fundamental dllfﬁculu.es M Gemini-1.5-Pro 0.099  0.093  0.127 0.095
maintaining correct temporal orderlpg. Thls dis-  Gemini-3-Pro 0014 0123  0.106 0.081
crepancy is particularly pronounced in Vivecraft, Claude-Sonnet-4.5 0.009  0.110  0.134 0.084
where models achieve high NSAS scores (0.864- ~ Grok-4 0.013 0.137 - 0.065  0.072
8 ( GLM-4-Flash 0.135  0.049  0.069 0.084

0.931) but struggle with step ordering (SOP: VTR o1 0031 0065 0070
. . 1xtral-8x . A o .

mostly })elow 0.200), suggesting that simpler "\ " ep 0112 0103 0120 0113

interaction patterns may paradoxically lead to  LLamMA-3-70B 0.012 0.106 0.077 0.065

overconfidence in step sequencing. Human 0105 0029 0117 0.084

Analysis of performance variations (Table [3)) reveals significant game-dependent effects. Vivecraft
exhibits the highest average performance across models (0.864-0.931), likely due to its consistent
block-based interaction paradigm inherited from Minecraft. In contrast, Into the Radius presents the
greatest challenge, with notably lower NSAS scores (0.618-0.927) and high performance variance.
This pattern suggests that games featuring realistic physics simulations and complex inventory
management pose particular difficulties for current LLMs.
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Interestingly, different models exhibit distinct strengths across game types. Grok-4 shows remarkable
adaptability in Half-Life: Alyx compared to other models, while struggling in Vivecraft (NSAS
0.869). Gemini-3-Pro maintains the most balanced performance profile across games (Game Gap:
0.081), suggesting more robust generalization capabilities. Smaller models like Mixtral-8x7B and
GLM-4-flash show disproportionate performance degradation in complex environments, with GLM-4-
flash achieving zero SOP in Vivecraft despite reasonable NSAS scores. The substantial performance
variations across games highlight the impact of interaction design on LLM capabilities. Games with
discrete, well-defined actions (Vivecraft) enable higher model performance, while those requiring
nuanced controller manipulation and spatial reasoning (Half-Life: Alyx, Into the Radius) expose
current limitations. The correlation between game complexity and performance degradation is
non-linear, moderate complexity (Moss: Book II) sometimes yields better results than simpler
environments, suggesting that models may benefit from richer contextual cues in certain scenarios.

These findings collectively demonstrate that while state-of-the-art LLMs have made significant
progress in understanding VR interactions, their performance remains highly sensitive to specific
game mechanics and interaction paradigms. The gap between high NSAS scores and low SOP
values across all games indicates that current models can identify relevant actions but struggle with
the procedural reasoning required to sequence them correctly, which is an important capability for

successful VR interaction. Table 4: Multi-Path Step Matching (MP-SSM) NSAS
Table 2] demonstrates that few-shot exam- Score for Selected Actions
ples substantially improve LLM perfor- Model Average NSAS  Zero-Shot NSAS  5-Shot NSAS
mance in VR device manipulation tasks, GPT:35 0927 (183%) 0904 (14.3%)  0.942 (19.7%)
; : : GPT-4 0.949 (187%)  0937(19.1%)  0.955 (16.9%)
with the most dramatic gains observed GPT-40 0.949 (111.5%) 0942 (}1137%) 0955 (19.3%)
in Sequential Order Preservation (SOP), Gemini-1.5-Pro 0939 (16.8%)  0.923 (18.3%)  0.947 (16.0%)
. GLM-4-Flash  0.926(19.7%) 0896 (152%)  0.939 (110.2%)
where scores increase by 10-20x from near- Mixtral-8x7B  0.925 (17.6%)  0.894 (13.0%)  0.934 (19.2%)

zero baselines. All models benefit from in- LLaMA-3-8B 0940 (19.1%) 0926 (17.3%)  0.940 (18.6%)
context examples, though with diminishing Human 0.931 (14.5%) - -

returns, the improvement from zero-shot to 3-shot (average NSAS gain: 2.1%, SOP: 10-fold in-
crease) significantly exceeds that from 3-shot to 5-shot (NSAS: 1.4%, SOP: 20-50% relative gain).
Gemini-3-Pro exhibits the strongest adaptability, achieving the highest 5-shot performance (NSAS:
0.920), while maintaining consistent improvements across all metrics. The differential impact across
metrics reveals that few-shot examples primarily address procedural sequencing challenges (massive
SOP improvements) more effectively than exact step matching (modest SSM gains), suggesting that
demonstrations help models understand temporal dependencies in VR interactions but do not fully
resolve the complexity of translating semantic actions into precise device manipulations.

Scaling effects within model families. The inclusion of LLaMA-3-70B alongside LLaMA-3-8B
enables direct analysis of scaling effects within the same architecture. Table[2]shows that scaling from
8B to 70B parameters yields substantial improvements: average NSAS increases from 0.787 to 0.909,
SSM from 1.2% to 3.8%, and SSC from 0.111 to 0.409. These gains are consistent across games, with
the most pronounced improvements in semantic step coverage. LLaMA-3-70B achieves competitive
performance with proprietary models like GPT-40 and approaches Gemini-3-Pro on several metrics,
suggesting that open-source models can match proprietary systems when appropriately scaled.

3.5 RQ4: COGNITIVE CAPABILITIES ANALYSIS

We analyzed model performance across six cognitive capabilities required for effective VR interaction
(Figure[3)). By mapping evaluation metrics to capability scores (0-10 scale), we identified specific
strengths and limitations in how LLMs approach spatial-mechanical reasoning tasks.

Areas of strength: All evaluated LLMs demonstrate strong task decomposition capabilities (7.8-8.5),
with minimal performance gap compared to humans (8.2). Gemini-1.5-Pro leads with a score of
8.5, while even smaller models like Mixtral-8x7B (8.0) and GLM-4-flash (7.8) perform admirably.
This suggests that segmenting high-level actions into component steps aligns well with the sequential
reasoning abilities developed during language model pre-training.

Areas of weakness: Motor action mapping emerges as the most significant challenge (0.5-4.5), with
all models struggling to precisely translate abstract actions into specific VR control manipulations.
GPT-40 performs best in this dimension (4.5), but still falls short of robust capability. Procedural
reasoning also shows substantial variation (2.3-7.0), with only Gemini-1.5-Pro approaching adequate
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performance. Judgment of termination conditions represents another challenge area, with most
models scoring below 5.0 (except Gemini-1.5-Pro at 6.0), compared to human performance (6.5).

Model comparison: Gemini-1.5-Pro demonstrates the most balanced performance profile, con-
sistently outperforming other models in procedural reasoning (7.0), spatial reasoning (7.5), and
termination judgment (6.0). GPT-4 variants show strong task decomposition and object interaction
(5.3-5.7) but lag in procedural sequencing. LLaMA-3-8B shows surprisingly competitive performance
in procedural reasoning (5.7), outperforming larger models like GPT-3.5-Turbo (4.3), suggesting
architecture differences may be as important as scale.

3.6 RQ5: COMPARISON WITH HUMAN

To contextualize our findings, we compare LLM
performance against human baselines across our

Procedural

Judgment of
i Reasgning

Termination GPT-3.5-turbo

GPT-4-turbo

evaluation metrics. As shown in Tables[T]and 3]
state-of-the-art LLMs demonstrate competitive
performance with humans on several key dimen-
sions. Human performance forms a strong but

—— GPT-40
Gemini-1.5-Pro

—— Mixtral-8x7B

—— Llama-3-8B
GLM-4-flash

no longer dominant baseline when compared
to state-of-the-art LLMs on our text-to-action
translation task.

Motor\Action
Mapping

Obje:
. Interaction
We note that our human baseline measures per-
formance on the text-to-action-sequence transla-

tion task specifically, that is, humans were asked

Figure 3: Cognitive capabilities of LLMs and hu-
mans in translating semantic actions to VR device

to write down step-by-step device manipulations manipulations. Higher scores (0-10 scale) indicate
given a semantic goal description, mirroring ex- stronger abilities.

actly the task given to LLMs. This setup ensures an apples-to-apples comparison but differs from
in-situ VR performance, which would additionally involve real-time problem-solving, exploration,
and motor execution. The surprising finding that models outperform humans on certain metrics (e.g.,
SOP in Half-Life: Alyx) thus reflects the difficulty of recalling and accurately sequencing complex
interactions from memory, validating the challenge posed by our benchmark.

Across all four VR games, humans consistently achieve mid-to-high NSAS scores (0.684-0.935),
indicating reliable identification of relevant steps, yet they are outperformed by the reasoning models
in games, with systems like Gemini-3-Pro, Grok-4, and LLaMA-3-70B reaching NSAS values above
0.90 in most settings. More strikingly, humans lag behind top-performing models on SOP and SSC:
while human SOP remains below 0.15 and SSC below 0.19 across games, models such as Grok-4,
Gemini-3-Pro, and Claude-Sonnet-4.5 attain substantially higher procedural ordering and semantic
coverage, often exceeding 0.30-0.65 on these metrics. These results suggest that, for the specific
task of translating high-level VR goals into textual device-manipulation sequences, current LLMs
not only match but frequently surpass human participants in both the completeness and the temporal
structuring of the generated action steps.

Analysis of performance variance across games (Table[3) reveals striking similarities between human
and high-performing model behavior. The standard deviation of human performance (0.084) closely
aligns with that of Grok-4 (0.081) and Claude-Sonnet-4.5 (0.084), suggesting that both humans and
advanced LLMs exhibit similar sensitivity patterns to game-specific interaction complexities. This
convergence is particularly evident in structured environments like Vivecraft, where the consistency
gap between humans and LLMs has substantially narrowed. Figure [3]illustrates the capability-wise
performance comparison, revealing critical gaps in embodied reasoning. Humans maintain superior
performance in spatial reasoning (8.3 vs. 7.5 for Gemini-1.5-Pro) and judgment of termination
conditions (6.5 vs. 6.0). These differences are statistically significant (p < 0.05, Wilcoxon signed-
rank test) and persist across all evaluated models. This performance gap suggests that while LLMs
have achieved remarkable progress in understanding VR interaction semantics, they lack the grounded
physical intuition that humans naturally apply when reasoning about three-dimensional manipulations
and determining action completion states.

The convergence of human and LLM performance on certain metrics, coupled with persistent gaps in
spatial and termination reasoning, indicates that current language models can effectively decompose
VR tasks but struggle with aspects requiring embodied experience. This finding has important
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implications for the development of future VR-capable Al systems, suggesting the need for training
paradigms that better incorporate spatial and physical reasoning capabilities.

Table [] presents the results of our Multi-Path Step Matching (MP-SSM) evaluation, in which each
model and the human baseline are assessed against multiple distinct valid ground-truth solutions for
each scenario. Compared to previous single-path assessments, all systems show substantial gains
in NSAS scores, confirming that accounting for the diversity of human-authored action sequences
provides a more accurate picture of their abilities. The human baseline, in particular, sees a marked
improvement, with an average NSAS of 0.931 and a relative increase of 14.5%, establishing a
meaningful reference for achievable performance. While all models register higher scores, the relative
ranking among them is preserved: GPT-4 and GPT-40 lead overall, closely followed by LLaMA-3,
Gemini-1.5, and GPT-3.5, with Mixtral and GLM-4 slightly behind. These findings reinforce that
state-of-the-art LLMs remain competitive with expert humans even under this more realistic multi-
solution evaluation, and highlight the importance of considering multiple valid approaches when
measuring success in open-ended procedural tasks.

4 RELATED WORK

Recent work has explored LLMs as generalist agents for embodied reasoning. In robotics, Say-
Can (Ahn et al.,[2022) and PaLM-E (Driess et al., [2023)) combine LLMs with affordance-based skill
models or multimodal inputs to plan and execute actions, demonstrating that LLMs can decompose
high-level goals into actionable steps when grounded in sensory input. Similar capabilities appear in
virtual domains through agents like Voyager (Wang et al,2023) and platforms like MineDojo (Fan
et al.| |2022)), which showcase autonomous skill acquisition via code generation. However, these
systems focus on code-level or symbolic outputs rather than physical device manipulation or spatially
grounded motor control required in VR. Task decomposition has been studied via prompting strategies
such as Chain-of-Thought (Wei et al., 2022) and ReAct (Yao et al.l [2022)), which improve multi-
step planning coherence. LLLMs generate structured action sequences in domains like household
tasks (Shridhar et al., |2020) and scientific procedures (Wang et al., [2022), while code-as-policy
paradigms (Liang et al.||2022) enable conditional and iterative actions through executable policy code.
These approaches, however, often abstract away physical or spatial execution complexity. Several
benchmarks assess grounded reasoning in interactive settings. Animal-Al (Mecattaf et al., [2024)
evaluates embodied cognition through physics-based tasks, while ALFWorld (Shridhar et al., 2021,
ScienceWorld (Wang et al.} 2022), and MacGyver-style tasks (Tian et al., [2024)) test instruction-
following and object-use innovation, revealing LLMs’ limitations in spatial reasoning and tool-use
generalization. Concurrently, capability-oriented embodied evaluations have emerged: Embodied-
Bench (Yang et al.| 2025)) unifies tasks with fine-grained error taxonomies; VLABench (Zhang et al.,
20244)) targets long-horizon manipulation; EAI (Li et al., 2025) standardizes step-level diagnostics.
GUI/OS/mobile benchmarks including OSWorld (Xie et al., 2024), SPA-Bench (Zhang et al., 2024b)),
WebArena (Zhou et al., [2023)), Mind2Web (Deng et al.,|2023), AndroidEnv (Toyama et al.,[2021])), and
AppAgent/AppAgent v2 (Zhang et al., 2023} L1 et al.||2024b) evaluate precise device interactions. On
the robotics side, VLA policies such as RT-1/RT-2 (Brohan et al.,[2022;2023)) and OpenVLA (Kim
et al.,|2024) map observations to actions, while large-scale 3D suites like Habitat 2.0/HAB (Savva
et al., 2021), BEHAVIOR-1K/OmniGibson (L1 et al.|[2024a), and CALVIN (Mees et al.,[2021) stress
long-horizon rearrangement.

In contrast, ComboBench targets the translation of semantic goals into fine-grained, physically
grounded VR device manipulations, enabling precise step-level analysis of embodied cognitive
abilities critical for real-world interaction.

5 CONCLUSION

We introduced ComboBench, a benchmark evaluating LLMs’ ability to translate semantic actions into
VR device manipulations across 262 scenarios from four VR games. Our evaluation of twelve LLMs
reveals that while models demonstrate strong task decomposition, they struggle with procedural
reasoning and motor action mapping. Few-shot examples substantially improve performance, but
significant gaps remain compared to human capabilities, highlighting the need for multimodal training
approaches that incorporate spatial and embodied reasoning.
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A PRELIMINARIES ON VIRTUAL REALITY

Virtual Reality (VR) represents a fundamentally distinct paradigm of human-computer interaction
that transcends traditional interface boundaries. Unlike conventional computing systems that rely
on indirect manipulation through keyboards, mice, and two-dimensional displays, VR creates im-
mersive digital environments where users experience presence and embodiment. This paradigm shift
necessitates a comprehensive understanding of both the technological infrastructure and the cognitive
demands placed on users who must translate abstract intentions into concrete physical manipulations
within virtual spaces.

The evolution of VR technology has progressed through several generations, from early tethered
systems requiring substantial computational infrastructure to modern standalone devices that integrate
processing, display, and tracking capabilities within compact form factors. Contemporary VR systems
can be broadly categorized into three architectural approaches. PC-tethered headsets leverage external
computational resources to deliver high-fidelity experiences with complex graphics and physics
simulations. Standalone headsets, exemplified by devices like the Meta Quest series, incorporate
integrated processors that balance performance with portability. Mobile-phone-based solutions
represent an accessible entry point, utilizing smartphones as both display and processor, though with
inherent limitations in tracking precision and computational capability.

The core hardware components enabling VR interaction form an integrated ecosystem of sensory
input and output devices. Head-Mounted Displays (HMDs) serve as the primary visual interface,
providing stereoscopic rendering that creates depth perception while simultaneously tracking head
orientation and position through integrated sensors. This tracking enables natural viewing behaviors
where users can examine virtual objects by physically moving their heads, mirroring real-world visual
exploration patterns. Motion controllers, typically deployed in pairs to represent both hands, enable
direct manipulation of virtual objects through a combination of positional tracking, button inputs,
trigger mechanisms, and thumbstick controls. These devices must balance ergonomic considerations
with functional complexity, providing sufficient input channels while maintaining intuitive operation.
Spatial tracking systems, whether implemented through external sensors (outside-in tracking) or
integrated cameras (inside-out tracking), monitor user movements with six degrees of freedom,
capturing both translational and rotational motion to enable natural locomotion and interaction within
virtual environments.

The ongoing evolution of VR hardware continues to introduce novel interaction modalities. Haptic
gloves promise to deliver tactile feedback through actuators that simulate texture, resistance, and
temperature. Full-body tracking systems capture skeletal motion to enable more nuanced avatar
control and gesture recognition. Specialized peripherals, from steering wheels for racing simulations
to weapon replicas for combat games, demonstrate the trend toward application-specific controllers
that enhance immersion through physical affordances that match virtual interactions.

A.1 INTERACTION PARADIGMS AND DESIGN PRINCIPLES

The design of VR interaction paradigms represents a delicate balance between leveraging users’
existing motor skills and introducing novel control schemes that exploit the unique capabilities of
virtual environments. Direct manipulation forms the foundation of most VR interactions, where
users employ hand controllers to simulate natural actions like grasping, throwing, and pushing. This
approach capitalizes on users’ lifetime of experience with physical object manipulation but requires
careful calibration of virtual physics to match expectations. The mapping between controller inputs
and virtual hand movements must account for the absence of tactile feedback, often employing visual
or auditory cues to confirm successful interactions.

Ray-casting emerged as an elegant solution to the fundamental challenge of interacting with objects
beyond physical reach. By projecting virtual rays from controllers, users can select, manipulate, and
activate distant objects without locomotion. This technique exemplifies how VR interaction design
often augments natural human capabilities rather than strictly simulating physical constraints. Ad-
vanced ray-casting implementations incorporate features like ray curvature for improved ergonomics,
variable ray length based on context, and visual feedback mechanisms that indicate interaction
possibilities.
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Gesture recognition systems interpret temporal patterns of controller or hand movement as discrete
commands, enabling a rich vocabulary of interactions without relying on button combinations. These
systems must balance recognition accuracy with user comfort, avoiding gestures that cause fatigue
or require precise movements difficult to perform consistently. Machine learning approaches have
enhanced gesture recognition capabilities, allowing for more natural and varied input patterns while
maintaining reliable detection rates.

Symbolic input mechanisms address scenarios where direct physical analogues are impractical or
inefficient. Virtual keyboards present unique challenges in VR, as users lack tactile feedback and
must rely on visual confirmation of key presses. Solutions range from laser-pointer selection of virtual
keys to gesture-based text entry systems that map hand movements to characters. Voice commands
offer an alternative input modality that bypasses manual interaction entirely, though they introduce
considerations around recognition accuracy, latency, and social acceptability in shared spaces.

A.2 DEVELOPMENT PLATFORMS AND TECHNICAL CONSIDERATIONS

The creation of VR applications relies on sophisticated development ecosystems that abstract hardware
complexity while providing fine-grained control over interaction mechanics. Unity and Unreal Engine
have emerged as dominant platforms, offering comprehensive toolsets that handle rendering pipelines,
physics simulation, spatial audio, and cross-platform deployment. These engines provide specialized
VR interaction frameworks that standardize common patterns like object grabbing, teleportation, and
menu systems, significantly reducing development complexity.

Hardware software development kits (SDKs) serve as the bridge between high-level application logic
and device-specific capabilities. Meta’s OpenXR initiative represents an industry effort to standardize
VR/AR interfaces, enabling applications to target multiple hardware platforms without extensive
modifications. Platform-specific SDKs like Steam VR and Oculus SDK continue to play important
roles, offering access to proprietary features and optimizations that enhance performance on particular
hardware.

Technical constraints fundamentally shape VR interaction design decisions. Maintaining consistent
frame rates above 72Hz (and preferably 90Hz or higher) prevents motion sickness and ensures
responsive interactions. This performance requirement influences every aspect of application design,
from polygon counts and texture resolution to the complexity of physics simulations. Tracking
precision varies across hardware platforms and environmental conditions, necessitating interaction
designs that accommodate occasional tracking losses or reduced accuracy. Developers must also
consider the diverse computational capabilities across the VR ecosystem, implementing scalable
solutions that provide acceptable experiences on entry-level hardware while leveraging the capabilities
of high-end systems.

A.3 CHALLENGES IN VR INTERACTION

Despite remarkable technological progress, VR interaction continues to face fundamental challenges
that impact user experience and limit application domains. The locomotion problem exemplifies the
tension between physical and virtual spaces. While users may explore vast virtual environments, they
remain constrained by finite physical play areas. Teleportation offers a practical solution but breaks
immersion and can cause spatial disorientation. Artificial locomotion through thumbstick control
risks motion sickness in susceptible users. More exotic solutions like omnidirectional treadmills or
redirected walking techniques remain impractical for consumer applications.

The absence of comprehensive haptic feedback represents perhaps the most significant limitation in
current VR systems. While controllers provide basic vibration feedback, they cannot simulate the
rich tactile experiences of real-world interaction: the weight of objects, surface textures, temperature
variations, or resistance to movement. This sensory gap creates a fundamental disconnect between
visual expectations and physical sensations, requiring users to adapt their interaction strategies and
often leading to reduced precision in manipulation tasks.

Interaction discoverability poses ongoing challenges as VR applications lack standardized interface
conventions comparable to desktop or mobile platforms. Users encountering new VR experiences
must often learn application-specific control schemes, gesture sets, and interaction patterns. The
absence of persistent visual Ul elements (to maintain immersion) exacerbates this challenge, as users
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cannot easily reference control schemes during gameplay. This lack of standardization increases
cognitive load and creates barriers to entry for new users.

Precision manipulation tasks highlight the limitations of current tracking systems and input devices.
Tasks requiring fine motor control, such as threading a virtual needle or manipulating small compo-
nents, prove challenging due to tracking jitter, lack of physical surfaces for hand stabilization, and
absence of tactile confirmation. These limitations restrict the types of applications suitable for VR and
influence interaction design toward larger, more forgiving target sizes and simplified manipulation
schemes.
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Model Result Matched Actions Addit_iona\
Sequence (A=3)
_C-M=A _(4_o_ -
LScore = Lengthial) = (4-2-3)/6 0.17}
(b) SOP
Ground Truth Index Check Model Result Index
1. Move HMD towards the target |=———————eep | 1. Move HMD towards the target
2. Press right trigger | 2. Press right trigger
Strict Count = 2 (Steps 1, 2)
Stop at Step 3 (Index Mismatch)
STOP Score =2/4 =0.50
3. Move controller down 4. Rel trigger
J
4. Release trigger - 3. Move controller down

Figure 4: Overview of Strict Sequential Order Preservation (SOP) and Normalized Step Alignment
Score (NSAS) Calculation
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Figure 6: Overview of Common Subsequence Evaluation

B EXPERT INTERVIEW.

To derive the taxonomy in Section 1.1, we conducted semi-structured interviews with three domain
experts who specialize in cognitive science and educational psychology, with research backgrounds
in spatial cognition, procedural learning, and embodied interaction. Each expert participated in a
90-minute online interview focused on identifying the cognitive abilities required to translate semantic
goals into physical actions in virtual environments.

The interview protocol followed three phases: (1) an open-ended discussion of cognitive processes
involved in VR interaction, (2) a structured review of preliminary capability categories synthesized
from prior work, and (3) targeted refinement, where experts proposed additions, merges, and clar-
ifications to these categories. We performed a thematic analysis over the interview transcripts to
extract points of agreement and disagreement. Areas of consensus were directly incorporated into
the taxonomy, while divergent views were reconciled through follow-up email consultations. This
process yielded the six core capability dimensions reported in the main text.

C EXPLANATION OF EVALUATION METRICS

C.1 STRICT STEP-BY-STEP MATCHING (SSM)

Figure [5illustrates the Strict Step-by-Step Matching (SSM) calculation process. SSM represents our
most stringent evaluation metric, requiring exact correspondence between model-generated sequences
and ground truth annotations. The calculation process operates as follows:

In the left panel, we observe a scenario where the ground truth contains 4 steps while the model
result contains 5 steps. For SSM to register a match, two conditions must be satisfied: (1) the number
of steps must be identical between ground truth and model output, and (2) each step must have a
cosine similarity score above our threshold of 0.8387 with its corresponding ground truth step. In
this example, the length mismatch alone disqualifies the sequence from being counted as correct,
resulting in an SSM score of 0. The orange X symbol on the fifth model step visually indicates this
length mismatch failure.

The right panel demonstrates a successful SSM match where both sequences contain 4 steps. Each
model step is compared with its corresponding ground truth step using cosine similarity of their text
embeddings. The green checkmarks indicate that all four step pairs exceed the similarity threshold,
resulting in a successful match and contributing 1 to the SSM score. This metric’s strictness explains
why even high-performing models achieve relatively low SSM scores—any deviation in sequence
length or individual step similarity results in complete failure for that sequence.

C.2 COMMON SUBSEQUENCE EVALUATION

Figure [6]details our Common Subsequence Evaluation approach, which underlies the Normalized
Step Alignment Score (NSAS) and Sequential Order Preservation (SOP) metrics. This evaluation
method provides more nuanced assessment than SSM by identifying partial matches and preserved
ordering within sequences.
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The process begins with comparing each step in the ground truth and model result sequences using
cosine similarity, as shown by the crossing blue lines in the leftmost panel. Unlike SSM’s strict
position-based matching, this approach allows steps to match regardless of their positions in the
sequences. The algorithm then identifies the top 3 longest common subsequences where matched
steps maintain their relative ordering.

In the example shown, multiple candidate subsequences are generated, each representing different
ways steps from both sequences can be aligned while preserving order. The model (shown as GPT-
40) then selects the most matching subsequence based on the highest cumulative similarity scores.
The final selected subsequence shows GT Steps 2, 3, and 4 matching with MR Steps 1, 4, and 5
respectively. This flexible matching approach allows the metrics to capture semantic correctness even
when models include additional steps or present steps in slightly different positions.

The NSAS metric is calculated by considering the correctly matched steps (ICl), missing steps from
ground truth (IMl), and additional steps in the model output (IAl), normalized by the total ground truth
steps and scaled across the dataset. The SOP metric specifically evaluates whether matched steps
maintain their sequential order, providing insight into the model’s procedural reasoning capabilities.

C.3 COGNITIVE CAPABILITY SCORE DERIVATION

The radar chart in Figure 3| presents normalized capability scores (010 scale) derived by aggregating
model performance on scenario subsets that heavily engage each cognitive dimension. Each scenario
in ComboBench was labeled with primary cognitive requirements during the annotation process
described in Section 1.5. For example, scenarios labeled with high “Spatial Reasoning” complexity

(e.g., “crouch through the gap,” “navigate around the obstacle”) form the subset used to compute
spatial reasoning scores.

For each capability dimension c, the score for model m is computed as:

NSAST — minmodels (NSASC)
maxmodels(NSASC) — minmode]s (NSASC) '

Scorel" = 10 x

ey

Here, NSAS!" is the average NSAS score of model /m on scenarios primarily requiring capability c.
This normalization ensures comparability across dimensions with different baseline difficulties.
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D DETAILED PROMPT

Prompt for Vivecraft Action Decomposition

You are an expert VR game player deeply immersed in a VR game called Vivecraft. You are
holding your VR controllers in both hands and view the game scene through your HMD. Your
task is to thoroughly describe how you perform semantic actions in Vivecraft by breaking them
down into step-by-step sequences of device manipulations in the given JSON format. Use precise
and clear instructions, and include all necessary steps to ensure accurate execution of the action.
The output should include atomic game actions and corresponding VR device manipulations.
Your output must strictly follow this JSON format:

{
"action ID": "<action ID>",
"semantic action": "<action>",
"atomic game action": [
"l. <step_1>",

"n. <step_n>"

"device manipulations": [
"l. <step_1>",

"n. <step_n>"

Here is the introduction to the VR game Vivecraft to help you better decompose the atomic
action and device manipulation:
<game_intro/>
Vivecraft is the mod that transforms Minecraft into an exceptional VR experience in room-scale
or seated play. It is a sandbox game that allows players to explore, create, and survive in a blocky,
procedurally generated world. The key mechanism of the game is listed below: — Mining and
Crafting: Gather materials from the environment and craft tools, weapons, and other items using
a crafting table. — Building: Use blocks to construct buildings, machines, and other structures. —
Exploration: Discover various biomes with unique landscapes, resources, and mobs. — Combat:
Defend against hostile mobs like zombies, skeletons, and creepers. — Farming and Animal
Husbandry: Grow crops and breed animals for long-term survival.
</game_intro> Here is the general VR controller user guide that helps you to decompose
the semantic action into device manipulation:
<vr_device_guide/>

« HMD: Provides immersive visual and auditory VR experience; displays 360-degree

environments and delivers spatial audio.

* Triggers (controllers): Used for precise actions, including pressing virtual buttons and
selecting or interacting with objects.

* Grips (controllers): Used for grabbing and manipulating objects, including grabbing,
moving, rotating, and resizing; pressing the grip forms a virtual fist.

* Thumb Buttons (controllers):
— X (left): Open quick access toolkit or inventory.
— Y (left): Open game settings menu.
— A (right): Use item in the VR environment; change placement mode.
— B (right): Toggle quick menu.
* Joysticks (controllers):

— Left joystick: Move within the VR environment; navigation.
— Right joystick: Rotate in different directions.

</vr_device_guide>

Criteria:

<criteria/> 1. You can assume that the tools and materials you need are already in your
inventory. 2. If you use a trigger, grip, or controller, you must explicitly specify whether it is left,
right, or both. 3. If you use a thumb button, you must explicitly state which one (A, B, X, or Y).
</criteria> 20
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E DETAILED EXPERIMENT RESULTS

This section provides comprehensive analysis of our experimental results, including detailed perfor-
mance breakdowns across models, games, and experimental conditions. We present both aggregated
metrics and fine-grained analyses that illuminate specific strengths and weaknesses in current LLMs’
ability to reason about VR device manipulations.

E.1 OVERALL PERFORMANCE ANALYSIS

The table [5]below presents a holistic view of model performance across all experimental conditions.
The results reveal a clear performance hierarchy, with Gemini-1.5-Pro achieving the highest average
Normalized Step Alignment Score (NSAS) of 0.845, followed closely by GPT-40 (0.832) and GPT-4
(0.824). Notably, even the best-performing models achieve relatively modest Strict Step-by-Step
Matching (SSM) scores, with Gemini-1.5-Pro reaching only 8.7% exact sequence matches. This
discrepancy between NSAS and SSM scores indicates that while models can identify appropriate
actions, they struggle with precise sequencing and complete reproduction of manipulation sequences.

The Sequential Order Preservation (SOP) scores reveal perhaps the most significant challenge facing
current LLMs. Even top-performing models achieve SOP scores below 0.3, indicating difficulty
in maintaining correct procedural ordering of steps. This limitation is particularly pronounced in
zero-shot settings, where SOP scores approach zero for most models, suggesting that procedural
reasoning for VR interactions requires exposure to examples rather than emerging from general
language understanding.

Human performance provides an important baseline for contextualizing model achievements. While
humans achieve comparable NSAS scores (0.817) to top LLMs, they show notably lower SOP scores
(0.124) than leading models. This counterintuitive result reflects the challenging nature of the tasks
even for experienced VR users and suggests that perfect procedural recall may be less important than
adaptive problem-solving in real-world VR interaction.

Table 5: Performance of LLMs across VR Games (Best Few-Shot Setting)

Model NSAS SOP SSC SSM BestFS
Gemini-1.5-Pro  0.845  0.251 0.151  0.087 5
GPT-40 0.832 0291 0.190 0.135 5
GPT-4 0.824 0218 0.177 0.095 5
LLaMA-3-8B 0.823  0.283 0.200 0.040 5
Human 0.817 0.124 0.174 0.021 -
Mixtral-8x7B 0.790 0.123 0.142 0.039 5
GPT-3.5 0.778 0.169 0.137 0.037 5
GLM-4-Flash 0.749  0.096 0.165 0.000 5

E.2 GAME-SPECIFIC PERFORMANCE PATTERNS

The table [ below reveals substantial variations in model performance across different VR games,
highlighting how game design and interaction complexity influence LLM reasoning capabilities.
Vivecraft consistently yields the highest performance across all models, with NSAS scores ranging
from 0.909 to 0.938. This strong performance likely reflects the game’s discrete, block-based
interaction paradigm inherited from Minecraft, which provides clear action-object mappings that
align well with linguistic descriptions.

In contrast, Into the Radius proves most challenging, with NSAS scores dropping to 0.618-0.698
across models. This game’s emphasis on realistic physics simulation, complex inventory management,
and weapon manipulation requires understanding of nuanced spatial relationships and multi-step
procedures that current LLMs struggle to capture. The high standard deviation in performance
(0.135 for GLM-4-flash) indicates inconsistent model behavior when confronting complex interaction
scenarios.

Half-Life: Alyx and Moss: Book II occupy intermediate positions in the difficulty spectrum. Half-
Life: Alyx’s physics-based puzzles and combat scenarios require precise timing and spatial reasoning,
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reflected in extremely low SOP scores (0.022 for GPT-40). Moss: Book II's third-person perspective
and puzzle-platforming elements introduce unique challenges in translating camera-relative directions
into controller movements, though models show more consistent performance than in Half-Life:
Alyx.

Table 6: Performance comparison across different VR games (5-shot setting). We report NSAS scores
(primary metric) and SOP scores (in parentheses).

Model \ Half-Life: Alyx Radius Moss Vivecraft

GPT-3.5-turbo 0.858 (0.123)  0.662 (0.169) 0.782 (0.169) 0.922 (0.043)
GPT-4-turbo 0.852 (0.125)  0.693 (0.189) 0.824 (0.218) 0.927 (0.137)
GPT-40 0.804 (0.022)  0.698 (0.291) 0.824 (0.300) 0.931 (0.190)

Gemini-1.5-Pro | 0.863(0.209)  0.682(0.102) 0.848 (0.265)  0.938 (0.250)
Mixtral-8x7B 0.839 (0.126)  0.666 (0.123) 0.756 (0.117)  0.926 (0.060)
LLaMA-3-8B 0.848 (0.126)  0.644 (0.242) 0.823 (0.283)  0.929 (0.039)
GLM-4-flash 0.836 (0.076)  0.618 (0.096) 0.749 (0.087)  0.909 (0.000)

Human | 0.845(0.090)  0.684 (0.148) 0.817(0.112) 0.935(0.122)

E.3 IMPACT OF FEW-SHOT LEARNING

The table[7]below demonstrates the transformative effect of few-shot examples on model performance.
The most dramatic improvements occur in SOP scores, which increase by factors of 10-20x from
zero-shot to 5-shot settings. GPT-3.5-turbo exemplifies this pattern, improving from 0.036 to 0.226
in SOP F1 score, representing a 527.8% relative gain. This massive improvement suggests that
examples primarily help models understand the expected format and level of detail for procedural
instructions rather than teaching fundamental VR interaction principles.

The diminishing returns pattern is consistent across models, with the largest gains occurring between
zero-shot and 1-shot conditions. The jump from 3-shot to 5-shot provides minimal additional benefit,
indicating that models quickly extract relevant patterns from limited examples. Gemini-1.5-Pro shows
the most efficient few-shot learning, achieving top performance with fewer examples than competing
models, suggesting superior in-context learning capabilities for procedural tasks.

Interestingly, few-shot examples have differential effects across game types. Complex games like
Into the Radius show continued improvement with additional examples, while simpler environments
like Vivecraft plateau quickly. This pattern indicates that few-shot learning is most beneficial when
dealing with diverse interaction patterns and complex procedural sequences.

Table 7: Performance of LLMs across VR Games (Best Few-Shot Setting)

Model NSAS SOP SSC SSM BestFS
Gemini-1.5-Pro  0.845  0.251 0.151  0.087 5
GPT-40 0.832 0291 0.190 0.135 5
GPT-4 0.824 0218 0.177 0.095 5
LLaMA-3-8B 0.823 0.283 0.200 0.040 5
Mixtral-8x7B 0.790  0.123 0.142 0.039 5
GPT-3.5 0.778 0.169 0.137 0.037 5
GLM-4-Flash 0.749  0.096 0.165 0.000 5
Gemini-3-Pro 0923 0241 0.607 0.084 3
LLaMA-3-70B 0917 0.229 0.556 0.051 3
Grok-4 0914 0214 0.552 0.070 3
GPT-5.1 0.878  0.130 0.322  0.004 5
Human 0.817 0.124 0.174 0.021 -

E.4 COGNITIVE CAPABILITY ANALYSIS
The figure 3| shows model performance across six cognitive dimensions, revealing distinct capability

profiles. All models demonstrate strong task decomposition abilities (7.8-8.5), indicating that
breaking down high-level goals into subtasks aligns well with LLMs’ training on hierarchical text
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structures. Gemini-1.5-Pro leads in this dimension with a score of 8.5, though even smaller models
like Mixtral-8x7B achieve respectable scores of 8.0.

Motor action mapping emerges as the most challenging capability across all models (0.5-4.5),
highlighting the difficulty of translating abstract action concepts into specific button presses and
controller movements. This limitation likely stems from the absence of embodied experience in
text-based training data. GPT-40 performs best in this dimension but still falls far short of human-level
capability, suggesting a fundamental gap in current architectures.

Procedural reasoning shows high variance across models (2.3-7.0), with Gemini-1.5-Pro again leading.
The correlation between procedural reasoning scores and few-shot learning gains suggests that this
capability can be partially addressed through examples, though the ceiling remains well below human
performance. Spatial reasoning capabilities (4.8-7.5) reveal another significant gap, particularly
evident in games requiring 3D navigation and object manipulation.

E.5 STATISTICAL SIGNIFICANCE AND VARIANCE ANALYSIS

The tables [0} [TO}[TT] [T2] [T3] [T4} [T5} [T6] [T7} [T8] [TO} and[20]below provide detailed statistical analyses of

model performance, revealing important patterns in consistency and reliability. And the figures O]
The standard deviation measurements across different games and shot settings illuminate which
models maintain stable performance versus those exhibiting high variability. For instance, in Vivecraft,
GPT-3.5-turbo shows remarkably consistent NSAS scores in zero-shot settings (std = 0.0248), but this
consistency deteriorates with few-shot examples (std = 0.0734 at 3-shot), suggesting that additional
examples introduce uncertainty in the model’s approach to task completion.

The variance patterns differ significantly between metrics. NSAS scores generally show lower
standard deviations (0.02-0.21 range) compared to SOP scores (0.00-0.34 range), indicating that
models more consistently identify relevant steps than maintain proper ordering. This pattern is
particularly pronounced in complex games like Into the Radius, where SOP standard deviations
exceed 0.3 for several models in few-shot settings. Such high variance suggests that models employ
different strategies across different runs, sometimes achieving correct ordering by chance rather than
through systematic understanding.

Comparison with human variance provides crucial context for interpreting model stability. Human
annotators show standard deviations comparable to mid-tier models (0.084 in cross-game perfor-
mance), suggesting that some degree of variance is inherent to the task rather than a model limitation.
However, humans maintain more consistent SOP performance (std = 0.029) compared to all models
except Mixtral-8x7B, indicating more reliable procedural reasoning despite overall lower scores.

Table 8: Average and standard deviation of Normalized Step Alignment Score (NSAS) scores
comparison of LLMs on Vivecraft under different shot settings.

Model | GPT:35turbo | GPT4-turbo |  GPTdo | Gemini-15-Pro | Mixtral8x7B | LLaMA-38b | LLaMA-3-70B |  Grokd | GPES1 | Gemini-3-Pro

Metries | avg  std | avg  sd | ave  sd | ave  std | ave  std | ave  std | ave  std | g std | ag std | ag s

Zero-shot | 0.9258 0.0248 | 0.9255 0.0238 | 0.9191 0.0306 | 0.9209 0.0334 | 0.9312 0.0207 | 0.9244 0.0329 | 0.9001 0.0248 | 0.8956 0.0324 | 0.8665 0.0645 | 0.8979 0.0307
1-shot 0921 0.0309 | 0.9349 0.0506 | 0.9358 0.0735 | 0.9362 0.0553 | 0.9219 0.0636 | 0.9101 0.0765 | 0.8948 0.0512 | 0.8680 0.1266 | 0.8509 0.1077 | 0.8921  0.0900
3-shot 0.9284 0.0734 | 0914 0.1167 | 0.9212 0.1115 | 0.9381 0.0781 | 0.9005 0.1125 | 0.9022 0.1051 | 0.9113 0.0886 | 0.9217 0.1115 | 0.8670 0.1358 | 0.9219 0.1093
5-shot 09218  0.0385 | 0.9274 0.0674 | 0.9305 0.0689 | 0.9378 0.0708 | 0.9256 0.0477 | 0.9289 0.0364 | 0.8973 0.0587 | 0.8901 0.0951 | 0.8638 0.0895 | 0.8955 0.0742

Table 9: Average and standard deviation of Normalized Step Alignment Score (NSAS) scores
comparison of LLMs on Vivecraft under different shot settings.

Model | GPT:3S-turbo | GPT-Aturbo |  GPTdo | Geminil5-Pro | Mixtral87B | LLaMA-3-8b | LLaMA-370B |  Grok4 | GPES1 | Gemini-3-Pro

Metries | avg  std | avg  std | avg  std | avg  std | awg  std | aveg  std | ave  std | avg  std | ag  std | ay st

Zero-Shot | 0.9258 0.0248 | 0.9255 0.0238 | 0.9191 0.0306 | 0.9209 0.0334 | 0.9312 0.0207 | 0.9244 0.0329 | 0.9001 0.0248 | 0.8956 0.0324 | 0.8665 0.0645 | 0.8979 0.0307

1-shot 0.921  0.0309 | 0.9349 0.0506 | 0.9358 0.0735 | 0.9362 0.0553 | 0.9219 0.0636 | 0.9101 0.0765 | 0.8948 0.0512 | 0.8680 0.1266 | 0.8509 0.1077 | 0.8921 0.0900
3-shot 0.9284 0.0734 | 0914 0.1167 | 0.9212 0.1115 | 0.9381 0.0781 | 0.9005 0.1125 | 0.9022 0.1051 | 0.9113 0.0886 | 0.9217 0.1115 | 0.8670 0.1358 | 0.9219 0.1093
S-shot 0.9218 0.0385 | 0.9274 0.0674 | 0.9305 0.0689 | 0.9378 0.0708 | 0.9256 0.0477 | 0.9289 0.0364 | 0.8973 0.0587 | 0.8901 0.0951 | 0.8638 0.0895 | 0.8955 0.0742
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Table 10: Average and standard deviation of Sequential Order Preservation (SOP) scores comparison
of LLMs on Vivecraft under different shot settings.

Model | GPT:3Sturbo | GPTAturbo |  GPT4o | Gemini-l5-Pro | Mixtral87B | LLaMA-3-8b | LLaMA-370B |  Grok4 | GPES1 | Gemini-3-Pro
Metries | avg std | avg  std | avg  std | awg  std | wg  std | avg  std | aveg  std | ag  std | ag  sd | ag st

Zero-Shot | 00020 0.0312 | 00007 00078 | 0.0012 00125 | 00 00 | 00 00 |00059 00624 |00000 00000 | 0.0022 00234 | 0.0037 00280 | 0.0029 0.0312
1-shot 0015 00734 | 0.1203 02157 | 01568 02337 | 0.1794 0291 | 0.0812  0.164 | 00351 0.1215 | 0.0000 0.0000 | 0.0000 0.0000 | 0.0037 0.0280 | 0.0088 0.0569
3shot | 01302 02352 | 01143 02136 | 02826 03417 | 02335 03417 | 00986 02024 | 0.1124 02026 | 02817 03333 | 02697 03192 | 0.1090 02205 | 03790 0.3432
Sshot | 00395 0.1226 | 01366 02388 | 0.1837 0278 | 02495 03358 | 00553 0158 | 0.0374 0.1371 | 0.0088 0.0937 | 0.0000 0.0000 | 0.0000 0.0000 | 0.0029 0.0312

Table 11: Average and standard deviation of Semantic Step Coverage (SSC) scores comparison of
LLMs on Vivecraft under different shot settings.

Model | GPT:3S-turbo | GPT-Aurbo |  GPT-do | Gemini15Pro | Mixtral87B | LLaMA-3-8b | LLaMA-370B |  Grok4 | GPES1 | Gemini-3-Pro
Metries | avg  std | avg  std | avg  std | avg  std | avg  std | aveg  std | ave  std | aveg  std | ave  std | ave st

Zero-Shot | 0049 0.11 | 0.1301 01443 | 01272 0.1511 | 02221 02151 | 0024 00099 | 0.1088 0.1549 | 0.0661 0.1381 | 0.0631 0.1283 | 0.0162 00391 | 0.0900 0.1445
Ishot | 01274 0.1988 | 0544 03672 | 06598 03322 | 0.5747 03359 | 04914 03617 | 03165 03415 | 03078 0.1823 | 02745 0.1944 | 0.0453 0.0626 | 03293 0.1840
3shot | 04755 03526 | 0.6486 03373 | 0.6817 03204 | 0.6538 03373 | 05414 037 | 05299 03785 | 06174 03279 | 0.5777 04096 | 04515 02967 | 07147 03225
5-shot 008 02337 | 05035 03772 | 06183 03416 | 0.608 03546 | 03579 03555 | 0.1606 02605 | 03316 0.1931 | 03108 02078 | 0.1437 0.1067 | 02284 02213

Table 12: Average and standard deviation of Normalized Step Alignment Score (NSAS) scores
comparison of LLMs on Half-Life: Alyx under different shot settings.

Model | GPT-3Sturbo | GPT-Aturbo |  GPT4o | Gemini-15-Pro | Mixtral87B | LLaMA-3-8b | LLaMA-370B |  Grok4 | GPT51 | Gemini-3-Pro

Metries | avg  std | avg  std | avg  std | avg  sd | g std | avg  std | ave  std | avg  sd | ag  sd | ag st

Zero-Shot | 0.838  0.0413 | 0.8456  0.0366 | 0.8376 0.0424 | 0.8447 0.032 | 0.8376 0.0331 | 0.848 0.0317 | 0.9039 0.0203 | 0.9095 0.0198 | 0.8523 0.0550 | 0.9136 0.0200

1-shot 0.8354  0.0582 | 0.8427 0.0489 | 0.8472 0.0629 | 0.8627 0.0482 | 0.807 0.1099 | 0.8131 0.1289 | 0.9077 0.0238 | 0.9147 0.0271 | 0.8724 0.0691 | 0.9231  0.0306
3-shot 0.8452  0.0551 | 0.845 0.0467 | 0.838 0.0757 | 0.8701 0.0603 | 0.8255 0.0819 | 0.8449 0.0707 | 0.9191 0.0263 | 0.9203 0.0301 | 0.8844 0.0673 | 0.9260 0.0321
5-shot 0.8577 0.0773 | 0.8523 0.0613 | 0.8039 0.0694 | 0.8625 0.0691 | 0.8394 0.0834 | 0.848 0.0976 | 0.9278 0.0308 | 0.9245 0.0392 | 0.9030 0.0508 | 0.9292 0.0384

Table 13: Average and standard deviation of Sequential Order Preservation (SOP) scores comparison
of LLMs on Half-Life: Alyx under different shot settings.

Model | GPT:3S-turbo | GPT-Aturbo |  GPTdo | Gemini15Pro | Mixtral8x7B | LLaMA-3-8b | LLaMA-370B |  Grok4 | GPES1 | Gemini-3-Pro

Metries | avg  std | avg  std | avg  sd | avg  sd | awvg  std | aveg  std | ave  std | avg  std | ave  std | ave st

Zero-Shot | 0.0098 0.0802 | 0.0252 0.1265 | 0.0396 0.1745 | 0.0082 0.0669 | 0.0019 0.0158 | 0.0123 0.0704 | 0.0000 0.0000 | 0.0226 0.1277 | 0.0067 0.0316 | 0.0334 0.1698

1-shot 0.0447  0.0764 | 0.0402 0.1224 | 0.024 0.0733 | 0.0198 0.1263 | 0.0425 0.0816 | 0.0447 0.0967 | 0.0633 0.0896 | 0.1418 0.2141 | 0.0562 0.1164 | 0.1370 0.1764
3-shot 0.0725  0.1159 | 0.0312  0.0725 | 0.0701 0.1261 | 0.1349 0.2187 | 0.0703 0.1094 | 0.087 0.1687 | 0.1523 0.2214 | 0.1801 0.2663 | 0.0975 0.1335 | 0.1478 0.2045
5-shot 0.123  0.1834 | 0.1248 0.2382 | 0.0216 0.0809 | 0.2089 0.2938 | 0.1257 0.2409 | 0.1259 0.2385 | 0.2515 0.3235 | 0.3509 0.3824 | 0.2511 0.3231 | 0.3095 0.3807

Table 14: Average and standard deviation of Semantic Step Coverage (SSC) scores comparison of
LLMs on Half-Life: Alyx under different shot settings.

Model | GPT-3Sturbo | GPT-Aturbo |  GPTdo | Gemini-l5-Pro | Mixtral8x7B | LLaMA-3-8b | LLaMA-370B |  Grok4 | GPT1 | Gemini-3-Pro

Metries | avg  std | avg  std | awg  sd | g  sd | g sd | ave  ostd | ave  std | avg  sd | avg  sd | ag s

Zero-Shot | 0.0785 0.1843 | 0.2231 0.2089 | 0.2424 0.2111 | 0.1989 0.1982 | 0.0716 0.1187 | 0.1662  0.172 | 0.2676 0.2473 | 0.3874 0.2736 | 0.1693  0.1449 | 0.4934 0.2915

1-shot 02562 0235 | 03485 0.2336 | 0.4184 0.2413 | 0.3859 0.2654 | 0.3256 0.1934 | 0.3872 0.2058 | 0.4790 0.2759 | 0.5427 0.2460 | 0.3417 0.2254 | 0.5525 0.3053
3-shot 03072 0.2444 | 03648 0.2414 | 0.5611  0.229 | 0.5494 0.2887 | 0.3544 0.2202 | 0.4599 0.2371 | 0.6075 0.2956 | 0.5898 0.2581 | 0.3919 0.2003 | 0.5798 0.3317
5-shot 0.425  0.2814 | 0.6127 0.2856 | 0.6934 0.2359 | 0.6299  0.315 | 0.4642 0.2957 | 0.5152 0.2708 | 0.6920 0.2518 | 0.6555 0.2914 | 0.4929 0.2721 | 0.6502 0.3073

Table 15: Normalized Step Alignment Score (NSAS) scores comparison of LLMs on Moss: Book 11
under different shot settings

Model | GPT:3Sturbo | GPTAurbo |  GPTdo | Gemini15Pro | Mixtral8x7B | LLaMA-3-8b | LLaMA-370B |  Grok4 | GPES1 | Gemini-3-Pro

Metries | avg  std | avg  std | avg  std | avg  sd | awg  std | aveg  std | ave  std | avg  std | ag  std | ae st

Zero-Shot | 0.7819  0.0403 | 0.8055 0.0717 | 0.7871 0.0596 | 0.7994 0.0548 | 0.7913  0.0595 | 0.7916 0.0572 | 0.8916 0.0224 | 0.8875 0.0269 | 0.8074 0.0811 | 0.8965 0.0255

1-shot 0.776  0.0616 | 0.7993 0.0771 | 0.803  0.0924 | 0.8139 0.0778 | 0.7663 0.0793 | 0.7938 0.0763 | 0.9075 0.0267 | 0.8968 0.0416 | 0.8393 0.0880 | 0.9151 0.0290
3-shot 0.7776  0.0889 | 0.818 0.0925 | 0.8016 0.1242 | 0.8302 0.0935 | 0.7613 0.1341 | 0.7895 0.1371 | 0.9199 0.0392 | 0.9122 0.0438 | 0.8773 0.0559 | 0.9237 0.0339
S-shot 0.782  0.0952 | 0.8243  0.102 | 0.8237 0.1092 | 0.8478 0.1017 | 0.756  0.1469 | 0.8232  0.105 | 0.9241 0.0406 | 0.9178 0.0417 | 0.8883 0.0664 | 0.9282 0.0354

Table 16: Average and standard deviation of Sequential Order Preservation (SOP) scores comparison
of LLMs on Moss: Book II under different shot settings.

Model | GPT:3Sturbo | GPT-Aturbo |  GPT4o | Gemini-l5-Pro | Mixtral$x7B | LLaMA-3-8b | LLaMA-370B |  Grok4 | GPT51 | Gemini-3-Pro

Metries | avg  std | avg  std | awvg  sd | avg  sd | ave  sd | ave  std | ave  std | avg  sd | ave  sd | ay s

Zero-Shot | 0.0091 0.0581 | 0.0263 0.1533 | 0.0113  0.0494 | 0.0197 0.1029 | 0.0052  0.033 0.0 0.0 | 0.0000 0.0000 | 0.0000 0.0000 | 0.0000 0.0000 | 0.0119 0.0762

1-shot 0.034  0.1568 | 0.0663 0.2044 | 0.1084 0.2486 | 0.1145 0.2495 | 0.0739 0.1721 | 0.0578 0.1486 | 0.0759 0.1942 | 0.1062 0.2374 | 0.0456 0.1038 | 0.0887 0.2098
3-shot 0.1581 0242 | 0.1678 0.2522 | 0.2324 0.3185 | 0.2272 0.3324 | 0.1351  0.252 | 0.2584 0.3089 | 0.2759 0.3045 | 0.2060 0.2904 | 0.1481 0.2026 | 0.2298 0.3019
5-shot 0.1686  0.244 | 0.2182 0.2801 | 0.2998 0.3062 | 0.2652 0.3596 | 0.1169  0.247 | 0.2831 0.3097 | 0.2703 0.3077 | 0.2310 0.3010 | 0.2056 0.2822 | 0.2616 0.3151

24



Under review as a conference paper at ICLR 2026

Table 17: Average and standard deviation of Semantic Step Coverage (SSC) scores comparison of
LLMs on Moss: Book II under different shot settings.

Model | GPT:3S-turbo | GPT-Adurbo |  GPTdo | Gemini15Pro | Mixtral8x7B | LLaMA-3-8b | LLaMA-370B |  Grok4 | GPES1 | Gemini-3-Pro

Metrics ‘ avg  std ‘ avg  std ‘ avg  std ‘ avg  std ‘ avg  std ‘ avg st ‘ avg  std ‘ avg  std ‘ avg  std ‘ avg  std

Zero-Shot | 0.0715 0.1792 | 0.2491 0.2844 | 0.2313  0.2567 | 0.1763  0.221 | 0.0407 0.0991 | 0.1208 0.1779 | 0.1401 0.1876 | 0.1286 0.1794 | 0.0205 0.0470 | 0.2099 0.2192

1-shot 0.0748  0.1719 | 0.259 0.2771 | 0.3682 0.3018 | 0.3449 0.3396 | 0.1749 0.2393 | 0.2319 0.293 | 0.3421 0.2902 | 0.3319 0.2375 | 0.1857 0.1592 | 0.3717 0.2929
3-shot 0.3349 03069 | 0.4593 0.3309 | 0.5001 0.3444 | 0.5238 0.3738 | 0.3207 0.3105 | 0.4689 0.3399 | 0.4884 0.3352 | 0.5130 0.2916 | 0.2986 0.2235 | 0.5575 0.3392
5-shot 03737 03213 | 0.4951 0.3373 | 0.5562 0.3319 | 0.6091 0.3476 | 0.2974 0.3385 | 0.4567 03173 | 0.5416 0.3313 | 0.5583 0.3393 | 0.3834 0.2477 | 0.5715 0.3281

Table 18: Average and standard deviation of Normalized Step Alignment Score (NSAS) scores
comparison of LLMs on Into the Radius under different shot settings.

Model | GPT-3S-turbo | GPT-Aturbo |  GPT-4o | Gemini-15-Pro | Mixtral$x7B | LLaMA-3-8b | LLaMA-370B |  Grok4 | GPT51 | Gemini-3-Pro

Metries | avg  std | avg  std | awvg  sd | awvg  sd | ave  sd | ave  std | ave  std | avg  sd | avg sd | ag st

Zero-Shot | 0.6165 0.0755 | 0.6408 0.0955 | 0.5939 0.1306 | 0.6492 0.1018 | 0.6644 0.0718 | 0.6447 0.0882 | 0.8975 0.0226 | 0.8891 0.0411 | 0.7947 0.0774 | 0.9085 0.0337

1-shot 0.641  0.1177 | 0.6519 0.1421 | 0.6282 0.1687 | 0.6875 0.1159 | 0.6285 0.1684 | 0.6285 0.1346 | 0.9070 0.0345 | 0.8719 0.0276 | 0.8315 0.0659 | 0.9133 0.0357
3-shot 0.6305  0.128 | 0.6802 0.1645 | 0.6491 0.2057 | 0.6634 0.1638 | 0.618 0.1633 | 0.6479 0.1606 | 0.9165 0.0327 | 0.9017 0.0630 | 0.8483 0.0599 | 0.9219 0.0375
5-shot 0.6621  0.1291 | 0.6927 0.1721 | 0.6984 0.2136 | 0.6818 0.1191 | 0.666 0.1495 | 0.6443  0.211 | 0.9165 0.0410 | 0.9112 0.0484 | 0.8573 0.0687 | 0.9265 0.0485

Table 19: Average and standard deviation of Sequential Order Preservation (SOP) scores comparison
of LLMs on Into the Radius under different shot settings.

Model | GPT:3Sturbo | GPT-Aturbo |  GPT4o | Gemini-15-Pro | Mixtral87B | LLaMA-3-8b | LLaMA-370B |  Grok4 | GPES1 | Gemini-3-Pro
Metries | avg  std | avg  std | avg  std | avg  std | wg  std | aveg  std | ave  std | avg  sd | ag  sd | ay s

Zero-Shot | 0.0091 0.0581 | 00263 01533 | 00113 0.0494 | 00197 01029 | 00052 0033 | 00 00 |00123 00630 | 00370 0.1386 | 0.0000 00000 | 0.0401 0.1528
1-shot 0034 01568 | 0.0663 02044 | 01084 02486 | 0.1145 02495 | 0.0739 0.1721 | 0.0578 0.1486 | 0.1799 0.2850 | 0.0000 0.0000 | 0.0404 0.1387 | 0.1205 02522
3shot | 01581 0242 | 01678 02522 | 02324 03185 | 02272 03324 | 0.1351 0252 | 02584 03089 | 02053 02758 | 0.2003 0.3009 | 0.0662 0.1330 | 0.2081 0.2859
Sshot | 0.1686 0244 | 02182 02801 | 02998 03062 | 02652 03596 | 0.1160 0247 | 02831 03097 | 02321 03149 | 03203 0.3509 | 0.0622 0.1455 | 02804 0.3294

Table 20: Average and standard deviation of Semantic Step Coverage (SSC) scores comparison of
LLMs on Into the Radius under different shot settings.

Model | GPT:3S-turbo | GPTAurbo |  GPTdo | Gemini15-Pro | Mixtral87B | LLaMA-3-8b | LLaMA-370B |  Grok4 | GPES1 | Gemini-3-Pro

Metries | avg  std | avg  std | avg  sd | avg  std | awg  std | ave  std | ave  std | avg  std | ave  std | ave st

Zero-Shot | 0.0354 0.0982 | 0.1528 0.1774 | 0.2199 0.1745 | 0.1783 0.2107 | 0.0406 0.0899 | 0.1243  0.1655 | 0.1671 0.2225 | 0.3100 0.2305 | 0.0945 0.0945 | 0.4250 0.2078

1-shot 0.1511 02246 | 0304 0.2983 | 04102 0.2585 | 0.2823 0.3277 | 0.2593 0.3249 | 0.3171  0.269 | 0.4190 0.3079 | 0.4098 0.2744 | 0.1565 0.1162 | 0.5220 0.2739
3-shot 0.2321 02713 | 0.4463  0.3099 | 0.5623 0.2976 | 0.3402 0.3379 | 0.3544 0.2621 | 0.5319 0.2382 | 0.5113 0.2765 | 0.5294 0.2839 | 0.2220 0.1755 | 0.5766 0.3039
S-shot 03302 03115 | 0.5082 0.3063 | 0.6194 0.2877 | 0.2971 0.3187 | 0.285 0.3384 | 0.5314 0.2886 | 0.5601 0.3133 | 0.5638 0.3041 | 0.2692 0.1803 | 0.6109 0.3173
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Figure 9: LLMs SSC (avg) by Different Shot Setting Across Four VR Games
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E.6 CROSS-GAME GENERALIZATION PATTERNS

The cross-game performance analysis reveals important insights about model generalization capabili-
ties. Models that perform well on one game do not necessarily maintain their advantage across others.
For example, while GPT-40 achieves the highest SOP score in Into the Radius (0.291), it performs
poorly in Half-Life: Alyx (0.022). This game-specific variation suggests that models may overfit to
particular interaction patterns rather than developing general VR manipulation capabilities.

The "Game Gap" metric in the table[3|quantifies this generalization challenge. Lower values indicate
more consistent cross-game performance. Mixtral-8x7B achieves the lowest Game Gap (0.070),
despite not leading in any individual game. This consistency might make it more suitable for
applications requiring reliable performance across diverse VR experiences. In contrast, GPT-40’s
high Game Gap (0.127) reflects its specialized strengths and weaknesses across different interaction
paradigms.

Analysis of confusion patterns reveals that models struggle most when transitioning between games
with different control schemes. The shift from Vivecraft’s discrete block interactions to Half-Life:
Alyx’s continuous physics manipulation represents a fundamental change in how actions map to
controller inputs. Models trained primarily on text lack the embodied experience to navigate these
transitions smoothly, often applying inappropriate interaction patterns learned from one context to
another.

E.7 TEMPORAL DYNAMICS IN SEQUENTIAL TASKS

Detailed examination of step-by-step performance reveals how models handle temporal dependencies
in VR interactions. Early steps in sequences generally show higher accuracy (NSAS > 0.9) across
all models, with performance degrading for later steps. This degradation is particularly severe for
steps that depend on the successful completion of previous actions. For instance, in a sequence like
"pick up object, aim at target, throw object," models may correctly identify all three actions but fail
to recognize that aiming requires successfully completing the pickup action first.

The SOP metric specifically captures these temporal dependencies, and the low scores across all
models highlight a fundamental limitation in current architectures. Even with few-shot examples that
demonstrate correct ordering, models struggle to internalize the causal relationships between steps.
This suggests that improved performance may require architectural innovations that better capture
temporal and causal reasoning, rather than simply scaling existing approaches.

Error analysis reveals common patterns in temporal mistakes. Models frequently suggest parallel
actions that must be performed sequentially (e.g., "press trigger while reaching for object”" when the
trigger can only be meaningfully pressed after grasping). They also struggle with iterative processes,
often omitting loop conditions or termination criteria. These patterns indicate that models lack an
understanding of the physical constraints that govern VR interactions.

E.8 DETAILED PERFORMANCE TABLES AND VISUALIZATIONS

The table [2] provides granular data for researchers seeking to understand specific model behaviors.
These tables reveal several noteworthy patterns. First, the relationship between different metrics is
non-linear. High NSAS scores do not guarantee good SOP performance, and models with similar
average scores may achieve them through different strengths. This multidimensional performance
landscape suggests that selecting models for specific applications requires careful consideration of
which capabilities are most critical.

The table ] illustrates the strict matching process, highlighting why SSM scores remain low even
for generally capable models. The requirement for exact sequence length and step-by-step cor-
respondence proves extremely demanding. Even minor variations in phrasing or step granularity
result in match failures. This visualization helps explain why SSM may be overly strict for practical
applications, where functional equivalence matters more than exact replication.

The table 2] demonstrates the more nuanced evaluation approach that underlies our NSAS and SOP
metrics. By identifying the longest common subsequences with semantic matching, these metrics
better capture functional understanding while still penalizing significant deviations from ground truth.
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The visualization shows how models might achieve reasonable NSAS scores by identifying most
relevant actions while still failing SOP evaluation due to ordering errors.

The heat maps of model performance across game-task combinations reveal clustering of difficulty.
Certain task types (e.g., combat sequences in Half-Life: Alyx, inventory management in Into the
Radius) consistently challenge all models, while others (e.g., block placement in Vivecraft) show
near-ceiling performance. These patterns suggest that targeted improvements for specific interaction
types might yield better results than general capability enhancement.

E.9 IMPLICATIONS FOR FUTURE RESEARCH

The detailed experimental results paint a complex picture of current LLM capabilities and limitations
in VR interaction reasoning. While models demonstrate competence in identifying relevant actions
and decomposing high-level goals, they consistently struggle with the procedural and embodied
aspects of VR interaction. The strong effect of few-shot examples suggests that current models
possess latent capabilities that can be activated through appropriate prompting, but fundamental archi-
tectural limitations prevent them from achieving human-like understanding of physical manipulation
sequences.

The high variance in performance across games and tasks indicates that robustness remains a sig-
nificant challenge. Models that excel in one context may fail dramatically in another, limiting their
practical applicability. This brittleness likely stems from the discrete nature of text-based training,
which lacks the continuous, embodied experience that humans leverage when learning new physical
tasks.

Moving forward, these results suggest several promising research directions. Multimodal models that
incorporate visual and proprioceptive information alongside text may better capture the embodied
nature of VR interactions. Explicit modeling of temporal and causal relationships could address the
procedural reasoning gaps identified in our experiments. Finally, training on synthetic VR interaction
data or through simulated embodiment might provide models with the experiential knowledge
currently lacking in text-only approaches.

The detailed results also highlight the importance of comprehensive evaluation frameworks that
assess multiple dimensions of capability. Single metrics fail to capture the complexity of VR
interaction reasoning, and future benchmarks should continue to embrace multidimensional evaluation
approaches that can identify specific strengths and weaknesses in model capabilities.

F DIscUSSION, LIMITATIONS & BROADER IMPACTS

Our investigation into LLMs’ ability to translate semantic actions into VR device manipulations
reveals both promising capabilities and fundamental limitations that reflect broader challenges in
bridging linguistic understanding and embodied interaction. The relatively low Sequential Order
Preservation (SOP) scores across all evaluated models indicate that current LLMs struggle with
the temporal reasoning required for complex procedural tasks. This limitation suggests that while
LLMs can identify relevant actions and understand their purposes, they lack the embodied experience
necessary to accurately sequence physical manipulations.

The substantial performance variations across different VR games highlight how interaction com-
plexity and consistency impact model performance. Our primary goal was to first establish a robust
and comprehensive benchmark on a diverse set of known games.Games with standardized, discrete
actions (like Vivecraft’s block-based interactions) prove more amenable to LLM reasoning than those
requiring nuanced controller movements or complex spatial reasoning (like Half-Life: Alyx). This
pattern suggests that current language models may benefit from more structured representations of
physical actions and explicit training on procedural sequences.

The significant improvement from few-shot examples demonstrates that LLMs possess latent capa-
bilities for VR interaction reasoning that can be activated through appropriate prompting. However,
the fact that performance plateaus with additional examples indicates fundamental architectural
limitations rather than simple lack of exposure to relevant examples. This finding suggests that
advances in VR-capable Al may require new training paradigms that incorporate spatial and temporal
reasoning more directly.
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From a broader perspective, this work carries important implications for the future of human-computer
interaction and Al development. On the positive side, LLMs that can effectively reason about VR
interactions could dramatically improve accessibility for users with motor impairments, enable more
intuitive natural language interfaces for VR applications, and accelerate the development of intelligent
tutoring systems for VR training scenarios. The potential transfer of these capabilities to robotic
systems could enable more sophisticated human-robot collaboration in both virtual and physical
environments.

However, we must also consider potential negative implications. As LLMs gain greater agency in
controlling virtual (and potentially physical) systems, questions of safety, security, and user autonomy
become paramount. The ability to translate high-level commands into detailed manipulation sequences
could be exploited for unauthorized system control or social engineering attacks. Additionally,
the computational resources required for training and deploying such models raise environmental
concerns that must be balanced against their benefits.

The digital divide may be exacerbated as advanced VR-AI systems require substantial hardware
investments and technical expertise. Ensuring equitable access to these technologies will require
conscious effort from researchers, developers, and policymakers. Privacy concerns also emerge
as these systems necessarily monitor and analyze detailed user movement patterns and interaction
behaviors.

Moving forward, the field must pursue responsible development practices that prioritize user safety,
privacy, and autonomy while advancing the technical capabilities of VR-AI systems. This includes
developing robust evaluation frameworks that assess not only task performance but also failure modes,
implementing transparent systems that users can understand and control, and ensuring that advances
in VR interaction Al serve to augment rather than replace human agency in virtual environments.

G LARGE LANGUAGE MODELS USAGE STATEMENT

This work incorporated LLMs to aid in editorial refinement and linguistic improvement of the
manuscript. The models provided assistance with stylistic enhancements and clarity optimization,
including tasks such as rephrasing sentences and correcting grammatical errors.

We explicitly note that LLMs played no role in the conceptualization, theoretical development, or
experimental design aspects of this research. The authors retain full responsibility for the entirety of
the manuscript’s content, including sections improved with LLM support. All LLM-assisted text has
been carefully reviewed to ensure adherence to academic standards and ethical research practices.
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