

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 NEUTAG: GRAPH TRANSFORMER FOR ATTRIBUTED GRAPHS

Anonymous authors

Paper under double-blind review

ABSTRACT

Graph Transformers (GT) have demonstrated their superiority in graph classification tasks, but their performance in node classification settings remains below par. They are designed for either homophilic or heterophilic graphs and show poor scalability to million-sized graphs. In this paper, we address these limitations for node classification tasks by designing a model that utilizes a special feature encoding that transforms the input graph separating nodes and features, which enables the flow of information not only from the local neighborhood of a node but also from distant nodes, via their connections through shared feature nodes. We theoretically demonstrate that this design enables each node to exchange information with all other nodes in the graph, effectively mimicking all-node-pair message passing while avoiding $\mathcal{O}(N^2)$ computational complexity. We further analyze the universal approximation bounds of the proposed transformer. Finally, we demonstrate the effectiveness of the proposed method on diverse sets of large-scale graphs, including the homophilic & the heterophilic varieties.

1 INTRODUCTION

Graph neural networks (GNN) (Hamilton et al., 2017; Veličković et al., 2018; Xu et al., 2019; Abu-El-Haija et al., 2019) are increasingly considered de facto models for solving graph mining tasks such as graph classification, node classification, link prediction, etc. Recent advances in the transformer (Vaswani et al., 2017) family of neural networks, especially in the domain of language (Devlin et al., 2019; Radford et al., 2019), and vision (Dosovitskiy et al., 2020) have propelled their applications in the graph domain as well, specifically for graph classification tasks (Rampášek et al., 2022). Graph Transformers (GT) take node sequences as input, along with their attributes, structural and positional encodings, and apply transformer layers successively to learn contextual node representations (Vaswani et al., 2017). It enables modeling long-range dependencies among nodes, avoids over-smoothing (Liu et al., 2020) problems linked with deeper GNN, and is more expressive due to structural (Dwivedi et al., 2022a) and position encodings (Kreuzer et al., 2021a; Dwivedi et al., 2023a). These advantages in the GT architecture often lead them to outperform other GNN-based methods, especially in molecular and biological graph classification tasks, as shown in GRAPHGPS (Rampášek et al., 2022).

However, the sizes of graphs considered in graph classification tasks are typically of small scale, that is, ≈ 100 nodes per graph. In contrast, node classification tasks often involve graphs with millions of nodes, such as snap-patents (Lim et al., 2021). One of the fundamental limitations of utilizing graph transformers in these settings is dense attention, which computes attention among all node pairs, leading to $\mathcal{O}(N^2)$ computation in each layer. This is computationally prohibitive and not practical for applications involving large graphs. Recently, sparse-attention methods (Choromanski et al., 2020; Zaheer et al., 2021) proposed in language models have been utilized in GT (Rampášek et al., 2022) to approximate dense attention. However, these sparse-attention methods don't explicitly leverage the structural properties of graphs, resulting in suboptimal performance compared to dense attention-based graph transformers. Recently, graph-specific sparse transformers (Rampášek et al., 2022; Shirzad et al., 2023; Kong et al., 2023; Chen et al., 2022b; Liu et al., 2023; Zhu et al., 2024) have been proposed to incorporate graph topology which learn virtual tokens via global, anchor nodes or clustering. However, none of these methods explicitly leverage the feature-dimension as carrier of long-range communications.

054 1.1 EXISTING WORKS AND THEIR LIMITATIONS
055

056 A plethora of graph transformers have been proposed to target many aspects of representation
057 learning. A recent survey (Müller et al., 2024) characterizes these key innovations into four primary
058 dimensions: 1) the design of positional and structural encodings (Chen et al., 2022a; Dwivedi et al.,
059 2022a; Bouritsas et al., 2021; Kreuzer et al., 2021b; Lim et al., 2023; Dwivedi & Bresson, 2021; Wang
060 et al., 2022), 2) handling of geometric vs non-geometric features (Fuchs et al., 2020; 2021; Shi et al.,
061 2023; Luo et al., 2023), 3) graph tokenization (Kim et al., 2022; Hussain et al., 2022; Chen et al.,
062 2022b), and 4) propagation mechanisms (Rampášek et al., 2022; Shirzad et al., 2023; Kong et al.,
063 2023; Chen et al., 2022b; Dwivedi et al., 2023b; Ma et al., 2023) (Ma et al.; Liu et al., 2023; Kuang
064 et al., 2021; Zhu et al., 2024; Liu et al., 2023). We have additionally identified a fifth dimension
065 focusing on replacing standard self-attention formulae with equivalent, scalable formulations using
066 linear, polynomial and diffusion processes based kernels (Wu et al., 2023a;b; Deng et al., 2024).
067 These improve scalability but at the cost of expressivity Deng et al. (2024) and still require graph
068 partitioning on million-sized graphs, breaking all-pair connectivity.

069 This paper focuses primarily on the fourth category, which aims to approximate all pair attention
070 connectivity. These methods typically adopt a common modular architecture. Each layer is composed
071 of a message-passing neural network (MPNN) (Hamilton et al., 2017; Veličković et al., 2018; Xu et al.,
072 2019) followed by a transformer layer. The principal distinctions between methods lie in the design
073 of the transformer layer. GRAPHGPS utilizes all-pairs attention. EXPHORMER combines GNN with
074 a transformer layer consisting of local neighbor attention and non-local attention via virtual nodes.
075 These virtual nodes are connected to every node in the graph, leading to an approximation of all-node-
076 pairs attention. GOAT (Kong et al., 2023) and LARGE GT (Dwivedi et al., 2023b) removes the GNN
077 component entirely by replacing virtual nodes in EXPHORMER using trainable and clustering-based
078 virtual nodes maintained using a code-book computed by k -means clustering and updated through
079 exponentially moving averages.

- 080 • **Redundant dependency on GNN:** Hybrid GT such as GRAPHGPS and EXPHORMER utilize
081 a modular architecture of GNN and transformers. While effective, this creates redundant depen-
082 dence, despite the literature showing that Transformers with positional/structural encodings are
083 theoretically universal approximator of graph-to-graph functions (Yun et al., 2020; Kreuzer et al.,
084 2021a).
- 085 • **Limited to either homophilic or heterophilic graphs:** Hybrid architectures inherit the biases of
086 the underlying GNN. If GNN derives the node representation mainly from its local connectivity,
087 then it will propagate homophily biases in the transformer. Similarly, if a GNN is designed for
088 heterophilic graphs that use higher hop nodes, it will disseminate non-homophily biases in the
089 transformer. For example, EXPHORMER and GRAPHGPS use GCN (Kipf & Welling, 2017) as
090 GNN, which leads to their good performance on homophilic graphs (Sen et al., 2008; Yang et al.,
091 2016) but not on heterophilic graphs (Pei et al., 2020; Rozemberczki et al., 2021; Lim et al., 2021).
092 We show this effect empirically in Table 1, where we remove the GCN component to show how
093 their performance improves on heterophilic graphs but reduces on homophilic graphs.
- 094 • **Non-scalable or assumptions based:** Dense-attention and global token-based transformers Ram-
095 pášek et al. (2022); Shirzad et al. (2023) require the full graph in GPU memory, preventing full
096 node batching and limiting scalability. Linear-attention variants (Wu et al., 2023a; Deng et al.,
097 2024; Wu et al., 2023b) improve memory efficiency and increase scalability, but still require graph
098 partitioning for million-node datasets, which breaks all-pairs attention and often sacrifices expres-
099 sivity due to kernel approximations Deng et al. (2024). Clustering-based virtual node methods
100 Kong et al. (2023); Dwivedi et al. (2023b); Zhu et al. (2024) avoid GNN reliance but require a
101 trainable projection matrix and tuning of the number of virtual nodes.

102 1.2 CONTRIBUTIONS
103

104 To address the gaps outlined above, we propose Neural Transformer for Attributed Graphs (NEUTAG).
105 We utilize a graph transformation using node features as virtual nodes to design novel sparse graph
106 transformers. We examine the benefits of the aforementioned transformation, including increased
107 graph homophily. We further design a node projection matrix for the proposed transformation and
108 prove that it can approximate dense attention. In summary, NEUTAG offers the following significant
109 advantages over the existing work.

Figure 1: Transformation of input graph \mathcal{G} into its metamorphosis form \mathcal{G}^{meta} . In \mathcal{G} , the features marked in green are present for the corresponding node. \mathcal{G}^{meta} contains additional edges with all present features.

- **Assumption-free, data agnostic and scalable modeling:** NEUTAG transforms the input graph into a bipartite structure consisting of graph nodes and virtual feature nodes, and sparsifies the all-pair attention into a unified attention mechanism over local neighbors and virtual feature neighbors. This allows NEUTAG to flexibly learn from both homophilic patterns via local structures and heterophilic patterns over non-local neighbors via feature nodes leading to data-agnostic architecture. And, since its virtual nodes are based on features that are derived deterministically from the input attribute space rather than learned through a clustering mechanism, NEUTAG remains fully assumption-free. The resulting sparse-attention mechanism seamlessly facilitates node batching allowing NEUTAG to scale to large-scale graphs.
- **Tighter approximation bounds and theoretical analysis:** We establish the theoretical grounding of the proposed transformation by proving that it increases the connectivity in the graph, and it is equivalent to applying a fixed projection matrix that approximates full-attention, provides reliable and tighter error bounds than [clustering based virtual token GT](#) [GOAT Kong et al. \(2023\)](#), which rely on trainable projections. Moreover, we investigate the theoretical and parameter conditions under which the NEUTAG potentially serves as a permutation-equivariant universal approximator of a dense attention layer.
- **Empirical evaluation:** We perform extensive experiments on real-world datasets, including both homophilic and heterophilic datasets, along with a large-scale dataset *snap-patent* containing 2.9 million nodes and 13.9 million edges. We evaluate our proposed method against 12 graph transformer baselines, including 15 variants. We clearly establish that the proposed sparse graph transformer NEUTAG is competitive in both homophilic and heterophilic graphs, as well as in small-scale and large-scale graphs, consistently.

Paper organization: Section A in appendix introduces preliminaries on graphs, graph neural networks, transformers, and graph transformers, along with notations and problem formulation. Section 2 presents our proposed methodology: we first describe the graph transformation and its benefits for structural connectivity, then introduce the attention mechanism on the transformed graph and analyze its all-pair attention approximation capabilities. Section 3 details the experimental setup, including datasets, baselines, evaluation metrics, and benchmarks NEUTAG. Finally, Section 4 concludes the paper.

2 METHODOLOGY

This section presents two main components. First, we propose a graph transformation that decouples features from nodes into separate nodes, improving structural connectivity and increasing effective homophily, which we formally analyze. Building on this transformation, we introduce a novel attention mechanism that facilitates information flow between graph and feature nodes.

2.1 GRAPH TRANSFORMATION

Given a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{X})$ and its feature set F as defined in def. 1 [in appendix A](#) where $F = \bigcup_{v \in \mathcal{V}} F_v$ is the set of all features in graph \mathcal{G} . F_v is a feature set at node $v \in \mathcal{V}$, we convert it to its metamorphosis form $\mathcal{G}^{meta} = (\mathcal{V}^{meta}, \mathcal{E}^{meta}, \mathbf{X})$ as follows. First, we create virtual feature nodes \mathcal{V}^f corresponding to the feature set F of graph \mathcal{G} and add these new nodes to \mathcal{V} to create

162 \mathcal{V}^{meta} . Formally,

$$163 \quad \mathcal{V}^{meta} = \mathcal{V} \cup \mathcal{V}^f : \mathcal{V}^f = \{f \in F\} \quad (1)$$

165 Next, we retain the original edges \mathcal{E} in \mathcal{G}^{meta} and create the edges that connect original graph nodes
166 \mathcal{V}^G and \mathcal{V}^f as follows.

$$167 \quad \mathcal{E}^f = \{(v, f) \mid v \in \mathcal{V}, f \in F, \mathbf{X}[v, f] = 1\} \quad (2)$$

168 We overload the matrix index operation with the access operator $[\cdot]$. \mathcal{E}^f represents the set of edges
169 between graph nodes \mathcal{V} and features which are present in corresponding nodes. Thus, edges in \mathcal{G}^{meta}
170 consist of original edges and feature edges. Formally, $\mathcal{E}^{meta} = \mathcal{E} \cup \mathcal{E}^f$.

171 **Figure 1 illustrates this transformation.** Since every node in \mathcal{G}^{meta} has two types of neighbors,
172 we specify each possible neighborhood. **1) Graph neighborhood:** nodes from the original graph,
173 $\{\mathcal{N}_v^G = (u \mid (u, v) \in \mathcal{E}\}$, **2) Feature neighbourhood for graph nodes:** feature nodes $\{\mathcal{N}_v^f = (u \mid$
174 $(u, v) \in \mathcal{E}^f\} \quad \forall v \in \mathcal{V}$, **3) Graph neighbourhood for features nodes:** graph nodes $\{\mathcal{N}_f^G = (u \mid$
175 $(u, f) \in \mathcal{E}^f\} \quad \forall f \in \mathcal{V}^f$.

177 2.2 TRANSFORMATION BENEFITS

179 In dense attention, each node ingests information from every other node in a single hop, which
180 requires $\mathcal{O}(N^2)$ computations. The proposed transformation enables nodes to exchange information
181 with *non-local* nodes indirectly via feature nodes, thereby avoiding the explicit computation of
182 pairwise attention scores and reducing computational complexity. This transformation preserves the
183 locality biases and induces connections to distant nodes using feature-connectivity biases. Thus, such
184 transformations increase expressive power by incorporating long-range interactions to learn inductive
185 biases of both homophilic and heterophilic graphs.

186 **Connectivity analysis:** We assume D^G to be the average graph node degree of graph nodes \mathcal{V} , D^F
187 to be the average no. of features for graph nodes \mathcal{V} , and F^G be average no. of nodes per feature nodes
188 \mathcal{V}^f . We now show that the transformation drastically increases the connectivity in the following
189 theorem.

190 **Theorem 1** (Connectivity of \mathcal{G}^{meta}). *Given an input graph \mathcal{G} , the average connectivity of a node
191 in L -hop neighbourhood is $\mathcal{O}((D^G)^L)$. Let \mathcal{G}^{meta} be a proposed transformed variant of \mathcal{G} . The
192 average connectivity in \mathcal{G}^{meta} of the same graph node in L hop significantly increases to $\mathcal{O}((D^G)^L +$
193 $(D^F)^{L/2} * (F^G)^{L/2})$.*

194 **Proof:** See App. B.1. □.

196 Generally $D^F > D^G$ and $F^G \gg D^G$ in real world graphs. This leads to a significant increase in
197 connectivity. The enhanced connectivity leads to quicker reachability to relevant long-range nodes,
198 facilitating distant nodes to become higher personalized rank nodes (Page et al., 1999) for target
199 nodes.

200 **Corollary 1.** \mathcal{G}^{meta} facilitates long distances nodes in \mathcal{G} to have better personalized page ranks
201 (PPR).

202 **Proof:** See App. B.2.

204 **Higher homophily:** The increased connectivity due to the proposed transformation leads to higher
205 homophily in top PPR nodes in heterophilic graphs. We demonstrate this empirically on two
206 heterophilic graphs, Actor and Chameleon. We compute the top- K nearest PPR nodes for all graph
207 nodes in \mathcal{G} and \mathcal{G}^{meta} and compute the following homophily score per node. $\forall v \in \mathcal{V}$,

$$208 \quad Homophily_{ppr}^G(v) = \sum_{i=1}^{i=K} \frac{|\{y(v) = y(ppr_i^G(v))\}|}{K} \quad (3)$$

211 where $y(v)$ denotes the label of node v , $ppr_i(v)^G$ denotes the i^{th} nearest PPR nodes from node v
212 when computed on graph \mathcal{G} . We compute the scores for graph nodes on graph \mathcal{G} and \mathcal{G}^{meta} . We
213 find that $Homophily_{ppr}$ increases in \mathcal{G}^{meta} for nodes who had lower $Homophily_{ppr}$ in the original
214 graph. To demonstrate this, we define a homophily threshold to identify nodes whose score is less
215 than the threshold in \mathcal{G} . Finally, we compare their average homophily score in \mathcal{G} with the same
identified nodes in \mathcal{G}^{meta} . Their homophily score increases drastically in \mathcal{G}^{meta} . We note that during

Figure 2: Increase in homophily observed in the transformed graph \mathcal{G}^{meta} , while the homophily was low in the original graph \mathcal{G} . K is chosen as 50.

top- K ppr node computation in \mathcal{G}^{meta} , we pick only graph nodes, disregarding feature nodes \mathcal{V}^f . Figure 2 establishes this phenomenon. The difference reduces once the threshold increases more than 0.5.

Next, we discuss our novel attention mechanism on the transformed graph \mathcal{G}^{meta} .

2.3 GRAPH TRANSFORMER

The main contribution of this work is to propose features as a way of transforming an N -dimensional node subspace to a lower F -dimensional feature subspace to enable computing attention with feature nodes instead of all graph nodes. This reduces the attention score computation complexity from $\mathcal{O}(N)$ to $\mathcal{O}(F)$ for a given query. We can construct a projection matrix $\mathbf{M} \in \{0, 1\}^{N \times F}$ where $\mathbf{M}[i][j] = 1$ when feature j is available in i^{th} node. We now theoretically prove that such a projection matrix exists without considerably degrading the performance compared to dense attention. We utilize the analysis provided in GOAT (Kong et al., 2023). Specifically, we define the following theorem.

Theorem 2 (Projection matrix \mathbf{M}). *There exists a projection matrix $\mathbf{M} \in \{0, 1\}^{N \times F}$ defined as*

$$\mathbf{M}_{ij} = \begin{cases} 1 & \text{if } j^{th} \text{ feature } \in F_i \\ 0 & \text{else} \end{cases}$$

such that the following holds true for any $\epsilon > 0$, projection matrices $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V \in \mathcal{R}^{N \times d}$ and node feature matrix \mathbf{X} , vector $\mathbf{v} \in \mathbf{X}\mathbf{W}_V$

$$P(\|\mathbf{A}_{ATN}\mathbf{M}\mathbf{M}^T\mathbf{v} - \mathbf{A}_{ATN}\mathbf{v}\|_F < \epsilon\|\mathbf{A}_{ATN}\mathbf{v}\|_F) > 1 - \mathcal{O}(1/\exp(F)) \quad (4)$$

And consequently,

$$P(\|\tilde{\mathbf{A}}_{ATN}\mathbf{M}^T\mathbf{X}\mathbf{W}_v - \mathbf{A}_{ATN}\mathbf{X}\mathbf{W}_V\|_F \leq \epsilon\|\mathbf{A}_{ATN}\|_F\|\mathbf{X}\mathbf{W}_V\|_F) > 1 - \mathcal{O}(1/\exp(F)) \quad (5)$$

where $\mathbf{A}_{ATN} = \text{SOFTMAX}(\mathbf{X}\mathbf{W}_Q(\mathbf{X}\mathbf{W}_K)^T/\sqrt{d})$, $\tilde{\mathbf{A}}_{ATN} = \text{SOFTMAX}((\mathbf{X}\mathbf{W}_Q(\mathbf{X}\mathbf{W}_K)^T/\sqrt{d})\mathbf{M})$ and $\|\dots\|_F$ denotes the Frobenius norm of the matrix.

Proof: See App. B.3. □.

We refer the reader to Appendix B.3 to understand the semantics of the key results 4 and 5. Specifically eq. 5 facilitates to project $\mathbf{X}\mathbf{W}_K, \mathbf{X}\mathbf{W}_V \in \mathcal{R}^{N \times d}$ to $\mathcal{R}^{F \times d}$ by multiplying by \mathbf{M} , thus reducing the computation to $\mathcal{O}(N * F * d)$ much less than $\mathcal{O}(N * N * d)$. We also note that, unlike GOAT where the projection matrix \mathbf{M} is learned during training, our approach proposes a fixed and easily derivable projection matrix \mathbf{M} , facilitating assumption-free modeling. Additionally, equation 5 provides a tighter approximation error bound than GOAT, whose error scales as $\mathcal{O}(1/\mathcal{V})$. Since $\exp(F) \gg \mathcal{V}$, our bound of $\mathcal{O}(1/\exp(F))$ is substantially tighter. Finally, we now present the NEUTAG architecture.

NEUTAG architecture constructs the attention graph consisting of 4 types of undirected attention edges as shown in fig 3. These attention paths are applied successively across each layer of NEUTAG. The input to the NEUTAG is the node features \mathbf{X} , graph topology \mathcal{E} , and position encodings (PE) based on random-walk/Laplacian eigenvalue. The input feature matrix is initialized as

$$\mathbf{H}_{\mathcal{V}}^0 = (\mathbf{X} + \mathbf{PE})\mathbf{W} \quad (6)$$

Figure 3: Various attention paths in NEUTAG.

where $\mathbf{H}_{\mathcal{V}}^0 \in \mathcal{R}^{N \times d}$ is a initial representation of graph nodes \mathcal{V} . Similarly, for feature nodes \mathcal{V}^f , we initialize their embedding to randomly initialized random vectors.

$$\mathbf{H}_{\mathcal{V}^f}^0[f] = w_f \in \mathcal{R}^d \quad \forall f \in \mathcal{V}^f \quad (7)$$

Now, given $\mathbf{H}_{\mathcal{V}}^{l-1} \in \mathcal{R}^{N \times d}$, and $\mathbf{H}_{\mathcal{V}^f}^{l-1} \in \mathcal{R}^{|F| \times d}$, we first compute the following query, key, and value matrices for both graph nodes and feature nodes respectively.

$$\mathbf{Q}_{\mathcal{V}}^l = \mathbf{H}_{\mathcal{V}}^{l-1} \mathbf{W}_1^l, \mathbf{K}_{\mathcal{V}}^l = \mathbf{H}_{\mathcal{V}}^{l-1} \mathbf{W}_2^l, \mathbf{V}_{\mathcal{V}}^l = \mathbf{H}_{\mathcal{V}}^{l-1} \mathbf{W}_3^l \quad (8)$$

$$\mathbf{Q}_{\mathcal{V}^f}^l = \mathbf{H}_{\mathcal{V}^f}^{l-1} \mathbf{W}_4^l, \mathbf{K}_{\mathcal{V}^f}^l = \mathbf{H}_{\mathcal{V}^f}^{l-1} \mathbf{W}_5^l, \mathbf{V}_{\mathcal{V}^f}^l = \mathbf{H}_{\mathcal{V}^f}^{l-1} \mathbf{W}_6^l \quad (9)$$

Now we define the following attentions to compute $\mathbf{H}_{\mathcal{V}}^l$ and $\mathbf{H}_{\mathcal{V}^f}^l$. Please note that we provide details using one head for simplicity, but we employ multi-head attention as prevalent in transformers, which entails running attention H times and concatenating these outputs.

Local neighbourhood attention: Local neighborhood plays a critical role in node classification accuracy and is commonly used in every sparse transformer, e.g. GRAPHGPS, EXPHORMER, GOAT, LARGE GT, and NAGPHORMER. For each target graph node $v \in \mathcal{V}$, the following vector is computed.

$$\mathbf{H}_{\mathcal{V}:local}^l[v] = \sum_{u \in \mathcal{N}_v^G} \frac{\exp(\mathbf{Q}_{\mathcal{V}}^l[v] * \mathbf{K}_{\mathcal{V}}^l[u] / \sqrt{d})}{\sum_{u' \in \mathcal{N}_v^G} \exp(\mathbf{Q}_{\mathcal{V}}^l[v] * \mathbf{K}_{\mathcal{V}}^l[u'] / \sqrt{d})} \mathbf{V}_{\mathcal{V}}^l[u] \quad (10)$$

We apply all-pair attention for each feature node $f \in \mathcal{V}^f$ to compute their local representation at layer l .

$$\mathbf{H}_{\mathcal{V}^f:local}^l = \text{SOFTMAX} \left(\frac{\mathbf{Q}_{\mathcal{V}^f}^l (\mathbf{K}_{\mathcal{V}^f}^l)^T}{\sqrt{d}} \right) \mathbf{V}_{\mathcal{V}^f}^l \quad (11)$$

Attention using feature connections: The next component utilizes graph nodes to feature nodes connections and vice-versa to learn non-local representations.

For graph nodes $\forall v \in \mathcal{V}$, we use the following.

$$\mathbf{H}_{\mathcal{V}:+}^l[v] = \sum_{f \in \mathcal{N}_v^f} \frac{\exp(\mathbf{Q}_{\mathcal{V}}^l[v] * \mathbf{K}_{\mathcal{V}^f}^l[f] / \sqrt{d})}{\sum_{f' \in \mathcal{N}_v^f} \exp(\mathbf{Q}_{\mathcal{V}}^l[v] * \mathbf{K}_{\mathcal{V}^f}^l[f'] / \sqrt{d})} \mathbf{V}_{\mathcal{V}^f}^l[f] \quad (12)$$

For feature nodes $\forall f \in \mathcal{V}^f$, we compute the following.

$$\mathbf{H}_{\mathcal{V}^f:+}^l[f] = \sum_{u \in \mathcal{N}_f^G} \frac{\exp(\mathbf{Q}_{\mathcal{V}^f}^l[f] * \mathbf{K}_{\mathcal{V}}^l[u] / \sqrt{d})}{\sum_{u' \in \mathcal{N}_f^G} \exp(\mathbf{Q}_{\mathcal{V}^f}^l[f] * \mathbf{K}_{\mathcal{V}}^l[u'] / \sqrt{d})} \mathbf{V}_{\mathcal{V}}^l[u] \quad (13)$$

Attention using absent feature connections Since absent features also provide valuable *exclusion* information in node classification performance, we define the negative feature edges as follows.

$$\mathcal{E}^{f-} = \{(v, f) \mid v \in \mathcal{V}, f \in \mathcal{F}, \mathbf{X}[v, f] = 0\} \quad (14)$$

Corresponding to negative edges, we define the negative feature neighborhood for graph nodes \mathcal{V}^G as $\{\mathcal{N}_v^- = (u \mid (u, v) \in \mathcal{E}^{f-}\}$. Following, we define another projection matrix $\bar{\mathbf{M}}$ corresponding to these edges, which too satisfies the theorem 2.

$$\bar{\mathbf{M}}_{ij} = \begin{cases} 1 & \text{if } j^{\text{th}} \text{ feature } \notin F_i \\ 0 & \text{else} \end{cases}$$

Similar to eq. 10 and 12, we utilize the negative graph connections between graph nodes and feature node connections are utilized as follows. $\forall v \in \mathcal{V}$,

$$\mathbf{H}_{\mathcal{V}:-}^l[v] = \sum_{f \in \mathcal{N}_v^-} \frac{\exp(\mathbf{Q}_{\mathcal{V}}^l[v] * \mathbf{K}_{\mathcal{V}f}^l[f] / \sqrt{d})}{\sum_{f' \in \mathcal{N}_v^-} \exp(\mathbf{Q}_{\mathcal{V}}^l[v] * \mathbf{K}_{\mathcal{V}f}^l[f'] / \sqrt{d})} \mathbf{V}_{\mathcal{V}f}^l[f] \quad (15)$$

Since each graph node has multiple negative features, we sample a fixed number of negative feature nodes per node using degree-based sampling for implementation efficiency.

Finally, these local and non-local representations are merged to learn next-layer representations of graph and feature nodes as follows.

$$\mathbf{H}_{\mathcal{V}}^l = \text{UPDATE}_1^l(\mathbf{H}_{\mathcal{V}}^{l-1}, (\text{MLP}_1^l(\mathbf{H}_{\mathcal{V}:local}^l \mid \mathbf{H}_{\mathcal{V}:+}^l \mid \mathbf{H}_{\mathcal{V}:-}^l))) \quad (16)$$

$$\mathbf{H}_{\mathcal{V}f}^l = \text{UPDATE}_2^l(\mathbf{H}_{\mathcal{V}f}^{l-1}, (\text{MLP}(\mathbf{H}_{\mathcal{V}f:local}^l \mid \mathbf{H}_{\mathcal{V}f:+}^l))) \quad (17)$$

Here UPDATE^l can be a neural net-based functions, e.g. MLP or skip-connections.

We now show that NEUTAG with positive and negative feature attention paths approximates the Positive Orthogonal Random Projections based sparse-transformer PERFORMER (Choromanski et al., 2020), which kernelizes the softmax operation using Mercer’s theorem. We formally define the following theorem.

Theorem 3. NEUTAG can approximate the following self-attention layer of PERFORMER applied on l^{th} layer node representation \mathbf{H}^l of \mathcal{G} in 3 proposed attention layers.

$$\mathbf{h}_i^{l+1} = \frac{\phi(\mathbf{W}_Q \mathbf{h}_i^l)^T \sum_{j=1}^{j=N} \phi(\mathbf{W}_K \mathbf{h}_j^l) \otimes (\mathbf{W}_V \mathbf{h}_j^l)}{\phi(\mathbf{W}_Q \mathbf{h}_i^l) \sum_{k=1}^{k=N} \phi(\mathbf{W}_K \mathbf{h}_k^l)} \quad (18)$$

Given that **a)** ϕ is a universally approximated kernel function by neural networks and **b)** each graph node will be connected to at least 1 feature node. Here $\mathbf{h}_i = \mathbf{H}[i]$ is d dimensional vector and $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V$ are weight matrices. $\phi : \mathcal{R}^d \rightarrow \mathcal{R}^m$ is a low dimension random projection based feature mapping.

Proof: See App. B.4. □.

NEUTAG Mini-Batching: We request readers to refer appendix section C.1 which contains batching algorithm 1 for running NEUTAG on large-scale graphs.

2.4 UNIVERSAL APPROXIMATION CAPABILITIES

Dense transformers have been proven universal approximations of sequence-to-sequence permutation equivariant functions (Yun et al., 2020). The same work further proves transformers are universal approximates of all sequence-to-sequence functions by including position encoding. Further SAN (Kreuzer et al., 2021a) proves that since a graph can be constructed as a sequence on edges or nodes, dense attention-based graph transformers are universal approximates of such sequences within a bound inducing higher expressivity than 1-Weisfeiler Lehman (WL) isomorphism test. Since NEUTAG doesn’t utilize all $\mathcal{O}(N^2)$ connections, analyzing its universal approximation capabilities of dense self-attention layer is significant. Formally,

Theorem 4. Given an input graph \mathcal{G} , its metamorphosis $\mathcal{G}^{\text{meta}}$ and $\mathbf{X} \in \mathcal{R}^{N \times d}$ is a node representation matrix. For following all-pair self attention layer, there exists a NEUTAG’s attention layer which is a well permutation equivariant universal approximate with $\mathcal{O}(N^d)$ parameters in $\mathcal{O}(1)$ layers.

$$\mathbf{H} = \text{SOFTMAX} \left(\frac{(\mathbf{H}^l \mathbf{W}_Q)(\mathbf{H}^l \mathbf{W}_K)^T}{\sqrt{d}} \right) \mathbf{H}^l \mathbf{W}_V \quad (19)$$

Given every graph node $v \in \mathcal{V}$ is connected to at-least 1 feature node $f \in \mathcal{V}^f$ in $\mathcal{G}^{\text{meta}}$.

Proof: Please refer to App. B.5. □.

3 EXPERIMENTS

3.1 EMPIRICAL EVALUATION

We now evaluate the effectiveness of NEUTAG on node classification tasks across diverse graph datasets and examine its robustness with state-of-the-art graph transformers(GT). We also compare

378 Table 1: Comparison of NEUTAG against baseline GT on node classification task
379

Method	Cora	CiteSeer	Actor	Chameleon	OGBN-Arxiv	OGBN-Arxiv(Year)	Snap-patents
GRAPHGPS	83.65 \pm 2.67	76.25 \pm 1.34	34.30 \pm 0.45	42.87 \pm 1.88	OOM	OOM	OOM
GRAPHGPS-GNN	72.47 \pm 1.87	71.59 \pm 2.43	37.10 \pm 1.11	47.36 \pm 2.22	OOM	OOM	OOM
EXPHORMER	86.48 \pm 2.15	75.92 \pm 1.88	35.19 \pm 0.94	45.17 \pm 2.56	OOM	OOM	OOM
EXPHORMER-GNN	82.35 \pm 1.75	73.01 \pm 1.20	35.44 \pm 0.86	46.97 \pm 0.95	OOM	OOM	OOM
GRIT	82.56 \pm 1.80	76.10 \pm 0.67	35.34 \pm 0.76	48.81 \pm 2.26	OOM	OOM	OOM
GRAPHORMER	39.45 \pm 10.66	OOM	OOM	26.89 \pm 7.25	OOM	OOM	OOM
CAA	82.16 \pm 1.36	71.83 \pm 1.51	34.88 \pm 0.89	45.44 \pm 5.61	OOM	OOM	OOM
NAGPHORMER	86.78 \pm 0.77	74.69 \pm 1.06	33.03 \pm 0.75	59.97 \pm 1.72	67.36 \pm 0.12	48.98 \pm 0.23	61.27 \pm 0.13
GOAT	84.93 \pm 0.51	76.75 \pm 1.84	37.98 \pm 1.02	53.28 \pm 2.48	72.17 \pm 0.09	50.81 \pm 0.36	55.35 \pm 2.24
LARGE GT	83.42 \pm 1.21	70.78 \pm 1.62	37.47 \pm 1.62	57.19 \pm 1.89	67.56 \pm 0.20	53.46 \pm 0.78	63.15 \pm 0.002
NEUTAG	87.67 \pm 1.10	77.68 \pm 1.90	36.21 \pm 1.2	65.26 \pm 2.43	70.63 \pm 0.29	53.96 \pm 0.38	63.00 \pm 0.22

380
381
382
383
384
385
386
387
388
389 NEUTAG with standard Graph Neural Networks (GNN). Finally, we analyze the importance of feature
390 nodes based on the attention layer via an ablation study. We also analyze the impact of feature sparsity
391 or missing features on NEUTAG’s performance in the appendix section D.3.
392

3.2 DATASETS

393 Table 5 in appendix C.2 summarizes the datasets and their statistics. Cora (Sen et al., 2008),
394 CiteSeer (Yang et al., 2016) and OGBN-Arxiv (Hu et al., 2020) are homophilic datasets while
395 Actor (Pei et al., 2020), Chameleon (Rozemberczki et al., 2021), OGBN-Arxiv(year) (Hu et al.,
396 2020) and Snap-Patents (Lim et al., 2021) are heterophilic datasets. Out of these, Snap-Patents is
397 the largest dataset, having 2.92 million nodes and 13.97 million edges. We use 60%, 20%, and 20%
398 train, validation, and test splits on all datasets for all methods, including baselines. More details on
399 datasets and experiment settings, including hyperparameter values, are given in Appendices C.2 and
400 C.3. The codebase is shared at <https://anonymous.4open.science/r/nutag-7774/>.
401

3.3 BASELINES

402 We consider state-of-the-art graph transformers for comparison. We evaluate NEUTAG against
403 GRAPHGPS (Rampášek et al., 2022) and its variant GRAPHGPS-GNN where we remove the GNN
404 component to demonstrate the massive decrease in performance and henceforth dependency on MPNN.
405 Similarly, we evaluate against EXPHORMER (Shirzad et al., 2023) and its variant EXPHORMER-GNN
406 as well as GRIT (Ma et al., 2023), KAA (Fang et al., 2025), GRAPHORMER (Ying et al., 2021),
407 NAGPHORMER (Chen et al., 2022b), GOAT (Kong et al., 2023) and LARGE GT (Dwivedi et al.,
408 2023b).
409

410 Moreover, we further evaluate NEUTAG against standard and foundational graph neural networks
411 GRAPHSAGE (Hamilton et al., 2017), GAT (Veličković et al., 2018), GIN (Xu et al., 2019),
412 LINKX (Lim et al., 2024) and MIXHOP (Abu-El-Haija et al., 2019). MIXHOP solves the over-
413 smoothing in GNN while LINKX is a strong benchmark method for non-homophilic graphs. There
414 exist multiple complementing techniques which enhance GNN performance, e.g., label-propagation
415 (Huang et al., 2021), adaptive channel mixing (Luan et al., 2024b), gradient-gating (Rusch et al.,
416 2023), data-augmentation (Zhao et al., 2022), (Chowdhury et al., 2023) and knowledge-distillation
417 (Hong et al., 2024). Although these techniques can potentially affect GT architectures, study of their
418 effects is beyond the scope of this paper, and we leave it for future work.
419

420 For completeness, we also compare NEUTAG with alternative attention formulations in graph
421 transformers, specifically DIFFORMER (Wu et al., 2023a), SGFORMER (Wu et al., 2023b), POLY-
422 NORMER (Deng et al., 2024), and ADVDIFFORMER (Wu et al., 2025). These methods provide
423 equivalent attention formulations that are complementary to sparse graph transformers and can
424

425 Table 2: Comparison of NEUTAG with GNN on node classification task
426

Method	Cora	CiteSeer	Actor	Chameleon	OGBN-Arxiv	OGBN-Arxiv(Year)	Snap-patents
GRAPHSAGE	87.31 \pm 0.96	76.55 \pm 1.78	34.74 \pm 1.20	48.95 \pm 3.16	61.71 \pm 0.79	46.34 \pm 0.25	49.04 \pm 0.03
GAT	86.56 \pm 1.13	76.43 \pm 2.55	30.03 \pm 0.67	44.74 \pm 3.29	62.35 \pm 0.20	44.62 \pm 0.52	36.64 \pm 0.53
GIN	84.39 \pm 0.65	75.47 \pm 1.28	26.24 \pm 0.52	32.68 \pm 3.68	59.35 \pm 0.30	46.60 \pm 0.29	47.61 \pm 0.12
MIXHOP	87.65 \pm 0.20	76.97 \pm 0.99	35.03 \pm 0.53	47.68 \pm 2.89	62.79 \pm 0.39	44.80 \pm 0.17	OOM
LINKX	83.14 \pm 1.62	73.72 \pm 0.14	32.78 \pm 0.17	48.20 \pm 3.31	60.39 \pm 0.32	49.00 \pm 0.39	52.71 \pm 0.19
NEUTAG	87.67 \pm 1.10	77.68 \pm 1.90	36.21 \pm 1.2	65.26 \pm 2.43	70.63 \pm 0.29	53.96 \pm 0.38	63.00 \pm 0.22

432 potentially be integrated with NEUTAG and other baselines GOAT, NAGPHORMER, GRAPHGPS,
 433 EXPHORMER, and LARGEGT. Moreover, as discussed in the related work section 1.1, there exists a
 434 plethora of work focusing on improving positional and structural encodings, tokenization strategies,
 435 or other orthogonal design aspects, which are beyond the scope of this study.

436
 437

438 Table 3: Comparison of NEUTAG against alternate attention formulation based GT
 439

Method	Cora	CiteSeer	Actor	Chameleon	OGBN-Arxiv	OGBN-Arxiv(year)	Snap-patents	Average
DIFFORMER-s	87.34 \pm 1.52	77.75 \pm 2.76	31.20 \pm 0.81	57.41 \pm 2.41	40.45 \pm 1.69	36.74 \pm 0.43	OOM	NA
DIFFORMER-a	86.01 \pm 2.28	76.70 \pm 1.95	30.79 \pm 1.13	58.07 \pm 1.95	OOM	OOM	OOM	NA
SGFORMER	86 \pm 1.76	75.83 \pm 2.28	31.03 \pm 2.99	65.77 \pm 1.68	74.51 \pm 0.31	49.14 \pm 0.34	29.44 \pm 0.84	59.03
POLYNORMER	87.49 \pm 1.01	75.62 \pm 0.92	37.22 \pm 1.60	67.63 \pm 1.65	74.85 \pm 0.15	52.12 \pm 0.31	34.44 \pm 0.29	61.33
POLYNORMER (-GNN)	71.66 \pm 0.65	70.90 \pm 1.20	38.16 \pm 1.12	49.39 \pm 1.69	65.84 \pm 0.35	43.04 \pm 0.18	31.10 \pm 0.90	52.87
ADVDIFFORMER	79.08 \pm 1.30	69.58 \pm 1.95	33.30 \pm 0.89	50.48 \pm 5.13	66.83 \pm 0.13	39.26 \pm 0.58	OOM	NA
NEUTAG	87.67 \pm 1.10	77.68 \pm 1.90	36.21 \pm 1.2	65.26 \pm 2.43	70.63 \pm 0.29	53.96 \pm 0.38	63.00 \pm 0.22	64.91

444
 445
 446
 447
 448 3.4 RESULT ANALYSIS
 449

450 **Comparison with Graph Transformers:** Table 1 presents the node classification accuracy of
 451 baselines and the proposed model NEUTAG against 7 diverse datasets. The results clearly demonstrate
 452 the strong performance of the proposed model NEUTAG with respect to baselines. As we outlined in
 453 the introduction, while GRAPHGPS and EXPHORMER perform well on homophilic datasets, their
 454 performance drastically deteriorates after removing the GNN component (-GNN), which improves
 455 their performance on heterophilic graphs. Moreover, neither method is scalable for large-scale
 456 datasets. The recently proposed graph transformers GOAT, NAGPHORMER, and LARGEGT are
 457 scalable via global nodes; their performance is inconsistent across all graphs. E.g., GOAT doesn't
 458 perform well on Cora, Chameleon, OGBN-Arxiv(year), and Snap-patents while good on CiteSeer,
 459 OGBN-Arxiv, and Actor. LARGEGT is overall worse on small-scale graphs but delivers good
 460 performance on large-scale datasets. To further validate the effectiveness of NEUTAG, we extend our
 461 comparison with these scalable graph transformers in table 7 in the appendix to 5 additional small
 462 but challenging heterophilic datasets as defined in the survey Luan et al. (2024a). Table 7 clearly
 463 demonstrates the strong performance of NEUTAG across these challenging heterophilic graphs. While
 464 no model outperforms all baselines across every dataset due to diverse inductive biases, our proposed
 465 assumption-free sparse model NEUTAG adapts well to miscellaneous graphs. NEUTAG delivers stable
 466 performance, consistently ranking best or within 1.5% of the top model across all datasets.

467 **Comparison with alternate attentions:** Table 3 compares NEUTAG against alternative attention-
 468 based graph transformers, including DIFFORMER, SGFORMER, and POLYNORMER. DIFFORMER
 469 has two variants: DIFFORMER-s and DIFFORMER-a, where the latter employs a non-linear kernel
 470 but fails to scale on medium-sized graphs. Neither variant is able to scale to large graphs like snap-
 471 patents. Among these baselines, POLYNORMER performs competitively with NEUTAG. However,
 472 both SGFORMER and POLYNORMER require partitioning of large graphs into smaller subgraphs,
 473 leading to suboptimal results due to limited information exchange in case of snap-patent, unlike sparse
 474 GT NEUTAG, which utilizes information exchange between all nodes through its novel propagation
 475 framework. We note that these alternative attention mechanisms can be integrated into NEUTAG and
 other sparse GT baselines to enhance their performance, which we leave for future work.

476 **Comparison with Graph Neural Networks:** Table 2 presents the performance of NEUTAG against
 477 foundational GNN on 7 datasets. Since information propagation in GNN is limited to a few hops,
 478 we clearly see that they are competitive with NEUTAG only on homophilic graphs, Cora, and
 479 CiteSeer. Consequently, GNN exhibits worse performance than NEUTAG on Chameleon, OGBN-
 480 Arxiv(year), and snap-patents, which require long-range interactions. This clearly establishes the
 481 necessity for information propagation from distant nodes for an optimal node classification model.
 482 Out of baselines, GRAPHSAGE and MIXHOP are consistent performers. Since MIXHOP utilizes
 483 a normalized Laplacian matrix, it doesn't scale to large graphs. LINKX designed for heterophilic
 484 graphs is competitive on Chameleon and outperforms the rest of the GNN on large-scale snap-patent.

485 **Ablation Study:** We refer readers to the App. D.1 to analyze the impact of various attention
 components in NEUTAG.

486 4 CONCLUSION
487488 We introduced NEUTAG, a novel sparse graph transformer that unifies structural and feature information
489 within a single attention mechanism. Unlike prior approaches relying on separate GNN components or
490 virtual nodes, NEUTAG leverages features as global nodes, enabling efficient long-range
491 connectivity. We also provide a theoretical analysis of NEUTAG’s capabilities. Finally, experiments on
492 seven real-world datasets demonstrate that NEUTAG achieves competitive and consistent performance
493 across diverse graph types, underlining its generality.
494495 REFERENCES
496497 Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
498 Harutyunyan, Greg Ver Steeg, and Aram Galstyan. MixHop: Higher-order graph convolutional
499 architectures via sparsified neighborhood mixing. In Kamalika Chaudhuri and Ruslan
500 Salakhutdinov (eds.), *Proceedings of the 36th International Conference on Machine Learning*,
501 volume 97 of *Proceedings of Machine Learning Research*, pp. 21–29. PMLR, 09–15 Jun 2019.
502 URL <https://proceedings.mlr.press/v97/abu-el-haija19a.html>.
503 Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank vectors. In
504 *2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06)*, pp. 475–486.
505 IEEE, 2006.
506 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.
507
508 Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving
509 graph neural network expressivity via subgraph isomorphism counting, 2021. URL <https://openreview.net/forum?id=LT0KSFnQDWF>.
510
511 Chen Cai, Truong Son Hy, Rose Yu, and Yusu Wang. On the connection between mpnn and graph
512 transformer. In *International Conference on Machine Learning*, pp. 3408–3430. PMLR, 2023.
513
514 Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
515 smoothing problem for graph neural networks from the topological view. *Proceedings of the AAAI*
516 *Conference on Artificial Intelligence*, 34(04):3438–3445, Apr. 2020. doi: 10.1609/aaai.v34i04.5747.
517 URL <https://ojs.aaai.org/index.php/AAAI/article/view/5747>.
518 Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
519 representation learning. In *Proceedings of the 39th International Conference on Machine Learn-
520 ing (ICML)*, Proceedings of Machine Learning Research, 2022a.
521
522 Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer
523 for node classification in large graphs. *arXiv preprint arXiv:2206.04910*, 2022b.
524 Krzysztof Choromanski, Valerii Likhoshesterov, David Dohan, Xingyou Song, Andreea Gane, Tamas
525 Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
526 with performers. *arXiv preprint arXiv:2009.14794*, 2020.
527
528 Anjan Chowdhury, Sriram Srinivasan, Animesh Mukherjee, Sanjukta Bhowmick, and Kuntal Ghosh.
529 Improving node classification accuracy of gnn through input and output intervention. *ACM*
530 *Trans. Knowl. Discov. Data*, 18(1), sep 2023. ISSN 1556-4681. doi: 10.1145/3610535. URL
531 <https://doi.org/10.1145/3610535>.
532 Chenhui Deng, Zichao Yue, and Zhiru Zhang. Polynormer: Polynomial-expressive graph transformer
533 in linear time. In *The Twelfth International Conference on Learning Representations*, 2024. URL
534 <https://openreview.net/forum?id=hmvlLpNfxa>.
535 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
536 bidirectional transformers for language understanding, 2019.
537
538 Rahul Dey and Fathi M Salem. Gate-variants of gated recurrent unit (gru) neural networks. In *2017*
539 *IEEE 60th international midwest symposium on circuits and systems (MWSCAS)*, pp. 1597–1600.
IEEE, 2017.

540 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 541 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 542 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
 543 *arXiv:2010.11929*, 2020.

544 Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs,
 545 2021. URL <https://arxiv.org/abs/2012.09699>.

547 Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
 548 Graph neural networks with learnable structural and positional representations. In *International*
 549 *Conference on Learning Representations*, 2022a. URL [https://openreview.net/forum?](https://openreview.net/forum?id=wTTjnvGphYj)
 550 *id=wTTjnvGphYj*.

551 Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
 552 and Dominique Beaini. Long range graph benchmark. In *Proceedings of the 36th International*
 553 *Conference on Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022b.
 554 Curran Associates Inc. ISBN 9781713871088.

555 Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
 556 Xavier Bresson. Benchmarking graph neural networks. *Journal of Machine Learning Research*, 24
 557 (43):1–48, 2023a.

559 Vijay Prakash Dwivedi, Yozen Liu, Anh Tuan Luu, Xavier Bresson, Neil Shah, and Tong Zhao.
 560 Graph transformers for large graphs, 2023b.

561 Taoran Fang, Tianhong Gao, Chunping Wang, Yihao Shang, Wei Chow, Lei Chen, and Yang Yang.
 562 Kaa: Kolmogorov-arnold attention for enhancing attentive graph neural networks. In *International*
 563 *Conference on Learning Representations*, 2025.

565 Fabian B. Fuchs, Daniel E. Worrall, Volker Fischer, and Max Welling. Se(3)-transformers: 3d roto-
 566 translation equivariant attention networks. In *Proceedings of the 34th International Conference on*
 567 *Neural Information Processing Systems*, NIPS '20, Red Hook, NY, USA, 2020. Curran Associates
 568 Inc. ISBN 9781713829546.

569 Fabian B. Fuchs, Edward Wagstaff, Justas Dauparas, and Ingmar Posner. Iterative se(3)-transformers,
 570 2021. URL <https://arxiv.org/abs/2102.13419>.

571 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 572 *Advances in neural information processing systems*, 30, 2017.

574 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 575 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 576 pp. 770–778, 2016.

577 Xiaobin Hong, Wenzhong Li, Chaoqun Wang, Mingkai Lin, and Sanglu Lu. Label attentive distillation
 578 for gnn-based graph classification. *Proceedings of the AAAI Conference on Artificial Intelligence*,
 579 38(8):8499–8507, Mar. 2024. doi: 10.1609/aaai.v38i8.28693. URL <https://ojs.aaai.org/index.php/AAAI/article/view/28693>.

581 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
 582 and Jure Leskovec. Open graph benchmark: datasets for machine learning on graphs. In *Proceed-
 583 ings of the 34th International Conference on Neural Information Processing Systems*, NIPS '20,
 584 Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

586 Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R. Benson. Combining label prop-
 587 agation and simple models out-performs graph neural networks. In *9th International Conference*
 588 *on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net,
 589 2021. URL <https://openreview.net/forum?id=8E1-f3VhX1o>.

590 Md Shamim Hussain, Mohammed J. Zaki, and Dharmashankar Subramanian. Global self-attention
 591 as a replacement for graph convolution. In *Proceedings of the 28th ACM SIGKDD Conference*
 592 *on Knowledge Discovery and Data Mining*, KDD '22, pp. 655–665, New York, NY, USA, 2022.
 593 Association for Computing Machinery. ISBN 9781450393850. doi: 10.1145/3534678.3539296.
 URL <https://doi.org/10.1145/3534678.3539296>.

594 Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
 595 reducing internal covariate shift, 2015.

596

597 William Johnson and Joram Lindenstrauss. Extensions of lipschitz maps into a hilbert space.
 598 *Contemporary Mathematics*, 26:189–206, 01 1984. doi: 10.1090/conm/026/737400.

599

600 Jinwoo Kim, Dat Tien Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and
 601 Seunghoon Hong. Pure transformers are powerful graph learners. In Alice H. Oh, Alekh Agarwal,
 602 Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*,
 603 2022. URL https://openreview.net/forum?id=um2BxfgkT2_.

604

605 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 606 In *International Conference on Learning Representations (ICLR)*, 2017.

607

608 Kezhi Kong, Juhai Chen, John Kirchenbauer, Renkun Ni, C Bayan Bruss, and Tom Goldstein. Goat:
 609 A global transformer on large-scale graphs. In *International Conference on Machine Learning*, pp.
 17375–17390. PMLR, 2023.

610

611 Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
 612 Rethinking graph transformers with spectral attention. *Advances in Neural Information Processing
 613 Systems*, 34:21618–21629, 2021a.

614

615 Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio Tossou.
 616 Rethinking graph transformers with spectral attention. In *Proceedings of the 35th International
 617 Conference on Neural Information Processing Systems*, NIPS ’21, Red Hook, NY, USA, 2021b.
 Curran Associates Inc. ISBN 9781713845393.

618

619 Weirui Kuang, WANG Zhen, Yaliang Li, Zhewei Wei, and Bolin Ding. Coarformer: Transformer for
 620 large graph via graph coarsening. 2021.

621

622 Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
 623 Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
 624 simple methods. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
 625 (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp. 20887–20902. Cur-
 626 ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/ae816a80e4c1c56caa2eb4e1819cbb2f-Paper.pdf.

627

628 Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and
 629 Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learning.
 630 In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=Q-UHqMorzil>.

631

632 Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and Ser-
 633 Nam Lim. Large scale learning on non-homophilous graphs: new benchmarks and strong simple
 634 methods. In *Proceedings of the 35th International Conference on Neural Information Processing
 635 Systems*, NIPS ’21, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN 9781713845393.

636

637 Chuang Liu, Yibing Zhan, Xueqi Ma, Liang Ding, Dapeng Tao, Jia Wu, and Wenbin Hu. Gapformer:
 638 Graph transformer with graph pooling for node classification. In *IJCAI*, pp. 2196–2205, 2023.

639

640 Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In *Proceedings
 641 of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*,
 642 KDD ’20, pp. 338–348, New York, NY, USA, 2020. Association for Computing Machinery.
 643 ISBN 9781450379984. doi: 10.1145/3394486.3403076. URL <https://doi.org/10.1145/3394486.3403076>.

644

645 Sitao Luan, Chenqing Hua, Qincheng Lu, Liheng Ma, Lirong Wu, Xinyu Wang, Minkai Xu, Xiao-
 646 Wen Chang, Doina Precup, Rex Ying, Stan Z. Li, Jian Tang, Guy Wolf, and Stefanie Jegelka. The
 647 heterophilic graph learning handbook: Benchmarks, models, theoretical analysis, applications and
 challenges, 2024a. URL <https://arxiv.org/abs/2407.09618>.

648 Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
 649 Chang, and Doina Precup. Revisiting heterophily for graph neural networks. In *Proceedings of the*
 650 *36th International Conference on Neural Information Processing Systems*, NIPS '22, Red Hook,
 651 NY, USA, 2024b. Curran Associates Inc. ISBN 9781713871088.

652 Shengjie Luo, Tianlang Chen, Yixian Xu, Shuxin Zheng, Tie-Yan Liu, Liwei Wang, and Di He. One
 653 transformer can understand both 2d & 3d molecular data, 2023. URL <https://arxiv.org/abs/2210.01765>.

654 Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K. Dokania, Mark Coates,
 655 Philip H.S. Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message
 656 passing. In *Proceedings of the 40th International Conference on Machine Learning*, ICML'23.
 657 JMLR.org, 2023.

658 Xueqi Ma, Xingjun Ma, Chuang Liu, Sarah Monazam Erfani, and James Bailey. Hogt: High-order
 659 graph transformers.

660 Alireza Makhzani and Brendan Frey. K-sparse autoencoders. *arXiv preprint arXiv:1312.5663*, 2013.

661 Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph
 662 transformers. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL
 663 <https://openreview.net/forum?id=HhbqHBBrfZ>.

664 Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
 665 classification. *ICLR2020*, 8, 2020.

666 Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
 667 ranking : Bringing order to the web. In *The Web Conference*, 1999. URL <https://api.semanticscholar.org/CorpusID:1508503>.

668 Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
 669 graph convolutional networks. In *8th International Conference on Learning Representations*,
 670 *ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020*. OpenReview.net, 2020. URL <https://openreview.net/forum?id=S1e2agrFvS>.

671 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 672 models are unsupervised multitask learners. 2019. URL <https://api.semanticscholar.org/CorpusID:160025533>.

673 Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
 674 minique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. *Advances in Neural*
 675 *Information Processing Systems*, 35, 2022.

676 Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. *Journal*
 677 *of Complex Networks*, 9(2):cnab014, 2021.

678 T Konstantin Rusch, Benjamin Paul Chamberlain, Michael W Mahoney, Michael M Bronstein, and
 679 Siddhartha Mishra. Gradient gating for deep multi-rate learning on graphs. *ICLR*, 9:25, 2023.

680 Nimrod Segol and Yaron Lipman. On universal equivariant set networks. In *International Conference*
 681 *on Learning Representations*, 2019.

682 Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
 683 Rad. Collective classification in network data. *AI Magazine*, 29(3):93, Sep. 2008. doi:
 684 10.1609/aimag.v29i3.2157. URL <https://ojs.aaai.org/index.php/aimagazine/article/view/2157>.

685 Yu Shi, Shuxin Zheng, Guolin Ke, Yifei Shen, Jiacheng You, Jiyan He, Shengjie Luo, Chang Liu,
 686 Di He, and Tie-Yan Liu. Benchmarking graphomer on large-scale molecular modeling datasets,
 687 2023. URL <https://arxiv.org/abs/2203.04810>.

688 Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop.
 689 Exphomer: Sparse transformers for graphs. In *International Conference on Machine Learning*,
 690 pp. 31613–31632. PMLR, 2023.

702 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 703 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
 704 Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Ad-
 705 vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 706 2017. URL [https://proceedings.neurips.cc/paper_files/paper/2017/
 707 file/3f5ee243547dee91fb053c1c4a845aa-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fb053c1c4a845aa-Paper.pdf).

708 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 709 Bengio. Graph Attention Networks. *International Conference on Learning Representations*, 2018.
 710 URL <https://openreview.net/forum?id=rJXMpikCZ>.

711 Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional encoding for
 712 more powerful graph neural networks. In *International Conference on Learning Representations*,
 713 2022. URL <https://openreview.net/forum?id=e95i1IHcWj>.

714 Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
 715 linear complexity. *arXiv preprint arXiv:2006.04768*, 2020.

716 Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. DIFFFormer:
 717 Scalable (graph) transformers induced by energy constrained diffusion. In *The Eleventh Interna-
 718 tional Conference on Learning Representations*, 2023a. URL [https://openreview.net/forum?id=j6zUzrapY3L](https://openreview.net/

 719 forum?id=j6zUzrapY3L).

720 Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian,
 721 and Junchi Yan. Simplifying and empowering transformers for large-graph representations. In
 722 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023b. URL [https://openreview.net/forum?id=R4xpvDTWkV](https://

 723 openreview.net/forum?id=R4xpvDTWkV).

724 Qitian Wu, Chenxiao Yang, Kaipeng Zeng, and Michael M. Bronstein. Supercharging graph trans-
 725 formers with advective diffusion. In *Forty-second International Conference on Machine Learning*,
 726 2025. URL <https://openreview.net/forum?id=MaOYl3P84E>.

727 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 728 networks? In *International Conference on Learning Representations*, 2019. URL [https://openreview.net/forum?id=ryGs6ia5Km](https://

 729 openreview.net/forum?id=ryGs6ia5Km).

730 Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
 731 with graph embeddings. In *Proceedings of the 33rd International Conference on International
 732 Conference on Machine Learning - Volume 48*, ICML'16, pp. 40–48. JMLR.org, 2016.

733 Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
 734 Tie-Yan Liu. Do transformers really perform badly for graph representation? In A. Beygelzimer,
 735 Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing
 736 Systems*, 2021. URL <https://openreview.net/forum?id=OeWooOxFwDa>.

737 Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are
 738 transformers universal approximators of sequence-to-sequence functions? In *International Confer-
 739 ence on Learning Representations*, 2020. URL <https://openreview.net/forum?id=ByxRM0Ntv>.

740 Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
 741 Alexander J Smola. Deep sets. *Advances in neural information processing systems*, 30, 2017.

742 Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon,
 743 Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Transformers for
 744 longer sequences, 2021.

745 Tong Zhao, Xianfeng Tang, Danqing Zhang, Haoming Jiang, Nikhil Rao, Yiwei Song, Pallav Agrawal,
 746 Karthik Subbian, Bing Yin, and Meng Jiang. Autogda: Automated graph data augmentation for
 747 node classification. In Bastian Rieck and Razvan Pascanu (eds.), *Proceedings of the First Learning
 748 on Graphs Conference*, volume 198 of *Proceedings of Machine Learning Research*, pp. 32:1–32:17.
 749 PMLR, 09–12 Dec 2022. URL <https://proceedings.mlr.press/v198/zhao22a.html>.

756 Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
 757 homophily in graph neural networks: current limitations and effective designs. In *Proceedings*
 758 of the 34th International Conference on Neural Information Processing Systems, NIPS '20, Red
 759 Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

760 Wenhao Zhu, Guojie Song, Liang Wang, and Shaoguo Liu. Anchorgt: Efficient and flexible attention
 761 architecture for scalable graph transformers. *arXiv preprint arXiv:2405.03481*, 2024.

764 A PRELIMINARIES

767 Symbol	768 Meaning
\mathcal{G}	Input graph
\mathcal{V}	Set of nodes in \mathcal{G}
\mathcal{E}	Set of edges in \mathcal{G}
\mathbf{X}	Node feature matrix
F	Set of features in \mathcal{G}
\mathcal{G}^{meta}	Transformed input graph
\mathcal{V}^f	Set of features as virtual node in \mathcal{G}^{meta}
\mathcal{E}^f	Set of edges between nodes and respective features \mathcal{G}^{meta}
\mathcal{E}^{f-}	Set of edges between nodes and absent features nodes in \mathcal{G}^{meta}
\mathcal{V}^{meta}	Set of nodes in \mathcal{G}^{meta}
\mathcal{E}^{meta}	Set of edges in \mathcal{G}^{meta}
$D^{\mathcal{G}}$	Average node degree excluding feature nodes in \mathcal{G}^{meta}
D^F	Average node degree excluding graph nodes in \mathcal{G}^{meta}
$y(v)$	Label of node v
$ppr_i^{\mathcal{G}}(v)$	i^{th} nearest node from node v sorted using personalized page rank score
\mathbf{M}	Projection matrix
\mathbf{h}_i^l	Embedding of node i at l^{th} layer
$\mathbf{H}_{\mathcal{V}}^l$	Embedding matrix of graph nodes \mathcal{V} at layer l
$\mathbf{H}_{\mathcal{V}^f}^l$	Embedding matrix of feature nodes \mathcal{V}^f at layer l
\mathbf{W}	Learnable weight matrices
$\mathbf{Q}_{\mathcal{V}}^l$	Query matrix at layer l for graph nodes \mathcal{V}
$\mathbf{K}_{\mathcal{V}}^l$	Key matrix at layer l for graph nodes \mathcal{V}
$\mathbf{V}_{\mathcal{V}}^l$	Value matrix at layer l for graph nodes \mathcal{V}
$\mathbf{Q}_{\mathcal{V}^f}^l$	Query matrix at layer l for feature nodes \mathcal{V}^f
$\mathbf{K}_{\mathcal{V}^f}^l$	Key matrix at layer l for feature nodes \mathcal{V}^f
$\mathbf{V}_{\mathcal{V}^f}^l$	Value matrix at layer l for feature nodes \mathcal{V}^f
$\mathcal{N}_v^{\mathcal{G}}$	Set of neighbors excluding feature nodes of node v in \mathcal{G}^{meta}
\mathcal{N}_v^f	Set of neighbors consisting of only feature nodes of node v in \mathcal{G}^{meta}
$\mathcal{N}_f^{\mathcal{G}}$	Set of neighbors excluding feature nodes of a feature node f in \mathcal{G}^{meta}

797
 798 Table 4: Notations and their definition

799 **Definition 1** (Graph). A graph is defined as $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{X})$ over node and edge sets \mathcal{V} and $\mathcal{E} =$
 800 $\{(u, v) \mid u, v \in \mathcal{V}\}$ respectively where $|\mathcal{V}| = N$ and $|\mathcal{E}| = M$. Edge set is also represented
 801 using an adjacency matrix $\mathcal{A} \in \{0, 1\}^{N \times N}$. $\mathbf{X} \in \{0, 1\}^{N \times |F|}$ is a node feature matrix where
 802 $F = \bigcup_{v \in \mathcal{V}} F_v$ is the set of all features in graph \mathcal{G} . F_v is a feature set at node v .

803
 804 **Problem 1** (Graph transformer for node classification).

805 **Input:** Given a graph \mathcal{G} (Def. 1), let $Y : \mathcal{V} \rightarrow \mathbb{R}$ be a hidden function that maps a node to a real
 806 number. $Y(v)$ is known to us only for the subset $\mathcal{V}_l \subset \mathcal{V}$ and may model some downstream tasks such
 807 as node classification or link prediction.

808
 809 **Goal:** Learn parameters Θ of a Transformer based graph neural network, denoted as GT_{Θ} , that
 predicts $Y(v)$, $\forall v \in \mathcal{V}_l$ accurately.

810 We now introduce preliminaries of Graph Neural Networks, Transformers, and Graph Transformers
 811 for node classification tasks.
 812

813 **A.1 GRAPH**
 814

815 GNN also known as message-passing neural networks, as each node exchanges messages from its
 816 neighbors to compute its representation. These representations are utilized in downstream tasks
 817 such as node classification and link prediction. Though there exists more specialized GNN for the
 818 link-prediction task that utilizes link-based features instead of node-level, those are out of scope in
 819 this work. State-of-the-art GNN (Xu et al., 2019; Veličković et al., 2018; Hamilton et al., 2017) for
 820 node classification tasks follows the following framework. Assuming $\mathbf{x}_v \in \mathcal{R}^{|F|}$ as feature vector for
 821 node v , 0^{th} layer embedding is defined as:

$$822 \quad \mathbf{h}_v^0 = \mathbf{x}_v \quad \forall v \in \mathcal{V} \quad (20)$$

824 Next, l^{th} layer representation is computed using nodes' neighbourhood $\mathcal{N}_v = \{u \mid (u, v) \in \mathcal{E}\} \forall v \in$
 825 \mathcal{V} as follows.

$$826 \quad \mathbf{m}_v^l = \text{MSG}(\mathbf{h}_u^{l-1}, \mathbf{h}_v^{l-1}) \forall u \in \mathcal{N}_v \quad (21)$$

828 Messages are computed from each neighbor using the previous layer information. This information
 829 is then aggregated at each node as follows.

$$830 \quad \overline{\mathbf{m}}_v = \text{AGGREGATE}^l(\{\mathbf{m}_v^l(u), \forall u \in \mathcal{N}_v\}) \quad (22)$$

832 $\{\dots\}$ is a multi-set as the same message can arrive from multiple neighbors. Multi-set allows
 833 multiple instances of the same element achieving improved expressivity, highlighted in (Xu et al.,
 834 2019). Finally, the aggregated message and previous layer $l - 1$ representation are combined to
 835 compute the l^{th} layer representation as follows.

$$836 \quad \mathbf{h}_v^l = \text{COMBINE}(\mathbf{h}_v^{l-1}, \overline{\mathbf{m}}_v) \quad (23)$$

838 where MSG, AGGREGATE and COMBINE are non-neural functions like SUM, AVERAGE or MAX-POOL
 839 or neural networks based learnable functions like *mlp*, *attention* (Vaswani et al., 2017) and *recurrent*
 840 *neural networks* eg. GRU (Dey & Salem, 2017). To achieve L hop deeper GNN, equations 21, 22
 841 and 23 are applied L times successively to compute \mathbf{h}_v^L . This representation is utilized for node
 842 classification tasks. GNN are limited in modeling long-range dependencies as increasing the number
 843 of layers leads to *over-smoothing* (Oono & Suzuki, 2020; Chen et al., 2020) where node embeddings
 844 become approximately similar at every node. Graph Transformers solves this by introducing the
 845 mechanism of each node attending to all other nodes as follows.

846 **A.2 TRANSFORMERS**
 847

848 First, we define the transformer neural nets, the key components of graph transformers. Given a graph
 849 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{X})$ and ignoring topological connections \mathcal{E} , contextualized node representations \mathbf{H}^L are
 850 computed using self-attention. The representations are first initialized using node features.
 851

$$852 \quad \mathbf{H}^0 = \mathbf{XW} \quad (24)$$

853 where \mathbf{W} is the trainable weight matrix. Next, below equations 25 and 26 are repeated for $l \in [1 \dots L]$
 854 as follows.

$$855 \quad \mathbf{H}^l = \left\|_{h=1}^{h=H} \text{SOFTMAX} \left(\frac{(\mathbf{H}^{l-1} \mathbf{W}_Q^h)(\mathbf{H}^{l-1} \mathbf{W}_K^h)^T}{\sqrt{d}} \right) \mathbf{H}^{l-1} \mathbf{W}_V^h \right\| \quad (25)$$

$$858 \quad \mathbf{H}^l = \text{NORM}(\mathbf{H}^{l-1} + \text{FFN}(\mathbf{H}^l)) \quad (26)$$

860 where NORM is either batch-norm (Ioffe & Szegedy, 2015) or layer-norm (Ba et al., 2016), FFN is
 861 feed-forward neural network. \mathbf{W}_Q , \mathbf{W}_K and \mathbf{W}_V are projection matrix $\in \mathcal{R}^{d \times d_k}$. H is a number of
 862 heads, and the transformer concatenates these multiple heads, facilitating diverse attention coefficients.
 863 This is also known as *Multi-head Attention*. This architecture uses skip-connections and activation
 864 norm strategies required in deeper neural networks He et al. (2016).

864 A.3 GRAPH TRANSFORMERS (GT)
865866 Now, we discuss graph transformers, which incorporate graph topology \mathcal{E} into the attention mechanism.
867 Foremost, node attributes are combined with position encodings, e.g., Random walk-based
868 encoding (Dwivedi et al., 2022a) and Laplacian eigenvalues (Dwivedi et al., 2023a) denoted as **PE**
869 matrix.

870
$$\mathbf{H}^0 = (\mathbf{X} + \mathbf{PE})\mathbf{W} \quad (27)$$

871 Next, assuming we have node presentation for $l - 1$ layer, it is passed to the GNN layer along with
872 the transformer layer to compute l^{th} layer representation as follows.

873
$$\mathbf{H}_{gnn}^l = \text{GNN}(\mathbf{H}^{l-1}, \mathcal{E}) \quad (28)$$

875
$$\mathbf{H}_T^l = \text{TRANSFORMER}(\mathbf{H}^{l-1}, \mathcal{E}) \quad (29)$$

876 where GNN is any graph neural network described earlier. TRANSFORMER layer can be defined as
877 in current literature (Rampášek et al., 2022; Shirzad et al., 2023; Kong et al., 2023; Dwivedi et al.,
878 2023b). Finally, the representation computed using GNN and TRANSFORMER are combined to learn
879 l^{th} layer representation.

880
$$\mathbf{H}^l = \text{FFN}(\mathbf{H}_{gnn}^l, \mathbf{H}_T^l) \quad (30)$$

881 As highlighted in the Introduction, dependencies on GNN in the existing transformer lead to a
882 wide range of issues, including applicability on either homophilic or heterophilic graphs, along
883 with scalability issues due to dense attention. We now explain our methodology, which is GNN
884 independent, scalable, and expressive.886 B PROOF OF THEOREMS
887888 B.1 CONNECTIVITY ANALYSIS OF \mathcal{G}^{meta} : PROOF OF THEOREM 1
889890 **Proof:** First, we clarify the notation. We assume D^G to be the average graph node degree of graph
891 nodes \mathcal{V} , D^F to be the average no. of features for graph nodes \mathcal{V} , and F^G be average no. of nodes per
892 feature nodes \mathcal{V}^f . With these, we derive the approximate L -hop neighbors of graph nodes \mathcal{V} in \mathcal{G}^{meta} .
893 First, we define the number of 1-hop neighbors of the graph and feature nodes where $\#Nbrs(\mathcal{V}, l)$
894 signifies the order of l -hop neighbors of graph nodes \mathcal{V} and $\#Nbrs(\mathcal{V}^f, l)$ is the order of number of
895 l -hop neighbors of feature nodes \mathcal{V}^f .

896
$$\#Nbrs(\mathcal{V}, 1) = O(D^G + D^F), \quad \#Nbrs(\mathcal{V}^f, 1) = O(F^G) \quad (31)$$

897 As each D^F feature node will connect to graph nodes connected to it, and each graph node F^G and
898 D^G will be connected to its neighbors and feature nodes, applying this for 2 hops,

900
$$\begin{aligned} \#Nbrs(\mathcal{V}, 2) &= O(D^G * (D^G + D^F) + D^F * F^G), \\ 901 \#Nbrs(\mathcal{V}^f, 2) &= O(F^G * (D^G + D^F)) \end{aligned} \quad (32)$$

903
$$\#Nbrs(\mathcal{V}, 3) = O(D^G * (D^G * (D^G + D^F) + D^F * F^G) + D^F * F^G * (D^G + D^F)) \quad (33)$$

904
$$\begin{aligned} \#Nbrs(\mathcal{V}, 4) &= O(D^G * (D^G * (D^G * (D^G + D^F) + D^F * F^G) + D^F * F^G * (D^G + D^F)) \\ 905 &\quad + D^F * F^G * (D^G * (D^G + D^F) + D^F * F^G)) \end{aligned} \quad (34)$$

908 While the closed form for L -hop neighbor is not feasible, we re-write $\#Nbrs(\mathcal{V}, 4)$ using its recursive
909 nature,

911
$$\begin{aligned} \#Nbrs(\mathcal{V}, 4) &= O(D^G * (D^G * \#Nbrs(\mathcal{V}, 2)) + D^F * F^G D^G + (D^F)^2 F^G \\ 912 &\quad + D^F * F^G * \#Nbrs(\mathcal{V}, 2) + D^F * F^G) \end{aligned} \quad (35)$$

914 where $\#Nbrs(\mathcal{V}, 2)$ contains $D^F * F^G$. Thus, we see that D^G grows with the power of the number
915 of hops L , and $D^F * F^G$ multiplies after every other hop. Consequently, we approximate $Nbrs(\mathcal{V}, L)$
916 as

917
$$\#Nbrs(\mathcal{V}, L) \geq O((D^G)^L + (D^F)^{L/2} * (F^G)^{L/2}) \quad (36)$$

□.

918 B.2 PROOF OF COROLLARY 1
919

920 **Proof:** We can see this via the personalized page-rank (PPR) equation $\pi(v) = (1 - \alpha)\tilde{\mathcal{A}}\pi(v) + \alpha\mathbf{i}_v$
 921 where $\tilde{\mathcal{A}}$ is self-loop added normalized adjacency matrix and \mathbf{i}_v is an indicator vector with indices
 922 except corresponding to node v are filled with 0, facilitating transportation to target node v in restart.
 923 The PPR equation can be rewritten as $\pi(v) = \alpha * \mathbf{i}_v(\mathbf{I} - (1 - \alpha)\tilde{\mathcal{A}})^{-1} = \alpha * \sum_{r=0}^{i=\infty} (1 - \alpha)^r \tilde{\mathcal{A}}^r \mathbf{i}_v$
 924 under conditions defined in PAGERANK-NIBBLE (Andersen et al., 2006). \mathbf{I} is an identity matrix the
 925 same size as $\tilde{\mathcal{A}}$. As seen in the equation, the nearest nodes have a higher weightage of $(1 - \alpha)$, which
 926 decays exponentially $(1 - \alpha)^r$ with longer hops where r is the shortest distance from the target node.
 927 Thus, the proposed transformation adds connection in the \mathcal{G} , facilitating interaction with long-range
 928 nodes co-occurring within multiple features. \square .
 929

930
931 B.3 PROJECTION MATRIX M: PROOF OF THEOREM 2
932

933 **Proof:** Our proof is derived from proof of proposition 1 and theorem 1 in GOAT (Kong et al., 2023).
 934 We write the following Johnson-Lindenstrauss lemma (Johnson & Lindenstrauss, 1984).

935 **Lemma B.1** (Johnson-Lindenstrauss(JL) Lemma (Johnson & Lindenstrauss, 1984)). *For any integer
 936 $d > 0$, any $0 < \epsilon, \delta <= 1/2$, there exists a probability distribution \mathbb{P} on $k \times d$ real matrices for
 937 $k = \mathcal{O}(\epsilon^{-2} \log(1/\delta))$ such that for any $\mathbf{x} \in \mathbb{R}^d$, following holds*
 938

$$\mathbb{P}_M((1 - \epsilon)\|\mathbf{x}\|_2 \leq \|\mathbf{M}\mathbf{x}\|_2 \leq (1 + \epsilon)\|\mathbf{x}\|_2) > 1 - \delta \quad (37)$$

944 Following the proof in GOAT, we get to the following.
 945

$$\begin{aligned} P(\|\mathbf{A}_{ATN}\mathbf{M}\mathbf{M}^T\mathbf{v}^T - \mathbf{A}_{ATN}\mathbf{v}^T\|_F \leq \epsilon\|\mathbf{A}_{ATN}\mathbf{v}^T\|_F) \\ > 1 - 2N\delta \end{aligned} \quad (38)$$

949 Since $F \ll N$, we can rewrite the above as follows.
 950

$$\begin{aligned} P(\|\mathbf{A}_{ATN}\mathbf{M}\mathbf{M}^T\mathbf{v}^T - \mathbf{A}_{ATN}\mathbf{v}^T\|_F \leq \epsilon\|\mathbf{A}_{ATN}\mathbf{v}^T\|_F) \\ > 1 - 2F\delta \end{aligned} \quad (39)$$

955 Now we choose $\delta = \mathcal{O}(1/(F \exp(F)))$ honoring the lemma B.1, leading us to
 956

$$\begin{aligned} P(\|\mathbf{A}_{ATN}\mathbf{M}\mathbf{M}^T\mathbf{v}^T - \mathbf{A}_{ATN}\mathbf{v}^T\|_F \leq \epsilon\|\mathbf{A}_{ATN}\mathbf{v}^T\|_F) \\ > 1 - \mathcal{O}(1/\exp(F)) \end{aligned} \quad (40)$$

961 and $k = \mathcal{O}(\epsilon^{-2}(\log F + F)) \approx \mathcal{O}(F)$ which shows us that there exist $\mathcal{R}^{N \times F}$ projection matrices
 962 M which are super-set of $\{0, 1\}^{N \times F}$ as defined in the theorem. This completes our first part of the
 963 proof.

964 We have investigated projecting \mathbf{A}_{ATN} to a lower dimension, but it is still computationally expensive
 965 as computing \mathbf{A} is $\mathcal{O}(N \times N)$ operation. Next, we explore the moving projection matrix \mathbf{M}
 966 inside the softmax \mathbf{A}_{ATN} and analyze its approximation to $\mathbf{A}_{ATN}\mathbf{v}$. Since $\text{SOFTMAX}(\mathbf{A}_{ATN}) =$
 967 $\exp(\mathbf{A}_{ATN})\mathbf{D}_{\mathbf{A}_{ATN}}^{-1}$ where $\mathbf{D}_{\mathbf{A}_{ATN}}^{-1}$ is diagonal matrix of $\exp(\mathbf{A}_{ATN})$. Following LINFORMER
 968 (Wang et al., 2020) and GOAT (Kong et al., 2023), we prove
 969

$$\begin{aligned} P(\|\exp(\mathbf{A}\mathbf{M})\mathbf{M}^T\mathbf{V} - \exp(\mathbf{A})\mathbf{V}\| \leq \epsilon\|\exp(\mathbf{A})\|_F\|\mathbf{V}\|_F) \\ > 1 - O(1/\exp(F)) \end{aligned} \quad (41)$$

972 where $\mathbf{A}_{ATN} = \text{SOFTMAX}(\mathbf{A})$, $\mathbf{A} = (\mathbf{X}\mathbf{W}_Q(\mathbf{X}\mathbf{W}_K)^T/\sqrt{d})$ and $\mathbf{V} = \mathbf{X}\mathbf{W}_V$. Subsequently, we
 973 break the eq. 41 using triangle inequality as follows.
 974

$$\begin{aligned} 975 & \|\exp(\mathbf{AM})\mathbf{M}^T\mathbf{V} - \exp(\mathbf{A})\mathbf{V}\|_F \\ 976 & \leq \|\exp(\mathbf{AM})\mathbf{M}^T\mathbf{V} - \exp(\mathbf{A})\mathbf{MM}^T\mathbf{V}\|_F \\ 977 & + \|\exp(\mathbf{A})\mathbf{MM}^T\mathbf{V} - \exp(\mathbf{A})\mathbf{V}\|_F \end{aligned} \quad (42)$$

$$\begin{aligned} 979 & \stackrel{a}{\leq} \|\mathbf{V}\|_F \|\exp(\mathbf{AM})\mathbf{M}^T - \exp(\mathbf{A})\mathbf{MM}^T\|_F \\ 980 & + \|\exp(\mathbf{A})\mathbf{MM}^T\mathbf{V} - \exp(\mathbf{A})\mathbf{V}\|_F \end{aligned} \quad (43)$$

$$\begin{aligned} 982 & \stackrel{b}{\leq} \|\mathbf{V}\|_F (1 + \epsilon) \|\exp(\mathbf{AM}) - \exp(\mathbf{A})\mathbf{M}\|_F \\ 983 & + \epsilon \|\exp(\mathbf{A})\|_F \|\mathbf{V}\|_F \end{aligned} \quad (44)$$

$$\begin{aligned} 985 & \stackrel{c}{\leq} \epsilon \|\mathbf{V}\|_F \|\exp(\mathbf{A})\|_F + \epsilon \|\exp(\mathbf{A})\|_F \|\mathbf{V}\|_F \end{aligned} \quad (45)$$

$$\begin{aligned} 986 & \leq \epsilon \|\exp(\mathbf{A})\|_F \|\mathbf{V}\|_F > 1 - \mathcal{O}(1/\exp(F)) \end{aligned} \quad (46)$$

988 Step - *a* employs Cauchy inequality, step- *b* utilizes JL lemma, and step - *c* utilizes Lipschitz continuity
 989 in a compact region. \square .
 990

991 B.4 NEUTAG IS AN APPROXIMATION OF A SPARSE TRANSFORMER PERFORMER: PROOF OF 992 THEOREM 3

993 **Proof:** We use the similar strategy outlined in (Cai et al., 2023) which showed that global nodes can
 994 approximate PERFORMER. First, we rewrite the equation 18 as follows to simplify the analysis.
 995

$$\mathbf{h}_i^{l+1} = \frac{\phi_1(\mathbf{h}_i^l)^T \sum_{j=1}^{j=N} \phi_2(\mathbf{h}_j^l) \otimes \phi_3(\mathbf{h}_j^l)}{\phi_1(\mathbf{h}_i^l)^T \sum_{o=1}^{o=N} \phi_2(\mathbf{h}_o^l)} \quad (47)$$

996 where we commutate ϕ and weights $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V$ as $\phi_1(\mathbf{h}) = \phi(\mathbf{W}_Q \mathbf{h})$, $\phi_2(\mathbf{h}) = \phi(\mathbf{W}_K \mathbf{h})$ and
 997 $\phi_3(\mathbf{h}) = \mathbf{W}_V \mathbf{h}$ as we will use universal approximation capability of a neural network specific-
 998 ally Multi-Layer Perceptron(MLP). Intuitively, feature nodes can facilitate approximation of
 999 both summations $\sum_{j=1}^{j=N} \phi_2(\mathbf{h}_j) \otimes \phi_3(\mathbf{h}_j)$ and $\sum_{o=1}^{o=N} \phi_2(\mathbf{h}_o)$ as each graph nodes is attended
 1000 by at least 1 feature node. To prove theorem 3, let us assume that in 16, $\mathbf{H}_{\mathcal{V}:local}$ is ignored by
 1001 UPDATE₁^l and in 17 $\mathbf{H}_{\mathcal{V}f:local}$ is ignored by UPDATE₂^l. Since we are analyzing the approximation
 1002 of layer *l* of PERFORMER, we will subdivide layer *l* of NEUTAG as $(l_1, l_2 \dots)$. Now, at layer
 1003 *l*, we are provided with $\mathbf{h}_v \forall v \in \mathcal{V}$, let us assume that $\mathbf{h}_f = [\dots, \mathbb{I}_f] \forall f \in \mathcal{V}^f$ where \mathbb{I}_f is a
 1004 one-hot indicator vector with all zeros except *f*th index which is equal to 1. We keep the \mathbb{I}_f from
 1005 layer *l* = 0 itself to facilitate the feature degree calculation at graph nodes. Next, using equa-
 1006 tions 12 by learning equal attention coefficients for all present feature nodes, and eq. 17 where it
 1007 omits $\mathbf{H}_{\mathcal{V}f:local}$ and $\mathbf{H}_{\mathcal{V}f:+}$ and learn $\phi_2(\mathbf{h}_v^l), \phi_2(\mathbf{h}_v^l) \otimes \phi_3(\mathbf{h}_v^l)$ and feature degree $d^F(v)$. After
 1008 this step, \mathbf{h}_v^l can be approximated either as **1** $[\phi_2(\mathbf{h}_v^l), (\phi_2(\mathbf{h}_v^l) \otimes \phi_3(\mathbf{h}_v^l))_{\text{flattened}}, d^F(v)]$ or **2**
 1009 $[\phi_2(\mathbf{h}_v^l)/d^F(v), (\phi_2(\mathbf{h}_v^l) \otimes \phi_3(\mathbf{h}_v^l))/d^F(v)]$. Now at layer *l*₂, in the first case, each feature
 1010 node *f* using the equation 13 learn attention coefficients equal to $\frac{1}{d^F(v)}$ for $v \in \mathcal{N}_f^G$ and computes
 1011 vector $[\sum_{v \in \mathcal{N}_f^G} \phi_2(\mathbf{h}_v^l)/d^F, \sum_{v \in \mathcal{N}_f^G} (\phi_2(\mathbf{h}_v^l) \otimes \phi_3(\mathbf{h}_v^l))_{\text{flattened}}/d^F, \mathbb{I}_f]$. \mathbb{I}_f is crucial to facilitate
 1012 the same operations for approximating the next layer of PERFORMER. In the 2nd case, equal attention
 1013 coefficients are learned, and an identical feature representation is learned. Finally at layer *l*₃, each
 1014 graph node compute the sums $[\sum_{v=1}^{v=N} \phi_2(\mathbf{h}_v^l), \sum_{v=1}^{v=N} (\phi_2(\mathbf{h}_v^l) \otimes \phi_3(\mathbf{h}_v^l))_{\text{flattened}}]$ and approximate
 1015 the required PERFORMER eq. 47 using via equation 12,15 and eq. 16. Consequently, the number
 1016 of parameters required by each layer NEUTAG to approximate PERFORMER layer is constant with
 1017 respect to the number of nodes *N*. \square .
 1018

1022 B.5 UNIVERSAL APPROXIMATION ANALYSIS OF NEUTAG

1023 **Proof:** Similar to (Cai et al., 2023), we first prove the connection between NEUTAG and DEEPSETS
 1024 (Zaheer et al., 2017), which is a universal approximator of sequence-to-sequence permutation equiv-
 1025 ariant functions. Since eq. 19 is also a permutation equivalent function, DEEPSETS can approximate

1026 eq. 19, thus establishing NEUTAG’s capability of approximating eq. 19. Formally, we define the
 1027 following lemma.

1028 **Definition 2** (DeepSets (Zaheer et al., 2017)). *Each layer of DEEPSETS is defined as follows.*

1029

$$\mathbf{H}^{l+1} = \sigma(\mathbf{H}^l \mathbf{W}_1 + \frac{1}{N} \mathbf{I} \mathbf{I}^T \mathbf{H}^l \mathbf{W}_2) \quad (48)$$

1030

1031 where σ is a non-linearity activation function, \mathbf{H}^l is output of previous layer, $\mathbf{I} = [1, 1, \dots]^T$ is N
 1032 dimensional vector and $\mathbf{W}_1, \mathbf{W}_2$ are weights.

1033
 1034 $\frac{1}{N} \mathbf{I} \mathbf{I}^T$ calculates the average of input $\mathbf{H}^l \mathbf{W}_2$ which is added to $\mathbf{H}^l \mathbf{W}_1$. This function can easily be
 1035 verified as a permutation equivariant function, as node reordering will only permute the output. Now,
 1036 we formally write the following lemma of (Segol & Lipman, 2019).

1037
 1038 **Lemma B.2** ((Segol & Lipman, 2019)). DEEPSETS with $\mathcal{O}(1)$ layers and $\mathcal{O}(N^d)$ parameters per
 1039 layer is a universal for permutation equivariant sequence to sequence functions.

1040 Thus, DEEPSETS can approximate self-attention layer eq. 19. Moreover, similar to proof of theorem
 1041 3, both operations **a**) calculating average of node embeddings and **b**) adding the calculated average
 1042 to node representation and applying σ can be simulated by 3 layer NEUTAG. This concludes our
 1043 analysis. \square .

1044 C ADDITIONAL EXPERIMENTAL DETAILS

1045 C.1 MINI-BATCHING OF NEUTAG

1046
 1047 The proposed framework is applicable for **a) Small graphs** by running forward pass on entire graph
 1048 \mathcal{G}^{meta} and **b) Large-scale graphs** by offline sampling L layer directed sub-graphs from feature nodes
 1049 \mathcal{V}^f to graph nodes \mathcal{V} from \mathcal{G}^{meta} , as these sub-graphs will be common among all batches of graph
 1050 nodes \mathcal{V} and run NEUTAG on such constructed batches and back-propagate. Algorithm 1 summarizes
 1051 the creation of a mini-batch for a large-scale graph for NEUTAG training and inference. Specifically,
 1052 for each feature node $v^f \in \mathcal{V}^f$, graph nodes are sampled in line 4. Corresponding these graph nodes,
 1053 L hop sub-graph is sampled in original node space \mathcal{V} . Please note that data from lines 3-12 can be
 1054 cached across multiple batches and performed offline. Finally, a batch of nodes is sampled from the
 1055 input graph, and the corresponding L-HOP subgraph is sampled. Finally, feature edges are added to
 1056 correspond to these sampled original graph nodes.

1057 C.2 DATASETS

1058
 1059 Cora (Sen et al., 2008) and CiteSeer(Yang et al., 2016) are co-citation graphs where nodes are papers,
 1060 and their features are bag-of-words of text. The task is to predict the research category of the node.
 1061 Actor (Pei et al., 2020) is a co-occurrence graph of actors on the same wiki page. Node attributes
 1062 are bag-of-words from the actor’s Wikipedia page, and their labels are actor categories. Chameleon
 1063 (Rozemberczki et al., 2021) is a graph of hyperlinks between English wiki pages, attributes are nouns,
 1064 and the label is the binned average monthly traffic on the page. Snap-patents (Lim et al., 2021) is a
 1065 large-scale co-citation graph of U.S. utility patents where attributes are patent metadata and class
 1066 label is the time at which the patent was granted, binned in 5 classes. OGBN-Arxiv (Hu et al., 2020)
 1067 is also a co-citation network where features are 128-dimension embeddings of title and abstract, and
 1068 the label is the research category. OGBN-Arxiv(Year) is the same graph, but the label is the year of
 1069 publication, and it is a non-homophilic graph. \mathbf{H}_{edge} (Zhu et al., 2020) in table 5 denotes the edge
 1070 homophily of a graph.

1071 C.3 HARDWARE DETAILS

1072
 1073 We have performed experiments on an Intel Xeon 6248 processor with a Tesla V-100 GPU with 32GB
 1074 GPU memory and Ubuntu 18.04. Train, validate, and test data split of 60%, 20%, and 20%, which
 1075 are generated randomly for every run. We perform 5 runs of every experiment to report the mean and
 1076 standard deviation. We use 4 – 6 layer NEUTAG for small graphs and 2 layer for large graphs. We use
 1077 Adam optimizer to train the model using a learning rate of 0.00001 and choose the best model based
 1078 on validation loss. For all methods, including baselines and NEUTAG, we apply laplacian position

1080 **Algorithm 1** NEUTAG Mini-batching algorithm

1081 **Require:** $\mathcal{G}^{meta} = (\mathcal{V}^{meta} = \mathcal{V} \cup \mathcal{V}^f, \mathcal{E}^{meta} = \mathcal{E} \cup \mathcal{E}^f)$, # of layers L , Node feature matrix \mathbf{X}

1082 **Ensure:** Sampled mini batch $\mathcal{G}^{meta'}$

1083 1: $\mathcal{V}^{meta'} = \{\}$

1084 2: $\mathcal{E}^{meta'} = \{\}$

1085 {Sample a L hop subgraph from each feature node. This step can be cached as well as it will remain same across all batches}

1086 3: **for** $v^f \in \mathcal{V}^f$ **do**

1087 4: $\mathcal{V}^{sampled} \sim 1\text{-HOP}(\mathcal{G} = (\mathcal{V}, \mathcal{E}), v^f)$

1088 5: $(\mathcal{V}^L, \mathcal{E}^L) \sim L\text{-HOP}(\mathcal{G} = (\mathcal{V}, \mathcal{E}), \mathcal{V}^{sampled})$

1089 6: $\mathcal{V}^{meta'} \leftarrow \mathcal{V}^{meta'} \cup \mathcal{V}^L$

1090 7: $\mathcal{E}^{meta'} \leftarrow \mathcal{E}^{meta'} \cup \mathcal{E}^L$

1091 8: **for** $v \in \mathcal{V}^{sampled}$ **do**

1092 9: $\mathcal{E}^{meta'} \leftarrow \mathcal{E}^{meta'} \cup (v, v^f)$

1093 10: **end for**

1094 11: $\mathcal{V}^{meta'} \leftarrow \mathcal{V}^{meta'} \cup v^f$

1095 12: **end for**

1096 {Sample a batch of original graph nodes and their L hop neighbors}

1097 13: $\mathcal{V}' \sim \mathcal{V}$

1098 14: **for** $v \in \mathcal{V}'$ **do**

1099 15: $(\mathcal{V}^L, \mathcal{E}^L) \sim L\text{-HOP}(\mathcal{G} = (\mathcal{V}, \mathcal{E}), v)$

1100 16: $\mathcal{V}^{meta'} \leftarrow \mathcal{V}^{meta'} \cup \mathcal{V}^L$

1101 17: $\mathcal{E}^{meta'} \leftarrow \mathcal{E}^{meta'} \cup \mathcal{E}^L$

1102 18: **end for**

1103 {Sample feature nodes and edges for sampled graph nodes to create a mini-batch for forward propagation}

1104 19: **for** $v \in \mathcal{V}^{meta'}$ **do**

1105 20: **if** $v \in \mathcal{V}$ **then**

1106 21: $\mathcal{E}^{meta'} \leftarrow \mathcal{E}^{meta'} \cup \{(v, f) \mid f \in \mathcal{V}^f, \mathbf{X}[v, f] = 1\}$

1107 22: **end if**

1108 23: **end for**

1109 24: **Return** $\mathcal{G}^{meta'} = (\mathcal{V}^{meta'}, \mathcal{E}^{meta'})$

1110

1111

1112

Table 5: Dataset statistics

Dataset	# Nodes	# Edges	# Features	# Labels	H_{edge}
Cora	2708	10556	1433	7	0.81
CiteSeer	3327	9104	3703	6	0.74
Actor	34493	495924	8415	5	0.22
Chameleon	7600	33544	931	5	0.23
OGBN-Arxiv	169343	1166243	128	40	0.81
OGBN-Arxiv(year)	169343	1166243	128	5	0.22
Snap-Patents	2923922	13975788	269	5	0.07

1122

1123

1124 encodings for small-scale datasets, and node2vec based position encoding in the snap-patent dataset, as laplacian position encoding calculation is computationally infeasible at million-scale datasets, as proposed in GOAT, for large-scale datasets. These are further used in NAGPHORMER and LARGEGT. We select a number of negative features per node using hyperparameter tuning between the range of 5 to 30.

1125

1126

1127

1128

1129

C.4 CODEBASE

1130 The codebase is available at <https://anonymous.4open.science/r/nutag-7774/>.

1131

1132

1133

1134 C.5 LIMITATIONS AND FUTURE WORK
1135

1136 The major limitation of our work is that the proposed NEUTAG is not applicable to non-attributed
1137 graphs. Moreover, the proposed method is specifically designed for node classification tasks in
1138 both small and large-scale graphs. In contrast, graph classification tasks involve small graphs, e.g.,
1139 pattern, cluster, zinc, peptides-func, peptides-struct (Dwivedi et al., 2023a; 2022b), having around
1140 100 nodes on average. In such cases, dense GT has shown to perform exceptionally well without any
1141 computational challenges (Rampášek et al., 2022; Shirzad et al., 2023; Ying et al., 2021; Ma et al.,
1142 2023).

1143 D ADDITIONAL RESULTS
11441145 D.1 ABLATION STUDY
1146

1147 Table 6: Ablation of NEUTAG on node classification task

NEUTAG Variants	Cora	CiteSeer	Actor	Chameleon
NEUTAG (COMPLETE)	87.26 ± 2.14	76.00 ± 0.99	36.25 ± 2.43	65.26 ± 2.43
NEUTAG (LOCAL NBRS.)	81.01 ± 3.67	75.49 ± 1.10	25.52 ± 0.87	30.70 ± 1.49
NEUTAG ⁺	87.19 ± 0.96	77.68 ± 1.9	34.93 ± 0.83	64.07 ± 2.73
NEUTAG -F2F	87.12 ± 1.46	75.70 ± 0.3	34.26 ± 1.85	63.02 ± 3.79
NEUTAG ⁺ -F2F	87.67 ± 1.10	74.65 ± 0.95	34.93 ± 0.46	64.12 ± 1.95

1156 We design 5 variants of NEUTAG, **1)NEUTAG (COMPLETE)** which is the entire architecture **2) NEUTAG**
1157 (**LOCAL NBRS.**), which only consists of attention with local neighbors **3)NEUTAG⁺** consists of
1158 attentions with local neighbors, feature nodes and feature to feature attention path except attention
1159 with negative features **4)NEUTAG-F2F** consists of all attention paths except feature to feature attention
1160 and **5)NEUTAG⁺-F2F** consists of local neighbor attention and feature node attention. Table 6
1161 demonstrates the effectiveness of all the variants. Specifically, we observe that computing node
1162 representation by only attending to local neighbors NEUTAG (**LOCAL NBRS**) results in sub-optimal
1163 performance across all datasets. The performance drop is much more significant in non-homophilic
1164 graphs Actor and Chameleon. This signifies the crucial role of various attention paths involving
1165 feature nodes in learning both homophilic and heterophilic biases in NEUTAG. Table 6 also indicates
1166 that attention with local neighbors and feature nodes (NEUTAG⁺-F2F) is competitive across all
1167 datasets. In contrast, additional attention with negative feature nodes and feature-to-feature attention
1168 NEUTAG (**COMPLETE**) provides a performance boost in heterophilic graph Actors and Chameleon.

1169 D.2 ADDITIONAL CHALLENGING HETEROGRAPHIC DATASETS
1170

1171 We further benchmark NEUTAG on challenging heterophilic datasets, with graph statistics and results
1172 summarized in Table 7. As shown, NEUTAG consistently outperforms scalable graph transformers by
1173 a significant margin. We further add

1174 Table 7: Comparison of NEUTAG with scalable GT on additional challenging heterophilic graphs
1175 (Luan et al., 2024a)

Dataset	# Nodes	# Edges	H _{edge}	NAGPHORMER	GOAT	LARGEGT	NEUTAG
Facebook	4039	88234	0.5816	59.91 ± 1.11	Error	Error	63.09 ± 1.29
Cornell	183	295	0.2983	58.90 ± 5.23	67.02 ± 8.41	53.51 ± 11.89	77.834 ± 7.33
Squirrel	5201	217073	0.2234	38.05 ± 2.00	33.56 ± 0.74	36.5 ± 2.69	50.36 ± 2.12
Wisconsin	251	499	0.1703	58.42 ± 4.01	74.11 ± 7.76	69.01 ± 7.48	78.034 ± 4.19
Texas	183	309	0.0615	60.61 ± 7.15	68.64 ± 4.09	68.10 ± 10.99	82.69 ± 4.04

1184 D.3 IMPACT OF MISSING FEATURES ON NEUTAG
1185

1186 We conduct two studies to examine how missing features affect NEUTAG. The first study looks at
1187 missing features only during the graph transformation stage. Here, the original input features are
1188 intact, but node–feature edges are randomly removed to simulate different levels of feature sparsity.

1188
1189
1190 Table 8: Comparison of NEUTAG with scalable GT on additional NAGPHORMER datasets
1191
1192
1193

Dataset	# Nodes	# Edges	H_{edge}	NAGPHORMER	GOAT	LARGE GT	NEUTAG
Pokec	1.6M	30.62M	0.4449	71.55 ± 2.40	Error	70.70 ± 0.21	71.97 ± 0.22
Photo	7850	238163	0.8272	94.32 ± 0.52	95.58 ± 0.45	93.76 ± 0.89	94.98 ± 0.39
Computer	13752	491722	0.7772	88.90 ± 0.70	91.55 ± 0.59	87.39 ± 1.10	90.50 ± 0.32
CoraFull	19793	126842	0.5670	70.03 ± 0.91	69.21 ± 0.64	63.25 ± 0.65	72.62 ± 0.44

1194
1195 We test this on the Chameleon dataset. Dropping feature connections reduces the number of feature–node edges, which lowers the homophily of the transformed graph \mathcal{G}^{meta} . This weakens the
1196 structural connectivity of the transformed graph and, as expected, leads to a drop in classification
1197 accuracy, as shown in the table below.
1198

Feature Drop Rate in \mathcal{G}^{meta}	Homophily $_{ppr}^{\mathcal{G}}$	Homophily $_{ppr}^{\mathcal{G}^{meta}}$	Accuracy
0%	0.2349	0.2807	65.26 ± 2.74
50%	0.2349	0.2615	60.51 ± 2.15
90%	0.2349	0.2398	58.45 ± 2.26

1200
1201 Table 9: Effect of feature drop rate during graph transformation on homophily and accuracy.
1202
1203
1204

1205 In another study, for completeness, we now randomly drop features with varying probability (p) from
1206 the input node feature matrix itself and benchmark it against the baseline methods in table 10. We
1207 observe that NEUTAG maintains strong performance even under severe feature dropout, indicating
1208 robustness to missing input features. This is an encouraging result and aligns with our goal of
1209 designing scalable and generalizable graph transformers. That said, we believe a comprehensive
1210 study on robustness under various real-world noise and corruption settings is a significant task that
1211 warrants a separate investigation. In the present paper, our focus remains on proposing a scalable
1212 graph transformer architecture with strong theoretical foundations and empirical results.
1213
1214

1215
1216 E EXTENSION OF NEUTAG ON CONTINUOUS FEATURES
1217

1218 To convert real-valued features into binary form suitable for constructing feature nodes, we have
1219 employed a lightweight knowledge distillation framework. Specifically:
1220

1. We first train a teacher model—a 2-layer MLP—using the original continuous node features for
2. Next, we train a student model that receives the same continuous features but passes them through
3. The student model is trained using a combination of: a) KL divergence loss between the soft
node classification task.
a k-sparse encoder (Makhzani & Frey, 2013) to produce intermediate binary encodings.
predictions of the student and teacher models, and b) cross-entropy loss based on ground-truth
node labels.

1221
1222 This approach enables us to retain task-relevant signal while producing binary features that can be
1223 used to define edges in the augmented graph for NEUTAG.
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261

1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274

Method	$p = 0$	$p = 0.5$	$p = 0.9$
GRAPH SAGE	48.95 ± 3.16	44.42 ± 2.04	37.50 ± 2.81
GAT	44.74 ± 3.29	38.33 ± 3.73	34.20 ± 1.46
GIN	32.68 ± 3.68	31.22 ± 1.02	30.26 ± 3.54
MIXHOP	47.68 ± 2.89	38.13 ± 5.12	31.14 ± 3.54
LINKX	48.20 ± 3.31	42.19 ± 1.58	35.26 ± 3.04
GRAPHGPS	42.88 ± 1.88	36.14 ± 2.73	32.96 ± 3.77
EXPHORMER	45.17 ± 2.56	42.45 ± 1.60	35.43 ± 1.04
NAGPHORMER	59.97 ± 1.72	56.72 ± 1.90	58.56 ± 1.31
GOAT	53.28 ± 2.48	43.85 ± 1.93	34.56 ± 2.50
LARGE GT	57.19 ± 1.89	55.24 ± 2.45	52.58 ± 1.70
NEUTAG	65.26 ± 2.43	60.40 ± 0.99	58.75 ± 2.06

Table 10: Performance of different methods under varying feature drop rates (p).

1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295