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ABSTRACT

Virtual Reality (VR) games require players to translate high-level semantic actions
into precise device manipulations using controllers and head-mounted displays
(HMDs). While humans intuitively perform this translation based on common
sense and embodied understanding, whether Large Language Models (LLMs) can
effectively replicate this ability remains underexplored. This paper introduces
a benchmark, ComboBench, evaluating LLMs’ capability to translate semantic
actions into VR device manipulations across 262 scenarios from four popular
VR games: Half-Life: Alyx, Into the Radius, Moss: Book II, and Vivecraft.
We evaluate six LLMs, including GPT-4o, GPT-4-turbo, Gemini-1.5-Pro, Llama-
3-8B, Mixtral-8x7B, and GLM-4-flash, on their ability to generate appropriate
manipulation sequences, compared against annotated ground truth and human
performance. Our results reveal that while top-performing models like Gemini-
1.5-Pro demonstrate strong task decomposition capabilities, they still struggle with
procedural reasoning and spatial understanding compared to humans. Performance
varies significantly across games, suggesting sensitivity to interaction complexity.
Few-shot examples substantially improve performance, indicating potential for
targeted enhancement of LLMs’ VR manipulation capabilities. We release all
materials at https://sites.google.com/view/combobench.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable proficiency in general-purpose task
solving (Qin et al., 2023), spanning complex domains from program repair (Lee et al., 2024) to
exhibiting human-like characteristics such as Theory-of-Mind (Liang et al., 2023). A hallmark
of human intelligence is the ability to rapidly learn and apply unfamiliar concepts by leveraging
common sense, prior experiences, and a repertoire of cognitive skills. This is particularly evident in
novel interactive environments like video games, where players quickly master device manipulations
(atomic actions) and combine them to achieve complex semantic goals.

Virtual Reality (VR) games elevate this challenge. They demand not only the execution of atomic
actions via physical devices (Head-Mounted Displays, controllers) but also the inference of complex,
often uninstructed, semantic actions. For instance, in Half-Life: Alyx (Valve, 2020), a player might
infer that raising their controller-held hands signifies "surrender", even if not explicitly taught. This
translation of high-level intent into a sequence of physical device manipulations engages a suite of
cognitive abilities. Successfully playing VR games, therefore, serves as a rich testbed for evaluating
if LLMs can bridge this gap between abstract understanding and grounded, physical interaction.

This paper investigates the capacity of LLMs to perform this crucial translation. We posit that
this process relies on a spectrum of fine-grained cognitive abilities. Simply generating a sequence
of button presses is insufficient; the LLM must demonstrate: (1) Task decomposition: Breaking
down a high-level semantic action (e.g., "tame the horse", "plant wheat") into a coherent series
of intermediate steps. (2) Procedural reasoning: Understanding the logical and temporal order of
these steps, including prerequisite conditions or concurrent actions (e.g., needing to till soil before
planting seeds). (3) Spatial reasoning & contextual awareness: Interpreting instructions within a 3D
spatial context (e.g., "move HMD towards the Creeper", "crouch through the gap") and understanding
environmental cues or object states (e.g., recognizing a door is open/closed and acting accordingly).
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(4) Object interaction & tool use understanding: Correctly mapping intended sub-actions to specific
VR device manipulations (e.g., knowing which button to press to "use" an item, or how to manipulate
a controller to simulate "swinging" a tool like a pickaxe). This involves understanding the affordances
of virtual objects and tools. (5) Motor action mapping & VR procedural transfer: Translating abstract
actions (like "press", "move", "trigger") into specific, executable VR controller commands, potentially
by adapting from provided examples or general knowledge of VR interaction paradigms. This touches
upon a form of simulated embodied reasoning. (6) Judgment of termination/continuation conditions:
Recognizing when a sub-task or a looped action is complete (e.g., "mine until the block breaks",
"water until the plant grows").

To systematically evaluate these capabilities, we introduce ComboBench (Cognitive-Oriented Manip-
ulatiOn Benchmark for COMBO interactions using physical VR devices), a benchmark comprising
262 scenarios derived from four popular VR games: Vivecraft (Vivecraft, 2013) (Minecraft in VR),
Half-Life: Alyx (Valve, 2020), Moss: Book II (Polyarc, 2022), and Into the Radius (CMGames, 2019).
Each scenario presents a high-level semantic action, and the ground truth consists of a fine-grained
sequence of VR device manipulations required to achieve it. These sequences are annotated by
experienced VR players, allowing us to analyze LLM-generated outputs at the step-level and map
their successes and failures to the aforementioned cognitive abilities. For example, failing to "press
the X button" after "moving the HMD towards the Creeper" might indicate a lapse in procedural
reasoning or object interaction understanding for that specific step.

We evaluate seven LLMs, including GPT-4o, GPT-4-turbo, GPT-3.5-turbo, Gemini-1.5-Pro, Llama-3-
8B, Mixtral-8x7B, and GLM-4-flash, on their ability to translate semantic actions into VR device
manipulations. Our evaluation framework employs a multi-dimensional scoring approach that
assesses: (1) high-level semantic action understanding, (2) procedural step correctness, and (3)
device-specific manipulation accuracy. This allows for fine-grained analysis of where each model
succeeds or struggles in the translation process. Our findings reveal significant variation in model
performance across cognitive capabilities. All models demonstrate strong task decomposition abilities
but show pronounced weaknesses in motor action mapping and procedural reasoning. Gemini-1.5-
Pro exhibits the most balanced performance across capabilities, while even advanced models like
GPT-4-turbo struggle with spatial reasoning compared to human performance. Few-shot examples
substantially improve outcomes, particularly for procedural understanding, with diminishing returns
beyond three examples. Performance also varies considerably across games, with models generally
performing better in environments with more consistent interaction patterns (Vivecraft) than those
requiring nuanced controller manipulations (Half-Life: Alyx). These results highlight specific
cognitive gaps in current LLMs’ ability to perform simulated embodied reasoning for VR interactions
and identify targeted areas for improvement toward more capable virtual agents.

Our contributions are:

• We introduce ComboBench, the first benchmark designed to evaluate LLMs’ fine-grained cognitive
abilities in translating high-level semantic actions into VR device manipulations, comprising 262
human-annotated scenarios from four diverse VR games.

• We define a set of key cognitive abilities crucial for VR interaction and design ComboBench to
enable step-level analysis of LLM performance against these dimensions.

• We conduct a comprehensive evaluation of six state-of-the-art LLMs, providing a nuanced analysis
of their strengths and weaknesses across these cognitive abilities and offering insights into the
current frontiers of LLM-driven VR interaction.

2 COMBOBENCH: DESIGN AND CURATION

The ComboBench dataset is meticulously curated to evaluate the capability of LLMs in translating
high-level semantic actions into sequences of physical VR device manipulations. This section details
the game selection process, scenario definition, and the annotation methodology.

2.1 COGNITIVE CAPABILITY TAXONOMY DEVELOPMENT

To establish a theoretically grounded framework for evaluating LLMs in VR contexts, we conducted
structured interviews with three domain experts specializing in cognitive science and educational
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psychology. The experts were selected based on their research backgrounds in spatial cognition,
procedural learning, and embodied interaction, which areas that are highly relevant to VR interaction.

Expert Interview. Each expert participated in a 90-minute semi-structured interview focused on
identifying and categorizing the cognitive abilities required for translating semantic goals into physical
actions in virtual environments. The interviews followed a three-phase structure: (1) open-ended
discussion about cognitive processes in VR interaction, (2) systematic review of preliminary capability
categories identified from literature, and (3) expert suggestions for refinement and expansion of these
categories.

Taxonomy Refinement. Following the interviews, we synthesized the experts’ insights through
thematic analysis. Areas of consensus were directly incorporated into our taxonomy, while divergent
perspectives were reconciled through follow-up consultations. This iterative process resulted in the
identification of six core capability dimensions that comprehensively capture the cognitive demands of
VR interaction: (1) Task decomposition: The ability to break down high-level goals into sequentially
ordered sub-tasks. (2) Procedural reasoning: Understanding causal relationships between actions
and their temporal dependencies. (3) Spatial reasoning & contextual Awareness: Processing spatial
relationships and interpreting environmental cues for action selection. (4) Object interaction & tool
use understanding: Comprehending affordances and functional properties of virtual objects. (5)
Motor action mapping & VR procedural transfer: Translating conceptual actions into specific physical
device manipulations. (6) Judgment of termination/continuation conditions: Recognizing completion
states or conditions requiring repeated action.

2.2 GAME SELECTION CRITERIA AND PROCESS

To ensure a diverse and relevant set of VR interaction paradigms, we selected games based on a
systematic process. First, we queried the Steam store (web, 2023) filtering for titles tagged as “VR
Only” and available in “English,” sorting the results by user review scores in descending order. We
then iteratively examined games from this ranked list, focusing on their primary genre as categorized
by Steam. To ensure genre diversity, we prioritized games from genres not yet represented in our
collection. A crucial selection criterion was the availability of comprehensive textual walkthroughs.
For each candidate game, we searched for detailed guides using keywords such as “walkthrough,”
“guide,” or “tutorial.” A walkthrough was deemed sufficiently detailed if it provided unambiguous,
step-by-step instructions enabling the completion of core game objectives or specific complex
tasks. Following this methodology, we selected four popular and critically acclaimed VR games
representing distinct genres and interaction styles for ComboBench: (1) Vivecraft (Vivecraft, 2013)
(Open-world sandbox, crafting) (2) Half-Life: Alyx (Valve, 2020) (First-person shooter, puzzle-
solving, physics-based interaction) (3) Moss: Book II (Polyarc, 2022) (Third-person action-adventure,
puzzle-platformer) (4) Into the Radius (CMGames, 2019) (First-person survival shooter, exploration)
Such selection provides a rich variety of control schemes and task complexities for evaluating LLMs.

2.3 SCENARIO DEFINITION: SEMANTIC ACTION IDENTIFICATION

For all selected games, eight data annotators, comprising undergraduate and postgraduate computer
science students with at least two years of programming experience and sufficient knowledge about
VR games, manually identified salient semantic actions from the collected textual walkthroughs.
Semantic actions were defined as high-level, goal-oriented tasks described in the walkthroughs (e.g.,
“tame the horse,” “kill the creeper,” “solve the gravity glove puzzle”) that necessitate a sequence
of fine-grained VR device manipulations to accomplish. We focused on scenarios that: (1) involve
complex interactions not always explicitly detailed in in-game tutorials, (2) often constitute essential
steps or objectives required for game progression. This process resulted in the identification of 262
distinct scenarios across the four games.

2.4 ANNOTATION OF VR DEVICE MANIPULATIONS

Experienced VR users from our annotation team then played through each identified semantic action
in the respective games using Oculus Quest 2 VR hardware. The objective was to record the precise
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sequence of device manipulations required to complete each semantic action. The annotation process
captured the following details for each step within a manipulation sequence:

• Device used: Specification of whether the HMD or a controller was used.
• Controller specificity: If a controller was used, and the action was hand-specific (e.g., primary

hand for a tool), the annotation indicated whether the left or right controller was required. If either
controller could perform the action, this was noted as “left or right controller.”

• Operation type and parameters:
– Movement: For actions involving device movement (HMD or controller), the direction (e.g.,

“towards the Creeper,” “upwards”) or target position was recorded.
– Button presses: The specific button involved and the action (e.g., “press X button,” “release

trigger”) were noted.
– Joystick/thumbstick manipulation: The direction of joystick push (e.g., “push left thumbstick

forward”) was recorded.
• Sequential composition: For complex semantic actions composed of multiple, distinct sub-actions

that might have been annotated individually, the sequence and composition of these simpler actions
were explicitly recorded.

2.5 COGNITIVE CAPABILITY LABELING USING LLMS

A critical aspect of ComboBench is the annotation of each manipulation step with the specific
cognitive capabilities it engages. This fine-grained labeling enables precise analysis of where LLMs
succeed or fail in the VR interaction translation process.

Initial Human Annotation. To begin, our annotators manually labeled a subset of 50 manipulation
sequences (approximately 20% of the dataset), assigning relevant capability categories to each step
based on the taxonomy described in Section 2.1. For example, in the sequence required to "tame a
horse" in Vivecraft, the step "equip the saddle by pressing the Y button while looking at the inventory
slot containing the saddle" was labeled with "Object Interaction & Tool Use Understanding" and
"Motor Action Mapping."

LLM-Assisted Annotation Pipeline. We then developed an LLM-assisted annotation pipeline
to scale this process to the entire dataset. Specifically: ① We used the human-annotated examples
as few-shot demonstrations for GPT-4o. ② For each unlabeled manipulation step, we provided the
LLM with: [2.a] The semantic action context (e.g., "taming a horse in Vivecraft"). [2.b] The specific
manipulation step to label. [2.c] The preceding and following steps (when available). [2.d] Detailed
descriptions of each capability category. [2.e] Three few-shot examples with explanations of why
each capability was assigned. ③ The LLM generated capability labels along with justifications for
each assignment. ④ Human annotators reviewed the LLM-generated labels, making corrections when
necessary. The review process revealed an 89.7% agreement rate between LLM-assigned labels and
human judgments.

Multi-label Distribution. Most manipulation steps engaged multiple cognitive capabilities si-
multaneously. On average, each step was associated with 2.3 capability categories (σ = 0.8). The
most frequently co-occurring capabilities were "Motor Action Mapping" and "Object Interaction
& Tool Use Understanding" (present together in 68% of steps), reflecting the inherent coupling
between understanding virtual object affordances and translating this understanding into physical
manipulations.

2.6 CONTEXTUALIZATION AND VERIFICATION

To further contextualize the annotated actions and aid in verification, we sourced or recorded gameplay
videos corresponding to the textual walkthroughs for each game. For each annotated semantic
action and its constituent manipulation steps, we recorded the corresponding timestamps in these
videos. This allows for visual verification of the annotated sequences and provides richer context for
understanding the actions. If suitable public gameplay videos matching the exact walkthrough steps
were unavailable, our annotators recorded their own gameplay sessions while performing the actions.
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3 EXPERIMENTS

3.1 MODEL SELECTION

We evaluate six state-of-the-art LLMs: GPT-4o, GPT-4-turbo, GPT-3.5-turbo, Gemini-1.5-Pro, Llama-
3-8B, and Mixtral-8x7B. We also perform human evaluation to validate the average human capabilities
for comparison, when humans are given exactly the same input as LLMs. For all experiments, we
used the official APIs for proprietary models and Hugging Face implementations for open-source
models. Temperature was set to 0 across all models to minimize non-deterministic outputs. For
embedding calculations, we utilized OpenAI’s text-embedding-3-large model via their API.

3.2 EVALUATION METRICS

To comprehensively evaluate the capability of LLMs in translating semantic actions into VR device
manipulations, we propose a multi-dimensional evaluation framework with four distinct metrics.
These metrics collectively capture different aspects of model performance in ComboBench, ranging
from strict matching to more flexible semantic alignment.

3.2.1 STRICT STEP-BY-STEP MATCHING (SSM)

Our first metric evaluates the exact matching between model-generated and ground truth steps, enforc-
ing both sequence length equivalence and semantic alignment: SSM = Number of correctly predicted sequences

Total number of sequences .
A sequence is considered correctly predicted only when: the number of steps in the generated
sequence equals that of the ground truth, and every step in the generated sequence has a cosine
similarity above a threshold of 0.8387 with its corresponding step in the ground truth This strict
metric serves as a measure of precision in reproducing exact device manipulation sequences and
rewards models that can generate complete, step-accurate instructions.

3.2.2 COMMON SUBSEQUENCE EVALUATION

We further introduce two complementary metrics based on common subsequence alignment to assess
partial correctness: (1) Normalized Step Alignment Score (NSAS) This metric quantifies the
alignment between the model-generated sequence and ground truth while accounting for missing
and additional steps: NSAS =

(|C|−|M |−|A|)−minall_samples

|G|·(maxall_samples−minall_samples)
, where: |C| represents the count of correctly

matched steps in the common subsequence, |M | represents missing steps from the ground truth, |A|
represents additional steps generated by the model, |G| represents the total number of steps in the
ground truth, minall_samples and maxall_samples represent the minimum and maximum raw scores across
all evaluations, enabling consistent normalization This score is normalized across the entire dataset to
ensure fair comparison across different models and scenarios. (2) Sequential Order Preservation
(SOP) The SOP metric specifically assesses the model’s ability to maintain the correct procedural
ordering of steps: SOP = |Steps correctly ordered and matched|

|G| . This metric evaluates whether the steps in the
matched subsequence maintain their ordinal positions (e.g., step 1 followed by step 2, etc.) in both
the ground truth and model output, capturing the model’s procedural reasoning capabilities.

3.2.3 SEMANTIC STEP COVERAGE (SSC)

Our final metric adopts a more flexible matching approach to evaluate semantic coverage of critical
actions: SSC = |MR steps matched to any GT step|

|MR| , where a model result (MR) step is considered matched if
it has a cosine similarity above the threshold (0.8387) with any step in the ground truth (GT). This
metric computes the proportion of generated steps that semantically align with at least one ground
truth step, regardless of position.

3.3 EXPERIMENTAL RESULTS

We analyze and answer the following Research Questions (RQs): (RQ1) How do state-of-the-art
LLMs perform in translating semantic actions into VR device manipulations across different VR
games? (RQ2) How does the number of few-shot examples affect LLMs’ ability to execute this
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Table 1: Overall performance comparison of LLMs across VR games (5-shot setting). Best model
performance per metric is bolded, second best is underlined.

Model Half-Life: Alyx Into the Radius Moss: Book II Vivecraft
NSAS↑ SOP↑ F1SOP↑ SSC↑ NSAS↑ SOP↑ F1SOP↑ SSC↑ NSAS↑ SOP↑ F1SOP↑ SSC↑ NSAS↑ SOP↑ F1SOP↑ SSC↑

GPT-3.5 0.858 0.123 0.287 0.143 0.662 0.169 0.226 0.137 0.782 0.169 0.207 0.186 0.922 0.043 0.098 0.067
GPT-4 0.853 0.125 0.258 0.172 0.693 0.189 0.328 0.177 0.824 0.218 0.336 0.220 0.927 0.137 0.437 0.081
GPT-4o 0.804 0.022 0.075 0.167 0.698 0.291 0.414 0.190 0.824 0.300 0.342 0.222 0.931 0.190 0.489 0.096
Mixtral 0.839 0.126 0.246 0.147 0.666 0.123 0.228 0.097 0.756 0.117 0.191 0.121 0.926 0.060 0.239 0.070
LLaMA-3 0.848 0.126 0.279 0.162 0.644 0.242 0.317 0.168 0.823 0.283 0.349 0.200 0.929 0.039 0.122 0.042
GLM-4 0.836 0.076 0.183 0.149 0.618 0.096 0.186 0.149 0.749 0.087 0.174 0.165 0.909 0.000 0.045 0.061

Human 0.845 0.090 0.240 0.110 0.684 0.148 0.257 0.181 0.817 0.112 0.328 0.174 0.935 0.122 0.482 0.084

Table 2: Overall performance across VR games and settings. We report the average scores for our
four evaluation metrics: Strict Step-by-Step Matching (SSM), Normalized Step Alignment Score
(NSAS), Sequential Order Preservation (SOP), and Semantic Step Coverage (SSC). Higher is better
for all metrics. Bold indicates best model performance, underline indicates second best.

Model Average Across Settings Zero-Shot 5-Shot
SSM (%) NSAS SOP SSC SSM (%) NSAS SOP SSC SSM (%) NSAS SOP SSC

GPT-3.5-turbo 1.4 0.781 0.063 0.066 0.8 0.771 0.003 0.046 2.1 0.791 0.128 0.095
GPT-4-turbo 3.7 0.806 0.107 0.124 1.0 0.788 0.015 0.107 8.8 0.825 0.184 0.140
GPT-4o 5.3 0.797 0.138 0.141 0.6 0.785 0.015 0.108 10.9 0.806 0.228 0.161
Gemini-1.5-Pro 5.8 0.813 0.146 0.142 2.1 0.795 0.010 0.124 11.7 0.832 0.236 0.162
Mixtral-8x7B 1.1 0.784 0.068 0.079 0.0 0.777 0.002 0.040 2.2 0.796 0.105 0.107
Llama-3-8B 1.2 0.787 0.088 0.111 0.1 0.783 0.011 0.088 1.8 0.794 0.163 0.132
GLM-4-flash 0.0 0.761 0.038 0.077 0.0 0.762 0.006 0.052 0.0 0.765 0.071 0.120

Human 1.2 0.833 0.122 0.159 – – – – – – – –

translation? (RQ3) Do LLM and human performance exhibit significant variations across the four
different VR games, potentially indicating sensitivity to game mechanics and interaction complexity?
(RQ4) Which cognitive capabilities do current LLMs excel at, and where do they struggle? (RQ5)
How do LLMs compare to human performance in VR device manipulation tasks?

3.4 RQ1 & RQ3: LLM PERFORMANCE ACROSS VR GAMES

Table 3: Cross-game performance variation (stan-
dard deviation across games) w/ 5-shot examples.
Model NSAS σ↓ SOP σ↓ F1SOP σ↓ Game Gap↓
GPT-3.5 0.110 0.061 0.084 0.085
GPT-4 0.059 0.051 0.081 0.074
GPT-4o 0.068 0.137 0.184 0.127
Gemini-1.5 0.099 0.093 0.127 0.095
LLaMA-3 0.112 0.103 0.120 0.113
Mixtral 0.114 0.031 0.065 0.070
GLM-4 0.135 0.049 0.069 0.084

Human 0.105 0.029 0.117 0.084

Tables 1, 2, and 3 present comprehensive perfor-
mance metrics for all evaluated LLMs across the
four VR games. Our analysis reveals substan-
tial variations in model capabilities and game-
specific challenges. Gemini-1.5-Pro emerges as
the strongest performer overall, achieving the
highest NSAS scores in three of the four games
(Half-Life: Alyx: 0.863, Moss: Book II: 0.848,
Vivecraft: 0.938), while maintaining compet-
itive performance in Into the Radius (0.682).
GPT-4o demonstrates particular strength in Into
the Radius with the highest SOP score (0.291)
and F1SOP (0.414), suggesting superior procedural reasoning capabilities in this specific game context.
GPT-4-turbo maintains consistently strong performance across all games, positioning itself as a
reliable general-purpose model for VR interaction translation.

A striking pattern emerges in the SOP metrics, which vary dramatically across both models and
games (0.00-0.30 range). While NSAS scores remain relatively high (mostly >0.75), indicating
models can identify relevant steps, the low SOP values reveal fundamental difficulties in maintaining
correct temporal ordering. This discrepancy is particularly pronounced in Vivecraft, where models
achieve high NSAS scores (0.909-0.938) but struggle with step ordering (SOP: 0.00-0.19), suggesting
that simpler interaction patterns may paradoxically lead to overconfidence in step sequencing.

Analysis of performance variations (Table 3) reveals significant game-dependent effects. Vivecraft
exhibits the highest average performance across models (NSAS: 0.922-0.938), likely due to its
consistent block-based interaction paradigm inherited from Minecraft. In contrast, Into the Radius
presents the greatest challenge, with notably lower NSAS scores (0.618-0.698) and high performance
variance. This pattern suggests that games featuring realistic physics simulations and complex
inventory management pose particular difficulties for current LLMs.
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Interestingly, different models exhibit distinct strengths across game types. GPT-4o shows remarkable
adaptability in Into the Radius (SOP: 0.291) compared to other models, while struggling in Half-Life:
Alyx (SOP: 0.022). Gemini-1.5-Pro maintains the most balanced performance profile across games
(Game Gap: 0.095), suggesting more robust generalization capabilities. Smaller models like Mixtral-
8x7B and GLM-4-flash show disproportionate performance degradation in complex environments,
with GLM-4-flash achieving zero SOP in Vivecraft despite reasonable NSAS scores. The substantial
performance variations across games highlight the impact of interaction design on LLM capabilities.
Games with discrete, well-defined actions (Vivecraft) enable higher model performance, while those
requiring nuanced controller manipulation and spatial reasoning (Half-Life: Alyx, Into the Radius)
expose current limitations. The correlation between game complexity and performance degradation
is non-linear, moderate complexity (Moss: Book II) sometimes yields better results than simpler
environments, suggesting that models may benefit from richer contextual cues in certain scenarios.

These findings collectively demonstrate that while state-of-the-art LLMs have made significant
progress in understanding VR interactions, their performance remains highly sensitive to specific
game mechanics and interaction paradigms. The gap between high NSAS scores and low SOP
values across all games indicates that current models can identify relevant actions but struggle with
the procedural reasoning required to sequence them correctly, which is an important capability for
successful VR interaction.

3.5 RQ2: IMPACT OF FEW-SHOT EXAMPLES

Table 4: Effect of few-shot examples on model performance
(average across all games)

Model Zero-shot 3-shot 5-shot
NSAS↑ SOP↑ SSM↑ NSAS↑ SOP↑ SSM↑ NSAS↑ SOP↑ SSM↑

GPT-3.5 0.781 0.003 0.006 0.783 0.113 0.013 0.806 0.128 0.022
GPT-4 0.799 0.015 0.012 0.807 0.106 0.039 0.824 0.167 0.066
GPT-4o 0.785 0.015 0.012 0.802 0.166 0.059 0.815 0.159 0.077
Gemini-1.5 0.797 0.010 0.016 0.827 0.174 0.048 0.833 0.207 0.056
LLaMA-3 0.786 0.011 0.001 0.787 0.139 0.014 0.811 0.172 0.020
Mixtral 0.784 0.002 0.000 0.766 0.103 0.010 0.797 0.106 0.021
GLM-4 0.747 0.005 0.000 0.756 0.036 0.000 0.778 0.065 0.000

Table 4 demonstrates that few-
shot examples substantially im-
prove LLM performance in VR
device manipulation tasks, with
the most dramatic gains observed
in Sequential Order Preservation
(SOP), where scores increase
by 10–20x from near-zero base-
lines. All models benefit from in-
context examples, though with
diminishing returns, the improve-
ment from zero-shot to 3-shot (average NSAS gain: 2.1%, SOP: 10-fold increase) significantly
exceeds that from 3-shot to 5-shot (NSAS: 1.4%, SOP: 20-50% relative gain). Gemini-1.5-Pro
exhibits the strongest adaptability, achieving the highest 5-shot performance (NSAS: 0.833, SOP:
0.207), while maintaining consistent improvements across all metrics. The differential impact across
metrics reveals that few-shot examples primarily address procedural sequencing challenges (massive
SOP improvements) more effectively than exact step matching (modest SSM gains), suggesting that
demonstrations help models understand temporal dependencies in VR interactions but do not fully
resolve the complexity of translating semantic actions into precise device manipulations.

3.6 RQ4: COGNITIVE CAPABILITIES ANALYSIS

We analyzed model performance across six cognitive capabilities required for effective VR interaction
(Figure 1). By mapping evaluation metrics to capability scores (0-10 scale), we identified specific
strengths and limitations in how LLMs approach spatial-mechanical reasoning tasks.

Areas of Strength: All evaluated LLMs demonstrate strong task decomposition capabilities (7.8-8.5),
with minimal performance gap compared to humans (8.2). Gemini-1.5-Pro leads with a score of
8.5, while even smaller models like Mixtral-8x7B (8.0) and GLM-4-flash (7.8) perform admirably.
This suggests that segmenting high-level actions into component steps aligns well with the sequential
reasoning abilities developed during language model pre-training.

Areas of Weakness: Motor action mapping emerges as the most significant challenge (0.5-4.5), with
all models struggling to precisely translate abstract actions into specific VR control manipulations.
GPT-4o performs best in this dimension (4.5), but still falls short of robust capability. Procedural
reasoning also shows substantial variation (2.3-7.0), with only Gemini-1.5-Pro approaching adequate
performance. Judgment of termination conditions represents another challenge area, with most
models scoring below 5.0 (except Gemini-1.5-Pro at 6.0), compared to human performance (6.5).
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Model Comparison: Gemini-1.5-Pro demonstrates the most balanced performance profile, con-
sistently outperforming other models in procedural reasoning (7.0), spatial reasoning (7.5), and
termination judgment (6.0). GPT-4 variants show strong task decomposition and object interaction
(5.3-5.7) but lag in procedural sequencing. Llama-3-8B shows surprisingly competitive performance
in procedural reasoning (5.7), outperforming larger models like GPT-3.5-Turbo (4.3), suggesting
architecture differences may be as important as scale.

3.7 RQ5: COMPARISON WITH HUMAN PERFORMANCE

Task
Decomposition

Procedural
Reasoning

Spatial
Reasoning

Object
Interaction

Motor Action
Mapping

Judgment of
Termination

2

4

6

8

10

GPT-3.5-turbo
GPT-4-turbo
GPT-4o
Gemini-1.5-Pro
Mixtral-8x7B
Llama-3-8B
GLM-4-flash
Human

Figure 1: Cognitive capabilities of LLMs and hu-
mans in translating semantic actions to VR device
manipulations. Higher scores (0-10 scale) indicate
stronger abilities.

To contextualize our findings, we compare LLM
performance against human baselines across our
evaluation metrics. As shown in Tables 1 and 2,
state-of-the-art LLMs demonstrate competitive
performance with humans on several key di-
mensions. Our results reveal a nuanced perfor-
mance landscape. While top-performing models
(Gemini-1.5-Pro, GPT-4o) achieve comparable
or superior NSAS scores relative to humans in
certain games (e.g., Vivecraft: 0.931-0.938 vs.
0.935 for humans), human participants maintain
a decisive advantage in Sequential Order Preser-
vation, particularly for games requiring complex
interaction sequences. In Half-Life: Alyx, hu-
mans achieve only 0.090 SOP compared to the
best model performance of 0.209 (Gemini-1.5-
Pro), yet this reflects the challenging nature of
the task rather than superior model performance,
both humans and models struggle with the intricate procedural requirements of this game.

Analysis of performance variance across games (Table 3) reveals striking similarities between human
and high-performing model behavior. The standard deviation of human performance (0.084) closely
aligns with that of GPT-4 (0.074) and Mixtral-8x7B (0.070), suggesting that both humans and
advanced LLMs exhibit similar sensitivity patterns to game-specific interaction complexities. This
convergence is particularly evident in structured environments like Vivecraft, where the consistency
gap between humans and LLMs has substantially narrowed. Figure 1 illustrates the capability-wise
performance comparison, revealing critical gaps in embodied reasoning. Humans maintain superior
performance in spatial reasoning (8.3 vs. 7.5 for Gemini-1.5-Pro) and judgment of termination
conditions (6.5 vs. 6.0). These differences are statistically significant (p < 0.05, Wilcoxon signed-
rank test) and persist across all evaluated models. This performance gap suggests that while LLMs
have achieved remarkable progress in understanding VR interaction semantics, they lack the grounded
physical intuition that humans naturally apply when reasoning about three-dimensional manipulations
and determining action completion states.

The convergence of human and LLM performance on certain metrics, coupled with persistent gaps in
spatial and termination reasoning, indicates that current language models can effectively decompose
VR tasks but struggle with aspects requiring embodied experience. This finding has important
implications for the development of future VR-capable AI systems, suggesting the need for training
paradigms that better incorporate spatial and physical reasoning capabilities.

4 RELATED WORK

Recent work has explored the use of large language models (LLMs) as generalist agents for em-
bodied and interactive reasoning tasks. In robotics, SayCan (Ahn et al., 2022) and PaLM-E (Driess
et al., 2023) combine LLMs with affordance-based skill models or multimodal inputs to plan and
execute robot actions in real-world settings. These methods demonstrate that LLMs can decompose
high-level goals into actionable steps when grounded in sensory input and executable primitives.
Similar capabilities have been investigated in virtual domains such as Minecraft through agents
like Voyager (Wang et al., 2023) and simulation platforms like MineDojo (Fan et al., 2022), which
showcase in-context learning and autonomous skill acquisition by prompting LLMs to generate and

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

refine code or sub-goals based on environmental feedback. However, these systems are typically
tuned for code-level or symbolic outputs and do not focus on physical device manipulation or spatially
grounded motor control as required in VR environments.

Task decomposition and procedural reasoning have been studied extensively via prompting strategies
such as Chain-of-Thought (Wei et al., 2022) and ReAct (Yao et al., 2022), which interleave reasoning
with action selection to improve coherence in multi-step planning. LLMs have also been used
to generate structured action sequences or API calls from natural instructions in domains like
household tasks (Shridhar et al., 2020) and scientific procedures (Wang et al., 2022). Code-as-policy
paradigms (Liang et al., 2022) show that LLMs can output executable policy code that integrates
logical control flow, enabling conditional and iterative actions. However, these approaches often
abstract away the complexity of physical or spatial execution, making them less suited for evaluating
embodied skills involving real-time device input, object affordances, or 3D spatial constraints.

To assess grounded reasoning, several benchmarks have been proposed in interactive settings. Animal-
AI (Mecattaf et al., 2024) evaluates embodied cognition through physics-based tasks adapted from
animal intelligence experiments, highlighting LLMs’ partial competence in navigation, tool use,
and physical causality. Similarly, platforms like ALFWorld (Shridhar et al., 2021) and Science-
World (Wang et al., 2022) test instruction-following via text or symbolic interfaces, while MacGyver-
style tasks (Tian et al., 2024) probe object-use innovation in constrained settings. These works
underscore known limitations in spatial reasoning, persistence, and tool-use generalization among
LLMs.

Concurrently, capability-oriented embodied evaluations for multimodal/embodied LLMs have
emerged. EmbodiedBench (Yang et al., 2025) unifies high- and low-level tasks with fine-grained
error taxonomies, while VLABench (Zhang et al., 2024a) targets long-horizon, language-conditioned
manipulation for VLA policies; the Embodied Agent Interface (EAI) (Li et al., 2025) standardizes
modules and metrics for step-level diagnostics. In parallel, GUI/OS/mobile control benchmarks,
including OSWorld (Xie et al., 2024), SPA-Bench (Zhang et al., 2024b), WebArena (Zhou et al.,
2023), Mind2Web (Deng et al., 2023), AndroidEnv (Toyama et al., 2021), and AppAgent/AppA-
gent v2 (Zhang et al., 2023; Li et al., 2024b), evaluate precise, procedure-level device interac-
tions (click/tap/drag/typing) with programmatic success checks, offering a complementary view of
grounded action competence. On the robotics side, VLA policies such as RT-1/RT-2 (Brohan et al.,
2022; 2023) and OpenVLA (Kim et al., 2024) map visual observations and language to action tokens,
improving semantic generalization in manipulation; large-scale 3D suites like Habitat 2.0/HAB (Savva
et al., 2021), BEHAVIOR-1K/OmniGibson (Li et al., 2024a), and CALVIN (Mees et al., 2021) stress
long-horizon rearrangement and physics.

In contrast, our benchmark, ComboBench, targets the translation of semantic goals into fine-grained,
physically grounded VR device manipulations, enabling a more precise step-level analysis of embod-
ied cognitive abilities critical for real-world interaction.

5 CONCLUSION

We present ComboBench, a comprehensive benchmark evaluating seven state-of-the-art LLMs on
their ability to translate semantic actions into VR device manipulations across 262 scenarios from
four popular VR games. Our evaluation reveals that while advanced models like Gemini-1.5-Pro
demonstrate strong task decomposition capabilities (NSAS > 0.8), they exhibit significant weaknesses
in motor action mapping and procedural reasoning, with Sequential Order Preservation scores often
below 0.3 even in the best cases. Few-shot examples dramatically improve procedural understanding
(10-20x increase in SOP scores) but provide limited benefit for exact step matching, suggesting
that in-context learning helps models understand action relationships but cannot fully bridge the
gap in physical manipulation reasoning. The pronounced performance variations across games
and cognitive capabilities indicate that current text-trained LLMs lack the embodied understanding
necessary for reliable VR interaction, pointing to the need for multimodal training approaches that
incorporate spatial, visual, and haptic information. These findings highlight fundamental limitations
in how language models represent physical interactions and suggest that achieving human-level VR
manipulation capabilities will require architectural innovations beyond scaling current approaches,
with important implications for the development of embodied AI systems in virtual and augmented
reality applications.
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A PRELIMINARIES ON VIRTUAL REALITY

Virtual Reality (VR) represents a fundamentally distinct paradigm of human-computer interaction
that transcends traditional interface boundaries. Unlike conventional computing systems that rely
on indirect manipulation through keyboards, mice, and two-dimensional displays, VR creates im-
mersive digital environments where users experience presence and embodiment. This paradigm shift
necessitates a comprehensive understanding of both the technological infrastructure and the cognitive
demands placed on users who must translate abstract intentions into concrete physical manipulations
within virtual spaces.

The evolution of VR technology has progressed through several generations, from early tethered
systems requiring substantial computational infrastructure to modern standalone devices that integrate
processing, display, and tracking capabilities within compact form factors. Contemporary VR systems
can be broadly categorized into three architectural approaches. PC-tethered headsets leverage external
computational resources to deliver high-fidelity experiences with complex graphics and physics
simulations. Standalone headsets, exemplified by devices like the Meta Quest series, incorporate
integrated processors that balance performance with portability. Mobile-phone-based solutions
represent an accessible entry point, utilizing smartphones as both display and processor, though with
inherent limitations in tracking precision and computational capability.

The core hardware components enabling VR interaction form an integrated ecosystem of sensory
input and output devices. Head-Mounted Displays (HMDs) serve as the primary visual interface,
providing stereoscopic rendering that creates depth perception while simultaneously tracking head
orientation and position through integrated sensors. This tracking enables natural viewing behaviors
where users can examine virtual objects by physically moving their heads, mirroring real-world visual
exploration patterns. Motion controllers, typically deployed in pairs to represent both hands, enable
direct manipulation of virtual objects through a combination of positional tracking, button inputs,
trigger mechanisms, and thumbstick controls. These devices must balance ergonomic considerations
with functional complexity, providing sufficient input channels while maintaining intuitive operation.
Spatial tracking systems, whether implemented through external sensors (outside-in tracking) or
integrated cameras (inside-out tracking), monitor user movements with six degrees of freedom,
capturing both translational and rotational motion to enable natural locomotion and interaction within
virtual environments.

The ongoing evolution of VR hardware continues to introduce novel interaction modalities. Haptic
gloves promise to deliver tactile feedback through actuators that simulate texture, resistance, and
temperature. Full-body tracking systems capture skeletal motion to enable more nuanced avatar
control and gesture recognition. Specialized peripherals, from steering wheels for racing simulations
to weapon replicas for combat games, demonstrate the trend toward application-specific controllers
that enhance immersion through physical affordances that match virtual interactions.

A.1 INTERACTION PARADIGMS AND DESIGN PRINCIPLES

The design of VR interaction paradigms represents a delicate balance between leveraging users’
existing motor skills and introducing novel control schemes that exploit the unique capabilities of
virtual environments. Direct manipulation forms the foundation of most VR interactions, where
users employ hand controllers to simulate natural actions like grasping, throwing, and pushing. This
approach capitalizes on users’ lifetime of experience with physical object manipulation but requires
careful calibration of virtual physics to match expectations. The mapping between controller inputs
and virtual hand movements must account for the absence of tactile feedback, often employing visual
or auditory cues to confirm successful interactions.

Ray-casting emerged as an elegant solution to the fundamental challenge of interacting with objects
beyond physical reach. By projecting virtual rays from controllers, users can select, manipulate, and
activate distant objects without locomotion. This technique exemplifies how VR interaction design
often augments natural human capabilities rather than strictly simulating physical constraints. Ad-
vanced ray-casting implementations incorporate features like ray curvature for improved ergonomics,
variable ray length based on context, and visual feedback mechanisms that indicate interaction
possibilities.
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Gesture recognition systems interpret temporal patterns of controller or hand movement as discrete
commands, enabling a rich vocabulary of interactions without relying on button combinations. These
systems must balance recognition accuracy with user comfort, avoiding gestures that cause fatigue
or require precise movements difficult to perform consistently. Machine learning approaches have
enhanced gesture recognition capabilities, allowing for more natural and varied input patterns while
maintaining reliable detection rates.

Symbolic input mechanisms address scenarios where direct physical analogues are impractical or
inefficient. Virtual keyboards present unique challenges in VR, as users lack tactile feedback and
must rely on visual confirmation of key presses. Solutions range from laser-pointer selection of virtual
keys to gesture-based text entry systems that map hand movements to characters. Voice commands
offer an alternative input modality that bypasses manual interaction entirely, though they introduce
considerations around recognition accuracy, latency, and social acceptability in shared spaces.

A.2 DEVELOPMENT PLATFORMS AND TECHNICAL CONSIDERATIONS

The creation of VR applications relies on sophisticated development ecosystems that abstract hardware
complexity while providing fine-grained control over interaction mechanics. Unity and Unreal Engine
have emerged as dominant platforms, offering comprehensive toolsets that handle rendering pipelines,
physics simulation, spatial audio, and cross-platform deployment. These engines provide specialized
VR interaction frameworks that standardize common patterns like object grabbing, teleportation, and
menu systems, significantly reducing development complexity.

Hardware software development kits (SDKs) serve as the bridge between high-level application logic
and device-specific capabilities. Meta’s OpenXR initiative represents an industry effort to standardize
VR/AR interfaces, enabling applications to target multiple hardware platforms without extensive
modifications. Platform-specific SDKs like SteamVR and Oculus SDK continue to play important
roles, offering access to proprietary features and optimizations that enhance performance on particular
hardware.

Technical constraints fundamentally shape VR interaction design decisions. Maintaining consistent
frame rates above 72Hz (and preferably 90Hz or higher) prevents motion sickness and ensures
responsive interactions. This performance requirement influences every aspect of application design,
from polygon counts and texture resolution to the complexity of physics simulations. Tracking
precision varies across hardware platforms and environmental conditions, necessitating interaction
designs that accommodate occasional tracking losses or reduced accuracy. Developers must also
consider the diverse computational capabilities across the VR ecosystem, implementing scalable
solutions that provide acceptable experiences on entry-level hardware while leveraging the capabilities
of high-end systems.

A.3 CHALLENGES IN VR INTERACTION

Despite remarkable technological progress, VR interaction continues to face fundamental challenges
that impact user experience and limit application domains. The locomotion problem exemplifies the
tension between physical and virtual spaces. While users may explore vast virtual environments, they
remain constrained by finite physical play areas. Teleportation offers a practical solution but breaks
immersion and can cause spatial disorientation. Artificial locomotion through thumbstick control
risks motion sickness in susceptible users. More exotic solutions like omnidirectional treadmills or
redirected walking techniques remain impractical for consumer applications.

The absence of comprehensive haptic feedback represents perhaps the most significant limitation in
current VR systems. While controllers provide basic vibration feedback, they cannot simulate the
rich tactile experiences of real-world interaction: the weight of objects, surface textures, temperature
variations, or resistance to movement. This sensory gap creates a fundamental disconnect between
visual expectations and physical sensations, requiring users to adapt their interaction strategies and
often leading to reduced precision in manipulation tasks.

Interaction discoverability poses ongoing challenges as VR applications lack standardized interface
conventions comparable to desktop or mobile platforms. Users encountering new VR experiences
must often learn application-specific control schemes, gesture sets, and interaction patterns. The
absence of persistent visual UI elements (to maintain immersion) exacerbates this challenge, as users
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cannot easily reference control schemes during gameplay. This lack of standardization increases
cognitive load and creates barriers to entry for new users.

Precision manipulation tasks highlight the limitations of current tracking systems and input devices.
Tasks requiring fine motor control, such as threading a virtual needle or manipulating small compo-
nents, prove challenging due to tracking jitter, lack of physical surfaces for hand stabilization, and
absence of tactile confirmation. These limitations restrict the types of applications suitable for VR and
influence interaction design toward larger, more forgiving target sizes and simplified manipulation
schemes.

Figure 2: Overview of STRICT STEP-BY-STEP MATCHING (SSM) calculation

Figure 3: Overview of Common Subsequence Evaluation

B EXPLANATION OF EVALUATION METRICS

B.1 STRICT STEP-BY-STEP MATCHING (SSM)

Figure A.3 illustrates the Strict Step-by-Step Matching (SSM) calculation process. SSM represents
our most stringent evaluation metric, requiring exact correspondence between model-generated
sequences and ground truth annotations. The calculation process operates as follows:

In the left panel, we observe a scenario where the ground truth contains 4 steps while the model
result contains 5 steps. For SSM to register a match, two conditions must be satisfied: (1) the number
of steps must be identical between ground truth and model output, and (2) each step must have a
cosine similarity score above our threshold of 0.8387 with its corresponding ground truth step. In
this example, the length mismatch alone disqualifies the sequence from being counted as correct,
resulting in an SSM score of 0. The orange X symbol on the fifth model step visually indicates this
length mismatch failure.

The right panel demonstrates a successful SSM match where both sequences contain 4 steps. Each
model step is compared with its corresponding ground truth step using cosine similarity of their text
embeddings. The green checkmarks indicate that all four step pairs exceed the similarity threshold,
resulting in a successful match and contributing 1 to the SSM score. This metric’s strictness explains
why even high-performing models achieve relatively low SSM scores—any deviation in sequence
length or individual step similarity results in complete failure for that sequence.
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Table 5: Performance of LLMs across VR Games (Best Few-Shot Setting)
Model NSAS SOP SSC SSM Best FS

Gemini-1.5-Pro 0.845 0.251 0.151 0.087 5
GPT-4o 0.832 0.291 0.190 0.135 5
GPT-4 0.824 0.218 0.177 0.095 5
Llama-3-8B 0.823 0.283 0.200 0.040 5
Human 0.817 0.124 0.174 0.021 -
Mixtral-8x7B 0.790 0.123 0.142 0.039 5
GPT-3.5 0.778 0.169 0.137 0.037 5
GLM-4-Flash 0.749 0.096 0.165 0.000 5

Table 6: Performance comparison across different VR games (5-shot setting). We report NSAS scores
(primary metric) and SOP scores (in parentheses).

Model Half-Life: Alyx Radius Moss Vivecraft
GPT-3.5-turbo 0.858 (0.123) 0.662 (0.169) 0.782 (0.169) 0.922 (0.043)
GPT-4-turbo 0.852 (0.125) 0.693 (0.189) 0.824 (0.218) 0.927 (0.137)
GPT-4o 0.804 (0.022) 0.698 (0.291) 0.824 (0.300) 0.931 (0.190)
Gemini-1.5-Pro 0.863 (0.209) 0.682 (0.102) 0.848 (0.265) 0.938 (0.250)
Mixtral-8x7B 0.839 (0.126) 0.666 (0.123) 0.756 (0.117) 0.926 (0.060)
Llama-3-8B 0.848 (0.126) 0.644 (0.242) 0.823 (0.283) 0.929 (0.039)
GLM-4-flash 0.836 (0.076) 0.618 (0.096) 0.749 (0.087) 0.909 (0.000)

Human 0.845 (0.090) 0.684 (0.148) 0.817 (0.112) 0.935 (0.122)

B.2 COMMON SUBSEQUENCE EVALUATION

Figure 3 details our Common Subsequence Evaluation approach, which underlies the Normalized
Step Alignment Score (NSAS) and Sequential Order Preservation (SOP) metrics. This evaluation
method provides more nuanced assessment than SSM by identifying partial matches and preserved
ordering within sequences.

The process begins with comparing each step in the ground truth and model result sequences using
cosine similarity, as shown by the crossing blue lines in the leftmost panel. Unlike SSM’s strict
position-based matching, this approach allows steps to match regardless of their positions in the
sequences. The algorithm then identifies the top 3 longest common subsequences where matched
steps maintain their relative ordering.

In the example shown, multiple candidate subsequences are generated, each representing different
ways steps from both sequences can be aligned while preserving order. The model (shown as GPT-
4o) then selects the most matching subsequence based on the highest cumulative similarity scores.
The final selected subsequence shows GT Steps 2, 3, and 4 matching with MR Steps 1, 4, and 5
respectively. This flexible matching approach allows the metrics to capture semantic correctness even
when models include additional steps or present steps in slightly different positions.

The NSAS metric is calculated by considering the correctly matched steps (|C|), missing steps from
ground truth (|M|), and additional steps in the model output (|A|), normalized by the total ground truth
steps and scaled across the dataset. The SOP metric specifically evaluates whether matched steps
maintain their sequential order, providing insight into the model’s procedural reasoning capabilities.

C DETAILED EXPERIMENT RESULTS

This section provides comprehensive analysis of our experimental results, including detailed perfor-
mance breakdowns across models, games, and experimental conditions. We present both aggregated
metrics and fine-grained analyses that illuminate specific strengths and weaknesses in current LLMs’
ability to reason about VR device manipulations.
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Figure 4: LLMs NSAS (avg) by Different Shot Setting Across Four VR Games
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Figure 5: LLMs SOP (avg) by Different Shot Setting Across Four VR Games

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 6: LLMs SSC (avg) by Different Shot Setting Across Four VR Games
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Table 7: Impact of few-shot examples on model performance. We report F1 scores for Sequential
Order Preservation (SOP) across different number of examples. Higher is better.

Model Zero-shot 1-shot 3-shot 5-shot Relative Gain (%)
GPT-3.5-turbo 0.036 0.096 0.190 0.226 527.8
GPT-4-turbo 0.102 0.171 0.254 0.301 195.1
GPT-4o 0.112 0.224 0.257 0.287 156.3
Gemini-1.5-Pro 0.085 0.187 0.260 0.330 288.2
Mixtral-8x7B 0.031 0.110 0.204 0.201 548.4
Llama-3-8B 0.090 0.165 0.254 0.299 232.2
GLM-4-flash 0.033 0.069 0.121 0.146 342.4

Table 8: Average and standard deviation of Normalized Step Alignment Score (NSAS) scores
comparison of LLMs on Vivecraft under different shot settings.

Model GPT-3.5-turbo GPT-4-turbo GPT-4o Gemini-1.5-Pro Mixtral-8x7B Llama-3-8b

Metrics avg std avg std avg std avg std avg std avg std

Zero-shot 0.9258 0.0248 0.9255 0.0238 0.9191 0.0306 0.9209 0.0334 0.9312 0.0207 0.9244 0.0329

1-shot 0.921 0.0309 0.9349 0.0506 0.9358 0.0735 0.9362 0.0553 0.9219 0.0636 0.9101 0.0765

3-shot 0.9284 0.0734 0.914 0.1167 0.9212 0.1115 0.9381 0.0781 0.9005 0.1125 0.9022 0.1051

5-shot 0.9218 0.0385 0.9274 0.0674 0.9305 0.0689 0.9378 0.0708 0.9256 0.0477 0.9289 0.0364

Table 9: Average and standard deviation of Sequential Order Preservation (SOP) scores comparison
of LLMs on Vivecraft under different shot settings.

Model GPT-3.5-turbo GPT-4-turbo GPT-4o Gemini-1.5-Pro Mixtral-8x7B Llama-3-8b

Metrics avg std avg std avg std avg std avg std avg std

Zero-Shot 0.0029 0.0312 0.0007 0.0078 0.0012 0.0125 0.0 0.0 0.0 0.0 0.0059 0.0624

1-shot 0.015 0.0734 0.1203 0.2157 0.1568 0.2337 0.1794 0.291 0.0812 0.164 0.0351 0.1215

3-shot 0.1302 0.2352 0.1143 0.2136 0.2826 0.3417 0.2335 0.3417 0.0986 0.2024 0.1124 0.2026

5-shot 0.0395 0.1226 0.1366 0.2388 0.1837 0.278 0.2495 0.3358 0.0553 0.158 0.0374 0.1371

Table 10: Average and standard deviation of Semantic Step Coverage (SSC) scores comparison of
LLMs on Vivecraft under different shot settings.

Model GPT-3.5-turbo GPT-4-turbo GPT-4o Gemini-1.5-Pro Mixtral-8x7B Llama-3-8b

Metrics avg std avg std avg std avg std avg std avg std

Zero-Shot 0.049 0.11 0.1301 0.1443 0.1272 0.1511 0.2221 0.2151 0.024 0.0999 0.1088 0.1549

1-shot 0.1274 0.1988 0.544 0.3672 0.6598 0.3322 0.5747 0.3359 0.4914 0.3617 0.3165 0.3415

3-shot 0.4755 0.3526 0.6486 0.3373 0.6817 0.3204 0.6538 0.3373 0.5414 0.37 0.5299 0.3785

5-shot 0.18 0.2337 0.5035 0.3772 0.6183 0.3416 0.608 0.3546 0.3579 0.3555 0.1606 0.2605

C.1 OVERALL PERFORMANCE ANALYSIS

The tables ?? below presents a holistic view of model performance across all experimental conditions.
The results reveal a clear performance hierarchy, with Gemini-1.5-Pro achieving the highest average
Normalized Step Alignment Score (NSAS) of 0.845, followed closely by GPT-4o (0.832) and GPT-4
(0.824). Notably, even the best-performing models achieve relatively modest Strict Step-by-Step
Matching (SSM) scores, with Gemini-1.5-Pro reaching only 8.7% exact sequence matches. This
discrepancy between NSAS and SSM scores indicates that while models can identify appropriate
actions, they struggle with precise sequencing and complete reproduction of manipulation sequences.

The Sequential Order Preservation (SOP) scores reveal perhaps the most significant challenge facing
current LLMs. Even top-performing models achieve SOP scores below 0.3, indicating difficulty
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Table 11: Average and standard deviation of Normalized Step Alignment Score (NSAS) scores
comparison of LLMs on Half-Life: Alyx under different shot settings

Model GPT-3.5-turbo GPT-4-turbo GPT-4o Gemini-1.5-Pro Mixtral-8x7B Llama-3-8b

Metrics avg std avg std avg std avg std avg std avg std

Zero-Shot 0.838 0.0413 0.8456 0.0366 0.8376 0.0424 0.8447 0.032 0.8376 0.0331 0.848 0.0317

1-shot 0.8354 0.0582 0.8427 0.0489 0.8472 0.0629 0.8627 0.0482 0.807 0.1099 0.8131 0.1289

3-shot 0.8452 0.0551 0.845 0.0467 0.838 0.0757 0.8701 0.0603 0.8255 0.0819 0.8449 0.0707

5-shot 0.8577 0.0773 0.8523 0.0613 0.8039 0.0694 0.8625 0.0691 0.8394 0.0834 0.848 0.0976

Table 12: Average and standard deviation of Sequential Order Preservation (SOP) scores comparison
of LLMs on Half Life: Alyx under different shot settings.

Model GPT-3.5-turbo GPT-4-turbo GPT-4o Gemini-1.5-Pro Mixtral-8x7B Llama-3-8b

Metrics avg std avg std avg std avg std avg std avg std

Zero-Shot 0.0098 0.0802 0.0252 0.1265 0.0396 0.1745 0.0082 0.0669 0.0019 0.0158 0.0123 0.0704

1-shot 0.0447 0.0764 0.0402 0.1224 0.024 0.0733 0.0198 0.1263 0.0425 0.0816 0.0447 0.0967

3-shot 0.0725 0.1159 0.0312 0.0725 0.0701 0.1261 0.1349 0.2187 0.0703 0.1094 0.087 0.1687

5-shot 0.123 0.1834 0.1248 0.2382 0.0216 0.0809 0.2089 0.2938 0.1257 0.2409 0.1259 0.2385

Table 13: Average and standard deviation of Semantic Step Coverage (SSC) scores comparison of
LLMs on Half Life: Alyx under different shot settings.

Model GPT-3.5-turbo GPT-4-turbo GPT-4o Gemini-1.5-Pro Mixtral-8x7B Llama-3-8b

Metrics avg std avg std avg std avg std avg std avg std

Zero-Shot 0.0785 0.1843 0.2231 0.2089 0.2424 0.2111 0.1989 0.1982 0.0716 0.1187 0.1662 0.172

1-shot 0.2562 0.235 0.3485 0.2336 0.4184 0.2413 0.3859 0.2654 0.3256 0.1934 0.3872 0.2058

3-shot 0.3072 0.2444 0.3648 0.2414 0.5611 0.229 0.5494 0.2887 0.3544 0.2202 0.4599 0.2371

5-shot 0.425 0.2814 0.6127 0.2856 0.6934 0.2359 0.6299 0.315 0.4642 0.2957 0.5152 0.2708

Table 14: Normalized Step Alignment Score (NSAS) scores comparison of LLMs on Moss: Book II
under different shot settings

Model GPT-3.5-turbo GPT-4-turbo GPT-4o Gemini-1.5-Pro Mixtral-8x7B Llama-3-8b

Metrics avg std avg std avg std avg std avg std avg std

Zero-Shot 0.7819 0.0403 0.8055 0.0717 0.7871 0.0596 0.7994 0.0548 0.7913 0.0595 0.7916 0.0572

1-shot 0.776 0.0616 0.7993 0.0771 0.803 0.0924 0.8139 0.0778 0.7663 0.0793 0.7938 0.0763

3-shot 0.7776 0.0889 0.818 0.0925 0.8016 0.1242 0.8302 0.0935 0.7613 0.1341 0.7895 0.1371

5-shot 0.782 0.0952 0.8243 0.102 0.8237 0.1092 0.8478 0.1017 0.756 0.1469 0.8232 0.105

in maintaining correct procedural ordering of steps. This limitation is particularly pronounced in
zero-shot settings, where SOP scores approach zero for most models, suggesting that procedural
reasoning for VR interactions requires exposure to examples rather than emerging from general
language understanding.

Human performance provides an important baseline for contextualizing model achievements. While
humans achieve comparable NSAS scores (0.817) to top LLMs, they show notably lower SOP scores
(0.124) than leading models. This counterintuitive result reflects the challenging nature of the tasks
even for experienced VR users and suggests that perfect procedural recall may be less important than
adaptive problem-solving in real-world VR interaction.
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Table 15: Average and standard deviation of Sequential Order Preservation (SOP) scores comparison
of LLMs on Moss: Book II under different shot settings.

Model GPT-3.5-turbo GPT-4-turbo GPT-4o Gemini-1.5-Pro Mixtral-8x7B Llama-3-8b

Metrics avg std avg std avg std avg std avg std avg std

Zero-Shot 0.0091 0.0581 0.0263 0.1533 0.0113 0.0494 0.0197 0.1029 0.0052 0.033 0.0 0.0

1-shot 0.034 0.1568 0.0663 0.2044 0.1084 0.2486 0.1145 0.2495 0.0739 0.1721 0.0578 0.1486

3-shot 0.1581 0.242 0.1678 0.2522 0.2324 0.3185 0.2272 0.3324 0.1351 0.252 0.2584 0.3089

5-shot 0.1686 0.244 0.2182 0.2801 0.2998 0.3062 0.2652 0.3596 0.1169 0.247 0.2831 0.3097

Table 16: Average and standard deviation of Semantic Step Coverage (SSC) scores comparison of
LLMs on Moss: Book II under different shot settings.

Model GPT-3.5-turbo GPT-4-turbo GPT-4o Gemini-1.5-Pro Mixtral-8x7B Llama-3-8b

Metrics avg std avg std avg std avg std avg std avg std

Zero-Shot 0.0715 0.1792 0.2491 0.2844 0.2313 0.2567 0.1763 0.221 0.0407 0.0991 0.1208 0.1779

1-shot 0.0748 0.1719 0.259 0.2771 0.3682 0.3018 0.3449 0.3396 0.1749 0.2393 0.2319 0.293

3-shot 0.3349 0.3069 0.4593 0.3309 0.5001 0.3444 0.5238 0.3738 0.3207 0.3105 0.4689 0.3399

5-shot 0.3737 0.3213 0.4951 0.3373 0.5562 0.3319 0.6091 0.3476 0.2974 0.3385 0.4567 0.3173

Table 17: Average and standard deviation of Normalized Step Alignment Score (NSAS) scores
comparison of LLMs on VR game Into the Radius under different shot settings

Model GPT-3.5-turbo GPT-4-turbo GPT-4o Gemini-1.5-Pro Mixtral-8x7B Llama-3-8b

Metrics avg std avg std avg std avg std avg std avg std

Zero-Shot 0.6165 0.0755 0.6408 0.0955 0.5939 0.1306 0.6492 0.1018 0.6644 0.0718 0.6447 0.0882

1-shot 0.641 0.1177 0.6519 0.1421 0.6282 0.1687 0.6875 0.1159 0.6285 0.1684 0.6285 0.1346

3-shot 0.6305 0.128 0.6802 0.1645 0.6491 0.2057 0.6634 0.1638 0.618 0.1633 0.6479 0.1606

5-shot 0.6621 0.1291 0.6927 0.1721 0.6984 0.2136 0.6818 0.1191 0.666 0.1495 0.6443 0.211

Table 18: Average and standard deviation of Sequential Order Preservation (SOP) scores comparison
of LLMs on Into the Radius under different shot settings.

Model GPT-3.5-turbo GPT-4-turbo GPT-4o Gemini-1.5-Pro Mixtral-8x7B Llama-3-8b

Metrics avg std avg std avg std avg std avg std avg std

Zero-Shot 0.0091 0.0581 0.0263 0.1533 0.0113 0.0494 0.0197 0.1029 0.0052 0.033 0.0 0.0

1-shot 0.034 0.1568 0.0663 0.2044 0.1084 0.2486 0.1145 0.2495 0.0739 0.1721 0.0578 0.1486

3-shot 0.1581 0.242 0.1678 0.2522 0.2324 0.3185 0.2272 0.3324 0.1351 0.252 0.2584 0.3089

5-shot 0.1686 0.244 0.2182 0.2801 0.2998 0.3062 0.2652 0.3596 0.1169 0.247 0.2831 0.3097

C.2 GAME-SPECIFIC PERFORMANCE PATTERNS

The tables below reveal substantial variations in model performance across different VR games,
highlighting how game design and interaction complexity influence LLM reasoning capabilities.
Vivecraft consistently yields the highest performance across all models, with NSAS scores ranging
from 0.909 to 0.938. This strong performance likely reflects the game’s discrete, block-based
interaction paradigm inherited from Minecraft, which provides clear action-object mappings that
align well with linguistic descriptions.

In contrast, Into the Radius proves most challenging, with NSAS scores dropping to 0.618-0.698
across models. This game’s emphasis on realistic physics simulation, complex inventory management,
and weapon manipulation requires understanding of nuanced spatial relationships and multi-step
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Table 19: Average and standard deviation of Semantic Step Coverage (SSC) scores comparison of
LLMs on Into the Radius under different shot settings.

Model GPT-3.5-turbo GPT-4-turbo GPT-4o Gemini-1.5-Pro Mixtral-8x7B Llama-3-8b

Metrics avg std avg std avg std avg std avg std avg std

Zero-Shot 0.0354 0.0982 0.1528 0.1774 0.2199 0.1745 0.1783 0.2107 0.0406 0.0899 0.1243 0.1655

1-shot 0.1511 0.2246 0.304 0.2983 0.4102 0.2585 0.2823 0.3277 0.2593 0.3249 0.3171 0.269

3-shot 0.2321 0.2713 0.4463 0.3099 0.5623 0.2976 0.3402 0.3379 0.3544 0.2621 0.5319 0.2382

5-shot 0.3302 0.3115 0.5082 0.3063 0.6194 0.2877 0.2971 0.3187 0.285 0.3384 0.5314 0.2886

procedures that current LLMs struggle to capture. The high standard deviation in performance
(0.135 for GLM-4-flash) indicates inconsistent model behavior when confronting complex interaction
scenarios.

Half-Life: Alyx and Moss: Book II occupy intermediate positions in the difficulty spectrum. Half-
Life: Alyx’s physics-based puzzles and combat scenarios require precise timing and spatial reasoning,
reflected in extremely low SOP scores (0.022 for GPT-4o). Moss: Book II’s third-person perspective
and puzzle-platforming elements introduce unique challenges in translating camera-relative directions
into controller movements, though models show more consistent performance than in Half-Life:
Alyx.

C.3 IMPACT OF FEW-SHOT LEARNING

The tables below demonstrate the transformative effect of few-shot examples on model performance.
The most dramatic improvements occur in SOP scores, which increase by factors of 10-20x from
zero-shot to 5-shot settings. GPT-3.5-turbo exemplifies this pattern, improving from 0.036 to 0.226
in SOP F1 score, representing a 527.8% relative gain. This massive improvement suggests that
examples primarily help models understand the expected format and level of detail for procedural
instructions rather than teaching fundamental VR interaction principles.

The diminishing returns pattern is consistent across models, with the largest gains occurring between
zero-shot and 1-shot conditions. The jump from 3-shot to 5-shot provides minimal additional benefit,
indicating that models quickly extract relevant patterns from limited examples. Gemini-1.5-Pro shows
the most efficient few-shot learning, achieving top performance with fewer examples than competing
models, suggesting superior in-context learning capabilities for procedural tasks.

Interestingly, few-shot examples have differential effects across game types. Complex games like
Into the Radius show continued improvement with additional examples, while simpler environments
like Vivecraft plateau quickly. This pattern indicates that few-shot learning is most beneficial when
dealing with diverse interaction patterns and complex procedural sequences.

C.4 COGNITIVE CAPABILITY ANALYSIS

The tables below show model performance across six cognitive dimensions, revealing distinct
capability profiles. All models demonstrate strong task decomposition abilities (7.8-8.5), indicating
that breaking down high-level goals into subtasks aligns well with LLMs’ training on hierarchical text
structures. Gemini-1.5-Pro leads in this dimension with a score of 8.5, though even smaller models
like Mixtral-8x7B achieve respectable scores of 8.0.

Motor action mapping emerges as the most challenging capability across all models (0.5-4.5),
highlighting the difficulty of translating abstract action concepts into specific button presses and
controller movements. This limitation likely stems from the absence of embodied experience in
text-based training data. GPT-4o performs best in this dimension but still falls far short of human-level
capability, suggesting a fundamental gap in current architectures.

Procedural reasoning shows high variance across models (2.3-7.0), with Gemini-1.5-Pro again leading.
The correlation between procedural reasoning scores and few-shot learning gains suggests that this
capability can be partially addressed through examples, though the ceiling remains well below human
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performance. Spatial reasoning capabilities (4.8-7.5) reveal another significant gap, particularly
evident in games requiring 3D navigation and object manipulation.

C.5 STATISTICAL SIGNIFICANCE AND VARIANCE ANALYSIS

The tables below provide detailed statistical analyses of model performance, revealing important
patterns in consistency and reliability. The standard deviation measurements across different games
and shot settings illuminate which models maintain stable performance versus those exhibiting high
variability. For instance, in Vivecraft, GPT-3.5-turbo shows remarkably consistent NSAS scores in
zero-shot settings (std = 0.0248), but this consistency deteriorates with few-shot examples (std =
0.0734 at 3-shot), suggesting that additional examples introduce uncertainty in the model’s approach
to task completion.

The variance patterns differ significantly between metrics. NSAS scores generally show lower
standard deviations (0.02-0.21 range) compared to SOP scores (0.00-0.34 range), indicating that
models more consistently identify relevant steps than maintain proper ordering. This pattern is
particularly pronounced in complex games like Into the Radius, where SOP standard deviations
exceed 0.3 for several models in few-shot settings. Such high variance suggests that models employ
different strategies across different runs, sometimes achieving correct ordering by chance rather than
through systematic understanding.

Comparison with human variance provides crucial context for interpreting model stability. Human
annotators show standard deviations comparable to mid-tier models (0.084 in cross-game perfor-
mance), suggesting that some degree of variance is inherent to the task rather than a model limitation.
However, humans maintain more consistent SOP performance (std = 0.029) compared to all models
except Mixtral-8x7B, indicating more reliable procedural reasoning despite overall lower scores.

C.6 CROSS-GAME GENERALIZATION PATTERNS

The cross-game performance analysis reveals important insights about model generalization capabili-
ties. Models that perform well on one game do not necessarily maintain their advantage across others.
For example, while GPT-4o achieves the highest SOP score in Into the Radius (0.291), it performs
poorly in Half-Life: Alyx (0.022). This game-specific variation suggests that models may overfit to
particular interaction patterns rather than developing general VR manipulation capabilities.

The "Game Gap" metric in the tables below quantifies this generalization challenge. Lower values
indicate more consistent cross-game performance. Mixtral-8x7B achieves the lowest Game Gap
(0.070), despite not leading in any individual game. This consistency might make it more suitable for
applications requiring reliable performance across diverse VR experiences. In contrast, GPT-4o’s
high Game Gap (0.127) reflects its specialized strengths and weaknesses across different interaction
paradigms.

Analysis of confusion patterns reveals that models struggle most when transitioning between games
with different control schemes. The shift from Vivecraft’s discrete block interactions to Half-Life:
Alyx’s continuous physics manipulation represents a fundamental change in how actions map to
controller inputs. Models trained primarily on text lack the embodied experience to navigate these
transitions smoothly, often applying inappropriate interaction patterns learned from one context to
another.

C.7 TEMPORAL DYNAMICS IN SEQUENTIAL TASKS

Detailed examination of step-by-step performance reveals how models handle temporal dependencies
in VR interactions. Early steps in sequences generally show higher accuracy (NSAS > 0.9) across
all models, with performance degrading for later steps. This degradation is particularly severe for
steps that depend on the successful completion of previous actions. For instance, in a sequence like
"pick up object, aim at target, throw object," models may correctly identify all three actions but fail
to recognize that aiming requires successfully completing the pickup action first.

The SOP metric specifically captures these temporal dependencies, and the low scores across all
models highlight a fundamental limitation in current architectures. Even with few-shot examples that
demonstrate correct ordering, models struggle to internalize the causal relationships between steps.
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This suggests that improved performance may require architectural innovations that better capture
temporal and causal reasoning, rather than simply scaling existing approaches.

Error analysis reveals common patterns in temporal mistakes. Models frequently suggest parallel
actions that must be performed sequentially (e.g., "press trigger while reaching for object" when the
trigger can only be meaningfully pressed after grasping). They also struggle with iterative processes,
often omitting loop conditions or termination criteria. These patterns indicate that models lack an
understanding of the physical constraints that govern VR interactions.

C.8 DETAILED PERFORMANCE TABLES AND VISUALIZATIONS

The tables below provide granular data for researchers seeking to understand specific model behaviors.
These tables reveal several noteworthy patterns. First, the relationship between different metrics is
non-linear. High NSAS scores do not guarantee good SOP performance, and models with similar
average scores may achieve them through different strengths. This multidimensional performance
landscape suggests that selecting models for specific applications requires careful consideration of
which capabilities are most critical.

The tables below illustrate the strict matching process, highlighting why SSM scores remain low
even for generally capable models. The requirement for exact sequence length and step-by-step
correspondence proves extremely demanding. Even minor variations in phrasing or step granularity
result in match failures. This visualization helps explain why SSM may be overly strict for practical
applications, where functional equivalence matters more than exact replication.

The tables below demonstrate the more nuanced evaluation approach that underlies our NSAS and
SOP metrics. By identifying the longest common subsequences with semantic matching, these metrics
better capture functional understanding while still penalizing significant deviations from ground truth.
The visualization shows how models might achieve reasonable NSAS scores by identifying most
relevant actions while still failing SOP evaluation due to ordering errors.

The heat maps of model performance across game-task combinations reveal clustering of difficulty.
Certain task types (e.g., combat sequences in Half-Life: Alyx, inventory management in Into the
Radius) consistently challenge all models, while others (e.g., block placement in Vivecraft) show
near-ceiling performance. These patterns suggest that targeted improvements for specific interaction
types might yield better results than general capability enhancement.

C.9 IMPLICATIONS FOR FUTURE RESEARCH

The detailed experimental results paint a complex picture of current LLM capabilities and limitations
in VR interaction reasoning. While models demonstrate competence in identifying relevant actions
and decomposing high-level goals, they consistently struggle with the procedural and embodied
aspects of VR interaction. The strong effect of few-shot examples suggests that current models
possess latent capabilities that can be activated through appropriate prompting, but fundamental archi-
tectural limitations prevent them from achieving human-like understanding of physical manipulation
sequences.

The high variance in performance across games and tasks indicates that robustness remains a sig-
nificant challenge. Models that excel in one context may fail dramatically in another, limiting their
practical applicability. This brittleness likely stems from the discrete nature of text-based training,
which lacks the continuous, embodied experience that humans leverage when learning new physical
tasks.

Moving forward, these results suggest several promising research directions. Multimodal models that
incorporate visual and proprioceptive information alongside text may better capture the embodied
nature of VR interactions. Explicit modeling of temporal and causal relationships could address the
procedural reasoning gaps identified in our experiments. Finally, training on synthetic VR interaction
data or through simulated embodiment might provide models with the experiential knowledge
currently lacking in text-only approaches.

The detailed results also highlight the importance of comprehensive evaluation frameworks that
assess multiple dimensions of capability. Single metrics fail to capture the complexity of VR
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interaction reasoning, and future benchmarks should continue to embrace multidimensional evaluation
approaches that can identify specific strengths and weaknesses in model capabilities.

D DISCUSSION, LIMITATIONS & BROADER IMPACTS

Our investigation into LLMs’ ability to translate semantic actions into VR device manipulations
reveals both promising capabilities and fundamental limitations that reflect broader challenges in
bridging linguistic understanding and embodied interaction. The relatively low Sequential Order
Preservation (SOP) scores across all evaluated models indicate that current LLMs struggle with
the temporal reasoning required for complex procedural tasks. This limitation suggests that while
LLMs can identify relevant actions and understand their purposes, they lack the embodied experience
necessary to accurately sequence physical manipulations.

The substantial performance variations across different VR games highlight how interaction com-
plexity and consistency impact model performance. Games with standardized, discrete actions (like
Vivecraft’s block-based interactions) prove more amenable to LLM reasoning than those requiring
nuanced controller movements or complex spatial reasoning (like Half-Life: Alyx). This pattern
suggests that current language models may benefit from more structured representations of physical
actions and explicit training on procedural sequences.

The significant improvement from few-shot examples demonstrates that LLMs possess latent capa-
bilities for VR interaction reasoning that can be activated through appropriate prompting. However,
the fact that performance plateaus with additional examples indicates fundamental architectural
limitations rather than simple lack of exposure to relevant examples. This finding suggests that
advances in VR-capable AI may require new training paradigms that incorporate spatial and temporal
reasoning more directly.

From a broader perspective, this work carries important implications for the future of human-computer
interaction and AI development. On the positive side, LLMs that can effectively reason about VR
interactions could dramatically improve accessibility for users with motor impairments, enable more
intuitive natural language interfaces for VR applications, and accelerate the development of intelligent
tutoring systems for VR training scenarios. The potential transfer of these capabilities to robotic
systems could enable more sophisticated human-robot collaboration in both virtual and physical
environments.

However, we must also consider potential negative implications. As LLMs gain greater agency in
controlling virtual (and potentially physical) systems, questions of safety, security, and user autonomy
become paramount. The ability to translate high-level commands into detailed manipulation sequences
could be exploited for unauthorized system control or social engineering attacks. Additionally,
the computational resources required for training and deploying such models raise environmental
concerns that must be balanced against their benefits.

The digital divide may be exacerbated as advanced VR-AI systems require substantial hardware
investments and technical expertise. Ensuring equitable access to these technologies will require
conscious effort from researchers, developers, and policymakers. Privacy concerns also emerge
as these systems necessarily monitor and analyze detailed user movement patterns and interaction
behaviors.

Moving forward, the field must pursue responsible development practices that prioritize user safety,
privacy, and autonomy while advancing the technical capabilities of VR-AI systems. This includes
developing robust evaluation frameworks that assess not only task performance but also failure modes,
implementing transparent systems that users can understand and control, and ensuring that advances
in VR interaction AI serve to augment rather than replace human agency in virtual environments.

E LARGE LANGUAGE MODELS USAGE STATEMENT

This work incorporated LLMs to aid in editorial refinement and linguistic improvement of the
manuscript. The models provided assistance with stylistic enhancements and clarity optimization,
including tasks such as rephrasing sentences and correcting grammatical errors.
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We explicitly note that LLMs played no role in the conceptualization, theoretical development, or
experimental design aspects of this research. The authors retain full responsibility for the entirety of
the manuscript’s content, including sections improved with LLM support. All LLM-assisted text has
been carefully reviewed to ensure adherence to academic standards and ethical research practices.
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