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ABSTRACT

Graph Transformers (GT) have demonstrated their superiority in graph classifica-
tion tasks, but their performance in node classification settings remains below par.
They are designed for either homophilic or heterophilic graphs and show poor scal-
ability to million-sized graphs. In this paper, we address these limitations for node
classification tasks by designing a model that utilizes a special feature encoding
that transforms the input graph separating nodes and features, which enables the
flow of information not only from the local neighborhood of a node but also from
distant nodes, via their connections through shared feature nodes. We theoretically
demonstrate that this design allows each node to exchange information with all
nodes in the graph, effectively mimicking all-node-pair message passing while
avoiding O(N2) computation. We further analyze the universal approximation
ability of the proposed transformer. Finally, we demonstrate the effectiveness of the
proposed method on diverse sets of large-scale graphs, including the homophilic &
the heterophilic varieties.

1 INTRODUCTION

Graph neural networks (GNN) (Hamilton et al., 2017; Veličković et al., 2018; Xu et al., 2019;
Abu-El-Haija et al., 2019) are increasingly considered de facto models for solving graph mining
tasks such as graph classification, node classification, link prediction, etc. Recent advances in
the transformer (Vaswani et al., 2017) family of neural networks, especially in the domain of lan-
guage (Devlin et al., 2019; Radford et al., 2019), and vision (Dosovitskiy et al., 2020) have propelled
their applications in the graph domain as well, specifically for graph classification tasks (Rampášek
et al., 2022). Graph Transformers (GT) take node sequences as input with their attributes, structural
and position encoding, and apply transformer layers (Vaswani et al., 2017) successively to learn
contextual node representation. It enables modeling long-range dependencies among nodes, avoids
over-smoothing (Liu et al., 2020) problems linked with deeper GNN, and is more expressive due
to structural (Dwivedi et al., 2022a) and position encodings (Kreuzer et al., 2021a; Dwivedi et al.,
2023a). These advantages in the GT architecture lead them to outperform other GNN-based methods,
especially in molecular and biological graph classification tasks, as shown in GRAPHGPS (Rampášek
et al., 2022).

However, the sizes of graphs considered in graph classification tasks are typically of small scale, that
is, ≈ 100 nodes per graph. In contrast, node classification tasks often involve graphs with millions of
nodes, such as snap-patents (Lim et al., 2021). One of the fundamental limitations of utilizing graph
transformers in these settings is dense attention, which computes attention among all node pairs,
leading toO(N2) computation in each layer. This is computationally prohibitive and not practical for
applications involving large graphs. Recently, sparse-attention methods (Choromanski et al., 2020;
Zaheer et al., 2021) proposed in language models have been utilized in GT (Rampášek et al., 2022)
to approximate dense attention. However, these sparse-attention methods don’t explicitly leverage
the structural properties of graphs, resulting in sub-optimal performance than dense attention-based
graph transformers. Recently, graph-specific sparse transformers (Rampášek et al., 2022; Shirzad
et al., 2023; Kong et al., 2023; Chen et al., 2022b) have been proposed to incorporate graph topology.
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1.1 EXISTING WORKS AND THEIR LIMITATIONS

A plethora of graph transformers have been proposed to target many aspects of representation
learning. A recent survey (Müller et al., 2024) characterizes these key innovations into four primary
dimensions: 1) the design of positional and structural encodings (Chen et al., 2022a; Dwivedi et al.,
2022a; Bouritsas et al., 2021; Kreuzer et al., 2021b; Lim et al., 2023; Dwivedi & Bresson, 2021;
Wang et al., 2022), 2) the ability to handle geometric vs non-geometric input features (Fuchs et al.,
2020; 2021; Shi et al., 2023; Luo et al., 2023), 3) graph tokenization strategy (Kim et al., 2022;
Hussain et al., 2022; Chen et al., 2022b), and 4) propagation mechanisms (Rampášek et al., 2022;
Shirzad et al., 2023; Kong et al., 2023; Chen et al., 2022b; Dwivedi et al., 2023b; Ma et al., 2023). In
addition, we identify a fifth dimension that focuses on replacing standard self-attention formulae with
equivalent scalable formulations, e.g., polynomial kernels or diffusion processes (Wu et al., 2023a;b;
Deng et al., 2024). This paper focuses primarily on the fourth dimension, which is the design of
effective propagation between nodes. Methods in this category typically adopt a common modular
architecture, where each layer is composed of a message-passing neural network (MPNN) (Hamilton
et al., 2017; Veličković et al., 2018; Xu et al., 2019) followed by a transformer layer. The principal
distinctions between methods lie in the design of the transformer layer. GRAPHGPS utilizes all-pairs
attention. EXPHORMER, in addition to GNN, incorporates the graph topology in the transformer
layer by breaking dense attention into a) local-attention attending to the local neighborhood and
b) global-attention attending to distant nodes via virtual nodes. These virtual nodes are connected
to every node in the graph, leading to an approximation of all-node-pairs attention. GOAT (Kong
et al., 2023) replaces virtual nodes in EXPHORMER with a K size feature code-book. This code-
book is calculated using k-means on node representations, followed by calculating centroids of
K clusters. Each node attends to these centroids during training, and the centroids are updated
continuously off-training using exponential moving averages. LARGEGT replaces the MPNN and
local-attention module in GOAT by directly attending over sampled k-hop neighbors in each layer.
NAGPHORMER (Chen et al., 2022b) computes the representation for each of its K hops neighbors by
simple degree-based aggregation and applies self-attention over these K representations. The above
design choice of combining GNN, local neighborhood attention, and global attention suffers from the
following limitations.

• Redundant Dependency on GNN: Current methods rely on GNN layers with transformers to
utilize graph topology, even though transformers are a universal approximator for any sequence-
to-sequence functions (Yun et al., 2020) and should be able to model topological biases without
GNN.

• Limited to either homophilic or heterophilic graphs: Existing GT achieves good performance
on homophilic or heterophilic graphs but not on both. This is mainly due to the nature of the
underlying GNN. If GNN derives the node representation mainly from its local connectivity, then it
will propagate homophily biases in the transformer. Similarly, if a GNN is designed for heterophilic
graphs that use higher hop nodes, it will disseminate non-homophily biases in the transformer. For
example, EXPHORMER and GRAPHGPS use GCN (Kipf & Welling, 2017) as GNN, which leads
to their good performance on homophilic graphs (Sen et al., 2008; Yang et al., 2016) but not on
heterophilic graphs (Pei et al., 2020; Rozemberczki et al., 2021; Lim et al., 2021). We show this
effect empirically in Table 1.

• Non-scalable: Existing GT approximate dense attention or approximate it with sparse attention
using global nodes, which enables connections with distant nodes. This requires processing the
whole graph as input during training, including forward-propagation and back-propagation. Since
GPU memory is limited, storing the entire graph, including gradients and optimizer parameters
necessary for training and even testing, is not practical for large graphs. For example, node batching
is not feasible in GRAPHGPS and EXPHORMER.

1.2 CONTRIBUTIONS

To address the gaps outlined above, we propose Neural Transformer for Attributed Graphs (NEUTAG).
We utilize a graph transformation using node features as virtual nodes to design novel sparse graph
transformers. We examine the benefits of the aforementioned transformation, including increased
graph homophily. We further design a node projection matrix for the proposed transformation and
prove that it can approximate dense attention. In summary, NEUTAG offers the following significant
advantages over the existing work.
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Figure 1: Transformation of input graph G into its metamorphosis form Gmeta. In G, the features
marked in green are present for the corresponding node. Gmeta contains additional edges with all
present features.

• Assumption-free, data agnostic and scalable modeling: NEUTAG transforms the input graph
into a graph consisting of graph nodes and virtual feature nodes. Our proposed attention-based
sparse transformer layer on the transformed graph enables us to have a fluidly adaptable design
that can learn patterns in homophilic graphs using local neighbors and, in heterophilic graphs,
allow information to flow from distant nodes bridged through feature nodes. Finally, we show that
NEUTAG seamlessly facilitates node batching in large-scale graphs for the classification task, as it
exclusively attends to neighborhood and feature nodes

• Theoretical analysis: We establish the theoretical grounding of the proposed transformation by
proving that it increases the connectivity in the graph, and it is equivalent to applying a fixed projec-
tion matrix that approximates full-attention, provides reliable and tighter error bounds than methods
such as GOAT, which rely on trainable projections. Moreover, we study the theoretical conditions
under which the proposed transformation is a permutation-equivariant universal approximator of a
dense attention layer.

• Empirical evaluation: We perform extensive experiments on real-world datasets, including both
homophilic and heterophilic datasets, along with a large-scale dataset snap-patent containing
2.9 million nodes and 13.9 million edges. We evaluate our proposed method against 12 graph
transformer baselines and 15, including their variants. We clearly establish that the proposed sparse
graph transformer NEUTAG is competitive in both homophilic and heterophilic graphs consistently.

Paper organization: Section 2 introduces preliminaries on graphs, graph neural networks, trans-
formers, and graph transformers, along with notations and problem formulation. Section 3 presents
our proposed methodology: we first describe the graph transformation and its benefits for structural
connectivity, then introduce the attention mechanism on the transformed graph and analyze its all-pair
attention approximation capabilities. Section 4 details the experimental setup, including datasets,
baselines, evaluation metrics, and benchmarks NEUTAG. Finally, Section 5 concludes the paper.

2 PRELIMINARIES

We provide preliminaries on Graphs, Graph Neural Networks, Transformers, and Graph Transformers,
including definitions, notations, and problem formulation in Appendix A due to space constraints.

3 METHODOLOGY

This section presents two main components. First, we propose a graph transformation that decouples
features from nodes into separate nodes, improving structural connectivity and increasing effective
homophily, which we formally analyze. Building on this transformation, we introduce a novel atten-
tion mechanism that facilitates information flow between graph and feature nodes, with theoretical
guarantees showing that it closely approximates full softmax attention.

3.1 GRAPH TRANSFORMATION

Given a graph G = (V, E ,X) and its feature set F as defined in def. 1, we convert it to its
metamorphosis form Gmeta = (Vmeta, Emeta,X) as follows. First, we create virtual feature nodes
V f corresponding to feature set F of graph G and add these new nodes to V to create Vmeta. Formally,

Vmeta = V ∪ Vf : Vf = {f ∈ F} (1)

3
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Next, we retain the original edges E in Gmeta and create the edges that connect original graph nodes
VG and Vf as follows.

Ef = {(v, f) | v ∈ V, f ∈ F,X[v, f ] = 1} (2)
We overload the matrix index operation with the access operator []. Ef represents the set of edges
between graph nodes V and features which are present in corresponding nodes. Thus, edges in Gmeta

consist of original edges and feature edges. Formally,
Emeta = E ∪ Ef (3)

Since every node in Gmeta has two types of neighbors, we specify each possible neighborhood.
1) Graph neighborhood: nodes from the original graph, {N G

v = (u | (u, v) ∈ E}, 2) Feature
neighbourhood for graph nodes: feature nodes {N f

v = (u | (u, v) ∈ Ef} ∀v ∈ V , 3) Graph
neighbourhood for features nodes: graph nodes {N G

f = (u | (u, f) ∈ Ef} ∀f ∈ Vf .

3.2 TRANSFORMATION BENEFITS

In dense attention, each node ingests information from every other node in a single hop, which
requires O(N2) computations. The proposed transformation enables nodes to exchange information
with non-local nodes indirectly via feature nodes, thereby avoiding the explicit computation of
pairwise attention scores and reducing computational complexity. This transformation preserves the
locality biases and induces connections to distant nodes using feature-connectivity biases. Thus, such
transformations increase expressive power by incorporating long-range interactions to learn inductive
biases of both homophilic and heterophilic graphs.

Connectivity analysis: We assume DG to be the average graph node degree of graph nodes V , DF

to be the average no. of features for graph nodes V , and FG be average no. of nodes per feature nodes
Vf . We now show that the transformation drastically increases the connectivity in the following
theorem.
Theorem 1 (Connectivity of Gmeta). Given an input graph G, the average connectivity of a node
in L-hop neighbourhood is O((DG)L). Let Gmeta be a proposed transformed variant of G. The
average connectivity in Gmeta of the same graph node in L hop significantly increases toO((DG)L+
(DF )L/2 ∗ (FG)L/2).

Proof: See App. B.1. □.

Generally DF > DG and FG ≫ DG in real world graphs. This leads to a significant increase in
connectivity. The enhanced connectivity leads to quicker reachability to relevant long-range nodes,
facilitating distant nodes to become higher personalized rank nodes(Page et al., 1999) for target
nodes.
Corollary 1. Gmeta facilitates long distances nodes in G to have better personalized page ranks
(PPR).

Proof: See App. B.2.

Higher homophily: The increased connectivity due to the proposed transformation leads to higher
homophily in top PPR nodes in heterophilic graphs. We demonstrate this empirically on two
heterophilic graphs, Actor and Chameleon. We compute the top-K nearest PPR nodes for all graph
nodes in G and Gmeta and compute the following homophily score per node. ∀v ∈ V ,

HomophilyG
ppr(v) =

i=K∑
i=1

| y(v) = y(pprGi (v)) |
K

(4)

where y(v) denotes the label of node v, ppri(v)G denotes the ith nearest PPR nodes from node v
when computed on graph G. We compute the scores for graph nodes on graph G and Gmeta. We
find that Homophilyppr increases in Gmeta for nodes who had lower Homophilyppr in the original
graph. To demonstrate this, we define a homophily threshold to identify nodes whose score is less
than the threshold in G. Finally, we compare their average homophily score in G with the same
identified nodes in Gmeta. Their homophily score increases drastically in Gmeta. We note that during
top-K ppr node computation in Gmeta, we pick only graph nodes, disregarding feature nodes Vf .
Figure 2 establishes this phenomenon. The difference reduces once the threshold increases more than
0.5.

Next, we discuss our novel attention mechanism on the transformed graph Gmeta.

4
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(b) Actor

Figure 2: Increase in homophily observed in the transformed graph Gmeta, while the homophily was
low in the original graph G. K is chosen as 50.

3.3 GRAPH TRANSFORMER

The main contribution of this work is to propose features as a way of transforming N dimensional
node subspace to a lower F dimensional feature subspace to enable computing attention with feature
nodes instead of all graph nodes. This reduces the attention score computation complexity fromO(N)
toO(F ) for a given query. We can construct a projection matrix M ∈ {0, 1}N×F where M[i][j] = 1
when feature j is available in ith node. We now theoretically prove that such a projection matrix
exists without considerably degrading the performance compared to dense attention. We utilize the
analysis provided in GOAT (Kong et al., 2023). Specifically, we define the following theorem.
Theorem 2 (Projection matrix M). There exists a projection matrix M ∈ {0, 1}N×F defined as

Mij =

{
1 if jth feature ∈ Fi

0 else

such that the following holds true for any ϵ > 0, projection matrices WQ,WK ,WV ∈ RN×d and
node feature matrix X, vector v ∈ XWV

P (∥AATNMMTv −AATNv∥F < ϵ∥AATNv∥F ) > 1−O(1/ exp(F )) (5)

And consequently,

P (∥ÃATNMTXWv −AATNXWV ∥F ≤ ϵ∥AATN∥F ∥XWV ∥F ) > 1−O(1/ exp(F )) (6)

where AATN=SOFTMAX(XWQ(XWK)T /
√
d), ÃATN = SOFTMAX((XWQ(XWK)T /

√
d)M)

and ∥ . . . ∥F denotes the Frobenius norm of the matrix.

Proof: See App. B.3. □.

We refer the reader to Appendix B.3 to understand the semantics of the key results 5 and 6. Specifically
eq. 6 facilitates to project XWK ,XWV ∈ RN×d to RF×d by multiplying by M, thus reducing
the computation to O(N ∗ F ∗ d) much less than O(N ∗N ∗ d). We also note that, unlike GOAT
where the projection matrix M is learned during training, our approach proposes a fixed and easily
derivable projection matrix M, facilitating assumption-free modeling. Additionally, equation 6
provides a tighter approximation error bound than GOAT, whose error scales as O(1/V). Since
exp(F ) ≫ V , our bound of O(1/ exp(F )) is substantially tighter. Finally, we now present the
NEUTAG architecture.

NEUTAG architecture constructs the attention graph consisting of 4 types of undirected attention
edges as shown in fig 3. These attention paths are applied successively across each layer of NEUTAG.
The input to the NEUTAG is the node features X, graph topology E , and position encodings (PE)
based on random-walk/Laplacian eigenvalue. The input feature matrix is initialized as

H0
V = (X+PE)W (7)

where H0
V ∈ RN×d is a initial representation of graph nodes V . Similarly, for feature nodes Vf , we

initialize their embedding to randomly initialized random vectors.

H0
Vf [f ] = wf ∈ Rd ∀f ∈ Vf (8)

5
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Figure 3: Various attention paths in NEUTAG.

Now, given Hl−1
V ∈ RN×d, and Hl−1

Vf ∈ R|F |×d, we first compute the following query, key, and
value matrices for both graph nodes and feature nodes respectively.

Ql
V = Hl−1

V Wl
1, K

l
V = Hl−1

V Wl
2, V

l
V = Hl−1

V Wl
3 (9)

Ql
Vf = Hl−1

Vf Wl
4, K

l
Vf = Hl−1

Vf Wl
5, V

l
Vf = Hl−1

Vf Wl
6 (10)

Now we define the following attentions to compute Hl
V and Hl

Vf . Please note that we provide details
using one head for simplicity, but we employ multi-head attention as prevalent in transformers, which
entails running attention H times and concatenating these outputs.

Local neighbourhood attention: Local neighborhood plays a critical role in node classification
accuracy and is commonly used in every sparse transformer, e.g. GRAPHGPS, EXPHORMER, GOAT,
LARGEGT, and NAGPHORMER. For each target graph node v ∈ V , the following vector is computed.

Hl
V:local[v] =

∑
u∈NG

v

exp(Ql
V [v] ∗Kl

V [u]/
√
d)∑

u′∈NG
v
exp(Ql

V [v] ∗Kl
V [u

′]/
√
d)

Vl
V [u] (11)

We apply all-pair attention for each feature node f ∈ Vf to compute their local representation at
layer l.

Hl
Vf :local = SOFTMAX

(
Ql

Vf (K
l
Vf )

T

√
d

)
Vl

Vf (12)

Attention using feature connections: The next component utilizes graph nodes to feature nodes
connections and vice-versa to learn non-local representations.

For graph nodes ∀v ∈ V , we use the following.

Hl
V:+[v]=

∑
f∈Nf

v

exp(Ql
V [v] ∗Kl

Vf [f ]/
√
d)∑

f ′∈Nf
v
exp(Ql

V [v] ∗Kl
Vf [f ′]/

√
d)

Vl
Vf [f ] (13)

For feature nodes ∀f ∈ Vf , we compute the following.

Hl
Vf :+[f ]=

∑
u∈NG

f

exp(Ql
Vf [f ] ∗Kl

V [u]/
√
d)∑

u′∈NG
f
exp(Ql

Vf [f ] ∗Kl
V [u

′]/
√
d)

Vl
V [u] (14)

Attention using absent feature connections Since absent features too provide valuable information
in node classification performance, We define the negative feature edges as follows.

Ef− = {(v, f) | v ∈ V, f ∈ F,X[v, f ] = 0} (15)

Corresponding to negative edges, we define the negative feature neighborhood for graph nodes V G as
{N−

v = (u | (u, v) ∈ Ef−}. Following, we define another projection matrix M corresponding to
these edges, which too satisfies the theorem 2.

Mij =

{
1 if jth feature /∈ Fi

0 else

Similar to eq. 11 and 13, we utilize the negative graph connections between graph nodes and feature
node connections are utilized as follows. ∀v ∈ V,

Hl
V:−[v]=

∑
f∈N−

v

exp(Ql
V [v] ∗Kl

Vf [f ]/
√
d)∑

f ′∈N−
v
exp(Ql

V [v] ∗Kl
Vf [f ′]/

√
d)

Vl
Vf [f ] (16)
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Since each graph node has multiple negative features, we sample a fixed number of negative feature
nodes per node using degree-based sampling for implementation efficiency.

Finally, these local and non-local representations are merged to learn next-layer representations of
graph and feature nodes as follows.

Hl
V = UPDATEl

1(H
l−1
V , (MLPl

1(H
l
V:local | Hl

V:+ | Hl
V:−))) (17)

Hl
Vf = UPDATEl

2(H
l−1

Vf , (MLP(Hl
Vf :local | H

l
Vf :+))) (18)

Here UPDATEl can be a neural net-based functions, e.g. MLP or skip-connections.

We now show that NEUTAG with positive and negative feature attention paths approximates the
Positive Orthogonal Random Projections based sparse-transformer PERFORMER (Choromanski et al.,
2020), which kernelizes the softmax operation using Mercer’s theorem. We formally define the
following theorem.
Theorem 3. NEUTAG can approximate the following self-attention layer of PERFORMER applied on
lth layer node representation Hl of G in 3 proposed attention layers.

hl+1
i =

ϕ(WQh
l
i)

T ∑j=N
j=1 ϕ(WKhl

j)⊗ (WV hl
j)

ϕ(WQhl
i)
∑k=N

k=1 ϕ(WKhl
k)

(19)

Given that a) ϕ is a universally approximated kernel function by neural networks and b) each graph
node will be connected to at least 1 feature node. Here hi = H[i] is d dimensional vector and
WQ,WK ,WV are weight matrices. ϕ : Rd → Rm is a low dimension random projection based
feature mapping.

Proof: See App. B.4. □.

NEUTAG Mini-Batching: We request readers to refer appendix section C.1 which contains batching
algorithm 1 for running NEUTAG on large-scale graphs.

3.4 UNIVERSAL APPROXIMATION CAPABILITIES

Dense transformers have been proven universal approximations of sequence-to-sequence permutation
equivariant functions (Yun et al., 2020). The same work further proves transformers are univer-
sal approximates of all sequence-to-sequence functions by including position encoding. Further
SAN (Kreuzer et al., 2021a) proves that since a graph can be constructed as a sequence on edges
or nodes, dense attention-based graph transformers are universal approximates of such sequences
within a bound inducing higher expressivity than 1-Weisfeiler Lehman (WL) isomorphism test. Since
NEUTAG doesn’t utilize all O(N2) connections, analyzing its universal approximation capabilities of
dense self-attention layer is significant. Formally,
Theorem 4. Given a input graph G, its metamorphosis Gmeta and X ∈ RN×d is a node representa-
tion matrix. For following all-pair self attention layer, there exists a NEUTAG’s attention layer which
is a well permutation equivariant universal approximate with O(Nd) parameters in O(1) layers.

H = SOFTMAX

(
(HlWQ)(H

lWK)T√
d

)
HlWV (20)

Given every graph node v ∈ V is connected to at-least 1 feature node f ∈ Vf in Gmeta.

Proof: Please refer to App. B.5. □.

4 EXPERIMENTS

4.1 EMPIRICAL EVALUATION

We now evaluate the effectiveness of NEUTAG on node classification tasks across diverse graph
datasets and examine its robustness with state-of-the-art graph transformers(GT). We also compare
NEUTAG with standard Graph Neural Networks (GNN). Finally, we analyze the importance of feature
nodes based on the attention layer via an ablation study. We also analyze the impact of feature sparsity
or missing features on NEUTAG’s performance in the appendix section D.3.
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Table 1: Comparison of NEUTAG against baseline GT on node classification task

Method Cora CiteSeer Actor Chameleon OGBN-Arxiv OGBN-Arxiv(Year) Snap-patents

GRAPHGPS 83.65± 2.67 76.25± 1.34 34.30± 0.45 42.87± 1.88 OOM OOM OOM
GRAPHGPS-GNN 72.47± 1.87 71.59± 2.43 37.10± 1.11 47.36± 2.22 OOM OOM OOM
EXPHORMER 86.48± 2.15 75.92± 1.88 35.19± 0.94 45.17± 2.56 OOM OOM OOM
EXPHORMER-GNN 82.35± 1.75 73.01± 1.20 35.44± 0.86 46.97± 0.95 OOM OOM OOM
GRIT 82.56± 1.80 76.10± 0.67 35.34± 0.76 48.81± 2.26 OOM OOM OOM
GRAPHORMER 39.45± 10.66 OOM OOM 26.89± 7.25 OOM OOM OOM
KAA 82.16± 1.36 71.83± 1.51 34.88± 0.89 45.44± 5.61 OOM OOM OOM

NAGPHORMER 86.78± 0.77 74.69± 1.06 33.03± 0.75 59.97± 1.72 67.36± 0.12 48.98± 0.23 61.27± 0.13
GOAT 84.93± 0.51 76.75± 1.84 37.98 ± 1.02 53.28± 2.48 72.17 ± 0.09 50.81± 0.36 55.35± 2.24
LARGEGT 83.42± 1.21 70.78± 1.62 37.47± 1.62 57.19± 1.89 67.56± 0.20 53.46± 0.78 63.15 ± 0.002

NEUTAG 87.67 ± 1.10 77.68 ± 1.90 36.21± 1.2 65.26 ± 2.43 70.63± 0.29 53.96 ± 0.38 63.00± 0.22

4.2 DATASETS

Table 5 in appendix C.2 summarizes the datasets and their statistics. Cora (Sen et al., 2008),
CiteSeer (Yang et al., 2016) and OGBN-Arxiv (Hu et al., 2020) are homophilic datasets while
Actor (Pei et al., 2020), Chameleon (Rozemberczki et al., 2021), OGBN-Arxiv(year) (Hu et al.,
2020) and Snap-Patents (Lim et al., 2021) are heterophilic datasets. Out of these, Snap-Patents is
the largest dataset, having 2.92 million nodes and 13.97 million edges. We use 60%, 20%, and 20%
train, validation, and test splits on all datasets for all methods, including baselines. More details on
datasets and experiment settings, including hyperparameter values, are given in Appendices C.2 and
C.3. The codebase is shared at https://anonymous.4open.science/r/nutag-7774/.

4.3 BASELINES

We consider state-of-the-art graph transformers for comparison. We evaluate NEUTAG against
GRAPHGPS (Rampášek et al., 2022) and its variant GRAPHGPS-GNN where we remove the GNN
component to demonstrate the massive decrease in performance and henceforth dependency on MPNN.
Similarly, we evaluate against EXPHORMER (Shirzad et al., 2023) and its variant EXPHORMER-GNN
as well as GRIT (Ma et al., 2023), KAA (Fang et al., 2025),GRAPHORMER (Ying et al., 2021),
NAGPHORMER (Chen et al., 2022b), GOAT (Kong et al., 2023) and LARGEGT (Dwivedi et al.,
2023b).

Moreover, we further evaluate NEUTAG against standard and foundational graph neural networks
GRAPHSAGE (Hamilton et al., 2017), GAT (Veličković et al., 2018), GIN (Xu et al., 2019),
LINKX (Lim et al., 2024) and MIXHOP (Abu-El-Haija et al., 2019). MIXHOP solves the over-
smoothing in GNN while LINKX is a strong benchmark method for non-homophilic graphs. There
exist multiple complementing techniques which enhance GNN performance, e.g., label-propagation
(Huang et al., 2021), adaptive channel mixing (Luan et al., 2024b), gradient-gating (Rusch et al.,
2023), data-augmentation (Zhao et al., 2022), (Chowdhury et al., 2023) and knowledge-distillation
(Hong et al., 2024). Although these techniques can potentially affect GT architectures, study of their
effects is beyond the scope of this paper, and we leave it for future work.

For completeness, we also compare NEUTAG with alternative attention formulations in graph
transformers, specifically DIFFORMER (Wu et al., 2023a),SGFORMER (Wu et al., 2023b), POLY-
NORMER (Deng et al., 2024), and ADVDIFFORMER (Wu et al., 2025). These methods provide
equivalent attention formulations that are complementary to sparse graph transformers and can
potentially be integrated with NEUTAG and other baselines GOAT, NAGPHORMER, GRAPHGPS,
EXPHORMER, and LARGEGT. Moreover, as discussed in the related work section 1.1, there exists a
plethora of work focusing on improving positional and structural encodings, tokenization strategies,
or other orthogonal design aspects, which are beyond the scope of this study.

Table 2: Comparison of NEUTAG with GNN on node classification task

Method Cora CiteSeer Actor Chameleon OGBN-Arxiv OGBN-Arxiv(Year) Snap-patents

GRAPHSAGE 87.31± 0.96 76.55± 1.78 34.74± 1.20 48.95± 3.16 61.71± 0.79 46.34± 0.25 49.04± 0.03
GAT 86.56± 1.13 76.43± 2.55 30.03± 0.67 44.74± 3.29 62.35± 0.20 44.62± 0.52 36.64± 0.53
GIN 84.39± 0.65 75.47± 1.28 26.24± 0.52 32.68± 3.68 59.35± 0.30 46.60± 0.29 47.61± 0.12
MIXHOP 87.65± 0.20 76.97± 0.99 35.03± 0.53 47.68± 2.89 62.79± 0.39 44.80± 0.17 OOM
LINKX 83.14± 1.62 73.72± 0.14 32.78± 0.17 48.20± 3.31 60.39± 0.32 49.00± 0.39 52.71± 0.19

NEUTAG 87.67 ± 1.10 77.68 ± 1.90 36.21 ± 1.2 65.26 ± 2.43 70.63± 0.29 53.96 ± 0.38 63.00 ± 0.22
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Table 3: Comparison of NEUTAG against alternate attention formulation based GT

Method Cora CiteSeer Actor Chameleon OGBN-Arxiv OGBN-Arxiv(year) Snap-patents Average

DIFFORMER-s 87.34± 1.52 77.75 ± 2.76 31.20± 0.81 57.41± 2.41 40.45± 1.69 36.74± 0.43 OOM NA
DIFFORMER-a 86.01± 2.28 76.70± 1.95 30.79± 1.13 58.07± 1.95 OOM OOM OOM NA
SGFORMER 86± 1.76 75.83± 2.28 31.03± 2.99 65.77± 1.68 74.51± 0.31 49.14± 0.34 29.44± 0.84 59.03
POLYNORMER 87.49± 1.01 75.62± 0.92 37.22 ± 1.60 67.63 ± 1.65 74.85 ± 0.15 52.12± 0.31 31.99± 0.24 60.98
ADVDIFFORMER 79.08± 1.30 69.58± 1.95 33.30± 0.89 50.48± 5.13 66.83± 0.13 39.26± 0.58 OOM NA

NEUTAG 87.67 ± 1.10 77.68± 1.90 36.21± 1.2 65.26± 2.43 70.63± 0.29 53.96 ± 0.38 63.00 ± 0.22 64.91

4.4 RESULT ANALYSIS

Comparison with Graph Transformers: Table 1 presents the node classification accuracy of
baselines and the proposed model NEUTAG against 7 diverse datasets. The results clearly demonstrate
the strong performance of the proposed model NEUTAG with respect to baselines. As we outlined in
the introduction, while GRAPHGPS and EXPHORMER perform well on homophilic datasets, their
performance drastically deteriorates after removing the GNN component (-GNN), which improves
their performance on heterophilic graphs. Moreover, neither method is scalable for large-scale
datasets. The recently proposed graph transformers GOAT, NAGPHORMER, and LARGEGT are
scalable via global nodes; their performance is inconsistent across all graphs. E.g., GOAT doesn’t
perform well on Cora, Chameleon, OGBN-Arxiv(year), and Snap-patents while good on CiteSeer,
OGBN-Arxiv, and Actor. LARGEGT is overall worse on small-scale graphs but delivers good
performance on large-scale datasets. To further validate the effectiveness of NEUTAG, we extend our
comparison with these scalable graph transformers in table 7 in the appendix to 5 additional small
but challenging heterophilic datasets as defined in the survey Luan et al. (2024a). Table 7 clearly
demonstrates the strong performance of NEUTAG across these challenging heterophilic graphs. While
no model outperforms all baselines across every dataset due to diverse inductive biases, our proposed
assumption-free sparse model NEUTAG adapts well to miscellaneous graphs. NEUTAG delivers stable
performance, consistently ranking best or within 1.5% of the top model across all datasets.

Comparison with alternate attentions: Table 3 compares NEUTAG against alternative attention-
based graph transformers, including DIFFORMER, SGFORMER, and POLYNORMER. DIFFORMER
has two variants: DIFFORMER-s and DIFFORMER-a, where the latter employs a non-linear kernel
but fails to scale on medium-sized graphs. Neither variant is able to scale to large graphs like snap-
patents. Among these baselines, POLYNORMER performs competitively with NEUTAG. However,
both SGFORMER and POLYNORMER require partitioning of large graphs into smaller subgraphs,
leading to suboptimal results due to limited information exchange in case of snap-patent, unlike sparse
GT NEUTAG, which utilizes information exchange between all nodes through its novel propagation
framework. We note that these alternative attention mechanisms can be integrated into NEUTAG and
other sparse GT baselines to enhance their performance, which we leave for future work.

Comparison with Graph Neural Networks: Table 2 presents the performance of NEUTAG against
foundational GNN on 7 datasets. Since information propagation in GNN is limited to a few hops,
we clearly see that they are competitive with NEUTAG only on homophilic graphs, Cora, and
CiteSeer. Consequently, GNN exhibits worse performance than NEUTAG on Chameleon, OGBN-
Arxiv(year), and snap-patents, which require long-range interactions. This clearly establishes the
necessity for information propagation from distant nodes for an optimal node classification model.
Out of baselines, GRAPHSAGE and MIXHOP are consistent performers. Since MIXHOP utilizes
a normalized Laplacian matrix, it doesn’t scale to large graphs. LINKX designed for heterophilic
graphs is competitive on Chameleon and outperforms the rest of the GNN on large-scale snap-patent.

Ablation Study: We refer readers to the App. D.1 to analyze the impact of various attention
components in NEUTAG.

5 CONCLUSION

We introduced NEUTAG, a novel sparse graph transformer that unifies structural and feature infor-
mation within a single attention mechanism. Unlike prior approaches relying on separate GNN
components or virtual nodes, NEUTAG leverages features as global nodes, enabling efficient long-
range connectivity. We further provide theoretical analysis on NEUTAG’s capabilities. Finally,
experiments on seven real-world datasets demonstrate that NEUTAG achieves competitive and consis-
tent performance across diverse graph types, underlining its generality.
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A PRELIMINARIES

Definition 1 (Graph). A graph is defined as G = (V, E ,X) over node and edge sets V and E =
{(u, v) | u, v ∈ V} respectively where | V | = N and | E | = M . Edge set is also represented
using an adjacency matrix A ∈ {0, 1}N×N . X ∈ {0, 1}N×|F | is a node feature matrix where
F =

⋃
v∈V Fv is the set of all features in graph G. Fv is a feature set at node v.
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Symbol Meaning
G Input graph
V Set of nodes in G
E Set of edges in G
X Node feature matrix
F Set of features in G
Gmeta Transformed input graph
Vf Set of features as virtual node in Gmeta

Ef Set of edges between nodes and respective features Gmeta

Ef− Set of edges between nodes and absent features nodes in Gmeta

Vmeta Set of nodes in Gmeta

Emeta Set of edges in Gmeta

DG Average node degree excluding feature nodes in Gmeta

DF Average node degree excluding graph nodes in Gmeta

y(v) Label of node v
pprGi (v) ith nearest node from node v sorted using personalized page rank score
M Projection matrix
hl
i Embedding of node i at lth layer

Hl
V Embedding matrix of graph nodes V at layer l

Hl
Vf Embedding matrix of feature nodes Vf at layer l

W Learnable weight metrices
Ql

V Query matrix at layer l for graph nodes V
Kl

V Key matrix at layer l for graph nodes V
Vl

V Value matrix at layer l for graph nodes V
Ql

Vf Query matrix at layer l for feature nodes Vf

Kl
Vf Key matrix at layer l for feature nodes Vf

Vl
Vf Value matrix at layer l for feature nodes Vf

N G
v Set of neighbors excluding feature nodes of node v in Gmeta

N f
v Set of neighbors consisting of only feature nodes of node v in Gmeta

N G
f Set of neighbors excluding feature nodes of a feature node f in Gmeta

Table 4: Notations and their definition

Problem 1 (Graph transformer for node classification).

Input: Given a graph G (Def. 1), let Y : V → R be a hidden function that maps a node to a real
number. Y (v) is known to us only for the subset Vl ⊂ V and may model some downstream tasks such
as node classification or link prediction.

Goal: Learn parameters Θ of a Transformer based graph neural network, denoted as GTΘ, that
predicts Y (v), ∀v ∈ Vl accurately.

We now introduce preliminaries of Graph Neural Networks, Transformers, and Graph Transformers
for node classification tasks.

A.1 GRAPH

GNN also known as message-passing neural networks, as each node exchanges messages from its
neighbors to compute its representation. These representations are utilized in downstream tasks
such as node classification and link prediction. Though there exists more specialized GNN for the
link-prediction task that utilizes link-based features instead of node-level, those are out of scope in
this work. State-of-the-art GNN (Xu et al., 2019; Veličković et al., 2018; Hamilton et al., 2017) for
node classification tasks follows the following framework. Assuming xv ∈ R|F | as feature vector for
node v, 0th layer embedding is defined as:

h0
v = xv ∀v ∈ V (21)
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Next, lth layer representation is computed using nodes’ neighbourhoodNv = {u | (u, v) ∈ E} ∀ v ∈
V as follows.

ml
v = MSG(hl−1

u ,hl−1
v )∀u ∈ Nv (22)

Messages are computed from each neighbor using the previous layer information. This information
is then aggregated at each node as follows.

mv = AGGREGATEl({{ml
v(u), ∀u ∈ Nv}}) (23)

{{. . .}} is a multi-set as the same message can arrive from multiple neighbors. Multi-set allows
multiple instances of the same element achieving improved expressivity, highlighted in (Xu et al.,
2019). Finally, the aggregated message and previous layer l − 1 representation are combined to
compute the lth layer representation as follows.

hl
v = COMBINE(hl−1

v ,mv) (24)

where MSG, AGGREGATE and COMBINE are non-neural functions like SUM, AVERAGE or MAX-POOL
or neural networks based learnable functions like mlp, attention (Vaswani et al., 2017) and recurrent
neural networks eg. GRU (Dey & Salem, 2017). To achieve L hop deeper GNN, equations 22, 23
and 24 are applied L times successively to compute hL

v . This representation is utilized for node
classification tasks. GNN are limited in modeling long-range dependencies as increasing the number
of layers leads to over-smoothing(Oono & Suzuki, 2020; Chen et al., 2020) where node embeddings
become approximately similar at every node. Graph Transformers solves this by introducing the
mechanism of each node attending to all other nodes as follows.

A.2 TRANSFORMERS

First, we define the transformer neural nets, the key components of graph transformers. Given a graph
G = (V, E ,X) and ignoring topological connections E , contextualized node representations HL are
computed using self-attention. The representations are first initialized using node features.

H0 = XW (25)

where W is the trainable weight matrix. Next, below equations 26 and 27 are repeated for l ∈ [1 . . . L]
as follows.

Hl =

∥∥∥∥h=H

h=1

SOFTMAX

(
(Hl−1Wh

Q)(H
l−1Wh

K)T
√
d

)
Hl−1Wh

V (26)

Hl = NORM(Hl−1 + FFN(Hl)) (27)

where NORM is either batch-norm (Ioffe & Szegedy, 2015) or layer-norm (Ba et al., 2016), FFN is
feed-forward neural network. WQ, WK and WV are projection matrix ∈ Rd×dk . H is a number of
heads, and the transformer concatenates these multiple heads, facilitating diverse attention coefficients.
This is also known as Multi-head Attention. This architecture uses skip-connections and activation
norm strategies required in deeper neural networks He et al. (2016).

A.3 GRAPH TRANSFORMERS (GT)

Now, we discuss graph transformers, which incorporate graph topology E into the attention mecha-
nism. Foremost, node attributes are combined with position encodings, e.g., Random walk-based
encoding (Dwivedi et al., 2022a) and Laplacian eigenvalues (Dwivedi et al., 2023a) denoted as PE
matrix.

H0 = (X+PE)W (28)

Next, assuming we have node presentation for l − 1 layer, it is passed to the GNN layer along with
the transformer layer to compute lth layer representation as follows.

Hl
gnn = GNN(Hl−1, E) (29)

Hl
T = TRANSFORMER(Hl−1, E) (30)

where GNN is any graph neural network described earlier. TRANSFORMER layer can be defined as
in current literature (Rampášek et al., 2022; Shirzad et al., 2023; Kong et al., 2023; Dwivedi et al.,
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2023b). Finally, the representation computed using GNN and TRANSFORMER are combined to learn
lth layer representation.

Hl = FFN(Hl
gnn,H

l
T ) (31)

As highlighted in the Introduction, dependencies on GNN in the existing transformer lead to a
wide range of issues, including applicability on either homophilic or heterophilic graphs, along
with scalability issues due to dense attention. We now explain our methodology, which is GNN
independent, scalable, and expressive.

B PROOF OF THEOREMS

B.1 CONNECTIVITY ANALYSIS OF Gmeta: PROOF OF THEOREM 1

Proof: First, we clarify the notation. We assume DG to be the average graph node degree of graph
nodes V , DF to be the average no. of features for graph nodes V , and FG be average no. of nodes per
feature nodes Vf . With these, we derive the approximate L-hop neighbors of graph nodes V in Gmeta.
First, we define the number of 1-hop neighbors of the graph and feature nodes where #Nbrs(V, l)
signifies the order of l-hop neighbors of graph nodes V and #Nbrs(Vf , l) is the order of number of
l-hop neighbors of feature nodes Vf .

#Nbrs(V, 1) = O(DG +DF ), #Nbrs(Vf , 1) = O(FG) (32)

As each DF feature node will connect to graph nodes connected to it, and each graph node FG and
DG will be connected to its neighbors and feature nodes, applying this for 2 hops,

#Nbrs(V, 2) = O(DG ∗ (DG +DF ) +DF ∗ FG),

#Nbrs(Vf , 2) = O(FG ∗ (DG +DF ))
(33)

#Nbrs(V, 3) = O(DG ∗ (DG ∗ (DG +DF ) +DF ∗ FG) +DF ∗ FG ∗ (DG +DF )) (34)

#Nbrs(V, 4) =O(DG ∗ (DG ∗ (DG ∗ (DG +DF ) +DF ∗ FG) +DF ∗ FG ∗ (DG +DF ))

+DF ∗ FG ∗ (DG ∗ (DG +DF ) +DF ∗ FG))
(35)

While the closed form for L-hop neighbor is not feasible, we re-write #Nbrs(V, 4) using its recursive
nature,

#Nbrs(V, 4) =O(DG ∗ (DG ∗#Nbrs(V, 2)) +DF ∗ FGDG + (DF )2FG

+DF ∗ FG ∗#Nbrs(V, 2) +DF ∗ FG)
(36)

where #Nbrs(V, 2) contains DF ∗ FG . Thus, we see that DG grows with the power of the number
of hops L, and DF ∗FG multiplies after every other hop. Consequently, we approximate Nbrs(V, L)
as

#Nbrs(V, L) ≥ O((DG)L + (DF )L/2 ∗ (FG)L/2) (37)

□.

B.2 PROOF OF COROLLARY 1

Proof: We can see this via the personalized page-rank (PPR) equation π(v) = (1− α)Ãπ(v) + αiv
where Ã is self-loop added normalized adjacency matrix and iv is an indicator vector with indices
except corresponding to node v are filled with 0, facilitating transportation to target node v in restart.
The PPR equation can be rewritten as π(v) = α ∗ iv(I− (1− α)Ã)−1 = α ∗∑i=∞

r=0 (1− α)rÃriv
under conditions defined in PAGERANK-NIBBLE (Andersen et al., 2006). I is an identity matrix the
same size as Ã. As seen in the equation, the nearest nodes have a higher weightage of (1−α), which
decays exponentially (1− α)r with longer hops where r is the shortest distance from the target node.
Thus, the proposed transformation adds connection in the G, facilitating interaction with long-range
nodes co-occurring within multiple features. □.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.3 PROJECTION MATRIX M: PROOF OF THEOREM 2

Proof: Our proof is derived from proof of proposition 1 and theorem 1 in GOAT (Kong et al., 2023).
We write the following Johnson-Lindenstrauss lemma (Johnson & Lindenstrauss, 1984).

Lemma B.1 (Johnson-Lindenstrauss(JL) Lemma (Johnson & Lindenstrauss, 1984)). For any integer
d > 0, any 0 < ϵ, δ <= 1/2, there exists a probability distribution P on k × d real matrices for
k = O(ϵ−2 log(1/δ)) such that for any x ∈ Rd, following holds

P
M
((1− ϵ)∥x∥2 ≤ ∥Mx∥2 ≤ (1 + ϵ)∥x∥2) > 1− δ (38)

Following the proof in GOAT, we get to the following.

P (∥AATNMMTvT −AATNvT ∥F ≤ ϵ∥AATNvT ∥F )
> 1− 2Nδ

(39)

Since F << N , we can rewrite the above as follows.

P (∥AATNMMTvT −AATNvT ∥F ≤ ϵ∥AATNvT ∥F )
> 1− 2Fδ

(40)

Now we choose δ = O(1/(F exp(F )) honoring the lemma B.1, leading us to

P (∥AATNMMTvT −AATNvT ∥F ≤ ϵ∥AATNvT ∥F )
> 1−O(1/ exp(F ))

(41)

and k = O(ϵ−2(logF + F )) ≈ O(F ) which shows us that there exist RN×F projection matrices
M which are super-set of {0, 1}N×F as defined in the theorem. This completes our first part of the
proof.

We have investigated projecting AATN to a lower dimension, but it is still computationally expensive
as computing A is O(N ×N) operation. Next, we explore the moving projection matrix M
inside the softmax AATN and analyze its approximation to AATNv. Since SOFTMAX(AATN ) =
exp(AATN )D−1

AATN
where D−1

AATN
is diagonal matrix of exp(AATN ). Following LINFORMER

(Wang et al., 2020) and GOAT (Kong et al., 2023), we prove

P (∥ exp(AM)MTV − exp(A)V∥ ≤ ϵ∥ exp(A)∥F ∥V∥F )
> 1−O(1/ exp(F ))

(42)

where AATN = SOFTMAX(A), A = (XWQ(XWK)T /
√
d) and V = XWV . Subsequently, we

break the eq. 42 using triangle inequality as follows.

∥ exp(AM)MTV − exp(A)V∥F
≤ ∥ exp(AM)MTV − exp(A)MMTV∥F
+ ∥ exp(A)MMTV − exp(A)V∥F (43)
a
≤ ∥V∥F ∥ exp(AM)MT − exp(A)MMT ∥F
+ ∥ exp(A)MMTV − exp(A)V∥F (44)
b
≤ ∥V∥F (1 + ϵ)∥ exp(AM)− exp(A)M∥F
+ ϵ∥ exp(A)∥F ∥V∥F (45)
c
≤ ϵ∥V∥F ∥ exp(A)∥F + ϵ∥ exp(A)∥F ∥V∥F (46)
≤ ϵ∥ exp(A)∥F ∥V∥F > 1−O(1/ exp(F )) (47)

Step - a employs Cauchy inequality, step- b utilizes JL lemma, and step - c utilizes Lipschitz continuity
in a compact region. □.
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B.4 NEUTAG IS AN APPROXIMATION OF A SPARSE TRANSFORMER PERFORMER: PROOF OF
THEOREM 3

Proof: We use the similar strategy outlined in (Cai et al., 2023) which showed that global nodes can
approximate PERFORMER. First, we rewrite the equation 19 as follows to simplify the analysis.

hl+1
i =

ϕ1(h
l
i)

T
∑j=N

j=1 ϕ2(h
l
j)⊗ ϕ3(h

l
j)

ϕ1(hl
i)

T
∑o=N

o=1 ϕ2(hl
o)

(48)

where we commutate ϕ and weights WQ,WK ,WV as ϕ1(h) = ϕ(WQh), ϕ2(h) = ϕ(WKh) and
ϕ3(h) = WV h as we will use universal approximation capability of a neural network specif-
ically Multi-Layer Perceptron(MLP). Intuitively, feature nodes can facilitate approximation of
both summations

∑j=N
j=1 ϕ2(hj) ⊗ ϕ3(hj) and

∑o=N
o=1 ϕ2(ho) as each graph nodes is attended

by at least 1 feature node. To prove theorem 3, let us assume that in 17, HV:local is ignored by
UPDATEl

1 and in 18 HVf :local is ignored by UPDATEl
2. Since we are analyzing the approximation

of layer l of PERFORMER, we will subdivide layer l of NEUTAG as (l1, l2 . . .). Now, at layer
l, we are provided with hv∀v ∈ V , let us assume that hf = [. . . , If ] ∀f ∈ Vf where If is a
one-hot indicator vector with all zeros except f th index which is equal to 1. We keep the If from
layer l = 0 itself to facilitate the feature degree calculation at graph nodes. Next, using equa-
tions 13 by learning equal attention coefficients for all present feature nodes, and eq. 18 where it
omits HVf :local and HVf :+ and learn ϕ2(h

l
v), ϕ2(h

l
v) ⊗ ϕ3(h

l
v) and feature degree dF (v). After

this step, hl1
v can be approximated either as 1) [ϕ2(h

l
v), (ϕ2(h

l
v) ⊗ ϕ3(h

l
v))flattened, d

F (v)] or 2)
[ϕ2(h

l
v)/d

F (v), (ϕ2(h
l
v)⊗ ϕ3(h

l
v))flattened/d

F (v)]. Now at layer l2, in the first case, each feature
node f using the equation 14 learn attention coefficients equal to 1

dF (v)
for v ∈ N G

f and computes
vector [

∑
v∈NG

f
ϕ2(h

l
v)/d

F
v ,

∑
v∈NG

f
(ϕ2(h

l
v)⊗ ϕ3(h

l
v))flattened/d

F
v , If ]. If is crucial to facilitate

the same operations for approximating the next layer of PERFORMER. In the 2nd case, equal attention
coefficients are learned, and an identical feature representation is learned. Finally at layer l3, each
graph node compute the sums [

∑v=N
v=1 ϕ2(h

l
v),

∑v=N
v=1 (ϕ2(h

l
v)⊗ϕ3(h

l
v))flattened] and approximate

the required PERFORMER eq. 48 using via equation 13,16 and eq. 17. Consequently, the number
of parameters required by each layer NEUTAG to approximate PERFORMER layer is constant with
respect to the number of nodes N . □.

B.5 UNIVERSAL APPROXIMATION ANALYSIS OF NEUTAG

Proof: Similar to (Cai et al., 2023), we first prove the connection between NEUTAG and DEEPSETS
(Zaheer et al., 2017), which is a universal approximator of sequence-to-sequence permutation equiv-
ariant functions. Since eq. 20 is also a permutation equivalent function, DEEPSETS can approximate
eq. 20, thus establishing NEUTAG’s capability of approximating eq. 20. Formally, we define the
following lemma.
Definition 2 (DeepSets (Zaheer et al., 2017)). Each layer of DEEPSETS is defined as follows.

Hl+1 = σ(HlW1 +
1

N
11THlW2) (49)

where σ is a non-linearity activation function, Hl is output of previous layer, 1 = [1, 1, . . .]T is N
dimensional vector and W1, W2 are weights.

1
N 11T calculates the average of input HlW2 which is added to HlW1. This function can easily be
verified as a permutation equivariant function, as node reordering will only permute the output. Now,
we formally write the following lemma of (Segol & Lipman, 2019).

Lemma B.2 ((Segol & Lipman, 2019)). DEEPSETS with O(1) layers and O(Nd) parameters per
layer is a universal for permutation equivariant sequence to sequence functions.

Thus, DEEPSETS can approximate self-attention layer eq. 20. Moreover, similar to proof of theorem
3, both operations a) calculating average of node embeddings and b) adding the calculated average
to node representation and applying σ can be simulated by 3 layer NEUTAG. This concludes our
analysis. □.
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Algorithm 1 NEUTAG Mini-batching algorithm

Require: Gmeta = (Vmeta = V ∪ Vf , Emeta = E ∪ Ef ), # of layers L, Node feature matrix X

Ensure: Sampled mini batch Gmeta′

1: Vmeta′
= {}

2: Emeta′
= {}

{Sample a L hop subgraph from each feature node. This step can be cached as well as it will
remain same across all batches}

3: for vf ∈ Vf do
4: Vsampled ∼ 1-HOP(G = (V, Ef ), vf )
5: (VL, EL) ∼ L-HOP(G = (V, E),Vsampled)

6: Vmeta′ ← Vmeta′ ∪ VL

7: Emeta′ ← Emeta′ ∪ EL
8: for v ∈ Vsampled do
9: Emeta′ ← Emeta′ ∪ (v, vf )

10: end for
11: Vmeta′ ← Vmeta′ ∪ vf

12: end for
{Sample a batch of original graph nodes and their L hop neighbors}

13: V ′ ∼ V
14: for v ∈ V ′ do
15: (VL, EL) ∼ L-HOP(G = (V, E), v)
16: Vmeta′ ← Vmeta′ ∪ VL

17: Emeta′ ← Emeta′ ∪ EL
18: end for

{Sample feature nodes and edges for sampled graph nodes to create a mini-batch for forward
propagation}

19: for v ∈ Vmeta′
do

20: if v ∈ V then
21: Emeta′ ← Emeta′ ∪ {(v, f) | f ∈ Vf ,X[v, f ] = 1}
22: end if
23: end for
24: Return Gmeta′

= (Vmeta′
, Emeta′

)

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 MINI-BATCHING OF NEUTAG

The proposed framework is applicable for a) Small graphs by running forward pass on entire graph
Gmeta and b) Large-scale graphs by offline sampling L layer directed sub-graphs from feature nodes
Vf to graph nodes V from Gmeta, as these sub-graphs will be common among all batches of graph
nodes V and run NEUTAG on such constructed batches and back-propagate. Algorithm 1 summarizes
the creation of a mini-batch for a large-scale graph for NEUTAG training and inference. Specifically,
for each feature node vf ∈ Vf , graph nodes are sampled in line 4. Corresponding these graph nodes,
L hop sub-graph is sampled in original node space V . Please note that data from lines 3-12 can be
cached across multiple batches and performed offline. Finally, a batch of nodes is sampled from the
input graph, and the corresponding L-HOP subgraph is sampled. Finally, feature edges are added to
correspond to these sampled original graph nodes.

C.2 DATASETS

Cora (Sen et al., 2008) and CiteSeer(Yang et al., 2016) are co-citation graphs where nodes are papers,
and their features are bag-of-words of text. The task is to predict the research category of the node.
Actor (Pei et al., 2020) is a co-occurrence graph of actors on the same wiki page. Node attributes
are bag-of-words from the actor’s Wikipedia page, and their labels are actor categories. Chameleon
(Rozemberczki et al., 2021) is a graph of hyperlinks between English wiki pages, attributes are nouns,
and the label is the binned average monthly traffic on the page. Snap-patents (Lim et al., 2021) is a
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large-scale co-citation graph of U.S. utility patents where attributes are patent metadata and class
label is the time at which the patent was granted, binned in 5 classes. OGBN-Arxiv (Hu et al., 2020)
is also a co-citation network where features are 128-dimension embeddings of title and abstract, and
the label is the research category. OGBN-Arxiv(Year) is the same graph, but the label is the year of
publication, and it is a non-homophilic graph. Hedge (Zhu et al., 2020) in table 5 denotes the edge
homophily of a graph.

Table 5: Dataset statistics

Dataset # Nodes # Edges # Features #Labels Hedge

Cora 2708 10556 1433 7 0.81
CiteSeer 3327 9104 3703 6 0.74
Actor 34493 495924 8415 5 0.22
Chameleon 7600 33544 931 5 0.23
OGBN-Arxiv 169343 1166243 128 40 0.81
OGBN-Arxiv(year) 169343 1166243 128 5 0.22
Snap-Patents 2923922 13975788 269 5 0.07

C.3 HARDWARE DETAILS

We have performed experiments on an Intel Xeon 6248 processor with a Tesla V-100 GPU with 32GB
GPU memory and Ubuntu 18.04. Train, validate, and test data split of 60%, 20%, and 20%, which
are generated randomly for every run. We perform 5 runs of every experiment to report the mean and
standard deviation. We use 4− 6 layer NEUTAG for small graphs and 2 layer for large graphs. We use
Adam optimizer to train the model using a learning rate of 0.00001 and choose the best model based
on validation loss. For all methods, including baselines and NEUTAG, we apply laplacian position
encodings for small-scale datasets, and node2vec based position encoding in the snap-patent dataset,
as laplacian position encoding calculation is computationally infeasible at million-scale datasets, as
proposed in GOAT, for large-scale datasets. These are further used in NAGPHORMER and LARGEGT.
We select a number of negative features per node using hyperparameter tuning between the range of
5 to 30.

C.4 CODEBASE

The codebase is available at https://anonymous.4open.science/r/nutag-7774/.

C.5 LIMITATIONS AND FUTURE WORK

The major limitation of our work is that the proposed NEUTAG is not applicable to non-attributed
graphs. Moreover, the proposed method is specifically designed for node classification tasks in
both small and large-scale graphs. In contrast, graph classification tasks involve small graphs, e.g.,
pattern, cluster, zinc, peptides-func, peptides-struct (Dwivedi et al., 2023a; 2022b), having around
100 nodes on average. In such cases, dense GT has shown to perform exceptionally well without any
computational challenges (Rampášek et al., 2022; Shirzad et al., 2023; Ying et al., 2021; Ma et al.,
2023).

D ADDITIONAL RESULTS

D.1 ABLATION STUDY

We design 5 variants of NEUTAG, 1)NEUTAG (COMPLETE) which is the entire architecture 2) NEUTAG
(LOCAL NBRS.), which only consists of attention with local neighbors 3)NEUTAG+ consists of
attentions with local neighbors, feature nodes and feature to feature attention path except attention
with negative features 4)NEUTAG-F2F consists of all attention paths except feature to feature attention
and 5)NEUTAG+-F2F consists of local neighbor attention and feature node attention. Table 6
demonstrates the effectiveness of all the variants. Specifically, we observe that computing node
representation by only attending to local neighbors NEUTAG (LOCAL NBRS) results in sub-optimal
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Table 6: Ablation of NEUTAG on node classification task

NEUTAG Variants Cora CiteSeer Actor Chameleon

NEUTAG (COMPLETE) 87.26± 2.14 76.00± 0.99 36.25 ± 2.43 65.26 ± 2.43
NEUTAG (LOCAL NBRS.) 81.01± 3.67 75.49± 1.10 25.52± 0.87 30.70± 1.49
NEUTAG+ 87.19± 0.96 77.68 ± 1.9 34.93± 0.83 64.07± 2.73
NEUTAG −F2F 87.12± 1.46 75.70± 0.3 34.26± 1.85 63.02± 3.79
NEUTAG+−F2F 87.67 ± 1.10 74.65± 0.95 34.93± 0.46 64.12± 1.95

performance across all datasets. The performance drop is much more significant in non-homophilic
graphs Actor and Chameleon. This signifies the crucial role of various attention paths involving
feature nodes in learning both homophilic and heterophilic biases in NEUTAG. Table 6 also indicates
that attention with local neighbors and feature nodes (NEUTAG+−F2F) is competitive across all
datasets. In contrast, additional attention with negative feature nodes and feature-to-feature attention
NEUTAG (COMPLETE) provides a performance boost in heterophilic graph Actors and Chameleon.

D.2 ADDITIONAL CHALLENGING HETEROPHILIC DATASETS

We further benchmark NEUTAG on challenging heterophilic datasets, with graph statistics and results
summarized in Table 7. As shown, NEUTAG consistently outperforms scalable graph transformers by
a significant margin.

Table 7: Comparison of NEUTAG with scalable GT on additional challenging heterophilic graphs
(Luan et al., 2024a)

Dataset # Nodes # Edges Hedge NAGPHORMER GOAT LARGEGT NEUTAG

Facebook 4039 88234 0.5816 59.91± 1.11 Error Error 63.09 ± 1.29
Cornell 183 295 0.2983 58.90± 5.23 67.02± 8.41 53.51± 11.89 77.834 ± 7.33
Squirrel 5201 217073 0.2234 38.05± 2.00 33.56± 0.74 36.5± 2.69 50.36 ± 2.12
Wisconsin 251 499 0.1703 58.42± 4.01 74.11± 7.76 69.01± 7.48 78.034 ± 4.19
Texas 183 309 0.0615 60.61± 7.15 68.64± 4.09 68.10± 10.99 82.69 ± 4.04

D.3 IMPACT OF MISSING FEATURES ON NEUTAG

We conduct two studies to examine how missing features affect NEUTAG. The first study looks at
missing features only during the graph transformation stage. Here, the original input features are
intact, but node–feature edges are randomly removed to simulate different levels of feature sparsity.

We test this on the Chameleon dataset. Dropping feature connections reduces the number of fea-
ture–node edges, which lowers the homophily of the transformed graph Gmeta. This weakens the
structural connectivity of the transformed graph and, as expected, leads to a drop in classification
accuracy, as shown in the table below.

Feature Drop Rate in Gmeta HomophillyGppr HomophillyG
meta

ppr Accuracy

0% 0.2349 0.2807 65.26± 2.74
50% 0.2349 0.2615 60.51± 2.15
90% 0.2349 0.2398 58.45± 2.26

Table 8: Effect of feature drop rate during graph transformation on homophily and accuracy.

In another study, for completeness, we now randomly drop features with varying probability (p) from
the input node feature matrix itself and benchmark it against the baseline methods in table 9. We
observe that NEUTAG maintains strong performance even under severe feature dropout, indicating
robustness to missing input features. This is an encouraging result and aligns with our goal of
designing scalable and generalizable graph transformers. That said, we believe a comprehensive
study on robustness under various real-world noise and corruption settings is a significant task that
warrants a separate investigation. In the present paper, our focus remains on proposing a scalable
graph transformer architecture with strong theoretical foundations and empirical results.
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Method p = 0 p = 0.5 p = 0.9

GRAPHSAGE 48.95± 3.16 44.42± 2.04 37.50± 2.81
GAT 44.74± 3.29 38.33± 3.73 34.20± 1.46
GIN 32.68± 3.68 31.22± 1.02 30.26± 3.54
MIXHOP 47.68± 2.89 38.13± 5.12 31.14± 3.54
LINKX 48.20± 3.31 42.19± 1.58 35.26± 3.04
GRAPHGPS 42.88± 1.88 36.14± 2.73 32.96± 3.77
EXPHORMER 45.17± 2.56 42.45± 1.60 35.43± 1.04
NAGPHORMER 59.97± 1.72 56.72± 1.90 58.56± 1.31
GOAT 53.28± 2.48 43.85± 1.93 34.56± 2.50
LARGEGT 57.19± 1.89 55.24± 2.45 52.58± 1.70
NEUTAG 65.26± 2.43 60.40± 0.99 58.75± 2.06

Table 9: Performance of different methods under varying feature drop rates (p).
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