

000 001 COMBOBENCH: CAN LLMS MANIPULATE PHYSI- 002 CAL DEVICES TO PLAY VIRTUAL REALITY GAMES? 003 004

005 **Anonymous authors**

006 Paper under double-blind review

008 ABSTRACT

009

010 Virtual Reality (VR) games require players to translate high-level semantic actions
 011 into precise device manipulations using controllers and head-mounted displays
 012 (HMDs). While humans intuitively perform this translation based on common
 013 sense and embodied understanding, whether Large Language Models (LLMs) can
 014 effectively replicate this ability remains underexplored. This paper introduces
 015 a benchmark, ComboBench, evaluating LLMs' capability to translate semantic
 016 actions into VR device manipulation sequences across 262 scenarios from four
 017 popular VR games: Half-Life: Alyx, Into the Radius, Moss: Book II, and Vivecraft.
 018 We evaluate twelve LLMs, including GPT-3.5, GPT-4, GPT-4o, GPT-5.1, Gemini-
 019 1.5-Pro, Gemini-3-Pro, Claude-Sonnet-4.5, Grok-4, GLM-4-Flash, LLaMA-3-8B,
 020 LLaMA-3-70B, and Mixtral-8x7B, compared against annotated ground truth and
 021 human performance. Our results reveal that while top-performing models like
 022 Gemini-3-Pro demonstrate strong task decomposition capabilities, they still strug-
 023 gle with procedural reasoning and spatial understanding compared to humans.
 024 Performance varies significantly across games, suggesting sensitivity to interaction
 025 complexity. Few-shot examples substantially improve performance, indicating
 026 potential for targeted enhancement of LLMs' VR manipulation capabilities. We re-
 027 lease all materials at <https://sites.google.com/view/combobench>.
 028

029 1 INTRODUCTION

030

031 Large Language Models (LLMs) have demonstrated remarkable proficiency in general-purpose
 032 task solving (Qin et al., 2023), conquering complex domains such as code (Lee et al., 2024; Lam
 033 et al., 2025) or math (Lu et al., 2024) problems. While they exhibit increasingly more human-like
 034 characteristics (Huang et al., 2024; Liang et al., 2023), an essential attribute of human intelligence is
 035 still underexplored: the ability to rapidly learn and apply unfamiliar concepts by leveraging common
 036 sense, prior experiences, and a repertoire of cognitive skills.

037 This is particularly evident in novel interactive environments like video games, where players quickly
 038 master device manipulations (atomic actions) and combine them to achieve complex semantic goals.
 039 Virtual Reality (VR) games elevate this challenge. They demand not only the execution of atomic
 040 actions via physical devices (*e.g.*, Head-Mounted Displays (HMDs) and controllers) but also the
 041 inference of complex, often uninstructed, semantic actions. For instance, in *Half-Life: Alyx* (Valve,
 042 2020), when asked to “surrender,” players might instinctively raise their controller-held hands even if
 043 not explicitly taught.

044 Such translation of high-level intent into a sequence of physical device manipulations engages a
 045 suite of cognitive abilities: (1) *Task decomposition*: Breaking down a high-level semantic action
 046 (*e.g.*, “tame the horse” and “plant wheat”) into a coherent series of intermediate steps. (2) *Procedural
 047 reasoning*: Understanding the logical and temporal order of these steps, including prerequisite
 048 conditions or concurrent actions (*e.g.*, the need to till soil before planting seeds). (3) *Spatial reasoning
 049 & contextual awareness*: Interpreting instructions within a 3D spatial context (*e.g.*, “move HMD
 050 towards the Creeper” and “crouch through the gap”) and understanding environmental cues or object
 051 states (*e.g.*, recognizing a door is open/closed and acting accordingly). (4) *Object interaction & tool
 052 use understanding*: Correctly mapping intended sub-actions to specific VR device manipulations
 053 (*e.g.*, knowing which button to press to “use” an item, and how to manipulate a controller to simulate
 “swinging” a tool like a pickaxe). This involves understanding the affordances of virtual objects

and tools. (5) *Motor action mapping & VR procedural transfer*: Translating abstract actions (e.g., “press,” “move,” and “trigger”) into specific, executable VR controller commands, potentially by adapting from provided examples or general knowledge of VR interaction paradigms. This touches upon a form of simulated embodied reasoning. (6) *Judgment of termination/continuation conditions*: Recognizing when a sub-task or a looped action is complete (e.g., “mine until the block breaks” and “water until the plant grows”). Therefore, playing VR games serves as a rich testbed for evaluating if LLMs can bridge this gap between abstract understanding and grounded, physical interaction. Importantly, ComboBench is designed as a text-to-action benchmark: models receive only textual descriptions of high-level goals and must generate textual sequences of device manipulations. No visual or other multimodal inputs are provided, isolating the pure linguistic reasoning capability.

Virtual reality provides a distinctive testbed for evaluating embodied reasoning in large language models. While domains such as robotics and web agents also involve long-horizon decision-making, VR occupies a practical middle ground that foregrounds the core challenge of translating abstract linguistic intent into precise, physically grounded, and spatially coherent motor commands. Compared to physical robotics, VR enables complex, physics-based interactions without incurring real-world safety risks, hardware costs, or slow experimental cycles, thereby supporting rapid, scalable, and perfectly reproducible evaluation of embodied control. Relative to web or other digital agents that primarily operate over discrete symbolic actions (e.g., button clicks), VR requires reasoning in continuous 3D space, sensitivity to object affordances, and modeling of the temporal dynamics of manipulation, demanding a form of simulated embodiment not captured by many existing agent benchmarks. ComboBench is thus designed not as a generic long-horizon benchmark, but specifically to probe the interface where abstract knowledge must be realized as grounded physical action—a capability that is central to the development of general-purpose agents.

To systematically evaluate LLMs’ ability to perform this crucial translation, we introduce ComboBench, which stands for Cognitive-Oriented Manipulation Benchmark for game combos using physical VR devices. It comprises 262 scenarios derived from four popular VR games: *Vivecraft* (Vivecraft, 2013) (Minecraft in VR), *Half-Life: Alyx* (Valve, 2020), *Moss: Book II* (Polyarc, 2022), and *Into the Radius* (CMGames, 2019). Each scenario presents a high-level semantic action, and the ground truth consists of a fine-grained sequence of VR device manipulations required to achieve it. These sequences are annotated by experienced VR players, allowing us to analyze LLM-generated outputs at the step-level and map their successes and failures to the aforementioned cognitive abilities. For example, failing to “press the X button” after “moving the HMD towards the Creeper” might indicate a lapse in procedural reasoning or object interaction understanding for that specific step.

We evaluate twelve LLMs, including GPT-3.5 (OpenAI, 2022), GPT-4 (OpenAI, 2023), GPT-4o (Hurst et al., 2024), GPT-5.1 (OpenAI, 2025), Gemini-1.5-Pro (Team et al., 2024), Gemini-3-Pro (Google, 2025), Claude-Sonnet-4.5 (Anthropic, 2025), Grok-4 (xAI, 2025), GLM-4-Flash (GLM et al., 2024), LLaMA-3-8B (Grattafiori et al., 2024), LLaMA-3-70B (Grattafiori et al., 2024), and Mixtral-8x7B (Jiang et al., 2023). We design a multi-dimensional scoring approach that assesses: (1) high-level semantic action understanding, (2) procedural step correctness, and (3) device-specific manipulation accuracy, allowing for fine-grained analysis of where each model succeeds or struggles in the translation process. Our findings reveal significant variation in model performance across cognitive capabilities. All models demonstrate strong task decomposition abilities but show pronounced weaknesses in motor action mapping and procedural reasoning. Gemini-3-Pro exhibits the most balanced performance across capabilities, while even advanced models like GPT-5.1 struggle with spatial reasoning compared to human performance. Few-shot examples substantially improve outcomes, particularly for procedural understanding, with diminishing returns beyond three examples. Performance also varies considerably across games, with models generally performing better in environments with more consistent interaction patterns (*Vivecraft*) than those requiring nuanced controller manipulations (*Half-Life: Alyx*). These results highlight specific cognitive gaps in current LLMs’ ability to perform simulated embodied reasoning for VR interactions and identify targeted areas for improvement toward more capable virtual agents. Our contributions are:

- We introduce ComboBench, the first benchmark designed to evaluate LLMs’ fine-grained cognitive abilities in translating high-level text semantic actions into text VR device manipulations, comprising 262 human-annotated scenarios from four diverse VR games.
- We define a set of key cognitive abilities crucial for VR interaction and design ComboBench to enable step-level analysis of LLM performance against these dimensions.

108 • We conduct a comprehensive evaluation of twelve state-of-the-art LLMs, providing a nuanced
 109 analysis of their strengths and weaknesses across these cognitive abilities and offering insights into
 110 the current frontiers of LLM-driven VR interaction.

112 **2 COMBOBENCH DESIGN AND CURATION**

114 **2.1 COGNITIVE CAPABILITY TAXONOMY DEVELOPMENT**

116 To ground our evaluation in cognitive theory, we collaborated with three experts in cognitive science
 117 and educational psychology who specialize in spatial cognition, procedural learning, and embodied
 118 interaction. Building on their feedback and an analysis of representative VR interaction scenarios
 119 from our benchmark, we converged on six core cognitive capabilities that are critical for translating
 120 semantic goals into VR device manipulations: (1) task decomposition, i.e., breaking high-level goals
 121 into sequentially ordered sub-tasks; (2) procedural reasoning, i.e., understanding causal relationships
 122 and temporal dependencies between actions; (3) spatial reasoning and contextual awareness, i.e.,
 123 interpreting spatial layouts and environmental cues to guide action selection; (4) object interaction
 124 and tool-use understanding, i.e., inferring the affordances and functional properties of virtual objects;
 125 (5) motor action mapping and VR procedural transfer, i.e., mapping abstract action descriptions to
 126 concrete controller operations; and (6) judgment of termination and continuation conditions, i.e.,
 127 recognizing when an action sequence has achieved its goal or requires repetition. These six dimensions
 128 form the taxonomy that underpins our subsequent analyses of LLM and human performance.

129 **Taxonomy Refinement.** Following the interviews, we synthesized the experts' insights through
 130 thematic analysis. Areas of consensus were directly incorporated into our taxonomy, while divergent
 131 perspectives were reconciled through follow-up consultations. This iterative process resulted in the
 132 identification of six core capability dimensions that comprehensively capture the cognitive demands of
 133 VR interaction: (1) Task decomposition: The ability to break down high-level goals into sequentially
 134 ordered sub-tasks. (2) Procedural reasoning: Understanding causal relationships between actions
 135 and their temporal dependencies. (3) Spatial reasoning & contextual Awareness: Processing spatial
 136 relationships and interpreting environmental cues for action selection. (4) Object interaction & tool
 137 use understanding: Comprehending affordances and functional properties of virtual objects. (5)
 138 Motor action mapping & VR procedural transfer: Translating conceptual actions into specific physical
 139 device manipulations. (6) Judgment of termination/continuation conditions: Recognizing completion
 140 states or conditions requiring repeated action.

141 **2.2 GAME SELECTION CRITERIA AND PROCESS**

143 To ensure a diverse and relevant set of VR interaction paradigms, we selected games based on a
 144 systematic process. First, we queried the Steam store (web, 2023) filtering for titles tagged as “VR
 145 Only” and available in “English,” sorting the results by user review scores in descending order. We
 146 then iteratively examined games from this ranked list, focusing on their primary genre as categorized
 147 by Steam. To ensure genre diversity, we prioritized games from genres not yet represented in our
 148 collection. A crucial selection criterion was the availability of comprehensive textual walkthroughs.
 149 For each candidate game, we searched for detailed guides using keywords such as “walkthrough,”
 150 “guide,” or “tutorial.” A walkthrough was deemed sufficiently detailed if it provided unambiguous,
 151 step-by-step instructions enabling the completion of core game objectives or specific complex
 152 tasks. Following this methodology, we selected four popular and critically acclaimed VR games
 153 representing distinct genres and interaction styles for ComboBench: (1) *Vivecraft* (Vivecraft, 2013)
 154 (Open-world sandbox, crafting) (2) *Half-Life: Alyx* (Valve, 2020) (First-person shooter, puzzle-
 155 solving, physics-based interaction) (3) *Moss: Book II* (Polyarc, 2022) (Third-person action-adventure,
 156 puzzle-platformer) (4) *Into the Radius* (CMGames, 2019) (First-person survival shooter, exploration)
 157 Such selection provides a rich variety of control schemes and task complexities for evaluating LLMs.

158 **2.3 SCENARIO DEFINITION: SEMANTIC ACTION IDENTIFICATION**

159 For all selected games, eight data annotators, comprising undergraduate and postgraduate computer
 160 science students with at least two years of programming experience and sufficient knowledge about
 161 VR games, manually identified salient semantic actions from the collected textual walkthroughs.

Figure 1: Device Manipulation Example for Task: “Attack using the sword” (Vivecraft)

Figure 2: Example of a Good vs. a Poor Model Generation for the “Attack using the sword”

Semantic actions were defined as high-level, goal-oriented tasks described in the walkthroughs (e.g., “tame the horse,” “kill the creeper,” “solve the gravity glove puzzle”) that necessitate a sequence of fine-grained VR device manipulations to accomplish. We focused on scenarios that: (1) involve complex interactions not always explicitly detailed in in-game tutorials, (2) often constitute essential steps or objectives required for game progression. A concrete example is shown in Figure 1. This process resulted in the identification of 262 distinct scenarios across the four games.

2.4 ANNOTATION OF VR DEVICE MANIPULATIONS

Experienced VR users from our annotation team then played through each identified semantic action in the respective games using Oculus Quest 2 VR hardware. The objective was to record the precise sequence of device manipulations required to complete each semantic action. The annotation process captured the following details for each step within a manipulation sequence: (1) **Device used**: Specification of whether the HMD or a controller was used. (2) **Controller specificity**: If a controller

216 was used, and the action was hand-specific (e.g., primary hand for a tool), the annotation indicated
 217 whether the left or right controller was required. If either controller could perform the action, this
 218 was noted as “left or right controller.” (3) **Operation type and parameters:** (i) *Movement*: For
 219 actions involving device movement (HMD or controller), the direction (e.g., “towards the Creeper,”
 220 “upwards”) or target position was recorded. (ii) *Button presses*: The specific button involved and the
 221 action (e.g., “press X button,” “release trigger”) were noted. (iii) *Joystick/thumbstick manipulation*:
 222 The direction of joystick push (e.g., “push left thumbstick forward”) was recorded. (4) **Sequential
 223 composition**: For complex semantic actions composed of multiple, distinct sub-actions that might
 224 have been annotated individually, the sequence and composition of these simpler actions were
 225 explicitly recorded.

227 2.5 COGNITIVE CAPABILITY LABELING USING LLMs

228 A critical aspect of ComboBench is the annotation of each manipulation step with the specific
 229 cognitive capabilities it engages. This fine-grained labeling enables precise analysis of where LLMs
 230 succeed or fail in the VR interaction translation process. (1) **Initial Human Annotation.** To begin,
 231 our annotators manually labeled a subset of 50 manipulation sequences (approximately 20% of the
 232 dataset), assigning relevant capability categories to each step based on the taxonomy described in
 233 Section 2.1. For example, in the sequence required to “tame a horse” in Vivecraft, the step “equip
 234 the saddle by pressing the Y button while looking at the inventory slot containing the saddle” was
 235 labeled with “Object Interaction & Tool Use Understanding” and “Motor Action Mapping.” (2)
 236 **LLM-Assisted Annotation Pipeline.** We then developed an LLM-assisted annotation pipeline to
 237 scale this process to the entire dataset. Specifically: ① We used the human-annotated examples as
 238 few-shot demonstrations for GPT-4o. ② For each unlabeled manipulation step, we provided the
 239 LLM with: [2.a] The semantic action context (e.g., “taming a horse in Vivecraft”). [2.b] The specific
 240 manipulation step to label. [2.c] The preceding and following steps (when available). [2.d] Detailed
 241 descriptions of each capability category. [2.e] Three few-shot examples with explanations of why
 242 each capability was assigned. ③ The LLM generated capability labels along with justifications for
 243 each assignment. ④ Human annotators reviewed the LLM-generated labels, making corrections when
 244 necessary. The review process revealed an 89.7% agreement rate between LLM-assigned labels and
 245 human judgments. (3) **Multi-label Distribution.** Most manipulation steps engaged multiple cognitive
 246 capabilities simultaneously. On average, each step was associated with 2.3 capability categories (σ
 247 = 0.8). The most frequently co-occurring capabilities were “Motor Action Mapping” and “Object
 248 Interaction & Tool Use Understanding” (present together in 68% of steps), reflecting the inherent
 249 coupling between understanding virtual object affordances and translating this understanding into
 250 physical manipulations.

251 2.6 CONTEXTUALIZATION AND VERIFICATION

252 To further contextualize the annotated actions and aid in verification, we sourced or recorded gameplay
 253 videos corresponding to the textual walkthroughs for each game. For each annotated semantic
 254 action and its constituent manipulation steps, we recorded the corresponding timestamps in these
 255 videos. This allows for visual verification of the annotated sequences and provides richer context for
 256 understanding the actions. If suitable public gameplay videos matching the exact walkthrough steps
 257 were unavailable, our annotators recorded their own gameplay sessions while performing the actions.

259 3 EXPERIMENTS

262 3.1 MODEL SELECTION

264 We evaluate twelve state-of-the-art LLMs spanning different model families and scales, including
 265 GPT-3.5, GPT-4, GPT-4o, GPT-5.1, Gemini-1.5-Pro, Gemini-3-Pro, Claude-Sonnet-4.5, Grok-4,
 266 LLaMA-3-8B, LLaMA-3-70B, Mixtral-8x7B, and GLM-4-Flash. This selection enables both cross-
 267 family comparisons and analysis of scaling effects within the same model family. We also perform
 268 human evaluation to validate the average human capabilities for comparison, when humans are given
 269 exactly the same input as LLMs. For all experiments, we used the official APIs for proprietary models
 and Hugging Face implementations for open-source models. Temperature was set to 0 across all

270 models to minimize non-deterministic outputs. For embedding calculations, we utilized OpenAI’s
 271 text-embedding-3-large model via their API.
 272

273 **3.2 EVALUATION METRICS**
 274

275 To comprehensively evaluate the capability of LLMs in translating semantic actions into VR device
 276 manipulations, we propose a multi-dimensional evaluation framework with four distinct metrics.
 277 These metrics collectively capture different aspects of model performance in ComboBench, ranging
 278 from strict matching to more flexible semantic alignment. The semantic similarity between predicted
 279 and ground-truth steps is computed using the cosine similarity of their sentence embeddings extracted
 280 from OpenAI’s text-embedding-3-large model

281 **Strict Step-by-Step Matching (SSM).** Our first metric evaluates the exact matching between model-
 282 generated and ground truth steps, enforcing both sequence length equivalence and semantic alignment:
 283 $SSM = \frac{\text{Number of correctly predicted sequences}}{\text{Total number of sequences}}$. A sequence is considered correctly predicted only when: the
 284 number of steps in the generated sequence equals that of the ground truth, and every step in the
 285 generated sequence has a cosine similarity above a threshold of 0.8387 with its corresponding step
 286 in the ground truth. This strict metric serves as a measure of precision in reproducing exact device
 287 manipulation sequences and rewards models that can generate complete, step-accurate instructions.
 288 The threshold of 0.8387 was empirically determined by analyzing the cosine similarity distribution on
 289 a held-out set of human-paraphrased action steps. Specifically, we collected semantically equivalent
 290 but linguistically varied human annotations for 50 action steps and computed pairwise similarities. The
 291 threshold corresponds to the 5th percentile of similarities between these semantically equivalent pairs,
 292 ensuring that only highly confident matches are accepted while accommodating natural linguistic
 293 variation.

294 **Common Subsequence Evaluation.** We further introduce two complementary metrics based on
 295 common subsequence alignment to assess partial correctness: (1) **Normalized Step Alignment Score**
 296 (**NSAS**) This metric quantifies the alignment between the model-generated sequence and ground truth
 297 while accounting for missing and additional steps: $NSAS = \frac{(|C| - |M| - |A|) - \text{min}_{\text{all_samples}}}{|G| \cdot (\text{max}_{\text{all_samples}} - \text{min}_{\text{all_samples}})}$, where: $|C|$
 298 represents the count of correctly matched steps in the common subsequence, $|M|$ represents missing
 299 steps from the ground truth, $|A|$ represents additional steps generated by the model, $|G|$ represents
 300 the total number of steps in the ground truth, $\text{min}_{\text{all_samples}}$ and $\text{max}_{\text{all_samples}}$ represent the minimum
 301 and maximum raw scores across all evaluations, enabling consistent normalization. This score is
 302 normalized across the entire dataset to ensure fair comparison across different models and scenarios.
 303 (2) **Sequential Order Preservation (SOP)** The SOP metric specifically assesses the model’s ability
 304 to maintain the correct procedural ordering of steps: $SOP = \frac{|\text{Steps correctly ordered and matched}|}{|G|}$. This metric
 305 evaluates whether the steps in the matched subsequence maintain their ordinal positions (e.g., step 1
 306 followed by step 2, etc.) in both the ground truth and model output, capturing the model’s procedural
 307 reasoning capabilities.

308 **Semantic Step Coverage (SSC).** Our final metric adopts a more flexible matching approach to
 309 evaluate semantic coverage of critical actions: $SSC = \frac{|\text{MR steps matched to any GT step}|}{|\text{MR}|}$, where a model
 310 result (MR) step is considered matched if it has a cosine similarity above the threshold (0.8387)
 311 with any step in the ground truth (GT). This metric computes the proportion of generated steps that
 312 semantically align with at least one ground truth step, regardless of position.

314 **3.3 RQ1 & RQ3: LLM PERFORMANCE ACROSS VR GAMES**
 315

316 **3.4 EXPERIMENTAL RESULTS**
 317

318 We analyze and answer the following Research Questions (RQs): **(RQ1)** How do state-of-the-art
 319 LLMs perform in translating semantic actions into VR device manipulations across different VR
 320 games? **(RQ2)** How does the number of few-shot examples affect LLMs’ ability to execute this
 321 translation? **(RQ3)** Do LLM and human performance exhibit significant variations across the four
 322 different VR games, potentially indicating sensitivity to game mechanics and interaction complexity?
 323 **(RQ4)** Which cognitive capabilities do current LLMs excel at, and where do they struggle? **(RQ5)**
 How do LLMs compare to human performance in VR device manipulation tasks?

324 Table 1: Overall performance comparison of LLMs across VR games (5-shot setting). Best model
 325 performance per metric is **bolded**, second best is underlined.

Model	Half-Life: Alyx				Into the Radius				Moss: Book II				Vivecraft			
	NSAS↑	SOP↑	F1 _{SOP} ↑	SSC↑	NSAS↑	SOP↑	F1 _{SOP} ↑	SSC↑	NSAS↑	SOP↑	F1 _{SOP} ↑	SSC↑	NSAS↑	SOP↑	F1 _{SOP} ↑	SSC↑
GPT-3.5	0.858	0.123	0.287	0.143	0.662	0.169	0.226	0.137	0.782	0.169	0.207	0.186	0.922	0.043	0.098	0.067
GPT-4	0.853	0.125	0.258	0.172	0.693	0.189	0.328	0.177	0.824	0.218	0.336	0.220	0.927	0.137	0.437	0.081
GPT-4o	0.804	0.022	0.075	0.167	0.698	<u>0.291</u>	0.414	0.190	0.824	0.300	0.342	0.222	<u>0.931</u>	0.190	0.489	0.096
GPT-5.1	0.903	0.251	0.320	0.493	0.857	0.062	0.172	0.269	0.888	0.206	0.300	0.383	0.864	0.109	0.221	0.144
Gemini-1.5-Pro	0.863	0.209	0.313	0.152	0.682	0.102	0.186	0.117	0.848	0.265	0.411	0.207	0.938	0.250	0.481	0.095
Gemini-3-Pro	0.929	<u>0.309</u>	<u>0.427</u>	0.650	0.927	0.280	0.478	<u>0.611</u>	0.928	0.262	0.487	0.572	0.895	0.379	0.343	0.228
Claude-Sonnet-4.5	0.920	0.195	0.317	0.455	0.923	0.275	<u>0.424</u>	<u>0.621</u>	0.918	0.260	0.460	0.532	0.899	0.200	0.322	0.158
Grok-4	0.924	<u>0.351</u>	0.430	<u>0.655</u>	<u>0.911</u>	0.320	0.396	0.564	0.918	0.231	0.428	0.558	0.869	<u>0.270</u>	0.319	<u>0.311</u>
GLM-4-Flash	0.836	0.076	0.183	0.149	0.618	0.096	0.186	0.149	0.749	0.087	0.174	0.165	0.909	0.000	0.045	0.061
Mixtral-8x7B	0.839	0.126	0.246	0.147	0.666	0.123	0.228	0.097	0.756	0.117	0.191	0.121	0.926	0.060	0.239	0.070
LLaMA-3-8B	0.848	0.126	0.279	0.162	0.644	0.242	0.317	0.168	0.823	<u>0.283</u>	0.349	0.200	0.929	0.039	0.122	0.042
LLaMA-3-70B	<u>0.928</u>	0.252	0.408	0.692	0.917	0.232	0.391	0.560	<u>0.924</u>	0.270	<u>0.469</u>	0.542	0.897	0.009	0.257	0.332
Human	0.845	0.090	0.240	0.110	0.684	0.148	0.257	0.181	0.817	0.112	0.328	0.174	0.935	0.122	<u>0.482</u>	0.084

337 Table 2: Overall performance across VR games and settings. We report the average scores for our
 338 four evaluation metrics: Strict Step-by-Step Matching (SSM), Normalized Step Alignment Score
 339 (NSAS), Sequential Order Preservation (SOP), and Semantic Step Coverage (SSC). Higher is better
 340 for all metrics. Bold indicates best model performance, underline indicates second best.

Model	Average Across Settings			Zero-Shot			5-Shot					
	SSM (%)	NSAS	SOP	SSC	SSM (%)	NSAS	SOP	SSC	SSM (%)	NSAS	SOP	SSC
GPT-3.5	1.4	0.781	0.063	0.066	0.8	0.771	0.003	0.046	2.1	0.791	0.128	0.095
GPT-4	3.7	0.806	0.107	0.124	<u>1.0</u>	0.788	0.015	0.107	8.8	0.825	0.184	0.140
GPT-4o	5.3	0.797	0.138	0.141	0.6	0.785	0.015	0.108	10.9	0.808	<u>0.228</u>	0.161
GPT-5.1	0.1	0.857	0.069	0.230	0.0	0.830	0.003	0.075	0.4	0.878	0.130	0.322
Gemini-1.5-Pro	5.8	0.813	0.146	0.142	2.1	0.795	0.010	0.124	11.7	0.832	0.236	0.162
Gemini-3-Pro	<u>5.6</u>	0.915	<u>0.141</u>	0.468	0.4	0.904	0.022	0.305	<u>11.1</u>	0.920	0.214	0.515
Claude-Sonnet-4.5	4.5	0.906	0.115	0.340	0.0	0.890	0.004	0.115	8.4	0.915	0.182	0.442
Grok-4	4.8	0.902	0.129	0.422	0.7	0.895	0.015	0.222	9.8	0.911	0.226	<u>0.522</u>
GLM-4-Flash	0.0	0.761	0.038	0.077	0.0	0.762	0.006	0.052	0.0	0.765	0.071	0.120
Mixtral-8x7B	1.1	0.784	0.068	0.079	0.0	0.777	0.002	0.040	2.2	0.796	0.105	0.107
LLaMA-3-8B	1.2	0.787	0.088	0.111	0.1	0.783	0.011	0.088	1.8	0.794	0.163	0.132
LLaMA-3-70B	3.8	<u>0.909</u>	0.126	0.409	0.2	0.898	0.003	0.160	8.5	<u>0.916</u>	0.191	0.531
Human	1.2	0.833	0.122	0.159	—	—	—	—	—	—	—	—

352 Tables 1, 2, and 3 present comprehensive performance metrics for all evaluated LLMs across the
 353 four VR games. Our analysis reveals substantial variations in model capabilities and game-specific
 354 challenges. Gemini-3-Pro emerges as the strongest performer overall, achieving the highest NSAS
 355 scores in three of the four games (Half-Life: Alyx: 0.929, Into the Radius: 0.927, Moss: Book
 356 II: 0.928), while maintaining competitive performance in Vivecraft (0.895). Grok-4 demonstrates
 357 particular strength in Half-Life: Alyx with the SOP score (0.351) and F1_{SOP} (0.430), suggesting
 358 superior procedural reasoning capabilities in this specific game context. Claude-Sonnet-4.5 maintains
 359 consistently strong performance across all games, positioning itself as a reliable general-purpose
 360 model for VR interaction translation.

361 A striking pattern emerges in the SOP metrics, which vary dramatically across both models and
 362 games (0.000-0.379 range). While NSAS scores remain relatively high (mostly >0.75), indicating
 363 models can identify relevant steps, the low SOP values reveal fundamental difficulties in
 364 maintaining correct temporal ordering. This discrepancy is particularly pronounced in Vivecraft,
 365 where models achieve high NSAS scores (0.864-0.931) but struggle with step ordering (SOP:
 366 mostly below 0.200), suggesting that simpler interaction patterns may paradoxically lead to
 367 overconfidence in step sequencing.

368 Analysis of performance variations (Table 3) reveals significant game-dependent effects. Vivecraft
 369 exhibits the highest average performance across models (0.864-0.931), likely due to its consistent
 370 block-based interaction paradigm inherited from Minecraft. In contrast, Into the Radius presents the
 371 greatest challenge, with notably lower NSAS scores (0.618-0.927) and high performance variance.
 372 This pattern suggests that games featuring realistic physics simulations and complex inventory
 373 management pose particular difficulties for current LLMs.

374 Table 3: Cross-game performance variation (standard deviation across games) w/ 5-shot examples.

Model	NSAS $\sigma \downarrow$	SOP $\sigma \downarrow$	F1 _{SOP} $\sigma \downarrow$	Game Gap \downarrow
GPT-3.5	0.110	0.061	0.084	0.085
GPT-4	0.059	0.051	0.081	0.074
GPT-4o	0.068	0.137	0.184	0.127
GPT-5.1	0.018	0.102	0.097	0.073
Gemini-1.5-Pro	0.099	0.093	0.127	0.095
Gemini-3-Pro	0.014	0.123	0.106	0.081
Claude-Sonnet-4.5	0.009	0.110	0.134	0.084
Grok-4	0.013	0.137	<u>0.065</u>	0.072
GLM-4-Flash	0.135	0.049	0.069	0.084
Mixtral-8x7B	0.114	<u>0.031</u>	0.065	<u>0.070</u>
LLaMA-3-8B	0.112	0.103	0.120	0.113
LLaMA-3-70B	<u>0.012</u>	0.106	0.077	0.065
Human	0.105	0.029	0.117	0.084

Interestingly, different models exhibit distinct strengths across game types. Grok-4 shows remarkable adaptability in Half-Life: Alyx compared to other models, while struggling in Vivecraft (NSAS 0.869). Gemini-3-Pro maintains the most balanced performance profile across games (Game Gap: 0.081), suggesting more robust generalization capabilities. Smaller models like Mixtral-8x7B and GLM-4-flash show disproportionate performance degradation in complex environments, with GLM-4-flash achieving zero SOP in Vivecraft despite reasonable NSAS scores. The substantial performance variations across games highlight the impact of interaction design on LLM capabilities. Games with discrete, well-defined actions (Vivecraft) enable higher model performance, while those requiring nuanced controller manipulation and spatial reasoning (Half-Life: Alyx, Into the Radius) expose current limitations. The correlation between game complexity and performance degradation is non-linear, moderate complexity (Moss: Book II) sometimes yields better results than simpler environments, suggesting that models may benefit from richer contextual cues in certain scenarios.

These findings collectively demonstrate that while state-of-the-art LLMs have made significant progress in understanding VR interactions, their performance remains highly sensitive to specific game mechanics and interaction paradigms. The gap between high NSAS scores and low SOP values across all games indicates that current models can identify relevant actions but struggle with the procedural reasoning required to sequence them correctly, which is an important capability for successful VR interaction.

Table 2 demonstrates that few-shot examples substantially improve LLM performance in VR device manipulation tasks, with the most dramatic gains observed in Sequential Order Preservation (SOP), where scores increase by 10–20x from near-zero baselines. All models benefit from in-context examples, though with diminishing returns, the improvement from zero-shot to 3-shot (average NSAS gain: 2.1%, SOP: 10-fold increase) significantly exceeds that from 3-shot to 5-shot (NSAS: 1.4%, SOP: 20-50% relative gain). Gemini-3-Pro exhibits the strongest adaptability, achieving the highest 5-shot performance (NSAS: 0.920), while maintaining consistent improvements across all metrics. The differential impact across metrics reveals that few-shot examples primarily address procedural sequencing challenges (massive SOP improvements) more effectively than exact step matching (modest SSM gains), suggesting that demonstrations help models understand temporal dependencies in VR interactions but do not fully resolve the complexity of translating semantic actions into precise device manipulations.

Scaling effects within model families. The inclusion of LLaMA-3-70B alongside LLaMA-3-8B enables direct analysis of scaling effects within the same architecture. Table 2 shows that scaling from 8B to 70B parameters yields substantial improvements: average NSAS increases from 0.787 to 0.909, SSM from 1.2% to 3.8%, and SSC from 0.111 to 0.409. These gains are consistent across games, with the most pronounced improvements in semantic step coverage. LLaMA-3-70B achieves competitive performance with proprietary models like GPT-4o and approaches Gemini-3-Pro on several metrics, suggesting that open-source models can match proprietary systems when appropriately scaled.

3.5 RQ4: COGNITIVE CAPABILITIES ANALYSIS

We analyzed model performance across six cognitive capabilities required for effective VR interaction (Figure 3). By mapping evaluation metrics to capability scores (0-10 scale), we identified specific strengths and limitations in how LLMs approach spatial-mechanical reasoning tasks.

Areas of strength: All evaluated LLMs demonstrate strong task decomposition capabilities (7.8-8.5), with minimal performance gap compared to humans (8.2). Gemini-1.5-Pro leads with a score of 8.5, while even smaller models like Mixtral-8x7B (8.0) and GLM-4-flash (7.8) perform admirably. This suggests that segmenting high-level actions into component steps aligns well with the sequential reasoning abilities developed during language model pre-training.

Areas of weakness: Motor action mapping emerges as the most significant challenge (0.5-4.5), with all models struggling to precisely translate abstract actions into specific VR control manipulations. GPT-4o performs best in this dimension (4.5), but still falls short of robust capability. Procedural reasoning also shows substantial variation (2.3-7.0), with only Gemini-1.5-Pro approaching adequate

432 performance. Judgment of termination conditions represents another challenge area, with most
 433 models scoring below 5.0 (except Gemini-1.5-Pro at 6.0), compared to human performance (6.5).
 434

435 **Model comparison:** Gemini-1.5-Pro demonstrates the most balanced performance profile, con-
 436 sistently outperforming other models in procedural reasoning (7.0), spatial reasoning (7.5), and
 437 termination judgment (6.0). GPT-4 variants show strong task decomposition and object interaction
 438 (5.3-5.7) but lag in procedural sequencing. LLaMA-3-8B shows surprisingly competitive performance
 439 in procedural reasoning (5.7), outperforming larger models like GPT-3.5-Turbo (4.3), suggesting
 440 architecture differences may be as important as scale.

441 3.6 RQ5: COMPARISON WITH HUMAN

442 To contextualize our findings, we compare LLM
 443 performance against human baselines across our
 444 evaluation metrics. As shown in Tables 1 and 3,
 445 state-of-the-art LLMs demonstrate competitive
 446 performance with humans on several key dimen-
 447 sions. Human performance forms a strong but
 448 no longer dominant baseline when compared
 449 to state-of-the-art LLMs on our text-to-action
 450 translation task.

451 We note that our human baseline measures per-
 452 formance on the text-to-action-sequence transla-
 453 tion task specifically, that is, humans were asked
 454 to write down step-by-step device manipulations
 455 given a semantic goal description, mirroring ex-
 456 actly the task given to LLMs. This setup ensures
 457 an apples-to-apples comparison but differs from
 458 in-situ VR performance, which would additionally involve real-time problem-solving, exploration,
 459 and motor execution. The surprising finding that models outperform humans on certain metrics (e.g.,
 460 SOP in Half-Life: Alyx) thus reflects the difficulty of recalling and accurately sequencing complex
 461 interactions from memory, validating the challenge posed by our benchmark.

462 Across all four VR games, humans consistently achieve mid-to-high NSAS scores (0.684–0.935),
 463 indicating reliable identification of relevant steps, yet they are outperformed by the reasoning models
 464 in games, with systems like Gemini-3-Pro, Grok-4, and LLaMA-3-70B reaching NSAS values above
 465 0.90 in most settings. More strikingly, humans lag behind top-performing models on SOP and SSC:
 466 while human SOP remains below 0.15 and SSC below 0.19 across games, models such as Grok-4,
 467 Gemini-3-Pro, and Claude-Sonnet-4.5 attain substantially higher procedural ordering and semantic
 468 coverage, often exceeding 0.30–0.65 on these metrics. These results suggest that, for the specific
 469 task of translating high-level VR goals into textual device-manipulation sequences, current LLMs
 470 not only match but frequently surpass human participants in both the completeness and the temporal
 471 structuring of the generated action steps.

472 Analysis of performance variance across games (Table 3) reveals striking similarities between human
 473 and high-performing model behavior. The standard deviation of human performance (0.084) closely
 474 aligns with that of Grok-4 (0.081) and Claude-Sonnet-4.5 (0.084), suggesting that both humans and
 475 advanced LLMs exhibit similar sensitivity patterns to game-specific interaction complexities. This
 476 convergence is particularly evident in structured environments like Vivecraft, where the consistency
 477 gap between humans and LLMs has substantially narrowed. Figure 3 illustrates the capability-wise
 478 performance comparison, revealing critical gaps in embodied reasoning. Humans maintain superior
 479 performance in spatial reasoning (8.3 vs. 7.5 for Gemini-1.5-Pro) and judgment of termination
 480 conditions (6.5 vs. 6.0). These differences are statistically significant ($p < 0.05$, Wilcoxon signed-
 481 rank test) and persist across all evaluated models. This performance gap suggests that while LLMs
 482 have achieved remarkable progress in understanding VR interaction semantics, they lack the grounded
 483 physical intuition that humans naturally apply when reasoning about three-dimensional manipulations
 484 and determining action completion states.

485 The convergence of human and LLM performance on certain metrics, coupled with persistent gaps in
 486 spatial and termination reasoning, indicates that current language models can effectively decompose
 487 VR tasks but struggle with aspects requiring embodied experience. This finding has important

488 Figure 3: Cognitive capabilities of LLMs and hu-
 489 mans in translating semantic actions to VR device
 490 manipulations. Higher scores (0-10 scale) indicate
 491 stronger abilities.

492 an apples-to-apples comparison but differs from
 493 in-situ VR performance, which would additionally involve real-time problem-solving, exploration,
 494 and motor execution. The surprising finding that models outperform humans on certain metrics (e.g.,
 495 SOP in Half-Life: Alyx) thus reflects the difficulty of recalling and accurately sequencing complex
 496 interactions from memory, validating the challenge posed by our benchmark.

497 Across all four VR games, humans consistently achieve mid-to-high NSAS scores (0.684–0.935),
 498 indicating reliable identification of relevant steps, yet they are outperformed by the reasoning models
 499 in games, with systems like Gemini-3-Pro, Grok-4, and LLaMA-3-70B reaching NSAS values above
 500 0.90 in most settings. More strikingly, humans lag behind top-performing models on SOP and SSC:
 501 while human SOP remains below 0.15 and SSC below 0.19 across games, models such as Grok-4,
 502 Gemini-3-Pro, and Claude-Sonnet-4.5 attain substantially higher procedural ordering and semantic
 503 coverage, often exceeding 0.30–0.65 on these metrics. These results suggest that, for the specific
 504 task of translating high-level VR goals into textual device-manipulation sequences, current LLMs
 505 not only match but frequently surpass human participants in both the completeness and the temporal
 506 structuring of the generated action steps.

507 Analysis of performance variance across games (Table 3) reveals striking similarities between human
 508 and high-performing model behavior. The standard deviation of human performance (0.084) closely
 509 aligns with that of Grok-4 (0.081) and Claude-Sonnet-4.5 (0.084), suggesting that both humans and
 510 advanced LLMs exhibit similar sensitivity patterns to game-specific interaction complexities. This
 511 convergence is particularly evident in structured environments like Vivecraft, where the consistency
 512 gap between humans and LLMs has substantially narrowed. Figure 3 illustrates the capability-wise
 513 performance comparison, revealing critical gaps in embodied reasoning. Humans maintain superior
 514 performance in spatial reasoning (8.3 vs. 7.5 for Gemini-1.5-Pro) and judgment of termination
 515 conditions (6.5 vs. 6.0). These differences are statistically significant ($p < 0.05$, Wilcoxon signed-
 516 rank test) and persist across all evaluated models. This performance gap suggests that while LLMs
 517 have achieved remarkable progress in understanding VR interaction semantics, they lack the grounded
 518 physical intuition that humans naturally apply when reasoning about three-dimensional manipulations
 519 and determining action completion states.

520 The convergence of human and LLM performance on certain metrics, coupled with persistent gaps in
 521 spatial and termination reasoning, indicates that current language models can effectively decompose
 522 VR tasks but struggle with aspects requiring embodied experience. This finding has important

486 implications for the development of future VR-capable AI systems, suggesting the need for training
 487 paradigms that better incorporate spatial and physical reasoning capabilities.
 488

489 Table 4 presents the results of our Multi-Path Step Matching (MP-SSM) evaluation, in which each
 490 model and the human baseline are assessed against multiple distinct valid ground-truth solutions for
 491 each scenario. Compared to previous single-path assessments, all systems show substantial gains
 492 in NSAS scores, confirming that accounting for the diversity of human-authored action sequences
 493 provides a more accurate picture of their abilities. The human baseline, in particular, sees a marked
 494 improvement, with an average NSAS of 0.931 and a relative increase of 14.5%, establishing a
 495 meaningful reference for achievable performance. While all models register higher scores, the relative
 496 ranking among them is preserved: GPT-4 and GPT-4o lead overall, closely followed by LLaMA-3,
 497 Gemini-1.5, and GPT-3.5, with Mixtral and GLM-4 slightly behind. These findings reinforce that
 498 state-of-the-art LLMs remain competitive with expert humans even under this more realistic multi-
 499 solution evaluation, and highlight the importance of considering multiple valid approaches when
 measuring success in open-ended procedural tasks.

501 4 RELATED WORK

502 Recent work has explored LLMs as generalist agents for embodied reasoning. In robotics, *Say-Can* (Ahn et al., 2022) and *PaLM-E* (Driess et al., 2023) combine LLMs with affordance-based skill
 503 models or multimodal inputs to plan and execute actions, demonstrating that LLMs can decompose
 504 high-level goals into actionable steps when grounded in sensory input. Similar capabilities appear in
 505 virtual domains through agents like *Voyager* (Wang et al., 2023) and platforms like *MineDojo* (Fan
 506 et al., 2022), which showcase autonomous skill acquisition via code generation. However, these
 507 systems focus on code-level or symbolic outputs rather than physical device manipulation or spatially
 508 grounded motor control required in VR. Task decomposition has been studied via prompting strategies
 509 such as Chain-of-Thought (Wei et al., 2022) and ReAct (Yao et al., 2022), which improve multi-
 510 step planning coherence. LLMs generate structured action sequences in domains like household
 511 tasks (Shridhar et al., 2020) and scientific procedures (Wang et al., 2022), while code-as-policy
 512 paradigms (Liang et al., 2022) enable conditional and iterative actions through executable policy code.
 513 These approaches, however, often abstract away physical or spatial execution complexity. Several
 514 benchmarks assess grounded reasoning in interactive settings. Animal-AI (Mecattaf et al., 2024)
 515 evaluates embodied cognition through physics-based tasks, while ALFWorld (Shridhar et al., 2021),
 516 ScienceWorld (Wang et al., 2022), and MacGyver-style tasks (Tian et al., 2024) test instruction-
 517 following and object-use innovation, revealing LLMs’ limitations in spatial reasoning and tool-use
 518 generalization. Concurrently, capability-oriented embodied evaluations have emerged: Embodied-
 519 Bench (Yang et al., 2025) unifies tasks with fine-grained error taxonomies; VLABench (Zhang et al.,
 520 2024a) targets long-horizon manipulation; EAI (Li et al., 2025) standardizes step-level diagnostics.
 521 GUI/OS/mobile benchmarks including OSWorld (Xie et al., 2024), SPA-Bench (Zhang et al., 2024b),
 522 WebArena (Zhou et al., 2023), Mind2Web (Deng et al., 2023), AndroidEnv (Toyama et al., 2021), and
 523 AppAgent/AppAgent v2 (Zhang et al., 2023; Li et al., 2024b) evaluate precise device interactions. On
 524 the robotics side, VLA policies such as RT-1/RT-2 (Brohan et al., 2022; 2023) and OpenVLA (Kim
 525 et al., 2024) map observations to actions, while large-scale 3D suites like Habitat 2.0/HAB (Savva
 526 et al., 2021), BEHAVIOR-1K/OmniGibson (Li et al., 2024a), and CALVIN (Mees et al., 2021) stress
 527 long-horizon rearrangement.

528 In contrast, ComboBench targets the translation of semantic goals into fine-grained, physically
 529 grounded VR device manipulations, enabling precise step-level analysis of embodied cognitive
 530 abilities critical for real-world interaction.

532 5 CONCLUSION

533 We introduced ComboBench, a benchmark evaluating LLMs’ ability to translate semantic actions into
 534 VR device manipulations across 262 scenarios from four VR games. Our evaluation of twelve LLMs
 535 reveals that while models demonstrate strong task decomposition, they struggle with procedural
 536 reasoning and motor action mapping. Few-shot examples substantially improve performance, but
 537 significant gaps remain compared to human capabilities, highlighting the need for multimodal training
 538 approaches that incorporate spatial and embodied reasoning.

540 REFERENCES
541542 VR Content on Steam App Store. <https://store.steampowered.com/search/?vrsupport=401>, 2023.544 Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
545 Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
546 Grounding language in robotic affordances. *arXiv preprint arXiv:2204.01691*, 2022.548 Anthropic. Introducing claude sonnet 4.5. 2025. URL <https://www.anthropic.com/news/claude-sonnet-4-5>.550 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
551 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian Ichter,
552 Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
553 Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deeksha
554 Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez, Karl
555 Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi, Kevin
556 Sayed, Jaspia Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vincent Van-
557 houcke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna
558 Zitkovich. Rt-1: Robotics transformer for real-world control at scale, 2022.559 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
560 Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, et al. Rt-2: Vision-
561 language-action models transfer web knowledge to robotic control, 2023.563 CMGames. Into the Radius, 2019. URL <https://www.into-the-radius.com/>.564 Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
565 Yu Su. Mind2web: Towards a generalist agent for the web, 2023.566 Danny Driess, Fei Xia, Arjun Srinivas, Wenlong Huang, Julius Müller, Roberto Martín-Martín,
567 Tobias Bücheler, Yevgen Chebotar Du, Karol Hausman, Saran Tunyasuvunakool, et al. Palm-e:
568 An embodied multimodal language model. *arXiv preprint arXiv:2303.03378*, 2023.569 Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
570 De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
571 agents with internet-scale knowledge. *arXiv preprint arXiv:2206.08853*, 2022.572 Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego Rojas,
573 Guanyu Feng, Hanlin Zhao, et al. Chatglm: A family of large language models from glm-130b to
574 glm-4 all tools. *arXiv preprint arXiv:2406.12793*, 2024.575 Google. Gemini 3 pro. 2025. URL <https://deepmind.google/models/gemini/pro/>.576 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
577 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
578 models. *arXiv preprint arXiv:2407.21783*, 2024.579 Jen-tse Huang, Wenzuan Wang, Eric John Li, Man Ho Lam, Shujie Ren, Youliang Yuan, Wenxiang
580 Jiao, Zhaopeng Tu, and Michael Lyu. On the humanity of conversational ai: Evaluating the psycho-
581 logical portrayal of llms. In *The Twelfth International Conference on Learning Representations*,
582 2024.583 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
584 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
585 *arXiv:2410.21276*, 2024.586 Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
587 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
588 Mistral 7b. *arXiv preprint arXiv:2310.06825*, 2023.

594 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael
 595 Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong, Thomas Kollar, Benjamin
 596 Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn. Openvla:
 597 An open-source vision-language-action model, 2024.

598 Man Ho Lam, Chaozheng Wang, Jen-tse Huang, and Michael R Lyu. Codecrash: Stress testing llm
 599 reasoning under structural and semantic perturbations. *arXiv preprint arXiv:2504.14119*, 2025.

600 Cheryl Lee, Chunqiu Steven Xia, Jen-tse Huang, Zhouruixin Zhu, Lingming Zhang, and Michael R
 601 Lyu. A unified debugging approach via llm-based multi-agent synergy. *arXiv preprint
 602 arXiv:2404.17153*, 2024.

603 Chengshu Li, Josiah Wong, Michael Lingelbach, Roberto Martín-Martín, Jim Fan, et al. Behavior-1k:
 604 A human-centered, embodied ai benchmark with 1,000 everyday activities and realistic simulation,
 605 2024a.

606 Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang, Yu Zhou, Sanjana Srivastava, Cem Gokmen,
 607 Tony Lee, Li Erran Li, Ruohan Zhang, Weiyu Liu, Percy Liang, Li Fei-Fei, Jiayuan Mao, and
 608 Jiajun Wu. Embodied agent interface: Benchmarking llms for embodied decision making, 2025.

609 Yanda Li, Chi Zhang, Wanqi Yang, Bin Fu, Pei Cheng, Xin Chen, Ling Chen, and Yunchao Wei.
 610 Appagent v2: Advanced agent for flexible mobile interactions, 2024b.

611 Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
 612 Andy Zeng. Code as policies: Language model programs for embodied control. *arXiv preprint
 613 arXiv:2209.07753*, 2022.

614 Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu,
 615 and Shuming Shi. Encouraging divergent thinking in large language models through multi-agent
 616 debate. *arXiv preprint arXiv:2305.19118*, 2023.

617 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,
 618 Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
 619 of foundation models in visual contexts. In *The Twelfth International Conference on Learning
 620 Representations*, 2024.

621 Matteo G. Mecattaf, Ben Slater, Marko Tešić, Jonathan Prunty, Konstantinos Voudouris, and Lucy G.
 622 Cheke. A little less conversation, a little more action, please: Investigating the physical common-
 623 sense of llms in a 3d embodied environment. *arXiv preprint arXiv:2410.23242*, 2024.

624 Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
 625 language-conditioned policy learning for long-horizon robot manipulation tasks, 2021.

626 OpenAI. Introducing chatgpt. *OpenAI Blog Nov 30 2022*, 2022. URL <https://openai.com/index/chatgpt/>.

627 OpenAI. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.

628 OpenAI. Gpt-5.1: A smarter, more conversational chatgpt. 2025. URL <https://openai.com/index/gpt-5-1/>.

629 Polyarc. Moss: Book II, 2022. URL <https://www.polyarcgames.com/games/moss-book-ii>.

630 Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao Chen, Michihiro Yasunaga, and Diyi
 631 Yang. Is chatgpt a general-purpose natural language processing task solver? *arXiv preprint
 632 arXiv:2302.06476*, 2023.

633 Manolis Savva, Abhishek Kadian, Erik Wijmans, Shengyi Qian, Angel Chang, et al. Habitat 2.0:
 634 Training home assistants to rearrange their habitat, 2021.

635 Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
 636 Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions
 637 for everyday tasks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 638 Recognition*, pp. 10740–10749, 2020.

648 Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
 649 Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. In
 650 *Proceedings of the International Conference on Learning Representations (ICLR)*, 2021. URL
 651 <https://arxiv.org/abs/2010.03768>.

652 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
 653 Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
 654 understanding across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.

655 Yufei Tian, Abhilasha Ravichander, Lianhui Qin, Ronan Le Bras, Rami Marjieh, Nanyun Peng, Yejin
 656 Choi, Thomas L Griffiths, and Faeze Brahman. Macgyver: Are large language models creative
 657 problem solvers? In *Proceedings of the 2024 Conference of the North American Chapter of the*
 658 *Association for Computational Linguistics: Human Language Technologies*, pp. 5303–5324, 2024.

659 Daniel Toyama, Philippe Hamel, Anita Gergely, Gheorghe Comanici, Amelia Glaese, Zafarali Ahmed,
 660 Tyler Jackson, Shibl Mourad, and Doina Precup. Androidenv: A reinforcement learning platform
 661 for android, 2021.

662 Valve. Half-Life: Alyx, 2020. URL <https://www.half-life.com/en/alyx/>.

663 Vivecraft. Vivecraft – Virtual Reality Minecraft for SteamVR, 2013. URL <https://www.vivecraft.org/>.

664 Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
 665 Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. *arXiv*
 666 *preprint arXiv:2305.16291*, 2023.

667 Yujia Wang, Tushar Khot, Ashish Sabharwal, and Peter Clark. Scienceworld: Is your agent smarter
 668 than a 5th grader? *arXiv preprint arXiv:2203.07540*, 2022.

669 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc V
 670 Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
 671 *arXiv preprint arXiv:2201.11903*, 2022.

672 xAI. Grok 4. 2025. URL <https://x.ai/news/grok-4/>.

673 Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
 674 Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio
 675 Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents
 676 for open-ended tasks in real computer environments, 2024.

677 Rui Yang, Hanyang Chen, Junyu Zhang, Mark Zhao, Cheng Qian, Kangrui Wang, Qineng Wang,
 678 Teja Venkat Koripella, Marziyeh Movahedi, Manling Li, Heng Ji, Huan Zhang, and Tong Zhang.
 679 Embodiedbench: Comprehensive benchmarking multi-modal large language models for vision-
 680 driven embodied agents, 2025.

681 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 682 React: Synergizing reasoning and acting in language models. *arXiv preprint arXiv:2210.03629*,
 683 2022.

684 Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu.
 685 Appagent: Multimodal agents as smartphone users, 2023.

686 Shiduo Zhang, Zhe Xu, Peiju Liu, Xiaopeng Yu, Yuan Li, Qinghui Gao, Zhaoye Fei, Zhangyue
 687 Yin, Zuxuan Wu, Yu-Gang Jiang, and Xipeng Qiu. Vlabench: A large-scale benchmark for
 688 language-conditioned robotics manipulation with long-horizon reasoning tasks, 2024a.

689 Zhaofeng Zhang, Yiyan Qi, Jinjie Ni, Jiayi Yuan, Fangkai Yang, et al. Spa-bench: A comprehensive
 690 benchmark for smartphone agent evaluation, 2024b.

691 Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
 692 Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
 693 web environment for building autonomous agents, 2023.

702 A PRELIMINARIES ON VIRTUAL REALITY
703704
705 Virtual Reality (VR) represents a fundamentally distinct paradigm of human-computer interaction
706 that transcends traditional interface boundaries. Unlike conventional computing systems that rely
707 on indirect manipulation through keyboards, mice, and two-dimensional displays, VR creates im-
708 mersive digital environments where users experience presence and embodiment. This paradigm shift
709 necessitates a comprehensive understanding of both the technological infrastructure and the cognitive
710 demands placed on users who must translate abstract intentions into concrete physical manipulations
711 within virtual spaces.712 The evolution of VR technology has progressed through several generations, from early tethered
713 systems requiring substantial computational infrastructure to modern standalone devices that integrate
714 processing, display, and tracking capabilities within compact form factors. Contemporary VR systems
715 can be broadly categorized into three architectural approaches. PC-tethered headsets leverage external
716 computational resources to deliver high-fidelity experiences with complex graphics and physics
717 simulations. Standalone headsets, exemplified by devices like the Meta Quest series, incorporate
718 integrated processors that balance performance with portability. Mobile-phone-based solutions
719 represent an accessible entry point, utilizing smartphones as both display and processor, though with
720 inherent limitations in tracking precision and computational capability.721 The core hardware components enabling VR interaction form an integrated ecosystem of sensory
722 input and output devices. Head-Mounted Displays (HMDs) serve as the primary visual interface,
723 providing stereoscopic rendering that creates depth perception while simultaneously tracking head
724 orientation and position through integrated sensors. This tracking enables natural viewing behaviors
725 where users can examine virtual objects by physically moving their heads, mirroring real-world visual
726 exploration patterns. Motion controllers, typically deployed in pairs to represent both hands, enable
727 direct manipulation of virtual objects through a combination of positional tracking, button inputs,
728 trigger mechanisms, and thumbstick controls. These devices must balance ergonomic considerations
729 with functional complexity, providing sufficient input channels while maintaining intuitive operation.
730 Spatial tracking systems, whether implemented through external sensors (outside-in tracking) or
731 integrated cameras (inside-out tracking), monitor user movements with six degrees of freedom,
732 capturing both translational and rotational motion to enable natural locomotion and interaction within
733 virtual environments.734 The ongoing evolution of VR hardware continues to introduce novel interaction modalities. Haptic
735 gloves promise to deliver tactile feedback through actuators that simulate texture, resistance, and
736 temperature. Full-body tracking systems capture skeletal motion to enable more nuanced avatar
737 control and gesture recognition. Specialized peripherals, from steering wheels for racing simulations
738 to weapon replicas for combat games, demonstrate the trend toward application-specific controllers
739 that enhance immersion through physical affordances that match virtual interactions.740 A.1 INTERACTION PARADIGMS AND DESIGN PRINCIPLES
741742 The design of VR interaction paradigms represents a delicate balance between leveraging users'
743 existing motor skills and introducing novel control schemes that exploit the unique capabilities of
744 virtual environments. Direct manipulation forms the foundation of most VR interactions, where
745 users employ hand controllers to simulate natural actions like grasping, throwing, and pushing. This
746 approach capitalizes on users' lifetime of experience with physical object manipulation but requires
747 careful calibration of virtual physics to match expectations. The mapping between controller inputs
748 and virtual hand movements must account for the absence of tactile feedback, often employing visual
749 or auditory cues to confirm successful interactions.750 Ray-casting emerged as an elegant solution to the fundamental challenge of interacting with objects
751 beyond physical reach. By projecting virtual rays from controllers, users can select, manipulate, and
752 activate distant objects without locomotion. This technique exemplifies how VR interaction design
753 often augments natural human capabilities rather than strictly simulating physical constraints. Ad-
754 vanced ray-casting implementations incorporate features like ray curvature for improved ergonomics,
755 variable ray length based on context, and visual feedback mechanisms that indicate interaction
possibilities.

756 Gesture recognition systems interpret temporal patterns of controller or hand movement as discrete
 757 commands, enabling a rich vocabulary of interactions without relying on button combinations. These
 758 systems must balance recognition accuracy with user comfort, avoiding gestures that cause fatigue
 759 or require precise movements difficult to perform consistently. Machine learning approaches have
 760 enhanced gesture recognition capabilities, allowing for more natural and varied input patterns while
 761 maintaining reliable detection rates.

762 Symbolic input mechanisms address scenarios where direct physical analogues are impractical or
 763 inefficient. Virtual keyboards present unique challenges in VR, as users lack tactile feedback and
 764 must rely on visual confirmation of key presses. Solutions range from laser-pointer selection of virtual
 765 keys to gesture-based text entry systems that map hand movements to characters. Voice commands
 766 offer an alternative input modality that bypasses manual interaction entirely, though they introduce
 767 considerations around recognition accuracy, latency, and social acceptability in shared spaces.

768

769 A.2 DEVELOPMENT PLATFORMS AND TECHNICAL CONSIDERATIONS

770

771 The creation of VR applications relies on sophisticated development ecosystems that abstract hardware
 772 complexity while providing fine-grained control over interaction mechanics. Unity and Unreal Engine
 773 have emerged as dominant platforms, offering comprehensive toolsets that handle rendering pipelines,
 774 physics simulation, spatial audio, and cross-platform deployment. These engines provide specialized
 775 VR interaction frameworks that standardize common patterns like object grabbing, teleportation, and
 776 menu systems, significantly reducing development complexity.

777

778 Hardware software development kits (SDKs) serve as the bridge between high-level application logic
 779 and device-specific capabilities. Meta’s OpenXR initiative represents an industry effort to standardize
 780 VR/AR interfaces, enabling applications to target multiple hardware platforms without extensive
 781 modifications. Platform-specific SDKs like SteamVR and Oculus SDK continue to play important
 782 roles, offering access to proprietary features and optimizations that enhance performance on particular
 783 hardware.

784

785 Technical constraints fundamentally shape VR interaction design decisions. Maintaining consistent
 786 frame rates above 72Hz (and preferably 90Hz or higher) prevents motion sickness and ensures
 787 responsive interactions. This performance requirement influences every aspect of application design,
 788 from polygon counts and texture resolution to the complexity of physics simulations. Tracking
 789 precision varies across hardware platforms and environmental conditions, necessitating interaction
 790 designs that accommodate occasional tracking losses or reduced accuracy. Developers must also
 791 consider the diverse computational capabilities across the VR ecosystem, implementing scalable
 792 solutions that provide acceptable experiences on entry-level hardware while leveraging the capabilities
 793 of high-end systems.

794

795 A.3 CHALLENGES IN VR INTERACTION

796

797 Despite remarkable technological progress, VR interaction continues to face fundamental challenges
 798 that impact user experience and limit application domains. The locomotion problem exemplifies the
 799 tension between physical and virtual spaces. While users may explore vast virtual environments, they
 800 remain constrained by finite physical play areas. Teleportation offers a practical solution but breaks
 801 immersion and can cause spatial disorientation. Artificial locomotion through thumbstick control
 802 risks motion sickness in susceptible users. More exotic solutions like omnidirectional treadmills or
 803 redirected walking techniques remain impractical for consumer applications.

804

805 The absence of comprehensive haptic feedback represents perhaps the most significant limitation in
 806 current VR systems. While controllers provide basic vibration feedback, they cannot simulate the
 807 rich tactile experiences of real-world interaction: the weight of objects, surface textures, temperature
 808 variations, or resistance to movement. This sensory gap creates a fundamental disconnect between
 809 visual expectations and physical sensations, requiring users to adapt their interaction strategies and
 810 often leading to reduced precision in manipulation tasks.

811

812 Interaction discoverability poses ongoing challenges as VR applications lack standardized interface
 813 conventions comparable to desktop or mobile platforms. Users encountering new VR experiences
 814 must often learn application-specific control schemes, gesture sets, and interaction patterns. The
 815 absence of persistent visual UI elements (to maintain immersion) exacerbates this challenge, as users

810 cannot easily reference control schemes during gameplay. This lack of standardization increases
 811 cognitive load and creates barriers to entry for new users.
 812

813 Precision manipulation tasks highlight the limitations of current tracking systems and input devices.
 814 Tasks requiring fine motor control, such as threading a virtual needle or manipulating small compo-
 815 nents, prove challenging due to tracking jitter, lack of physical surfaces for hand stabilization, and
 816 absence of tactile confirmation. These limitations restrict the types of applications suitable for VR and
 817 influence interaction design toward larger, more forgiving target sizes and simplified manipulation
 818 schemes.

(a) NSAS

(b) SOP

Figure 6: Overview of Common Subsequence Evaluation

B EXPERT INTERVIEW.

To derive the taxonomy in Section 1.1, we conducted semi-structured interviews with three domain experts who specialize in cognitive science and educational psychology, with research backgrounds in spatial cognition, procedural learning, and embodied interaction. Each expert participated in a 90-minute online interview focused on identifying the cognitive abilities required to translate semantic goals into physical actions in virtual environments.

The interview protocol followed three phases: (1) an open-ended discussion of cognitive processes involved in VR interaction, (2) a structured review of preliminary capability categories synthesized from prior work, and (3) targeted refinement, where experts proposed additions, merges, and clarifications to these categories. We performed a thematic analysis over the interview transcripts to extract points of agreement and disagreement. Areas of consensus were directly incorporated into the taxonomy, while divergent views were reconciled through follow-up email consultations. This process yielded the six core capability dimensions reported in the main text.

C EXPLANATION OF EVALUATION METRICS

C.1 STRICT STEP-BY-STEP MATCHING (SSM)

Figure 5 illustrates the Strict Step-by-Step Matching (SSM) calculation process. SSM represents our most stringent evaluation metric, requiring exact correspondence between model-generated sequences and ground truth annotations. The calculation process operates as follows:

In the left panel, we observe a scenario where the ground truth contains 4 steps while the model result contains 5 steps. For SSM to register a match, two conditions must be satisfied: (1) the number of steps must be identical between ground truth and model output, and (2) each step must have a cosine similarity score above our threshold of 0.8387 with its corresponding ground truth step. In this example, the length mismatch alone disqualifies the sequence from being counted as correct, resulting in an SSM score of 0. The orange X symbol on the fifth model step visually indicates this length mismatch failure.

The right panel demonstrates a successful SSM match where both sequences contain 4 steps. Each model step is compared with its corresponding ground truth step using cosine similarity of their text embeddings. The green checkmarks indicate that all four step pairs exceed the similarity threshold, resulting in a successful match and contributing 1 to the SSM score. This metric's strictness explains why even high-performing models achieve relatively low SSM scores—any deviation in sequence length or individual step similarity results in complete failure for that sequence.

C.2 COMMON SUBSEQUENCE EVALUATION

Figure 6 details our Common Subsequence Evaluation approach, which underlies the Normalized Step Alignment Score (NSAS) and Sequential Order Preservation (SOP) metrics. This evaluation method provides more nuanced assessment than SSM by identifying partial matches and preserved ordering within sequences.

918 The process begins with comparing each step in the ground truth and model result sequences using
 919 cosine similarity, as shown by the crossing blue lines in the leftmost panel. Unlike SSM’s strict
 920 position-based matching, this approach allows steps to match regardless of their positions in the
 921 sequences. The algorithm then identifies the top 3 longest common subsequences where matched
 922 steps maintain their relative ordering.

923 In the example shown, multiple candidate subsequences are generated, each representing different
 924 ways steps from both sequences can be aligned while preserving order. The model (shown as GPT-
 925 4o) then selects the most matching subsequence based on the highest cumulative similarity scores.
 926 The final selected subsequence shows GT Steps 2, 3, and 4 matching with MR Steps 1, 4, and 5
 927 respectively. This flexible matching approach allows the metrics to capture semantic correctness even
 928 when models include additional steps or present steps in slightly different positions.

929 The NSAS metric is calculated by considering the correctly matched steps ($|C|$), missing steps from
 930 ground truth ($|M|$), and additional steps in the model output ($|A|$), normalized by the total ground truth
 931 steps and scaled across the dataset. The SOP metric specifically evaluates whether matched steps
 932 maintain their sequential order, providing insight into the model’s procedural reasoning capabilities.

940 C.3 COGNITIVE CAPABILITY SCORE DERIVATION

944 The radar chart in Figure 3 presents normalized capability scores (0–10 scale) derived by aggregating
 945 model performance on scenario subsets that heavily engage each cognitive dimension. Each scenario
 946 in ComboBench was labeled with primary cognitive requirements during the annotation process
 947 described in Section 1.5. For example, scenarios labeled with high “Spatial Reasoning” complexity
 948 (e.g., “crouch through the gap,” “navigate around the obstacle”) form the subset used to compute
 949 spatial reasoning scores.

950 For each capability dimension c , the score for model m is computed as:

$$960 \quad \text{Score}_c^m = 10 \times \frac{\text{NSAS}_c^m - \min_{\text{models}}(\text{NSAS}_c)}{\max_{\text{models}}(\text{NSAS}_c) - \min_{\text{models}}(\text{NSAS}_c)}. \quad (1)$$

971 Here, NSAS_c^m is the average NSAS score of model m on scenarios primarily requiring capability c .
 972 This normalization ensures comparability across dimensions with different baseline difficulties.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 **D DETAILED PROMPT**
10271028 **Prompt for Vivecraft Action Decomposition**
1029

1030 You are an expert VR game player deeply immersed in a VR game called Vivecraft. You are
1031 holding your VR controllers in both hands and view the game scene through your HMD. Your
1032 task is to thoroughly describe how you perform semantic actions in Vivecraft by breaking them
1033 down into step-by-step sequences of device manipulations in the given JSON format. Use precise
1034 and clear instructions, and include all necessary steps to ensure accurate execution of the action.
1035 The output should include atomic game actions and corresponding VR device manipulations.
1036 Your output must strictly follow this JSON format:

```
1037 {
1038     "action ID": "<action ID>",
1039     "semantic action": "<action>",
1040     "atomic game action": [
1041         "1. <step_1>",
1042         .....
1043         "n. <step_n>"
1044     ],
1045     "device manipulations": [
1046         "1. <step_1>",
1047         .....
1048         "n. <step_n>"
1049     ]
1050 }
```

1049 Here is the introduction to the VR game Vivecraft to help you better decompose the atomic
1050 action and device manipulation:

1051 <game_intro/>

1052 Vivecraft is the mod that transforms Minecraft into an exceptional VR experience in room-scale
1053 or seated play. It is a sandbox game that allows players to explore, create, and survive in a blocky,
1054 procedurally generated world. The key mechanism of the game is listed below: – Mining and
1055 Crafting: Gather materials from the environment and craft tools, weapons, and other items using
1056 a crafting table. – Building: Use blocks to construct buildings, machines, and other structures. –
1057 Exploration: Discover various biomes with unique landscapes, resources, and mobs. – Combat:
1058 Defend against hostile mobs like zombies, skeletons, and creepers. – Farming and Animal
1059 Husbandry: Grow crops and breed animals for long-term survival.

1060 </game_intro> Here is the general VR controller user guide that helps you to decompose
1061 the semantic action into device manipulation:

1062 <vr_device_guide/>

- 1063 • **HMD:** Provides immersive visual and auditory VR experience; displays 360-degree
environments and delivers spatial audio.
- 1064 • **Triggers (controllers):** Used for precise actions, including pressing virtual buttons and
selecting or interacting with objects.
- 1065 • **Grips (controllers):** Used for grabbing and manipulating objects, including grabbing,
moving, rotating, and resizing; pressing the grip forms a virtual fist.
- 1066 • **Thumb Buttons (controllers):**
 - 1067 – **X (left):** Open quick access toolkit or inventory.
 - 1068 – **Y (left):** Open game settings menu.
 - 1069 – **A (right):** Use item in the VR environment; change placement mode.
 - 1070 – **B (right):** Toggle quick menu.
- 1071 • **Joysticks (controllers):**
 - 1072 – **Left joystick:** Move within the VR environment; navigation.
 - 1073 – **Right joystick:** Rotate in different directions.

1074 </vr_device_guide>

1075 Criteria:

1076 <criteria/> 1. You can assume that the tools and materials you need are already in your
1077 inventory. 2. If you use a trigger, grip, or controller, you must explicitly specify whether it is left,
1078 right, or both. 3. If you use a thumb button, you must explicitly state which one (A, B, X, or Y).
1079 </criteria>

1080 **E DETAILED EXPERIMENT RESULTS**
1081

1082 This section provides comprehensive analysis of our experimental results, including detailed performance
1083 breakdowns across models, games, and experimental conditions. We present both aggregated
1084 metrics and fine-grained analyses that illuminate specific strengths and weaknesses in current LLMs'
1085 ability to reason about VR device manipulations.
1086

1087 **E.1 OVERALL PERFORMANCE ANALYSIS**
1088

1089 The table 5 below presents a holistic view of model performance across all experimental conditions.
1090 The results reveal a clear performance hierarchy, with Gemini-1.5-Pro achieving the highest average
1091 Normalized Step Alignment Score (NSAS) of 0.845, followed closely by GPT-4o (0.832) and GPT-4
1092 (0.824). Notably, even the best-performing models achieve relatively modest Strict Step-by-Step
1093 Matching (SSM) scores, with Gemini-1.5-Pro reaching only 8.7% exact sequence matches. This
1094 discrepancy between NSAS and SSM scores indicates that while models can identify appropriate
1095 actions, they struggle with precise sequencing and complete reproduction of manipulation sequences.
1096

1097 The Sequential Order Preservation (SOP) scores reveal perhaps the most significant challenge facing
1098 current LLMs. Even top-performing models achieve SOP scores below 0.3, indicating difficulty
1099 in maintaining correct procedural ordering of steps. This limitation is particularly pronounced in
1100 zero-shot settings, where SOP scores approach zero for most models, suggesting that procedural
1101 reasoning for VR interactions requires exposure to examples rather than emerging from general
1102 language understanding.
1103

1104 Human performance provides an important baseline for contextualizing model achievements. While
1105 humans achieve comparable NSAS scores (0.817) to top LLMs, they show notably lower SOP scores
1106 (0.124) than leading models. This counterintuitive result reflects the challenging nature of the tasks
1107 even for experienced VR users and suggests that perfect procedural recall may be less important than
1108 adaptive problem-solving in real-world VR interaction.
1109

1110 **Table 5: Performance of LLMs across VR Games (Best Few-Shot Setting)**
1111

1112

Model	NSAS	SOP	SSC	SSM	Best FS
Gemini-1.5-Pro	0.845	0.251	0.151	0.087	5
GPT-4o	0.832	0.291	0.190	0.135	5
GPT-4	0.824	0.218	0.177	0.095	5
LLaMA-3-8B	0.823	0.283	0.200	0.040	5
Human	0.817	0.124	0.174	0.021	-
Mixtral-8x7B	0.790	0.123	0.142	0.039	5
GPT-3.5	0.778	0.169	0.137	0.037	5
GLM-4-Flash	0.749	0.096	0.165	0.000	5

1113 **E.2 GAME-SPECIFIC PERFORMANCE PATTERNS**
1114

1115 The table 6 below reveals substantial variations in model performance across different VR games,
1116 highlighting how game design and interaction complexity influence LLM reasoning capabilities.
1117 Vivecraft consistently yields the highest performance across all models, with NSAS scores ranging
1118 from 0.909 to 0.938. This strong performance likely reflects the game's discrete, block-based
1119 interaction paradigm inherited from Minecraft, which provides clear action-object mappings that
1120 align well with linguistic descriptions.
1121

1122 In contrast, Into the Radius proves most challenging, with NSAS scores dropping to 0.618-0.698
1123 across models. This game's emphasis on realistic physics simulation, complex inventory management,
1124 and weapon manipulation requires understanding of nuanced spatial relationships and multi-step
1125 procedures that current LLMs struggle to capture. The high standard deviation in performance
1126 (0.135 for GLM-4-flash) indicates inconsistent model behavior when confronting complex interaction
1127 scenarios.
1128

1129 Half-Life: Alyx and Moss: Book II occupy intermediate positions in the difficulty spectrum. Half-
1130 Life: Alyx's physics-based puzzles and combat scenarios require precise timing and spatial reasoning,
1131
1132

1134 reflected in extremely low SOP scores (0.022 for GPT-4o). Moss: Book II’s third-person perspective
 1135 and puzzle-platforming elements introduce unique challenges in translating camera-relative directions
 1136 into controller movements, though models show more consistent performance than in Half-Life:
 1137 Alyx.

1138
 1139 Table 6: Performance comparison across different VR games (5-shot setting). We report NSAS scores
 1140 (primary metric) and SOP scores (in parentheses).

Model	Half-Life: Alyx	Radius	Moss	Vivecraft
GPT-3.5-turbo	0.858 (0.123)	0.662 (0.169)	0.782 (0.169)	0.922 (0.043)
GPT-4-turbo	0.852 (0.125)	0.693 (0.189)	0.824 (0.218)	0.927 (0.137)
GPT-4o	0.804 (0.022)	0.698 (0.291)	0.824 (0.300)	0.931 (0.190)
Gemini-1.5-Pro	0.863 (0.209)	0.682 (0.102)	0.848 (0.265)	0.938 (0.250)
Mixtral-8x7B	0.839 (0.126)	0.666 (0.123)	0.756 (0.117)	0.926 (0.060)
LLaMA-3-8B	0.848 (0.126)	0.644 (0.242)	0.823 (0.283)	0.929 (0.039)
GLM-4-flash	0.836 (0.076)	0.618 (0.096)	0.749 (0.087)	0.909 (0.000)
Human	0.845 (0.090)	0.684 (0.148)	0.817 (0.112)	0.935 (0.122)

E.3 IMPACT OF FEW-SHOT LEARNING

The table 7 below demonstrates the transformative effect of few-shot examples on model performance. The most dramatic improvements occur in SOP scores, which increase by factors of 10-20x from zero-shot to 5-shot settings. GPT-3.5-turbo exemplifies this pattern, improving from 0.036 to 0.226 in SOP F1 score, representing a 527.8% relative gain. This massive improvement suggests that examples primarily help models understand the expected format and level of detail for procedural instructions rather than teaching fundamental VR interaction principles.

The diminishing returns pattern is consistent across models, with the largest gains occurring between zero-shot and 1-shot conditions. The jump from 3-shot to 5-shot provides minimal additional benefit, indicating that models quickly extract relevant patterns from limited examples. Gemini-1.5-Pro shows the most efficient few-shot learning, achieving top performance with fewer examples than competing models, suggesting superior in-context learning capabilities for procedural tasks.

Interestingly, few-shot examples have differential effects across game types. Complex games like Into the Radius show continued improvement with additional examples, while simpler environments like Vivecraft plateau quickly. This pattern indicates that few-shot learning is most beneficial when dealing with diverse interaction patterns and complex procedural sequences.

Table 7: Performance of LLMs across VR Games (Best Few-Shot Setting)

Model	NSAS	SOP	SSC	SSM	Best FS
Gemini-1.5-Pro	0.845	0.251	0.151	0.087	5
GPT-4o	0.832	0.291	0.190	0.135	5
GPT-4	0.824	0.218	0.177	0.095	5
LLaMA-3-8B	0.823	0.283	0.200	0.040	5
Mixtral-8x7B	0.790	0.123	0.142	0.039	5
GPT-3.5	0.778	0.169	0.137	0.037	5
GLM-4-Flash	0.749	0.096	0.165	0.000	5
Gemini-3-Pro	0.923	0.241	0.607	0.084	3
LLaMA-3-70B	0.917	0.229	0.556	0.051	3
Grok-4	0.914	0.214	0.552	0.070	3
GPT-5.1	0.878	0.130	0.322	0.004	5
Human	0.817	0.124	0.174	0.021	-

E.4 COGNITIVE CAPABILITY ANALYSIS

The figure 3 shows model performance across six cognitive dimensions, revealing distinct capability profiles. All models demonstrate strong task decomposition abilities (7.8-8.5), indicating that breaking down high-level goals into subtasks aligns well with LLMs’ training on hierarchical text

1188 structures. Gemini-1.5-Pro leads in this dimension with a score of 8.5, though even smaller models
 1189 like Mixtral-8x7B achieve respectable scores of 8.0.
 1190

1191 Motor action mapping emerges as the most challenging capability across all models (0.5-4.5),
 1192 highlighting the difficulty of translating abstract action concepts into specific button presses and
 1193 controller movements. This limitation likely stems from the absence of embodied experience in
 1194 text-based training data. GPT-4o performs best in this dimension but still falls far short of human-level
 1195 capability, suggesting a fundamental gap in current architectures.
 1196

1197 Procedural reasoning shows high variance across models (2.3-7.0), with Gemini-1.5-Pro again leading.
 1198 The correlation between procedural reasoning scores and few-shot learning gains suggests that this
 1199 capability can be partially addressed through examples, though the ceiling remains well below human
 1200 performance. Spatial reasoning capabilities (4.8-7.5) reveal another significant gap, particularly
 1201 evident in games requiring 3D navigation and object manipulation.
 1202

1203 E.5 STATISTICAL SIGNIFICANCE AND VARIANCE ANALYSIS

1204 The tables 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 below provide detailed statistical analyses of
 1205 model performance, revealing important patterns in consistency and reliability. And the figures 7, 8, 9
 1206 The standard deviation measurements across different games and shot settings illuminate which
 1207 models maintain stable performance versus those exhibiting high variability. For instance, in Vivecraft,
 1208 GPT-3.5-turbo shows remarkably consistent NSAS scores in zero-shot settings ($std = 0.0248$), but this
 1209 consistency deteriorates with few-shot examples ($std = 0.0734$ at 3-shot), suggesting that additional
 1210 examples introduce uncertainty in the model’s approach to task completion.
 1211

1212 The variance patterns differ significantly between metrics. NSAS scores generally show lower
 1213 standard deviations (0.02-0.21 range) compared to SOP scores (0.00-0.34 range), indicating that
 1214 models more consistently identify relevant steps than maintain proper ordering. This pattern is
 1215 particularly pronounced in complex games like Into the Radius, where SOP standard deviations
 1216 exceed 0.3 for several models in few-shot settings. Such high variance suggests that models employ
 1217 different strategies across different runs, sometimes achieving correct ordering by chance rather than
 1218 through systematic understanding.
 1219

1220 Comparison with human variance provides crucial context for interpreting model stability. Human
 1221 annotators show standard deviations comparable to mid-tier models (0.084 in cross-game perfor-
 1222 mance), suggesting that some degree of variance is inherent to the task rather than a model limitation.
 1223 However, humans maintain more consistent SOP performance ($std = 0.029$) compared to all models
 1224 except Mixtral-8x7B, indicating more reliable procedural reasoning despite overall lower scores.
 1225

1226 **Table 8:** Average and standard deviation of Normalized Step Alignment Score (NSAS) scores
 1227 comparison of LLMs on *Vivecraft* under different shot settings.
 1228

Model	GPT-3.5-turbo		GPT-4-turbo		GPT-4o		Gemini-1.5-Pro		Mixtral-8x7B		LLaMA-3-8B		LLaMA-3-70B		Grok-4		GPT-5.1		Gemini-3-Pro			
Metrics	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std
Zero-shot	0.9258	0.0248	0.9255	0.0238	0.9191	0.0306	0.9209	0.0334	0.9312	0.0207	0.9244	0.0329	0.9001	0.0248	0.8956	0.0324	0.8665	0.0645	0.8979	0.0307		
1-shot	0.921	0.0309	0.9349	0.0506	0.9358	0.0735	0.9362	0.0553	0.9219	0.0636	0.9101	0.0765	0.8948	0.0512	0.8680	0.1266	0.8509	0.1077	0.8921	0.0900		
3-shot	0.9284	0.0734	0.914	0.1167	0.9212	0.1115	0.9381	0.0781	0.9005	0.1125	0.9022	0.1051	0.9113	0.0886	0.9217	0.1115	0.8670	0.1358	0.9219	0.1093		
5-shot	0.9218	0.0385	0.9274	0.0674	0.9305	0.0689	0.9378	0.0708	0.9256	0.0477	0.9289	0.0364	0.8973	0.0587	0.8901	0.0951	0.8638	0.0895	0.8955	0.0742		

1231 **Table 9:** Average and standard deviation of Normalized Step Alignment Score (NSAS) scores
 1232 comparison of LLMs on *Vivecraft* under different shot settings.
 1233

Model	GPT-3.5-turbo		GPT-4-turbo		GPT-4o		Gemini-1.5-Pro		Mixtral-8x7B		LLaMA-3-8B		LLaMA-3-70B		Grok-4		GPT-5.1		Gemini-3-Pro			
Metrics	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std
Zero-Shot	0.9258	0.0248	0.9255	0.0238	0.9191	0.0306	0.9209	0.0334	0.9312	0.0207	0.9244	0.0329	0.9001	0.0248	0.8956	0.0324	0.8665	0.0645	0.8979	0.0307		
1-shot	0.921	0.0309	0.9349	0.0506	0.9358	0.0735	0.9362	0.0553	0.9219	0.0636	0.9101	0.0765	0.8948	0.0512	0.8680	0.1266	0.8509	0.1077	0.8921	0.0900		
3-shot	0.9284	0.0734	0.914	0.1167	0.9212	0.1115	0.9381	0.0781	0.9005	0.1125	0.9022	0.1051	0.9113	0.0886	0.9217	0.1115	0.8670	0.1358	0.9219	0.1093		
5-shot	0.9218	0.0385	0.9274	0.0674	0.9305	0.0689	0.9378	0.0708	0.9256	0.0477	0.9289	0.0364	0.8973	0.0587	0.8901	0.0951	0.8638	0.0895	0.8955	0.0742		

Table 10: Average and standard deviation of Sequential Order Preservation (SOP) scores comparison of LLMs on *Vivecraft* under different shot settings.

Model	GPT-3.5-turbo		GPT-4-turbo		GPT-4o		Gemini-1.5-Pro		Mixtral-8x7B		LLaMA-3-8b		LLaMA-3-70B		Grok-4		GPT-5.1		Gemini-3-Pro	
Metrics	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std
Zero-Shot	0.0029	0.0312	0.0007	0.0078	0.0012	0.0125	0.0	0.0	0.0	0.0624	0.0059	0.0624	0.0000	0.0000	0.0022	0.0234	0.0037	0.0280	0.0029	0.0312
1-shot	0.015	0.0734	0.1203	0.2157	0.1568	0.2337	0.1794	0.291	0.0812	0.164	0.0351	0.1215	0.0000	0.0000	0.0000	0.0000	0.0037	0.0280	0.0088	0.0569
3-shot	0.1302	0.2352	0.1143	0.2136	0.2826	0.3417	0.2355	0.3417	0.0986	0.2024	0.1124	0.2026	0.2817	0.3333	0.2697	0.3192	0.1096	0.2205	0.3790	0.3432
5-shot	0.0395	0.1226	0.1366	0.2388	0.1837	0.278	0.2495	0.3358	0.0553	0.158	0.0374	0.1371	0.0088	0.0937	0.0000	0.0000	0.0000	0.0000	0.0029	0.0312

Table 11: Average and standard deviation of Semantic Step Coverage (SSC) scores comparison of LLMs on *Vivecraft* under different shot settings.

Model	GPT-3.5-turbo		GPT-4-turbo		GPT-4o		Gemini-1.5-Pro		Mixtral-8x7B		LLaMA-3-8b		LLaMA-3-70B		Grok-4		GPT-5.1		Gemini-3-Pro	
Metrics	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std
Zero-Shot	0.049	0.11	0.1301	0.1443	0.1272	0.1511	0.2221	0.2151	0.024	0.0999	0.1088	0.1549	0.0661	0.1283	0.0162	0.0391	0.0900	0.1445		
1-shot	0.1274	0.1988	0.544	0.3672	0.6598	0.3322	0.5747	0.3359	0.4914	0.3617	0.3165	0.3415	0.3078	0.1823	0.2745	0.1944	0.0453	0.0626	0.3293	0.1840
3-shot	0.4755	0.3526	0.6486	0.3373	0.6817	0.3204	0.6538	0.3373	0.5414	0.37	0.5299	0.3785	0.6174	0.3279	0.5777	0.4096	0.4515	0.2967	0.7147	0.3225
5-shot	0.18	0.2337	0.5035	0.3772	0.6183	0.3416	0.608	0.3546	0.3579	0.3555	0.1606	0.2605	0.3316	0.1931	0.3108	0.2078	0.1437	0.1067	0.2284	0.2213

Table 12: Average and standard deviation of Normalized Step Alignment Score (NSAS) scores comparison of LLMs on *Half-Life: Alyx* under different shot settings.

Model	GPT-3.5-turbo		GPT-4-turbo		GPT-4o		Gemini-1.5-Pro		Mixtral-8x7B		LLaMA-3-8b		LLaMA-3-70B		Grok-4		GPT-5.1		Gemini-3-Pro	
Metrics	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std
Zero-Shot	0.838	0.0413	0.8456	0.0366	0.8376	0.0424	0.8447	0.032	0.8376	0.0331	0.848	0.0317	0.9039	0.0203	0.9095	0.0198	0.8523	0.0550	0.9136	0.0200
1-shot	0.8354	0.0582	0.8427	0.0489	0.8472	0.0629	0.8627	0.0482	0.807	0.1099	0.8131	0.1289	0.9077	0.0238	0.9147	0.0271	0.8724	0.0691	0.9231	0.0306
3-shot	0.8452	0.0551	0.845	0.0467	0.838	0.0757	0.8701	0.0603	0.8255	0.0819	0.8449	0.0707	0.9191	0.0263	0.9203	0.0301	0.8844	0.0673	0.9260	0.0321
5-shot	0.8577	0.0773	0.8523	0.0613	0.8039	0.0694	0.8625	0.0691	0.8394	0.0834	0.848	0.0976	0.9278	0.0308	0.9245	0.0392	0.9030	0.0508	0.9292	0.0384

Table 13: Average and standard deviation of Sequential Order Preservation (SOP) scores comparison of LLMs on *Half-Life: Alyx* under different shot settings.

Model	GPT-3.5-turbo		GPT-4-turbo		GPT-4o		Gemini-1.5-Pro		Mixtral-8x7B		LLaMA-3-8b		LLaMA-3-70B		Grok-4		GPT-5.1		Gemini-3-Pro	
Metrics	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std
Zero-Shot	0.0098	0.0802	0.0252	0.1265	0.0396	0.1745	0.0082	0.0669	0.0019	0.0158	0.0123	0.0704	0.0000	0.0000	0.0226	0.1277	0.0067	0.0316	0.0334	0.1698
1-shot	0.0447	0.0764	0.0402	0.1224	0.024	0.0733	0.0198	0.1263	0.0425	0.0816	0.0447	0.0967	0.0633	0.0896	0.1418	0.2141	0.0562	0.1164	0.1370	0.1764
3-shot	0.0725	0.1159	0.0312	0.0725	0.0701	0.1261	0.1349	0.2187	0.0703	0.1094	0.087	0.1687	0.1523	0.2214	0.1801	0.2663	0.0975	0.1335	0.1478	0.2045
5-shot	0.123	0.1834	0.1248	0.2382	0.0216	0.0809	0.2089	0.2938	0.1257	0.2409	0.1259	0.2385	0.2515	0.3235	0.3509	0.3824	0.2511	0.3231	0.3095	0.3807

Table 14: Average and standard deviation of Semantic Step Coverage (SSC) scores comparison of LLMs on *Half-Life: Alyx* under different shot settings.

Model	GPT-3.5-turbo		GPT-4-turbo		GPT-4o		Gemini-1.5-Pro		Mixtral-8x7B		LLaMA-3-8b		LLaMA-3-70B		Grok-4		GPT-5.1		Gemini-3-Pro	
Metrics	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std
Zero-Shot	0.0785	0.1843	0.2231	0.2089	0.2424	0.2111	0.1989	0.1982	0.0716	0.1187	0.1662	0.172	0.2676	0.2473	0.3874	0.2736	0.1693	0.1449	0.4934	0.2915
1-shot	0.2562	0.235	0.3485	0.2336	0.4184	0.2413	0.3859	0.2654	0.3256	0.1934	0.3872	0.2058	0.4790	0.2759	0.5427	0.2460	0.3417	0.2254	0.5525	0.3053
3-shot	0.3072	0.2444	0.3648	0.2414	0.5611	0.229	0.5494	0.2887	0.3544	0.2202	0.4599	0.2371	0.6075	0.2956	0.5898	0.2581	0.3919	0.2003	0.5798	0.3317
5-shot	0.425	0.2814	0.6127	0.2856	0.6934	0.2359	0.6299	0.315	0.4642	0.2957	0.5152	0.2708	0.6920	0.2518	0.6555	0.2914	0.4929	0.2721	0.6502	0.3073

Table 15: Normalized Step Alignment Score (NSAS) scores comparison of LLMs on *Moss: Book II* under different shot settings.

Model	GPT-3.5-turbo		GPT-4-turbo		GPT-4o		Gemini-1.5-Pro		Mixtral-8x7B		LLaMA-3-8b		LLaMA-3-70B		Grok-4		GPT-5.1		Gemini-3-Pro	
Metrics	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std
Zero-Shot	0.7819	0.0403	0.8055	0.0717	0.7871	0.0596	0.7994	0.0548	0.7913	0.0595	0.7916	0.0572	0.8916	0.0224	0.8875	0.0269	0.8074	0.0811	0.8965	0.0255
1-shot	0.776	0.0616	0.7993	0.0771	0.803	0.0924	0.8139	0.0778	0.7663	0.0793	0.7938	0.0763	0.9075	0.0267	0.896	0.0416	0.8393	0.0880	0.9151	0.0290
3-shot	0.7776	0.0889	0.818	0.0925	0.8016	0.1242	0.8302	0.0935	0.7613	0.1341	0.78									

1296
1297
12981299 Table 17: Average and standard deviation of Semantic Step Coverage (SSC) scores comparison of
1300 LLMs on *Moss: Book II* under different shot settings.

Model	GPT-3.5-turbo		GPT-4-turbo		GPT-4o		Gemini-1.5-Pro		Mixtral-8x7B		LLaMA-3-8b		LLaMA-3-70B		Grok-4		GPT-5.1		Gemini-3-Pro	
Metrics	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std
Zero-Shot	0.0715	0.1792	0.2491	0.2844	0.2313	0.2567	0.1763	0.221	0.0407	0.0991	0.1208	0.1779	0.1401	0.1876	0.1286	0.1794	0.0205	0.0470	0.2099	0.2192
1-shot	0.0748	0.1719	0.259	0.2771	0.3682	0.3018	0.3449	0.3396	0.1749	0.2393	0.2319	0.293	0.3421	0.2902	0.3319	0.2375	0.1857	0.1592	0.3717	0.2929
3-shot	0.3349	0.3069	0.4593	0.3309	0.5001	0.3444	0.5238	0.3738	0.3207	0.3105	0.4689	0.3399	0.4884	0.3352	0.5130	0.2916	0.2986	0.2235	0.5575	0.3392
5-shot	0.3737	0.3213	0.4951	0.3373	0.5562	0.3319	0.6091	0.3476	0.2974	0.3385	0.4567	0.3173	0.5416	0.3313	0.5583	0.3393	0.3834	0.2477	0.5715	0.3281

1307
1308
1309
1310
1311
1312
1313 Table 18: Average and standard deviation of Normalized Step Alignment Score (NSAS) scores
1314 comparison of LLMs on *Into the Radius* under different shot settings.

Model	GPT-3.5-turbo		GPT-4-turbo		GPT-4o		Gemini-1.5-Pro		Mixtral-8x7B		LLaMA-3-8b		LLaMA-3-70B		Grok-4		GPT-5.1		Gemini-3-Pro	
Metrics	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std
Zero-Shot	0.6165	0.0755	0.6408	0.0955	0.5939	0.1306	0.6492	0.1018	0.6644	0.0718	0.6447	0.0882	0.8975	0.0226	0.8891	0.0411	0.7947	0.0774	0.9085	0.0337
1-shot	0.641	0.1177	0.6519	0.1421	0.6282	0.1687	0.6875	0.1159	0.6285	0.1684	0.6285	0.1346	0.9070	0.0345	0.8719	0.0276	0.8315	0.0659	0.9133	0.0357
3-shot	0.6305	0.128	0.6802	0.1645	0.6491	0.2057	0.6634	0.1638	0.618	0.1633	0.6479	0.1606	0.9165	0.0327	0.9017	0.0630	0.8483	0.0599	0.9219	0.0375
5-shot	0.6621	0.1291	0.6927	0.1721	0.6984	0.2136	0.6818	0.1191	0.666	0.1495	0.6443	0.211	0.9165	0.0410	0.9112	0.0484	0.8573	0.0687	0.9265	0.0485

1320
1321
1322
1323
1324
1325
1326
1327 Table 19: Average and standard deviation of Sequential Order Preservation (SOP) scores comparison
1328 of LLMs on *Into the Radius* under different shot settings.

Model	GPT-3.5-turbo		GPT-4-turbo		GPT-4o		Gemini-1.5-Pro		Mixtral-8x7B		LLaMA-3-8b		LLaMA-3-70B		Grok-4		GPT-5.1		Gemini-3-Pro	
Metrics	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std
Zero-Shot	0.0091	0.0581	0.0263	0.1533	0.0113	0.0494	0.0197	0.1029	0.0052	0.033	0.0	0.0	0.0123	0.0630	0.0370	0.1386	0.0000	0.0000	0.0401	0.1528
1-shot	0.034	0.1568	0.0663	0.2044	0.1084	0.2486	0.1145	0.2495	0.0739	0.1721	0.0578	0.1486	0.1799	0.2850	0.0000	0.0000	0.0404	0.1387	0.1205	0.2522
3-shot	0.1581	0.242	0.1678	0.2522	0.2324	0.3185	0.2272	0.3324	0.1351	0.252	0.2584	0.3089	0.2053	0.2758	0.2003	0.3009	0.0662	0.1330	0.2081	0.2859
5-shot	0.1686	0.244	0.2182	0.2801	0.2998	0.3062	0.2652	0.3596	0.1169	0.247	0.2831	0.3097	0.2321	0.3149	0.3203	0.3509	0.0622	0.1455	0.2804	0.3294

1334
1335
1336
1337
1338
1339
1340 Table 20: Average and standard deviation of Semantic Step Coverage (SSC) scores comparison of
1341 LLMs on *Into the Radius* under different shot settings.

Model	GPT-3.5-turbo		GPT-4-turbo		GPT-4o		Gemini-1.5-Pro		Mixtral-8x7B		LLaMA-3-8b		LLaMA-3-70B		Grok-4		GPT-5.1		Gemini-3-Pro	
Metrics	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std	avg	std
Zero-Shot	0.0354	0.0982	0.1528	0.1774	0.2199	0.1745	0.1783	0.2107	0.0406	0.0899	0.1243	0.1655	0.1671	0.2225	0.3100	0.2305	0.0945	0.0945	0.4250	0.2078
1-shot	0.1511	0.2246	0.304	0.2983	0.4102	0.2585	0.2823	0.3277	0.2593	0.3249	0.3171	0.269	0.4190	0.3079	0.4098	0.2744	0.1565	0.1162	0.5220	0.2739
3-shot	0.2321	0.2713	0.4463	0.3099	0.5623	0.2976	0.3402	0.3379	0.3544	0.2621	0.5319	0.2382	0.5113	0.2765	0.5294	0.2839	0.2220	0.1755	0.5766	0.3039
5-shot	0.3302	0.3115	0.5082	0.3063	0.6194	0.2877	0.2971	0.3187	0.285	0.3384	0.5314	0.2886	0.5601	0.3133	0.5638	0.3041	0.2692	0.1803	0.6109	0.3173

Figure 7: LLMs NSAS (avg) by Different Shot Setting Across Four VR Games

Figure 8: LLMs SOP (avg) by Different Shot Setting Across Four VR Games

Figure 9: LLMs SSC (avg) by Different Shot Setting Across Four VR Games

1512
1513

E.6 CROSS-GAME GENERALIZATION PATTERNS

1514
1515
1516
1517
1518

The cross-game performance analysis reveals important insights about model generalization capabilities. Models that perform well on one game do not necessarily maintain their advantage across others. For example, while GPT-4o achieves the highest SOP score in Into the Radius (0.291), it performs poorly in Half-Life: Alyx (0.022). This game-specific variation suggests that models may overfit to particular interaction patterns rather than developing general VR manipulation capabilities.

1519
1520
1521
1522
1523
1524

The "Game Gap" metric in the table 3 quantifies this generalization challenge. Lower values indicate more consistent cross-game performance. Mixtral-8x7B achieves the lowest Game Gap (0.070), despite not leading in any individual game. This consistency might make it more suitable for applications requiring reliable performance across diverse VR experiences. In contrast, GPT-4o's high Game Gap (0.127) reflects its specialized strengths and weaknesses across different interaction paradigms.

1525
1526
1527
1528
1529
1530

Analysis of confusion patterns reveals that models struggle most when transitioning between games with different control schemes. The shift from Vivecraft's discrete block interactions to Half-Life: Alyx's continuous physics manipulation represents a fundamental change in how actions map to controller inputs. Models trained primarily on text lack the embodied experience to navigate these transitions smoothly, often applying inappropriate interaction patterns learned from one context to another.

1531
1532
1533

E.7 TEMPORAL DYNAMICS IN SEQUENTIAL TASKS

1534
1535
1536
1537
1538
1539

Detailed examination of step-by-step performance reveals how models handle temporal dependencies in VR interactions. Early steps in sequences generally show higher accuracy (NSAS > 0.9) across all models, with performance degrading for later steps. This degradation is particularly severe for steps that depend on the successful completion of previous actions. For instance, in a sequence like "pick up object, aim at target, throw object," models may correctly identify all three actions but fail to recognize that aiming requires successfully completing the pickup action first.

1540
1541
1542
1543
1544

The SOP metric specifically captures these temporal dependencies, and the low scores across all models highlight a fundamental limitation in current architectures. Even with few-shot examples that demonstrate correct ordering, models struggle to internalize the causal relationships between steps. This suggests that improved performance may require architectural innovations that better capture temporal and causal reasoning, rather than simply scaling existing approaches.

1545
1546
1547
1548
1549

Error analysis reveals common patterns in temporal mistakes. Models frequently suggest parallel actions that must be performed sequentially (e.g., "press trigger while reaching for object" when the trigger can only be meaningfully pressed after grasping). They also struggle with iterative processes, often omitting loop conditions or termination criteria. These patterns indicate that models lack an understanding of the physical constraints that govern VR interactions.

1550
1551
1552

E.8 DETAILED PERFORMANCE TABLES AND VISUALIZATIONS

1553
1554
1555
1556
1557
1558

The table 2 provides granular data for researchers seeking to understand specific model behaviors. These tables reveal several noteworthy patterns. First, the relationship between different metrics is non-linear. High NSAS scores do not guarantee good SOP performance, and models with similar average scores may achieve them through different strengths. This multidimensional performance landscape suggests that selecting models for specific applications requires careful consideration of which capabilities are most critical.

1559
1560
1561
1562
1563

The table 2 illustrates the strict matching process, highlighting why SSM scores remain low even for generally capable models. The requirement for exact sequence length and step-by-step correspondence proves extremely demanding. Even minor variations in phrasing or step granularity result in match failures. This visualization helps explain why SSM may be overly strict for practical applications, where functional equivalence matters more than exact replication.

1564
1565

The table 2 demonstrates the more nuanced evaluation approach that underlies our NSAS and SOP metrics. By identifying the longest common subsequences with semantic matching, these metrics better capture functional understanding while still penalizing significant deviations from ground truth.

1566 The visualization shows how models might achieve reasonable NSAS scores by identifying most
 1567 relevant actions while still failing SOP evaluation due to ordering errors.
 1568

1569 The heat maps of model performance across game-task combinations reveal clustering of difficulty.
 1570 Certain task types (e.g., combat sequences in Half-Life: Alyx, inventory management in Into the
 1571 Radius) consistently challenge all models, while others (e.g., block placement in Vivecraft) show
 1572 near-ceiling performance. These patterns suggest that targeted improvements for specific interaction
 1573 types might yield better results than general capability enhancement.
 1574

E.9 IMPLICATIONS FOR FUTURE RESEARCH

1576 The detailed experimental results paint a complex picture of current LLM capabilities and limitations
 1577 in VR interaction reasoning. While models demonstrate competence in identifying relevant actions
 1578 and decomposing high-level goals, they consistently struggle with the procedural and embodied
 1579 aspects of VR interaction. The strong effect of few-shot examples suggests that current models
 1580 possess latent capabilities that can be activated through appropriate prompting, but fundamental archi-
 1581 tectural limitations prevent them from achieving human-like understanding of physical manipulation
 1582 sequences.

1583 The high variance in performance across games and tasks indicates that robustness remains a sig-
 1584 nificant challenge. Models that excel in one context may fail dramatically in another, limiting their
 1585 practical applicability. This brittleness likely stems from the discrete nature of text-based training,
 1586 which lacks the continuous, embodied experience that humans leverage when learning new physical
 1587 tasks.

1588 Moving forward, these results suggest several promising research directions. Multimodal models that
 1589 incorporate visual and proprioceptive information alongside text may better capture the embodied
 1590 nature of VR interactions. Explicit modeling of temporal and causal relationships could address the
 1591 procedural reasoning gaps identified in our experiments. Finally, training on synthetic VR interaction
 1592 data or through simulated embodiment might provide models with the experiential knowledge
 1593 currently lacking in text-only approaches.

1594 The detailed results also highlight the importance of comprehensive evaluation frameworks that
 1595 assess multiple dimensions of capability. Single metrics fail to capture the complexity of VR
 1596 interaction reasoning, and future benchmarks should continue to embrace multidimensional evaluation
 1597 approaches that can identify specific strengths and weaknesses in model capabilities.
 1598

F DISCUSSION, LIMITATIONS & BROADER IMPACTS

1601 Our investigation into LLMs' ability to translate semantic actions into VR device manipulations
 1602 reveals both promising capabilities and fundamental limitations that reflect broader challenges in
 1603 bridging linguistic understanding and embodied interaction. The relatively low Sequential Order
 1604 Preservation (SOP) scores across all evaluated models indicate that current LLMs struggle with
 1605 the temporal reasoning required for complex procedural tasks. This limitation suggests that while
 1606 LLMs can identify relevant actions and understand their purposes, they lack the embodied experience
 1607 necessary to accurately sequence physical manipulations.

1608 The substantial performance variations across different VR games highlight how interaction com-
 1609 plexity and consistency impact model performance. Our primary goal was to first establish a robust
 1610 and comprehensive benchmark on a diverse set of known games. Games with standardized, discrete
 1611 actions (like Vivecraft's block-based interactions) prove more amenable to LLM reasoning than those
 1612 requiring nuanced controller movements or complex spatial reasoning (like Half-Life: Alyx). This
 1613 pattern suggests that current language models may benefit from more structured representations of
 1614 physical actions and explicit training on procedural sequences.

1615 The significant improvement from few-shot examples demonstrates that LLMs possess latent capa-
 1616 bilities for VR interaction reasoning that can be activated through appropriate prompting. However,
 1617 the fact that performance plateaus with additional examples indicates fundamental architectural
 1618 limitations rather than simple lack of exposure to relevant examples. This finding suggests that
 1619 advances in VR-capable AI may require new training paradigms that incorporate spatial and temporal
 reasoning more directly.

1620 From a broader perspective, this work carries important implications for the future of human-computer
1621 interaction and AI development. On the positive side, LLMs that can effectively reason about VR
1622 interactions could dramatically improve accessibility for users with motor impairments, enable more
1623 intuitive natural language interfaces for VR applications, and accelerate the development of intelligent
1624 tutoring systems for VR training scenarios. The potential transfer of these capabilities to robotic
1625 systems could enable more sophisticated human-robot collaboration in both virtual and physical
1626 environments.

1627 However, we must also consider potential negative implications. As LLMs gain greater agency in
1628 controlling virtual (and potentially physical) systems, questions of safety, security, and user autonomy
1629 become paramount. The ability to translate high-level commands into detailed manipulation sequences
1630 could be exploited for unauthorized system control or social engineering attacks. Additionally,
1631 the computational resources required for training and deploying such models raise environmental
1632 concerns that must be balanced against their benefits.

1633 The digital divide may be exacerbated as advanced VR-AI systems require substantial hardware
1634 investments and technical expertise. Ensuring equitable access to these technologies will require
1635 conscious effort from researchers, developers, and policymakers. Privacy concerns also emerge
1636 as these systems necessarily monitor and analyze detailed user movement patterns and interaction
1637 behaviors.

1638 Moving forward, the field must pursue responsible development practices that prioritize user safety,
1639 privacy, and autonomy while advancing the technical capabilities of VR-AI systems. This includes
1640 developing robust evaluation frameworks that assess not only task performance but also failure modes,
1641 implementing transparent systems that users can understand and control, and ensuring that advances
1642 in VR interaction AI serve to augment rather than replace human agency in virtual environments.
1643

1644 G LARGE LANGUAGE MODELS USAGE STATEMENT 1645

1646 This work incorporated LLMs to aid in editorial refinement and linguistic improvement of the
1647 manuscript. The models provided assistance with stylistic enhancements and clarity optimization,
1648 including tasks such as rephrasing sentences and correcting grammatical errors.
1649

1650 We explicitly note that LLMs played no role in the conceptualization, theoretical development, or
1651 experimental design aspects of this research. The authors retain full responsibility for the entirety of
1652 the manuscript’s content, including sections improved with LLM support. All LLM-assisted text has
1653 been carefully reviewed to ensure adherence to academic standards and ethical research practices.
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673