
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NEUTAG: GRAPH TRANSFORMER FOR ATTRIBUTED
GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Transformers (GT) have demonstrated their superiority in graph classifica-
tion tasks, but their performance in node classification settings remains below par.
They are designed for either homophilic or heterophilic graphs and show poor scal-
ability to million-sized graphs. In this paper, we address these limitations for node
classification tasks by designing a model that utilizes a special feature encoding
that transforms the input graph separating nodes and features, which enables the
flow of information not only from the local neighborhood of a node but also from
distant nodes, via their connections through shared feature nodes. We theoretically
demonstrate that this design allows each node to exchange information with all
nodes in the graph, effectively mimicking all-node-pair message passing while
avoiding O(N2) computation. We further analyze the universal approximation
ability of the proposed transformer. Finally, we demonstrate the effectiveness of the
proposed method on diverse sets of large-scale graphs, including the homophilic &
the heterophilic varieties.

1 INTRODUCTION

Graph neural networks (GNN) (Hamilton et al., 2017; Veličković et al., 2018; Xu et al., 2019;
Abu-El-Haija et al., 2019) are increasingly considered de facto models for solving graph mining
tasks such as graph classification, node classification, link prediction, etc. Recent advances in
the transformer (Vaswani et al., 2017) family of neural networks, especially in the domain of lan-
guage (Devlin et al., 2019; Radford et al., 2019), and vision (Dosovitskiy et al., 2020) have propelled
their applications in the graph domain as well, specifically for graph classification tasks (Rampášek
et al., 2022). Graph Transformers (GT) take node sequences as input with their attributes, structural
and position encoding, and apply transformer layers (Vaswani et al., 2017) successively to learn
contextual node representation. It enables modeling long-range dependencies among nodes, avoids
over-smoothing (Liu et al., 2020) problems linked with deeper GNN, and is more expressive due
to structural (Dwivedi et al., 2022a) and position encodings (Kreuzer et al., 2021a; Dwivedi et al.,
2023a). These advantages in the GT architecture lead them to outperform other GNN-based methods,
especially in molecular and biological graph classification tasks, as shown in GRAPHGPS (Rampášek
et al., 2022).

However, the sizes of graphs considered in graph classification tasks are typically of small scale, that
is, ≈ 100 nodes per graph. In contrast, node classification tasks often involve graphs with millions of
nodes, such as snap-patents (Lim et al., 2021). One of the fundamental limitations of utilizing graph
transformers in these settings is dense attention, which computes attention among all node pairs,
leading toO(N2) computation in each layer. This is computationally prohibitive and not practical for
applications involving large graphs. Recently, sparse-attention methods (Choromanski et al., 2020;
Zaheer et al., 2021) proposed in language models have been utilized in GT (Rampášek et al., 2022)
to approximate dense attention. However, these sparse-attention methods don’t explicitly leverage
the structural properties of graphs, resulting in sub-optimal performance than dense attention-based
graph transformers. Recently, graph-specific sparse transformers (Rampášek et al., 2022; Shirzad
et al., 2023; Kong et al., 2023; Chen et al., 2022b) have been proposed to incorporate graph topology.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1.1 EXISTING WORKS AND THEIR LIMITATIONS

A plethora of graph transformers have been proposed to target many aspects of representation
learning. A recent survey (Müller et al., 2024) characterizes these key innovations into four primary
dimensions: 1) the design of positional and structural encodings (Chen et al., 2022a; Dwivedi et al.,
2022a; Bouritsas et al., 2021; Kreuzer et al., 2021b; Lim et al., 2023; Dwivedi & Bresson, 2021;
Wang et al., 2022), 2) the ability to handle geometric vs non-geometric input features (Fuchs et al.,
2020; 2021; Shi et al., 2023; Luo et al., 2023), 3) graph tokenization strategy (Kim et al., 2022;
Hussain et al., 2022; Chen et al., 2022b), and 4) propagation mechanisms (Rampášek et al., 2022;
Shirzad et al., 2023; Kong et al., 2023; Chen et al., 2022b; Dwivedi et al., 2023b; Ma et al., 2023). In
addition, we identify a fifth dimension that focuses on replacing standard self-attention formulae with
equivalent scalable formulations, e.g., polynomial kernels or diffusion processes (Wu et al., 2023a;b;
Deng et al., 2024). This paper focuses primarily on the fourth dimension, which is the design of
effective propagation between nodes. Methods in this category typically adopt a common modular
architecture, where each layer is composed of a message-passing neural network (MPNN) (Hamilton
et al., 2017; Veličković et al., 2018; Xu et al., 2019) followed by a transformer layer. The principal
distinctions between methods lie in the design of the transformer layer. GRAPHGPS utilizes all-pairs
attention. EXPHORMER, in addition to GNN, incorporates the graph topology in the transformer
layer by breaking dense attention into a) local-attention attending to the local neighborhood and
b) global-attention attending to distant nodes via virtual nodes. These virtual nodes are connected
to every node in the graph, leading to an approximation of all-node-pairs attention. GOAT (Kong
et al., 2023) replaces virtual nodes in EXPHORMER with a K size feature code-book. This code-
book is calculated using k-means on node representations, followed by calculating centroids of
K clusters. Each node attends to these centroids during training, and the centroids are updated
continuously off-training using exponential moving averages. LARGEGT replaces the MPNN and
local-attention module in GOAT by directly attending over sampled k-hop neighbors in each layer.
NAGPHORMER (Chen et al., 2022b) computes the representation for each of its K hops neighbors by
simple degree-based aggregation and applies self-attention over these K representations. The above
design choice of combining GNN, local neighborhood attention, and global attention suffers from the
following limitations.

• Redundant Dependency on GNN: Current methods rely on GNN layers with transformers to
utilize graph topology, even though transformers are a universal approximator for any sequence-
to-sequence functions (Yun et al., 2020) and should be able to model topological biases without
GNN.

• Limited to either homophilic or heterophilic graphs: Existing GT achieves good performance
on homophilic or heterophilic graphs but not on both. This is mainly due to the nature of the
underlying GNN. If GNN derives the node representation mainly from its local connectivity, then it
will propagate homophily biases in the transformer. Similarly, if a GNN is designed for heterophilic
graphs that use higher hop nodes, it will disseminate non-homophily biases in the transformer. For
example, EXPHORMER and GRAPHGPS use GCN (Kipf & Welling, 2017) as GNN, which leads
to their good performance on homophilic graphs (Sen et al., 2008; Yang et al., 2016) but not on
heterophilic graphs (Pei et al., 2020; Rozemberczki et al., 2021; Lim et al., 2021). We show this
effect empirically in Table 1.

• Non-scalable: Existing GT approximate dense attention or approximate it with sparse attention
using global nodes, which enables connections with distant nodes. This requires processing the
whole graph as input during training, including forward-propagation and back-propagation. Since
GPU memory is limited, storing the entire graph, including gradients and optimizer parameters
necessary for training and even testing, is not practical for large graphs. For example, node batching
is not feasible in GRAPHGPS and EXPHORMER.

1.2 CONTRIBUTIONS

To address the gaps outlined above, we propose Neural Transformer for Attributed Graphs (NEUTAG).
We utilize a graph transformation using node features as virtual nodes to design novel sparse graph
transformers. We examine the benefits of the aforementioned transformation, including increased
graph homophily. We further design a node projection matrix for the proposed transformation and
prove that it can approximate dense attention. In summary, NEUTAG offers the following significant
advantages over the existing work.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

		𝒗𝟏	𝑭𝟏 𝑭𝟐 𝑭𝟑

		𝒗𝟐	 𝑭𝟏 𝑭𝟐 𝑭𝟑

		𝒗𝟑	𝑭𝟏 𝑭𝟐 𝑭𝟑
Present
Absent

	𝒗𝟏	

	𝒗𝟐	

	𝒗𝟑	

			𝑭𝟏	
	
	

	𝑭𝟐

	𝑭𝟑

𝑉 	 𝑉%
𝒢 𝒢%&'(

Figure 1: Transformation of input graph G into its metamorphosis form Gmeta. In G, the features
marked in green are present for the corresponding node. Gmeta contains additional edges with all
present features.

• Assumption-free, data agnostic and scalable modeling: NEUTAG transforms the input graph
into a graph consisting of graph nodes and virtual feature nodes. Our proposed attention-based
sparse transformer layer on the transformed graph enables us to have a fluidly adaptable design
that can learn patterns in homophilic graphs using local neighbors and, in heterophilic graphs,
allow information to flow from distant nodes bridged through feature nodes. Finally, we show that
NEUTAG seamlessly facilitates node batching in large-scale graphs for the classification task, as it
exclusively attends to neighborhood and feature nodes

• Theoretical analysis: We establish the theoretical grounding of the proposed transformation by
proving that it increases the connectivity in the graph, and it is equivalent to applying a fixed projec-
tion matrix that approximates full-attention, provides reliable and tighter error bounds than methods
such as GOAT, which rely on trainable projections. Moreover, we study the theoretical conditions
under which the proposed transformation is a permutation-equivariant universal approximator of a
dense attention layer.

• Empirical evaluation: We perform extensive experiments on real-world datasets, including both
homophilic and heterophilic datasets, along with a large-scale dataset snap-patent containing
2.9 million nodes and 13.9 million edges. We evaluate our proposed method against 12 graph
transformer baselines and 15, including their variants. We clearly establish that the proposed sparse
graph transformer NEUTAG is competitive in both homophilic and heterophilic graphs consistently.

Paper organization: Section 2 introduces preliminaries on graphs, graph neural networks, trans-
formers, and graph transformers, along with notations and problem formulation. Section 3 presents
our proposed methodology: we first describe the graph transformation and its benefits for structural
connectivity, then introduce the attention mechanism on the transformed graph and analyze its all-pair
attention approximation capabilities. Section 4 details the experimental setup, including datasets,
baselines, evaluation metrics, and benchmarks NEUTAG. Finally, Section 5 concludes the paper.

2 PRELIMINARIES

We provide preliminaries on Graphs, Graph Neural Networks, Transformers, and Graph Transformers,
including definitions, notations, and problem formulation in Appendix A due to space constraints.

3 METHODOLOGY

This section presents two main components. First, we propose a graph transformation that decouples
features from nodes into separate nodes, improving structural connectivity and increasing effective
homophily, which we formally analyze. Building on this transformation, we introduce a novel atten-
tion mechanism that facilitates information flow between graph and feature nodes, with theoretical
guarantees showing that it closely approximates full softmax attention.

3.1 GRAPH TRANSFORMATION

Given a graph G = (V, E ,X) and its feature set F as defined in def. 1, we convert it to its
metamorphosis form Gmeta = (Vmeta, Emeta,X) as follows. First, we create virtual feature nodes
V f corresponding to feature set F of graph G and add these new nodes to V to create Vmeta. Formally,

Vmeta = V ∪ Vf : Vf = {f ∈ F} (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Next, we retain the original edges E in Gmeta and create the edges that connect original graph nodes
VG and Vf as follows.

Ef = {(v, f) | v ∈ V, f ∈ F,X[v, f] = 1} (2)
We overload the matrix index operation with the access operator []. Ef represents the set of edges
between graph nodes V and features which are present in corresponding nodes. Thus, edges in Gmeta

consist of original edges and feature edges. Formally,
Emeta = E ∪ Ef (3)

Since every node in Gmeta has two types of neighbors, we specify each possible neighborhood.
1) Graph neighborhood: nodes from the original graph, {N G

v = (u | (u, v) ∈ E}, 2) Feature
neighbourhood for graph nodes: feature nodes {N f

v = (u | (u, v) ∈ Ef} ∀v ∈ V , 3) Graph
neighbourhood for features nodes: graph nodes {N G

f = (u | (u, f) ∈ Ef} ∀f ∈ Vf .

3.2 TRANSFORMATION BENEFITS

In dense attention, each node ingests information from every other node in a single hop, which
requires O(N2) computations. The proposed transformation enables nodes to exchange information
with non-local nodes indirectly via feature nodes, thereby avoiding the explicit computation of
pairwise attention scores and reducing computational complexity. This transformation preserves the
locality biases and induces connections to distant nodes using feature-connectivity biases. Thus, such
transformations increase expressive power by incorporating long-range interactions to learn inductive
biases of both homophilic and heterophilic graphs.

Connectivity analysis: We assume DG to be the average graph node degree of graph nodes V , DF

to be the average no. of features for graph nodes V , and FG be average no. of nodes per feature nodes
Vf . We now show that the transformation drastically increases the connectivity in the following
theorem.
Theorem 1 (Connectivity of Gmeta). Given an input graph G, the average connectivity of a node
in L-hop neighbourhood is O((DG)L). Let Gmeta be a proposed transformed variant of G. The
average connectivity in Gmeta of the same graph node in L hop significantly increases toO((DG)L+
(DF)L/2 ∗ (FG)L/2).

Proof: See App. B.1. □.

Generally DF > DG and FG ≫ DG in real world graphs. This leads to a significant increase in
connectivity. The enhanced connectivity leads to quicker reachability to relevant long-range nodes,
facilitating distant nodes to become higher personalized rank nodes(Page et al., 1999) for target
nodes.
Corollary 1. Gmeta facilitates long distances nodes in G to have better personalized page ranks
(PPR).

Proof: See App. B.2.

Higher homophily: The increased connectivity due to the proposed transformation leads to higher
homophily in top PPR nodes in heterophilic graphs. We demonstrate this empirically on two
heterophilic graphs, Actor and Chameleon. We compute the top-K nearest PPR nodes for all graph
nodes in G and Gmeta and compute the following homophily score per node. ∀v ∈ V ,

HomophilyG
ppr(v) =

i=K∑
i=1

| y(v) = y(pprGi (v)) |
K

(4)

where y(v) denotes the label of node v, ppri(v)G denotes the ith nearest PPR nodes from node v
when computed on graph G. We compute the scores for graph nodes on graph G and Gmeta. We
find that Homophilyppr increases in Gmeta for nodes who had lower Homophilyppr in the original
graph. To demonstrate this, we define a homophily threshold to identify nodes whose score is less
than the threshold in G. Finally, we compare their average homophily score in G with the same
identified nodes in Gmeta. Their homophily score increases drastically in Gmeta. We note that during
top-K ppr node computation in Gmeta, we pick only graph nodes, disregarding feature nodes Vf .
Figure 2 establishes this phenomenon. The difference reduces once the threshold increases more than
0.5.

Next, we discuss our novel attention mechanism on the transformed graph Gmeta.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0.2 0.4 0.6 0.8 1.0

Homophily Threshold in G

0.05

0.10

0.15

0.20

0.25

A
v
er
a
g
e
sc
or
e

HomophilyGppr

HomophilyG
meta

ppr

(a) Chameleon

0.2 0.4 0.6 0.8 1.0

Homophily Threshold in G

0.05

0.10

0.15

0.20

0.25

A
v
er
a
g
e
sc
or
e

HomophilyGppr

HomophilyG
meta

ppr

(b) Actor

Figure 2: Increase in homophily observed in the transformed graph Gmeta, while the homophily was
low in the original graph G. K is chosen as 50.

3.3 GRAPH TRANSFORMER

The main contribution of this work is to propose features as a way of transforming N dimensional
node subspace to a lower F dimensional feature subspace to enable computing attention with feature
nodes instead of all graph nodes. This reduces the attention score computation complexity fromO(N)
toO(F) for a given query. We can construct a projection matrix M ∈ {0, 1}N×F where M[i][j] = 1
when feature j is available in ith node. We now theoretically prove that such a projection matrix
exists without considerably degrading the performance compared to dense attention. We utilize the
analysis provided in GOAT (Kong et al., 2023). Specifically, we define the following theorem.
Theorem 2 (Projection matrix M). There exists a projection matrix M ∈ {0, 1}N×F defined as

Mij =

{
1 if jth feature ∈ Fi

0 else

such that the following holds true for any ϵ > 0, projection matrices WQ,WK ,WV ∈ RN×d and
node feature matrix X, vector v ∈ XWV

P (∥AATNMMTv −AATNv∥F < ϵ∥AATNv∥F) > 1−O(1/ exp(F)) (5)

And consequently,

P (∥ÃATNMTXWv −AATNXWV ∥F ≤ ϵ∥AATN∥F ∥XWV ∥F) > 1−O(1/ exp(F)) (6)

where AATN=SOFTMAX(XWQ(XWK)T /
√
d), ÃATN = SOFTMAX((XWQ(XWK)T /

√
d)M)

and ∥ . . . ∥F denotes the Frobenius norm of the matrix.

Proof: See App. B.3. □.

We refer the reader to Appendix B.3 to understand the semantics of the key results 5 and 6. Specifically
eq. 6 facilitates to project XWK ,XWV ∈ RN×d to RF×d by multiplying by M, thus reducing
the computation to O(N ∗ F ∗ d) much less than O(N ∗N ∗ d). We also note that, unlike GOAT
where the projection matrix M is learned during training, our approach proposes a fixed and easily
derivable projection matrix M, facilitating assumption-free modeling. Additionally, equation 6
provides a tighter approximation error bound than GOAT, whose error scales as O(1/V). Since
exp(F) ≫ V , our bound of O(1/ exp(F)) is substantially tighter. Finally, we now present the
NEUTAG architecture.

NEUTAG architecture constructs the attention graph consisting of 4 types of undirected attention
edges as shown in fig 3. These attention paths are applied successively across each layer of NEUTAG.
The input to the NEUTAG is the node features X, graph topology E , and position encodings (PE)
based on random-walk/Laplacian eigenvalue. The input feature matrix is initialized as

H0
V = (X+PE)W (7)

where H0
V ∈ RN×d is a initial representation of graph nodes V . Similarly, for feature nodes Vf , we

initialize their embedding to randomly initialized random vectors.

H0
Vf [f] = wf ∈ Rd ∀f ∈ Vf (8)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

	𝒗𝟏	

	𝒗𝟐	

	𝒗𝟑	

			𝑭𝟏	
	
	

	𝑭𝟐

	𝑭𝟑

𝒱		 𝒱%

-
-

- -

Local Neighbourhood

Feature Neighbourhood

- Feature Neighbourhood

All feature Pairs

Figure 3: Various attention paths in NEUTAG.

Now, given Hl−1
V ∈ RN×d, and Hl−1

Vf ∈ R|F |×d, we first compute the following query, key, and
value matrices for both graph nodes and feature nodes respectively.

Ql
V = Hl−1

V Wl
1, K

l
V = Hl−1

V Wl
2, V

l
V = Hl−1

V Wl
3 (9)

Ql
Vf = Hl−1

Vf Wl
4, K

l
Vf = Hl−1

Vf Wl
5, V

l
Vf = Hl−1

Vf Wl
6 (10)

Now we define the following attentions to compute Hl
V and Hl

Vf . Please note that we provide details
using one head for simplicity, but we employ multi-head attention as prevalent in transformers, which
entails running attention H times and concatenating these outputs.

Local neighbourhood attention: Local neighborhood plays a critical role in node classification
accuracy and is commonly used in every sparse transformer, e.g. GRAPHGPS, EXPHORMER, GOAT,
LARGEGT, and NAGPHORMER. For each target graph node v ∈ V , the following vector is computed.

Hl
V:local[v] =

∑
u∈NG

v

exp(Ql
V [v] ∗Kl

V [u]/
√
d)∑

u′∈NG
v
exp(Ql

V [v] ∗Kl
V [u

′]/
√
d)

Vl
V [u] (11)

We apply all-pair attention for each feature node f ∈ Vf to compute their local representation at
layer l.

Hl
Vf :local = SOFTMAX

(
Ql

Vf (K
l
Vf)

T

√
d

)
Vl

Vf (12)

Attention using feature connections: The next component utilizes graph nodes to feature nodes
connections and vice-versa to learn non-local representations.

For graph nodes ∀v ∈ V , we use the following.

Hl
V:+[v]=

∑
f∈Nf

v

exp(Ql
V [v] ∗Kl

Vf [f]/
√
d)∑

f ′∈Nf
v
exp(Ql

V [v] ∗Kl
Vf [f ′]/

√
d)

Vl
Vf [f] (13)

For feature nodes ∀f ∈ Vf , we compute the following.

Hl
Vf :+[f]=

∑
u∈NG

f

exp(Ql
Vf [f] ∗Kl

V [u]/
√
d)∑

u′∈NG
f
exp(Ql

Vf [f] ∗Kl
V [u

′]/
√
d)

Vl
V [u] (14)

Attention using absent feature connections Since absent features too provide valuable information
in node classification performance, We define the negative feature edges as follows.

Ef− = {(v, f) | v ∈ V, f ∈ F,X[v, f] = 0} (15)

Corresponding to negative edges, we define the negative feature neighborhood for graph nodes V G as
{N−

v = (u | (u, v) ∈ Ef−}. Following, we define another projection matrix M corresponding to
these edges, which too satisfies the theorem 2.

Mij =

{
1 if jth feature /∈ Fi

0 else

Similar to eq. 11 and 13, we utilize the negative graph connections between graph nodes and feature
node connections are utilized as follows. ∀v ∈ V,

Hl
V:−[v]=

∑
f∈N−

v

exp(Ql
V [v] ∗Kl

Vf [f]/
√
d)∑

f ′∈N−
v
exp(Ql

V [v] ∗Kl
Vf [f ′]/

√
d)

Vl
Vf [f] (16)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Since each graph node has multiple negative features, we sample a fixed number of negative feature
nodes per node using degree-based sampling for implementation efficiency.

Finally, these local and non-local representations are merged to learn next-layer representations of
graph and feature nodes as follows.

Hl
V = UPDATEl

1(H
l−1
V , (MLPl

1(H
l
V:local | Hl

V:+ | Hl
V:−))) (17)

Hl
Vf = UPDATEl

2(H
l−1

Vf , (MLP(Hl
Vf :local | H

l
Vf :+))) (18)

Here UPDATEl can be a neural net-based functions, e.g. MLP or skip-connections.

We now show that NEUTAG with positive and negative feature attention paths approximates the
Positive Orthogonal Random Projections based sparse-transformer PERFORMER (Choromanski et al.,
2020), which kernelizes the softmax operation using Mercer’s theorem. We formally define the
following theorem.
Theorem 3. NEUTAG can approximate the following self-attention layer of PERFORMER applied on
lth layer node representation Hl of G in 3 proposed attention layers.

hl+1
i =

ϕ(WQh
l
i)

T ∑j=N
j=1 ϕ(WKhl

j)⊗ (WV hl
j)

ϕ(WQhl
i)
∑k=N

k=1 ϕ(WKhl
k)

(19)

Given that a) ϕ is a universally approximated kernel function by neural networks and b) each graph
node will be connected to at least 1 feature node. Here hi = H[i] is d dimensional vector and
WQ,WK ,WV are weight matrices. ϕ : Rd → Rm is a low dimension random projection based
feature mapping.

Proof: See App. B.4. □.

NEUTAG Mini-Batching: We request readers to refer appendix section C.1 which contains batching
algorithm 1 for running NEUTAG on large-scale graphs.

3.4 UNIVERSAL APPROXIMATION CAPABILITIES

Dense transformers have been proven universal approximations of sequence-to-sequence permutation
equivariant functions (Yun et al., 2020). The same work further proves transformers are univer-
sal approximates of all sequence-to-sequence functions by including position encoding. Further
SAN (Kreuzer et al., 2021a) proves that since a graph can be constructed as a sequence on edges
or nodes, dense attention-based graph transformers are universal approximates of such sequences
within a bound inducing higher expressivity than 1-Weisfeiler Lehman (WL) isomorphism test. Since
NEUTAG doesn’t utilize all O(N2) connections, analyzing its universal approximation capabilities of
dense self-attention layer is significant. Formally,
Theorem 4. Given a input graph G, its metamorphosis Gmeta and X ∈ RN×d is a node representa-
tion matrix. For following all-pair self attention layer, there exists a NEUTAG’s attention layer which
is a well permutation equivariant universal approximate with O(Nd) parameters in O(1) layers.

H = SOFTMAX

(
(HlWQ)(H

lWK)T√
d

)
HlWV (20)

Given every graph node v ∈ V is connected to at-least 1 feature node f ∈ Vf in Gmeta.

Proof: Please refer to App. B.5. □.

4 EXPERIMENTS

4.1 EMPIRICAL EVALUATION

We now evaluate the effectiveness of NEUTAG on node classification tasks across diverse graph
datasets and examine its robustness with state-of-the-art graph transformers(GT). We also compare
NEUTAG with standard Graph Neural Networks (GNN). Finally, we analyze the importance of feature
nodes based on the attention layer via an ablation study. We also analyze the impact of feature sparsity
or missing features on NEUTAG’s performance in the appendix section D.3.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison of NEUTAG against baseline GT on node classification task

Method Cora CiteSeer Actor Chameleon OGBN-Arxiv OGBN-Arxiv(Year) Snap-patents

GRAPHGPS 83.65± 2.67 76.25± 1.34 34.30± 0.45 42.87± 1.88 OOM OOM OOM
GRAPHGPS-GNN 72.47± 1.87 71.59± 2.43 37.10± 1.11 47.36± 2.22 OOM OOM OOM
EXPHORMER 86.48± 2.15 75.92± 1.88 35.19± 0.94 45.17± 2.56 OOM OOM OOM
EXPHORMER-GNN 82.35± 1.75 73.01± 1.20 35.44± 0.86 46.97± 0.95 OOM OOM OOM
GRIT 82.56± 1.80 76.10± 0.67 35.34± 0.76 48.81± 2.26 OOM OOM OOM
GRAPHORMER 39.45± 10.66 OOM OOM 26.89± 7.25 OOM OOM OOM
KAA 82.16± 1.36 71.83± 1.51 34.88± 0.89 45.44± 5.61 OOM OOM OOM

NAGPHORMER 86.78± 0.77 74.69± 1.06 33.03± 0.75 59.97± 1.72 67.36± 0.12 48.98± 0.23 61.27± 0.13
GOAT 84.93± 0.51 76.75± 1.84 37.98 ± 1.02 53.28± 2.48 72.17 ± 0.09 50.81± 0.36 55.35± 2.24
LARGEGT 83.42± 1.21 70.78± 1.62 37.47± 1.62 57.19± 1.89 67.56± 0.20 53.46± 0.78 63.15 ± 0.002

NEUTAG 87.67 ± 1.10 77.68 ± 1.90 36.21± 1.2 65.26 ± 2.43 70.63± 0.29 53.96 ± 0.38 63.00± 0.22

4.2 DATASETS

Table 5 in appendix C.2 summarizes the datasets and their statistics. Cora (Sen et al., 2008),
CiteSeer (Yang et al., 2016) and OGBN-Arxiv (Hu et al., 2020) are homophilic datasets while
Actor (Pei et al., 2020), Chameleon (Rozemberczki et al., 2021), OGBN-Arxiv(year) (Hu et al.,
2020) and Snap-Patents (Lim et al., 2021) are heterophilic datasets. Out of these, Snap-Patents is
the largest dataset, having 2.92 million nodes and 13.97 million edges. We use 60%, 20%, and 20%
train, validation, and test splits on all datasets for all methods, including baselines. More details on
datasets and experiment settings, including hyperparameter values, are given in Appendices C.2 and
C.3. The codebase is shared at https://anonymous.4open.science/r/nutag-7774/.

4.3 BASELINES

We consider state-of-the-art graph transformers for comparison. We evaluate NEUTAG against
GRAPHGPS (Rampášek et al., 2022) and its variant GRAPHGPS-GNN where we remove the GNN
component to demonstrate the massive decrease in performance and henceforth dependency on MPNN.
Similarly, we evaluate against EXPHORMER (Shirzad et al., 2023) and its variant EXPHORMER-GNN
as well as GRIT (Ma et al., 2023), KAA (Fang et al., 2025),GRAPHORMER (Ying et al., 2021),
NAGPHORMER (Chen et al., 2022b), GOAT (Kong et al., 2023) and LARGEGT (Dwivedi et al.,
2023b).

Moreover, we further evaluate NEUTAG against standard and foundational graph neural networks
GRAPHSAGE (Hamilton et al., 2017), GAT (Veličković et al., 2018), GIN (Xu et al., 2019),
LINKX (Lim et al., 2024) and MIXHOP (Abu-El-Haija et al., 2019). MIXHOP solves the over-
smoothing in GNN while LINKX is a strong benchmark method for non-homophilic graphs. There
exist multiple complementing techniques which enhance GNN performance, e.g., label-propagation
(Huang et al., 2021), adaptive channel mixing (Luan et al., 2024b), gradient-gating (Rusch et al.,
2023), data-augmentation (Zhao et al., 2022), (Chowdhury et al., 2023) and knowledge-distillation
(Hong et al., 2024). Although these techniques can potentially affect GT architectures, study of their
effects is beyond the scope of this paper, and we leave it for future work.

For completeness, we also compare NEUTAG with alternative attention formulations in graph
transformers, specifically DIFFORMER (Wu et al., 2023a),SGFORMER (Wu et al., 2023b), POLY-
NORMER (Deng et al., 2024), and ADVDIFFORMER (Wu et al., 2025). These methods provide
equivalent attention formulations that are complementary to sparse graph transformers and can
potentially be integrated with NEUTAG and other baselines GOAT, NAGPHORMER, GRAPHGPS,
EXPHORMER, and LARGEGT. Moreover, as discussed in the related work section 1.1, there exists a
plethora of work focusing on improving positional and structural encodings, tokenization strategies,
or other orthogonal design aspects, which are beyond the scope of this study.

Table 2: Comparison of NEUTAG with GNN on node classification task

Method Cora CiteSeer Actor Chameleon OGBN-Arxiv OGBN-Arxiv(Year) Snap-patents

GRAPHSAGE 87.31± 0.96 76.55± 1.78 34.74± 1.20 48.95± 3.16 61.71± 0.79 46.34± 0.25 49.04± 0.03
GAT 86.56± 1.13 76.43± 2.55 30.03± 0.67 44.74± 3.29 62.35± 0.20 44.62± 0.52 36.64± 0.53
GIN 84.39± 0.65 75.47± 1.28 26.24± 0.52 32.68± 3.68 59.35± 0.30 46.60± 0.29 47.61± 0.12
MIXHOP 87.65± 0.20 76.97± 0.99 35.03± 0.53 47.68± 2.89 62.79± 0.39 44.80± 0.17 OOM
LINKX 83.14± 1.62 73.72± 0.14 32.78± 0.17 48.20± 3.31 60.39± 0.32 49.00± 0.39 52.71± 0.19

NEUTAG 87.67 ± 1.10 77.68 ± 1.90 36.21 ± 1.2 65.26 ± 2.43 70.63± 0.29 53.96 ± 0.38 63.00 ± 0.22

8

https://anonymous.4open.science/r/nutag-7774/

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Comparison of NEUTAG against alternate attention formulation based GT

Method Cora CiteSeer Actor Chameleon OGBN-Arxiv OGBN-Arxiv(year) Snap-patents Average

DIFFORMER-s 87.34± 1.52 77.75 ± 2.76 31.20± 0.81 57.41± 2.41 40.45± 1.69 36.74± 0.43 OOM NA
DIFFORMER-a 86.01± 2.28 76.70± 1.95 30.79± 1.13 58.07± 1.95 OOM OOM OOM NA
SGFORMER 86± 1.76 75.83± 2.28 31.03± 2.99 65.77± 1.68 74.51± 0.31 49.14± 0.34 29.44± 0.84 59.03
POLYNORMER 87.49± 1.01 75.62± 0.92 37.22 ± 1.60 67.63 ± 1.65 74.85 ± 0.15 52.12± 0.31 31.99± 0.24 60.98
ADVDIFFORMER 79.08± 1.30 69.58± 1.95 33.30± 0.89 50.48± 5.13 66.83± 0.13 39.26± 0.58 OOM NA

NEUTAG 87.67 ± 1.10 77.68± 1.90 36.21± 1.2 65.26± 2.43 70.63± 0.29 53.96 ± 0.38 63.00 ± 0.22 64.91

4.4 RESULT ANALYSIS

Comparison with Graph Transformers: Table 1 presents the node classification accuracy of
baselines and the proposed model NEUTAG against 7 diverse datasets. The results clearly demonstrate
the strong performance of the proposed model NEUTAG with respect to baselines. As we outlined in
the introduction, while GRAPHGPS and EXPHORMER perform well on homophilic datasets, their
performance drastically deteriorates after removing the GNN component (-GNN), which improves
their performance on heterophilic graphs. Moreover, neither method is scalable for large-scale
datasets. The recently proposed graph transformers GOAT, NAGPHORMER, and LARGEGT are
scalable via global nodes; their performance is inconsistent across all graphs. E.g., GOAT doesn’t
perform well on Cora, Chameleon, OGBN-Arxiv(year), and Snap-patents while good on CiteSeer,
OGBN-Arxiv, and Actor. LARGEGT is overall worse on small-scale graphs but delivers good
performance on large-scale datasets. To further validate the effectiveness of NEUTAG, we extend our
comparison with these scalable graph transformers in table 7 in the appendix to 5 additional small
but challenging heterophilic datasets as defined in the survey Luan et al. (2024a). Table 7 clearly
demonstrates the strong performance of NEUTAG across these challenging heterophilic graphs. While
no model outperforms all baselines across every dataset due to diverse inductive biases, our proposed
assumption-free sparse model NEUTAG adapts well to miscellaneous graphs. NEUTAG delivers stable
performance, consistently ranking best or within 1.5% of the top model across all datasets.

Comparison with alternate attentions: Table 3 compares NEUTAG against alternative attention-
based graph transformers, including DIFFORMER, SGFORMER, and POLYNORMER. DIFFORMER
has two variants: DIFFORMER-s and DIFFORMER-a, where the latter employs a non-linear kernel
but fails to scale on medium-sized graphs. Neither variant is able to scale to large graphs like snap-
patents. Among these baselines, POLYNORMER performs competitively with NEUTAG. However,
both SGFORMER and POLYNORMER require partitioning of large graphs into smaller subgraphs,
leading to suboptimal results due to limited information exchange in case of snap-patent, unlike sparse
GT NEUTAG, which utilizes information exchange between all nodes through its novel propagation
framework. We note that these alternative attention mechanisms can be integrated into NEUTAG and
other sparse GT baselines to enhance their performance, which we leave for future work.

Comparison with Graph Neural Networks: Table 2 presents the performance of NEUTAG against
foundational GNN on 7 datasets. Since information propagation in GNN is limited to a few hops,
we clearly see that they are competitive with NEUTAG only on homophilic graphs, Cora, and
CiteSeer. Consequently, GNN exhibits worse performance than NEUTAG on Chameleon, OGBN-
Arxiv(year), and snap-patents, which require long-range interactions. This clearly establishes the
necessity for information propagation from distant nodes for an optimal node classification model.
Out of baselines, GRAPHSAGE and MIXHOP are consistent performers. Since MIXHOP utilizes
a normalized Laplacian matrix, it doesn’t scale to large graphs. LINKX designed for heterophilic
graphs is competitive on Chameleon and outperforms the rest of the GNN on large-scale snap-patent.

Ablation Study: We refer readers to the App. D.1 to analyze the impact of various attention
components in NEUTAG.

5 CONCLUSION

We introduced NEUTAG, a novel sparse graph transformer that unifies structural and feature infor-
mation within a single attention mechanism. Unlike prior approaches relying on separate GNN
components or virtual nodes, NEUTAG leverages features as global nodes, enabling efficient long-
range connectivity. We further provide theoretical analysis on NEUTAG’s capabilities. Finally,
experiments on seven real-world datasets demonstrate that NEUTAG achieves competitive and consis-
tent performance across diverse graph types, underlining its generality.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. MixHop: Higher-order graph convolu-
tional architectures via sparsified neighborhood mixing. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research, pp. 21–29. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/abu-el-haija19a.html.

Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank vectors. In
2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pp. 475–486.
IEEE, 2006.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving
graph neural network expressivity via subgraph isomorphism counting, 2021. URL https:
//openreview.net/forum?id=LT0KSFnQDWF.

Chen Cai, Truong Son Hy, Rose Yu, and Yusu Wang. On the connection between mpnn and graph
transformer. In International Conference on Machine Learning, pp. 3408–3430. PMLR, 2023.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(04):3438–3445, Apr. 2020. doi: 10.1609/aaai.v34i04.5747.
URL https://ojs.aaai.org/index.php/AAAI/article/view/5747.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In Proceedings of the 39th International Conference on Machine Learn-
ing (ICML), Proceedings of Machine Learning Research, 2022a.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer
for node classification in large graphs. arXiv preprint arXiv:2206.04910, 2022b.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Anjan Chowdhury, Sriram Srinivasan, Animesh Mukherjee, Sanjukta Bhowmick, and Kuntal Ghosh.
Improving node classification accuracy of gnn through input and output intervention. ACM
Trans. Knowl. Discov. Data, 18(1), sep 2023. ISSN 1556-4681. doi: 10.1145/3610535. URL
https://doi.org/10.1145/3610535.

Chenhui Deng, Zichao Yue, and Zhiru Zhang. Polynormer: Polynomial-expressive graph transformer
in linear time. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=hmv1LpNfXa.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019.

Rahul Dey and Fathi M Salem. Gate-variants of gated recurrent unit (gru) neural networks. In 2017
IEEE 60th international midwest symposium on circuits and systems (MWSCAS), pp. 1597–1600.
IEEE, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs,
2021. URL https://arxiv.org/abs/2012.09699.

10

https://proceedings.mlr.press/v97/abu-el-haija19a.html
https://openreview.net/forum?id=LT0KSFnQDWF
https://openreview.net/forum?id=LT0KSFnQDWF
https://ojs.aaai.org/index.php/AAAI/article/view/5747
https://doi.org/10.1145/3610535
https://openreview.net/forum?id=hmv1LpNfXa
https://arxiv.org/abs/2012.09699

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2022a. URL https://openreview.net/forum?
id=wTTjnvGphYj.

Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. In Proceedings of the 36th International
Conference on Neural Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2022b.
Curran Associates Inc. ISBN 9781713871088.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24
(43):1–48, 2023a.

Vijay Prakash Dwivedi, Yozen Liu, Anh Tuan Luu, Xavier Bresson, Neil Shah, and Tong Zhao.
Graph transformers for large graphs, 2023b.

Taoran Fang, Tianhong Gao, Chunping Wang, Yihao Shang, Wei Chow, Lei Chen, and Yang Yang.
Kaa: Kolmogorov-arnold attention for enhancing attentive graph neural networks. In International
Conference on Learning Representations, 2025.

Fabian B. Fuchs, Daniel E. Worrall, Volker Fischer, and Max Welling. Se(3)-transformers: 3d roto-
translation equivariant attention networks. In Proceedings of the 34th International Conference on
Neural Information Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates
Inc. ISBN 9781713829546.

Fabian B. Fuchs, Edward Wagstaff, Justas Dauparas, and Ingmar Posner. Iterative se(3)-transformers,
2021. URL https://arxiv.org/abs/2102.13419.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Xiaobin Hong, Wenzhong Li, Chaoqun Wang, Mingkai Lin, and Sanglu Lu. Label attentive distillation
for gnn-based graph classification. Proceedings of the AAAI Conference on Artificial Intelligence,
38(8):8499–8507, Mar. 2024. doi: 10.1609/aaai.v38i8.28693. URL https://ojs.aaai.
org/index.php/AAAI/article/view/28693.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: datasets for machine learning on graphs. In Proceed-
ings of the 34th International Conference on Neural Information Processing Systems, NIPS ’20,
Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R. Benson. Combining label prop-
agation and simple models out-performs graph neural networks. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021. URL https://openreview.net/forum?id=8E1-f3VhX1o.

Md Shamim Hussain, Mohammed J. Zaki, and Dharmashankar Subramanian. Global self-attention
as a replacement for graph convolution. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD ’22, pp. 655–665, New York, NY, USA, 2022.
Association for Computing Machinery. ISBN 9781450393850. doi: 10.1145/3534678.3539296.
URL https://doi.org/10.1145/3534678.3539296.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift, 2015.

William Johnson and Joram Lindenstrauss. Extensions of lipschitz maps into a hilbert space.
Contemporary Mathematics, 26:189–206, 01 1984. doi: 10.1090/conm/026/737400.

11

https://openreview.net/forum?id=wTTjnvGphYj
https://openreview.net/forum?id=wTTjnvGphYj
https://arxiv.org/abs/2102.13419
https://ojs.aaai.org/index.php/AAAI/article/view/28693
https://ojs.aaai.org/index.php/AAAI/article/view/28693
https://openreview.net/forum?id=8E1-f3VhX1o
https://doi.org/10.1145/3534678.3539296

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jinwoo Kim, Dat Tien Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and
Seunghoon Hong. Pure transformers are powerful graph learners. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?id=um2BxfgkT2_.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C Bayan Bruss, and Tom Goldstein. Goat:
A global transformer on large-scale graphs. In International Conference on Machine Learning, pp.
17375–17390. PMLR, 2023.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021a.

Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. In Proceedings of the 35th International
Conference on Neural Information Processing Systems, NIPS ’21, Red Hook, NY, USA, 2021b.
Curran Associates Inc. ISBN 9781713845393.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 20887–20902. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/ae816a80e4c1c56caa2eb4e1819cbb2f-Paper.pdf.

Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and
Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learning.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=Q-UHqMorzil.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and Ser-
Nam Lim. Large scale learning on non-homophilous graphs: new benchmarks and strong simple
methods. In Proceedings of the 35th International Conference on Neural Information Processing
Systems, NIPS ’21, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN 9781713845393.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD ’20, pp. 338–348, New York, NY, USA, 2020. Association for Computing Machinery.
ISBN 9781450379984. doi: 10.1145/3394486.3403076. URL https://doi.org/10.1145/
3394486.3403076.

Sitao Luan, Chenqing Hua, Qincheng Lu, Liheng Ma, Lirong Wu, Xinyu Wang, Minkai Xu, Xiao-
Wen Chang, Doina Precup, Rex Ying, Stan Z. Li, Jian Tang, Guy Wolf, and Stefanie Jegelka. The
heterophilic graph learning handbook: Benchmarks, models, theoretical analysis, applications and
challenges, 2024a. URL https://arxiv.org/abs/2407.09618.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. In Proceedings of the
36th International Conference on Neural Information Processing Systems, NIPS ’22, Red Hook,
NY, USA, 2024b. Curran Associates Inc. ISBN 9781713871088.

Shengjie Luo, Tianlang Chen, Yixian Xu, Shuxin Zheng, Tie-Yan Liu, Liwei Wang, and Di He. One
transformer can understand both 2d & 3d molecular data, 2023. URL https://arxiv.org/
abs/2210.01765.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K. Dokania, Mark Coates,
Philip H.S. Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message
passing. In Proceedings of the 40th International Conference on Machine Learning, ICML’23.
JMLR.org, 2023.

12

https://openreview.net/forum?id=um2BxfgkT2_
https://proceedings.neurips.cc/paper_files/paper/2021/file/ae816a80e4c1c56caa2eb4e1819cbb2f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/ae816a80e4c1c56caa2eb4e1819cbb2f-Paper.pdf
https://openreview.net/forum?id=Q-UHqMorzil
https://openreview.net/forum?id=Q-UHqMorzil
https://doi.org/10.1145/3394486.3403076
https://doi.org/10.1145/3394486.3403076
https://arxiv.org/abs/2407.09618
https://arxiv.org/abs/2210.01765
https://arxiv.org/abs/2210.01765

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph
transformers. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=HhbqHBBrfZ.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. ICLR2020, 8, 2020.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking : Bringing order to the web. In The Web Conference, 1999. URL https://api.
semanticscholar.org/CorpusID:1508503.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=S1e2agrFvS.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019. URL https://api.semanticscholar.
org/CorpusID:160025533.

Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. Advances in Neural
Information Processing Systems, 35, 2022.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

T Konstantin Rusch, Benjamin Paul Chamberlain, Michael W Mahoney, Michael M Bronstein, and
Siddhartha Mishra. Gradient gating for deep multi-rate learning on graphs. ICLR, 9:25, 2023.

Nimrod Segol and Yaron Lipman. On universal equivariant set networks. In International Conference
on Learning Representations, 2019.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI Magazine, 29(3):93, Sep. 2008. doi:
10.1609/aimag.v29i3.2157. URL https://ojs.aaai.org/index.php/aimagazine/
article/view/2157.

Yu Shi, Shuxin Zheng, Guolin Ke, Yifei Shen, Jiacheng You, Jiyan He, Shengjie Luo, Chang Liu,
Di He, and Tie-Yan Liu. Benchmarking graphormer on large-scale molecular modeling datasets,
2023. URL https://arxiv.org/abs/2203.04810.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop.
Exphormer: Sparse transformers for graphs. In International Conference on Machine Learning,
pp. 31613–31632. PMLR, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=rJXMpikCZ.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional encoding for
more powerful graph neural networks. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=e95i1IHcWj.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

13

https://openreview.net/forum?id=HhbqHBBrfZ
https://api.semanticscholar.org/CorpusID:1508503
https://api.semanticscholar.org/CorpusID:1508503
https://openreview.net/forum?id=S1e2agrFvS
https://openreview.net/forum?id=S1e2agrFvS
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://ojs.aaai.org/index.php/aimagazine/article/view/2157
https://ojs.aaai.org/index.php/aimagazine/article/view/2157
https://arxiv.org/abs/2203.04810
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=e95i1IHcWj

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. DIFFormer:
Scalable (graph) transformers induced by energy constrained diffusion. In The Eleventh Interna-
tional Conference on Learning Representations, 2023a. URL https://openreview.net/
forum?id=j6zUzrapY3L.

Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian,
and Junchi Yan. Simplifying and empowering transformers for large-graph representations. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023b. URL https:
//openreview.net/forum?id=R4xpvDTWkV.

Qitian Wu, Chenxiao Yang, Kaipeng Zeng, and Michael M. Bronstein. Supercharging graph trans-
formers with advective diffusion. In Forty-second International Conference on Machine Learning,
2025. URL https://openreview.net/forum?id=MaOYl3P84E.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, ICML’16, pp. 40–48. JMLR.org, 2016.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing
Systems, 2021. URL https://openreview.net/forum?id=OeWooOxFwDa.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are
transformers universal approximators of sequence-to-sequence functions? In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
ByxRM0Ntvr.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Transformers for
longer sequences, 2021.

Tong Zhao, Xianfeng Tang, Danqing Zhang, Haoming Jiang, Nikhil Rao, Yiwei Song, Pallav Agrawal,
Karthik Subbian, Bing Yin, and Meng Jiang. Autogda: Automated graph data augmentation for
node classification. In Bastian Rieck and Razvan Pascanu (eds.), Proceedings of the First Learning
on Graphs Conference, volume 198 of Proceedings of Machine Learning Research, pp. 32:1–32:17.
PMLR, 09–12 Dec 2022. URL https://proceedings.mlr.press/v198/zhao22a.
html.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: current limitations and effective designs. In Proceedings
of the 34th International Conference on Neural Information Processing Systems, NIPS ’20, Red
Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

A PRELIMINARIES

Definition 1 (Graph). A graph is defined as G = (V, E ,X) over node and edge sets V and E =
{(u, v) | u, v ∈ V} respectively where | V | = N and | E | = M . Edge set is also represented
using an adjacency matrix A ∈ {0, 1}N×N . X ∈ {0, 1}N×|F | is a node feature matrix where
F =

⋃
v∈V Fv is the set of all features in graph G. Fv is a feature set at node v.

14

https://openreview.net/forum?id=j6zUzrapY3L
https://openreview.net/forum?id=j6zUzrapY3L
https://openreview.net/forum?id=R4xpvDTWkV
https://openreview.net/forum?id=R4xpvDTWkV
https://openreview.net/forum?id=MaOYl3P84E
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=OeWooOxFwDa
https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=ByxRM0Ntvr
https://proceedings.mlr.press/v198/zhao22a.html
https://proceedings.mlr.press/v198/zhao22a.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Symbol Meaning
G Input graph
V Set of nodes in G
E Set of edges in G
X Node feature matrix
F Set of features in G
Gmeta Transformed input graph
Vf Set of features as virtual node in Gmeta

Ef Set of edges between nodes and respective features Gmeta

Ef− Set of edges between nodes and absent features nodes in Gmeta

Vmeta Set of nodes in Gmeta

Emeta Set of edges in Gmeta

DG Average node degree excluding feature nodes in Gmeta

DF Average node degree excluding graph nodes in Gmeta

y(v) Label of node v
pprGi (v) ith nearest node from node v sorted using personalized page rank score
M Projection matrix
hl
i Embedding of node i at lth layer

Hl
V Embedding matrix of graph nodes V at layer l

Hl
Vf Embedding matrix of feature nodes Vf at layer l

W Learnable weight metrices
Ql

V Query matrix at layer l for graph nodes V
Kl

V Key matrix at layer l for graph nodes V
Vl

V Value matrix at layer l for graph nodes V
Ql

Vf Query matrix at layer l for feature nodes Vf

Kl
Vf Key matrix at layer l for feature nodes Vf

Vl
Vf Value matrix at layer l for feature nodes Vf

N G
v Set of neighbors excluding feature nodes of node v in Gmeta

N f
v Set of neighbors consisting of only feature nodes of node v in Gmeta

N G
f Set of neighbors excluding feature nodes of a feature node f in Gmeta

Table 4: Notations and their definition

Problem 1 (Graph transformer for node classification).

Input: Given a graph G (Def. 1), let Y : V → R be a hidden function that maps a node to a real
number. Y (v) is known to us only for the subset Vl ⊂ V and may model some downstream tasks such
as node classification or link prediction.

Goal: Learn parameters Θ of a Transformer based graph neural network, denoted as GTΘ, that
predicts Y (v), ∀v ∈ Vl accurately.

We now introduce preliminaries of Graph Neural Networks, Transformers, and Graph Transformers
for node classification tasks.

A.1 GRAPH

GNN also known as message-passing neural networks, as each node exchanges messages from its
neighbors to compute its representation. These representations are utilized in downstream tasks
such as node classification and link prediction. Though there exists more specialized GNN for the
link-prediction task that utilizes link-based features instead of node-level, those are out of scope in
this work. State-of-the-art GNN (Xu et al., 2019; Veličković et al., 2018; Hamilton et al., 2017) for
node classification tasks follows the following framework. Assuming xv ∈ R|F | as feature vector for
node v, 0th layer embedding is defined as:

h0
v = xv ∀v ∈ V (21)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Next, lth layer representation is computed using nodes’ neighbourhoodNv = {u | (u, v) ∈ E} ∀ v ∈
V as follows.

ml
v = MSG(hl−1

u ,hl−1
v)∀u ∈ Nv (22)

Messages are computed from each neighbor using the previous layer information. This information
is then aggregated at each node as follows.

mv = AGGREGATEl({{ml
v(u), ∀u ∈ Nv}}) (23)

{{. . .}} is a multi-set as the same message can arrive from multiple neighbors. Multi-set allows
multiple instances of the same element achieving improved expressivity, highlighted in (Xu et al.,
2019). Finally, the aggregated message and previous layer l − 1 representation are combined to
compute the lth layer representation as follows.

hl
v = COMBINE(hl−1

v ,mv) (24)

where MSG, AGGREGATE and COMBINE are non-neural functions like SUM, AVERAGE or MAX-POOL
or neural networks based learnable functions like mlp, attention (Vaswani et al., 2017) and recurrent
neural networks eg. GRU (Dey & Salem, 2017). To achieve L hop deeper GNN, equations 22, 23
and 24 are applied L times successively to compute hL

v . This representation is utilized for node
classification tasks. GNN are limited in modeling long-range dependencies as increasing the number
of layers leads to over-smoothing(Oono & Suzuki, 2020; Chen et al., 2020) where node embeddings
become approximately similar at every node. Graph Transformers solves this by introducing the
mechanism of each node attending to all other nodes as follows.

A.2 TRANSFORMERS

First, we define the transformer neural nets, the key components of graph transformers. Given a graph
G = (V, E ,X) and ignoring topological connections E , contextualized node representations HL are
computed using self-attention. The representations are first initialized using node features.

H0 = XW (25)

where W is the trainable weight matrix. Next, below equations 26 and 27 are repeated for l ∈ [1 . . . L]
as follows.

Hl =

∥∥∥∥h=H

h=1

SOFTMAX

(
(Hl−1Wh

Q)(H
l−1Wh

K)T
√
d

)
Hl−1Wh

V (26)

Hl = NORM(Hl−1 + FFN(Hl)) (27)

where NORM is either batch-norm (Ioffe & Szegedy, 2015) or layer-norm (Ba et al., 2016), FFN is
feed-forward neural network. WQ, WK and WV are projection matrix ∈ Rd×dk . H is a number of
heads, and the transformer concatenates these multiple heads, facilitating diverse attention coefficients.
This is also known as Multi-head Attention. This architecture uses skip-connections and activation
norm strategies required in deeper neural networks He et al. (2016).

A.3 GRAPH TRANSFORMERS (GT)

Now, we discuss graph transformers, which incorporate graph topology E into the attention mecha-
nism. Foremost, node attributes are combined with position encodings, e.g., Random walk-based
encoding (Dwivedi et al., 2022a) and Laplacian eigenvalues (Dwivedi et al., 2023a) denoted as PE
matrix.

H0 = (X+PE)W (28)

Next, assuming we have node presentation for l − 1 layer, it is passed to the GNN layer along with
the transformer layer to compute lth layer representation as follows.

Hl
gnn = GNN(Hl−1, E) (29)

Hl
T = TRANSFORMER(Hl−1, E) (30)

where GNN is any graph neural network described earlier. TRANSFORMER layer can be defined as
in current literature (Rampášek et al., 2022; Shirzad et al., 2023; Kong et al., 2023; Dwivedi et al.,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

2023b). Finally, the representation computed using GNN and TRANSFORMER are combined to learn
lth layer representation.

Hl = FFN(Hl
gnn,H

l
T) (31)

As highlighted in the Introduction, dependencies on GNN in the existing transformer lead to a
wide range of issues, including applicability on either homophilic or heterophilic graphs, along
with scalability issues due to dense attention. We now explain our methodology, which is GNN
independent, scalable, and expressive.

B PROOF OF THEOREMS

B.1 CONNECTIVITY ANALYSIS OF Gmeta: PROOF OF THEOREM 1

Proof: First, we clarify the notation. We assume DG to be the average graph node degree of graph
nodes V , DF to be the average no. of features for graph nodes V , and FG be average no. of nodes per
feature nodes Vf . With these, we derive the approximate L-hop neighbors of graph nodes V in Gmeta.
First, we define the number of 1-hop neighbors of the graph and feature nodes where #Nbrs(V, l)
signifies the order of l-hop neighbors of graph nodes V and #Nbrs(Vf , l) is the order of number of
l-hop neighbors of feature nodes Vf .

#Nbrs(V, 1) = O(DG +DF), #Nbrs(Vf , 1) = O(FG) (32)

As each DF feature node will connect to graph nodes connected to it, and each graph node FG and
DG will be connected to its neighbors and feature nodes, applying this for 2 hops,

#Nbrs(V, 2) = O(DG ∗ (DG +DF) +DF ∗ FG),

#Nbrs(Vf , 2) = O(FG ∗ (DG +DF))
(33)

#Nbrs(V, 3) = O(DG ∗ (DG ∗ (DG +DF) +DF ∗ FG) +DF ∗ FG ∗ (DG +DF)) (34)

#Nbrs(V, 4) =O(DG ∗ (DG ∗ (DG ∗ (DG +DF) +DF ∗ FG) +DF ∗ FG ∗ (DG +DF))

+DF ∗ FG ∗ (DG ∗ (DG +DF) +DF ∗ FG))
(35)

While the closed form for L-hop neighbor is not feasible, we re-write #Nbrs(V, 4) using its recursive
nature,

#Nbrs(V, 4) =O(DG ∗ (DG ∗#Nbrs(V, 2)) +DF ∗ FGDG + (DF)2FG

+DF ∗ FG ∗#Nbrs(V, 2) +DF ∗ FG)
(36)

where #Nbrs(V, 2) contains DF ∗ FG . Thus, we see that DG grows with the power of the number
of hops L, and DF ∗FG multiplies after every other hop. Consequently, we approximate Nbrs(V, L)
as

#Nbrs(V, L) ≥ O((DG)L + (DF)L/2 ∗ (FG)L/2) (37)

□.

B.2 PROOF OF COROLLARY 1

Proof: We can see this via the personalized page-rank (PPR) equation π(v) = (1− α)Ãπ(v) + αiv
where Ã is self-loop added normalized adjacency matrix and iv is an indicator vector with indices
except corresponding to node v are filled with 0, facilitating transportation to target node v in restart.
The PPR equation can be rewritten as π(v) = α ∗ iv(I− (1− α)Ã)−1 = α ∗∑i=∞

r=0 (1− α)rÃriv
under conditions defined in PAGERANK-NIBBLE (Andersen et al., 2006). I is an identity matrix the
same size as Ã. As seen in the equation, the nearest nodes have a higher weightage of (1−α), which
decays exponentially (1− α)r with longer hops where r is the shortest distance from the target node.
Thus, the proposed transformation adds connection in the G, facilitating interaction with long-range
nodes co-occurring within multiple features. □.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.3 PROJECTION MATRIX M: PROOF OF THEOREM 2

Proof: Our proof is derived from proof of proposition 1 and theorem 1 in GOAT (Kong et al., 2023).
We write the following Johnson-Lindenstrauss lemma (Johnson & Lindenstrauss, 1984).

Lemma B.1 (Johnson-Lindenstrauss(JL) Lemma (Johnson & Lindenstrauss, 1984)). For any integer
d > 0, any 0 < ϵ, δ <= 1/2, there exists a probability distribution P on k × d real matrices for
k = O(ϵ−2 log(1/δ)) such that for any x ∈ Rd, following holds

P
M
((1− ϵ)∥x∥2 ≤ ∥Mx∥2 ≤ (1 + ϵ)∥x∥2) > 1− δ (38)

Following the proof in GOAT, we get to the following.

P (∥AATNMMTvT −AATNvT ∥F ≤ ϵ∥AATNvT ∥F)
> 1− 2Nδ

(39)

Since F << N , we can rewrite the above as follows.

P (∥AATNMMTvT −AATNvT ∥F ≤ ϵ∥AATNvT ∥F)
> 1− 2Fδ

(40)

Now we choose δ = O(1/(F exp(F)) honoring the lemma B.1, leading us to

P (∥AATNMMTvT −AATNvT ∥F ≤ ϵ∥AATNvT ∥F)
> 1−O(1/ exp(F))

(41)

and k = O(ϵ−2(logF + F)) ≈ O(F) which shows us that there exist RN×F projection matrices
M which are super-set of {0, 1}N×F as defined in the theorem. This completes our first part of the
proof.

We have investigated projecting AATN to a lower dimension, but it is still computationally expensive
as computing A is O(N ×N) operation. Next, we explore the moving projection matrix M
inside the softmax AATN and analyze its approximation to AATNv. Since SOFTMAX(AATN) =
exp(AATN)D−1

AATN
where D−1

AATN
is diagonal matrix of exp(AATN). Following LINFORMER

(Wang et al., 2020) and GOAT (Kong et al., 2023), we prove

P (∥ exp(AM)MTV − exp(A)V∥ ≤ ϵ∥ exp(A)∥F ∥V∥F)
> 1−O(1/ exp(F))

(42)

where AATN = SOFTMAX(A), A = (XWQ(XWK)T /
√
d) and V = XWV . Subsequently, we

break the eq. 42 using triangle inequality as follows.

∥ exp(AM)MTV − exp(A)V∥F
≤ ∥ exp(AM)MTV − exp(A)MMTV∥F
+ ∥ exp(A)MMTV − exp(A)V∥F (43)
a
≤ ∥V∥F ∥ exp(AM)MT − exp(A)MMT ∥F
+ ∥ exp(A)MMTV − exp(A)V∥F (44)
b
≤ ∥V∥F (1 + ϵ)∥ exp(AM)− exp(A)M∥F
+ ϵ∥ exp(A)∥F ∥V∥F (45)
c
≤ ϵ∥V∥F ∥ exp(A)∥F + ϵ∥ exp(A)∥F ∥V∥F (46)
≤ ϵ∥ exp(A)∥F ∥V∥F > 1−O(1/ exp(F)) (47)

Step - a employs Cauchy inequality, step- b utilizes JL lemma, and step - c utilizes Lipschitz continuity
in a compact region. □.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.4 NEUTAG IS AN APPROXIMATION OF A SPARSE TRANSFORMER PERFORMER: PROOF OF
THEOREM 3

Proof: We use the similar strategy outlined in (Cai et al., 2023) which showed that global nodes can
approximate PERFORMER. First, we rewrite the equation 19 as follows to simplify the analysis.

hl+1
i =

ϕ1(h
l
i)

T
∑j=N

j=1 ϕ2(h
l
j)⊗ ϕ3(h

l
j)

ϕ1(hl
i)

T
∑o=N

o=1 ϕ2(hl
o)

(48)

where we commutate ϕ and weights WQ,WK ,WV as ϕ1(h) = ϕ(WQh), ϕ2(h) = ϕ(WKh) and
ϕ3(h) = WV h as we will use universal approximation capability of a neural network specif-
ically Multi-Layer Perceptron(MLP). Intuitively, feature nodes can facilitate approximation of
both summations

∑j=N
j=1 ϕ2(hj) ⊗ ϕ3(hj) and

∑o=N
o=1 ϕ2(ho) as each graph nodes is attended

by at least 1 feature node. To prove theorem 3, let us assume that in 17, HV:local is ignored by
UPDATEl

1 and in 18 HVf :local is ignored by UPDATEl
2. Since we are analyzing the approximation

of layer l of PERFORMER, we will subdivide layer l of NEUTAG as (l1, l2 . . .). Now, at layer
l, we are provided with hv∀v ∈ V , let us assume that hf = [. . . , If] ∀f ∈ Vf where If is a
one-hot indicator vector with all zeros except f th index which is equal to 1. We keep the If from
layer l = 0 itself to facilitate the feature degree calculation at graph nodes. Next, using equa-
tions 13 by learning equal attention coefficients for all present feature nodes, and eq. 18 where it
omits HVf :local and HVf :+ and learn ϕ2(h

l
v), ϕ2(h

l
v) ⊗ ϕ3(h

l
v) and feature degree dF (v). After

this step, hl1
v can be approximated either as 1) [ϕ2(h

l
v), (ϕ2(h

l
v) ⊗ ϕ3(h

l
v))flattened, d

F (v)] or 2)
[ϕ2(h

l
v)/d

F (v), (ϕ2(h
l
v)⊗ ϕ3(h

l
v))flattened/d

F (v)]. Now at layer l2, in the first case, each feature
node f using the equation 14 learn attention coefficients equal to 1

dF (v)
for v ∈ N G

f and computes
vector [

∑
v∈NG

f
ϕ2(h

l
v)/d

F
v ,

∑
v∈NG

f
(ϕ2(h

l
v)⊗ ϕ3(h

l
v))flattened/d

F
v , If]. If is crucial to facilitate

the same operations for approximating the next layer of PERFORMER. In the 2nd case, equal attention
coefficients are learned, and an identical feature representation is learned. Finally at layer l3, each
graph node compute the sums [

∑v=N
v=1 ϕ2(h

l
v),

∑v=N
v=1 (ϕ2(h

l
v)⊗ϕ3(h

l
v))flattened] and approximate

the required PERFORMER eq. 48 using via equation 13,16 and eq. 17. Consequently, the number
of parameters required by each layer NEUTAG to approximate PERFORMER layer is constant with
respect to the number of nodes N . □.

B.5 UNIVERSAL APPROXIMATION ANALYSIS OF NEUTAG

Proof: Similar to (Cai et al., 2023), we first prove the connection between NEUTAG and DEEPSETS
(Zaheer et al., 2017), which is a universal approximator of sequence-to-sequence permutation equiv-
ariant functions. Since eq. 20 is also a permutation equivalent function, DEEPSETS can approximate
eq. 20, thus establishing NEUTAG’s capability of approximating eq. 20. Formally, we define the
following lemma.
Definition 2 (DeepSets (Zaheer et al., 2017)). Each layer of DEEPSETS is defined as follows.

Hl+1 = σ(HlW1 +
1

N
11THlW2) (49)

where σ is a non-linearity activation function, Hl is output of previous layer, 1 = [1, 1, . . .]T is N
dimensional vector and W1, W2 are weights.

1
N 11T calculates the average of input HlW2 which is added to HlW1. This function can easily be
verified as a permutation equivariant function, as node reordering will only permute the output. Now,
we formally write the following lemma of (Segol & Lipman, 2019).

Lemma B.2 ((Segol & Lipman, 2019)). DEEPSETS with O(1) layers and O(Nd) parameters per
layer is a universal for permutation equivariant sequence to sequence functions.

Thus, DEEPSETS can approximate self-attention layer eq. 20. Moreover, similar to proof of theorem
3, both operations a) calculating average of node embeddings and b) adding the calculated average
to node representation and applying σ can be simulated by 3 layer NEUTAG. This concludes our
analysis. □.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 1 NEUTAG Mini-batching algorithm

Require: Gmeta = (Vmeta = V ∪ Vf , Emeta = E ∪ Ef), # of layers L, Node feature matrix X

Ensure: Sampled mini batch Gmeta′

1: Vmeta′
= {}

2: Emeta′
= {}

{Sample a L hop subgraph from each feature node. This step can be cached as well as it will
remain same across all batches}

3: for vf ∈ Vf do
4: Vsampled ∼ 1-HOP(G = (V, Ef), vf)
5: (VL, EL) ∼ L-HOP(G = (V, E),Vsampled)

6: Vmeta′ ← Vmeta′ ∪ VL

7: Emeta′ ← Emeta′ ∪ EL
8: for v ∈ Vsampled do
9: Emeta′ ← Emeta′ ∪ (v, vf)

10: end for
11: Vmeta′ ← Vmeta′ ∪ vf

12: end for
{Sample a batch of original graph nodes and their L hop neighbors}

13: V ′ ∼ V
14: for v ∈ V ′ do
15: (VL, EL) ∼ L-HOP(G = (V, E), v)
16: Vmeta′ ← Vmeta′ ∪ VL

17: Emeta′ ← Emeta′ ∪ EL
18: end for

{Sample feature nodes and edges for sampled graph nodes to create a mini-batch for forward
propagation}

19: for v ∈ Vmeta′
do

20: if v ∈ V then
21: Emeta′ ← Emeta′ ∪ {(v, f) | f ∈ Vf ,X[v, f] = 1}
22: end if
23: end for
24: Return Gmeta′

= (Vmeta′
, Emeta′

)

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 MINI-BATCHING OF NEUTAG

The proposed framework is applicable for a) Small graphs by running forward pass on entire graph
Gmeta and b) Large-scale graphs by offline sampling L layer directed sub-graphs from feature nodes
Vf to graph nodes V from Gmeta, as these sub-graphs will be common among all batches of graph
nodes V and run NEUTAG on such constructed batches and back-propagate. Algorithm 1 summarizes
the creation of a mini-batch for a large-scale graph for NEUTAG training and inference. Specifically,
for each feature node vf ∈ Vf , graph nodes are sampled in line 4. Corresponding these graph nodes,
L hop sub-graph is sampled in original node space V . Please note that data from lines 3-12 can be
cached across multiple batches and performed offline. Finally, a batch of nodes is sampled from the
input graph, and the corresponding L-HOP subgraph is sampled. Finally, feature edges are added to
correspond to these sampled original graph nodes.

C.2 DATASETS

Cora (Sen et al., 2008) and CiteSeer(Yang et al., 2016) are co-citation graphs where nodes are papers,
and their features are bag-of-words of text. The task is to predict the research category of the node.
Actor (Pei et al., 2020) is a co-occurrence graph of actors on the same wiki page. Node attributes
are bag-of-words from the actor’s Wikipedia page, and their labels are actor categories. Chameleon
(Rozemberczki et al., 2021) is a graph of hyperlinks between English wiki pages, attributes are nouns,
and the label is the binned average monthly traffic on the page. Snap-patents (Lim et al., 2021) is a

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

large-scale co-citation graph of U.S. utility patents where attributes are patent metadata and class
label is the time at which the patent was granted, binned in 5 classes. OGBN-Arxiv (Hu et al., 2020)
is also a co-citation network where features are 128-dimension embeddings of title and abstract, and
the label is the research category. OGBN-Arxiv(Year) is the same graph, but the label is the year of
publication, and it is a non-homophilic graph. Hedge (Zhu et al., 2020) in table 5 denotes the edge
homophily of a graph.

Table 5: Dataset statistics

Dataset # Nodes # Edges # Features #Labels Hedge

Cora 2708 10556 1433 7 0.81
CiteSeer 3327 9104 3703 6 0.74
Actor 34493 495924 8415 5 0.22
Chameleon 7600 33544 931 5 0.23
OGBN-Arxiv 169343 1166243 128 40 0.81
OGBN-Arxiv(year) 169343 1166243 128 5 0.22
Snap-Patents 2923922 13975788 269 5 0.07

C.3 HARDWARE DETAILS

We have performed experiments on an Intel Xeon 6248 processor with a Tesla V-100 GPU with 32GB
GPU memory and Ubuntu 18.04. Train, validate, and test data split of 60%, 20%, and 20%, which
are generated randomly for every run. We perform 5 runs of every experiment to report the mean and
standard deviation. We use 4− 6 layer NEUTAG for small graphs and 2 layer for large graphs. We use
Adam optimizer to train the model using a learning rate of 0.00001 and choose the best model based
on validation loss. For all methods, including baselines and NEUTAG, we apply laplacian position
encodings for small-scale datasets, and node2vec based position encoding in the snap-patent dataset,
as laplacian position encoding calculation is computationally infeasible at million-scale datasets, as
proposed in GOAT, for large-scale datasets. These are further used in NAGPHORMER and LARGEGT.
We select a number of negative features per node using hyperparameter tuning between the range of
5 to 30.

C.4 CODEBASE

The codebase is available at https://anonymous.4open.science/r/nutag-7774/.

C.5 LIMITATIONS AND FUTURE WORK

The major limitation of our work is that the proposed NEUTAG is not applicable to non-attributed
graphs. Moreover, the proposed method is specifically designed for node classification tasks in
both small and large-scale graphs. In contrast, graph classification tasks involve small graphs, e.g.,
pattern, cluster, zinc, peptides-func, peptides-struct (Dwivedi et al., 2023a; 2022b), having around
100 nodes on average. In such cases, dense GT has shown to perform exceptionally well without any
computational challenges (Rampášek et al., 2022; Shirzad et al., 2023; Ying et al., 2021; Ma et al.,
2023).

D ADDITIONAL RESULTS

D.1 ABLATION STUDY

We design 5 variants of NEUTAG, 1)NEUTAG (COMPLETE) which is the entire architecture 2) NEUTAG
(LOCAL NBRS.), which only consists of attention with local neighbors 3)NEUTAG+ consists of
attentions with local neighbors, feature nodes and feature to feature attention path except attention
with negative features 4)NEUTAG-F2F consists of all attention paths except feature to feature attention
and 5)NEUTAG+-F2F consists of local neighbor attention and feature node attention. Table 6
demonstrates the effectiveness of all the variants. Specifically, we observe that computing node
representation by only attending to local neighbors NEUTAG (LOCAL NBRS) results in sub-optimal

21

https://anonymous.4open.science/r/nutag-7774/

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 6: Ablation of NEUTAG on node classification task

NEUTAG Variants Cora CiteSeer Actor Chameleon

NEUTAG (COMPLETE) 87.26± 2.14 76.00± 0.99 36.25 ± 2.43 65.26 ± 2.43
NEUTAG (LOCAL NBRS.) 81.01± 3.67 75.49± 1.10 25.52± 0.87 30.70± 1.49
NEUTAG+ 87.19± 0.96 77.68 ± 1.9 34.93± 0.83 64.07± 2.73
NEUTAG −F2F 87.12± 1.46 75.70± 0.3 34.26± 1.85 63.02± 3.79
NEUTAG+−F2F 87.67 ± 1.10 74.65± 0.95 34.93± 0.46 64.12± 1.95

performance across all datasets. The performance drop is much more significant in non-homophilic
graphs Actor and Chameleon. This signifies the crucial role of various attention paths involving
feature nodes in learning both homophilic and heterophilic biases in NEUTAG. Table 6 also indicates
that attention with local neighbors and feature nodes (NEUTAG+−F2F) is competitive across all
datasets. In contrast, additional attention with negative feature nodes and feature-to-feature attention
NEUTAG (COMPLETE) provides a performance boost in heterophilic graph Actors and Chameleon.

D.2 ADDITIONAL CHALLENGING HETEROPHILIC DATASETS

We further benchmark NEUTAG on challenging heterophilic datasets, with graph statistics and results
summarized in Table 7. As shown, NEUTAG consistently outperforms scalable graph transformers by
a significant margin.

Table 7: Comparison of NEUTAG with scalable GT on additional challenging heterophilic graphs
(Luan et al., 2024a)

Dataset # Nodes # Edges Hedge NAGPHORMER GOAT LARGEGT NEUTAG

Facebook 4039 88234 0.5816 59.91± 1.11 Error Error 63.09 ± 1.29
Cornell 183 295 0.2983 58.90± 5.23 67.02± 8.41 53.51± 11.89 77.834 ± 7.33
Squirrel 5201 217073 0.2234 38.05± 2.00 33.56± 0.74 36.5± 2.69 50.36 ± 2.12
Wisconsin 251 499 0.1703 58.42± 4.01 74.11± 7.76 69.01± 7.48 78.034 ± 4.19
Texas 183 309 0.0615 60.61± 7.15 68.64± 4.09 68.10± 10.99 82.69 ± 4.04

D.3 IMPACT OF MISSING FEATURES ON NEUTAG

We conduct two studies to examine how missing features affect NEUTAG. The first study looks at
missing features only during the graph transformation stage. Here, the original input features are
intact, but node–feature edges are randomly removed to simulate different levels of feature sparsity.

We test this on the Chameleon dataset. Dropping feature connections reduces the number of fea-
ture–node edges, which lowers the homophily of the transformed graph Gmeta. This weakens the
structural connectivity of the transformed graph and, as expected, leads to a drop in classification
accuracy, as shown in the table below.

Feature Drop Rate in Gmeta HomophillyGppr HomophillyG
meta

ppr Accuracy

0% 0.2349 0.2807 65.26± 2.74
50% 0.2349 0.2615 60.51± 2.15
90% 0.2349 0.2398 58.45± 2.26

Table 8: Effect of feature drop rate during graph transformation on homophily and accuracy.

In another study, for completeness, we now randomly drop features with varying probability (p) from
the input node feature matrix itself and benchmark it against the baseline methods in table 9. We
observe that NEUTAG maintains strong performance even under severe feature dropout, indicating
robustness to missing input features. This is an encouraging result and aligns with our goal of
designing scalable and generalizable graph transformers. That said, we believe a comprehensive
study on robustness under various real-world noise and corruption settings is a significant task that
warrants a separate investigation. In the present paper, our focus remains on proposing a scalable
graph transformer architecture with strong theoretical foundations and empirical results.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Method p = 0 p = 0.5 p = 0.9

GRAPHSAGE 48.95± 3.16 44.42± 2.04 37.50± 2.81
GAT 44.74± 3.29 38.33± 3.73 34.20± 1.46
GIN 32.68± 3.68 31.22± 1.02 30.26± 3.54
MIXHOP 47.68± 2.89 38.13± 5.12 31.14± 3.54
LINKX 48.20± 3.31 42.19± 1.58 35.26± 3.04
GRAPHGPS 42.88± 1.88 36.14± 2.73 32.96± 3.77
EXPHORMER 45.17± 2.56 42.45± 1.60 35.43± 1.04
NAGPHORMER 59.97± 1.72 56.72± 1.90 58.56± 1.31
GOAT 53.28± 2.48 43.85± 1.93 34.56± 2.50
LARGEGT 57.19± 1.89 55.24± 2.45 52.58± 1.70
NEUTAG 65.26± 2.43 60.40± 0.99 58.75± 2.06

Table 9: Performance of different methods under varying feature drop rates (p).

23

	Introduction
	Existing Works and their limitations
	Contributions

	Preliminaries
	Methodology
	Graph transformation
	Transformation Benefits
	Graph Transformer
	Universal Approximation Capabilities

	Experiments
	Empirical Evaluation
	Datasets
	Baselines
	Result Analysis

	Conclusion
	Preliminaries
	Graph
	Transformers
	Graph Transformers (GT)

	Proof of Theorems
	Connectivity Analysis of Gmeta: Proof of theorem 1
	Proof of corollary 1
	Projection Matrix M: Proof of theorem 2
	Neutag is an Approximation of a Sparse Transformer Performer: Proof of theorem 3
	Universal Approximation Analysis of Neutag

	Additional Experimental Details
	Mini-Batching of Neutag
	Datasets
	Hardware Details
	Codebase
	Limitations and Future Work

	Additional Results
	Ablation Study
	Additional Challenging Heterophilic datasets
	Impact of missing features on Neutag

