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ABSTRACT

Depth estimation is a fundamental task in computer vision with diverse applica-
tions. Recent advancements in deep learning have led to powerful depth foun-
dation models (DFMs), yet their evaluation remains focused merely on geometry
accuracy. Given the fact that downstream tasks increasingly rely on depth as guid-
ance, we present BenchDepth, a new benchmark that evaluates DFMs through
five carefully selected proxy tasks: depth completion, stereo matching, monocular
feed-forward 3D scene reconstruction, SLAM, and vision-language spatial under-
standing. Our approach assesses DFMs based on their practical utility in real-
world applications and provides complementary information to traditional bench-
marks. We benchmark eight state-of-the-art DFMs and provide an in-depth analy-
sis of key findings and observations. Interestingly, our results reveal discrepancies
between rankings on traditional geometric benchmarks and those on downstream
tasks, suggesting that existing evaluation protocols do not fully capture the prac-
tical effectiveness of DFMs. This underscores the importance of BenchDepth as
a complementary benchmark, bridging the gap between geometry-centric metrics
and application-driven evaluation.

1 INTRODUCTION

Depth estimation plays a crucial role in various computer vision applications, from 3D scene re-
construction, autonomous driving, to robotics [Zhang et al.| (2023); [Li et al.| (2023b); |Zhu et al.
(2024); Szymanowicz et al. (2024). In recent years, deep learning-based approaches have signifi-
cantly advanced the field, leading to powerful foundation models capable of generating high-quality
depth predictions across diverse input domains [Eigen et al.| (2014); Bhat et al.,| (2023); Ke et al.
(2024); |Yang et al.| (2024b); Ranftl et al.[(2022); |Wang et al.[(2024a; 2025). However, despite these
advancements, evaluating and comparing depth estimation models remains an open challenge |Ge
et al.|(2024). Existing evaluation protocols primarily emphasize geometry accuracy, which does not
necessarily reflect the utility of depth in real-world applications.

Meanwhile, downstream tasks increasingly rely on depth as guidance, emphasizing the need for
an evaluation framework that can reveal a model’s potential across various applications [Park et al.
(2024); Szymanowicz et al.| (2024); Zhu et al.| (2024); Jiang et al.| (2025); |Cheng et al.| (2025).
Traditional benchmarks focus on constrained numerical accuracy, overlooking how different models
generalize when deployed in application-driven tasks|Ge et al.|(2024)). This disconnect often leads to
discrepancies: models that excel in geometric benchmarks may not perform as well when integrated
into end-to-end frameworks for practical applications.

To address this gap, we propose a new approach for benchmarking depth foundation models. Rather
than relying solely on traditional depth evaluation metrics, we use downstream tasks as proxy
tasks for model evaluation. By design, our benchmark shifts the focus from numerical alignment-
based metrics to application-driven performance, thereby providing a complementary perspective
on model capability. This direction is inspired by the success of large language models (LLMs), vi-
sion language models (VLMs), and self-supervised learning methods [Achiam et al.| (2023); Li et al.
(2023a); |He et al.[(2020); (Oquab et al.| (2023); Siméoni et al.| (2025)), where the evaluation is often
based on downstream tasks.

To this end, we propose BenchDepth, a benchmark consisting of five downstream proxy tasks:
stereo matching [Xu et al.| (2023)), depth completion |Park et al.| (2024)), monocular feed-forward
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Figure 1: BenchDepth illustration, results, and comparison with traditional benchmarks. Left:
Pearson correlation matrix between BenchDepth and the standard benchmark results. Proxy tasks
exhibit strong internal consistency, indicating that BenchDepth captures meaningful shared structure
across tasks and has the potential to generalize to other proxy tasks. Moreover, correlations between
BenchDepth and traditional benchmarks are generally weaker or even negative, underscoring the
gap between geometry-centric metrics and downstream utility. Right: We evaluate different types
of depth predictions (highlighted with different colors) with proxy tasks in a bottom-to-top manner.
We show the average rank of each depth method in the bottom right table. Different methods utilize
different alignment strategies on the traditional benchmark, which is not necessary on BenchDepth.

3D scene reconstruction [Szymanowicz et al.| (2024), SLAM Zhu et al.| (2024)), and 3D-VQA [Zuo
et al| (2024). The tasks are selected in a bottom-to-top manner as shown in Fig. [T ranging from
applications in low-level to high-level vision. Our goal is not to replace traditional metrics, but
to complement them by revealing their limitations and proposing an application-driven benchmark
that better reflects how DFMs are used in practice.

In this paper, we benchmark eight state-of-the-art 3D foundation models with DepthBench. By
examining their performance across proxy tasks, we provide new insights into what constitutes
a good foundation depth model. Notably, our results reveal discrepancies between rankings on
traditional geometric benchmarks |Ge et al.| (2024); Wang et al.| (2024al) (We refer to the original
papers for details about standard benchmark ranking) and those on downstream tasks, indicating
that existing evaluation protocols do not fully capture the practical effectiveness of DFMs. Our main
findings and conclusions are as follows:

1. Our correlation analysis (Fig.[I) shows stronger consistency among proxy tasks (e.g., depth
completion and SLAM: 0.88), indicating that the selected five tasks collectively form a
representative and coherent benchmark. At the same time, correlations with traditional
metrics are weaker or even negative, further emphasizing the gap between geometry-based
evaluation and real-world utility.

2. Most depth foundation models improve the performance of downstream tasks, highlighting
their potential for broader applications in the future.

3. Overall, DAV2|Yang et al.|(2024b) achieves the best results across proxy tasks, demonstrat-
ing the benefits of scaling up training data and incorporating synthetic data.

4. Affine-invariant disparity methods consistently outperform other depth estimation ap-
proaches, even with MiDaS Ranftl et al.| (2022) being the oldest method among them.

5. Despite being fine-tuned on a single dataset (Hypersim |Roberts et al.| (2021)), synthetic),
DAV2-Met significantly outperforms other metric depth models|Hu et al.| (2024); Piccinelli
et al.| (2024)) trained on multiple datasets. This aligns with the conclusion of ZoeDepth Bhat
et al.| (2023) that fine-tuning a well-pretrained affine-invariant disparity model enhances
metric depth estimation. Moreover, the performance gap suggests that incorporating syn-
thetic data for metric depth training is crucial, as it allows models to learn high-frequency
details that are often lost in real-world datasets |Yang et al.|(2024b); L1 et al.| (2024).
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6. The performance improvement from Marigold Ke et al.| (2024) to GenPercept Xu et al.
(2024) underscores the importance of effective fine-tuning strategies for Stable Diffu-
sion Rombach et al|(2022)), a powerful foundation model. Expanding the training data
could further unlock their potential, following the success of other methods, as the current
fine-tuning process is limited to VKITTI |Geiger et al.|(2013)) and Hypersim.

7. MoGe [Wang et al| (2024a)), as a novel approach for geometry estimation, demonstrates
potential on DepthBench, though further research is needed to improve its performance.

8. For the highest-level task, VLM spatial understanding, all methods yield comparable re-
sults. This suggests that at this higher level, different depth estimation approaches can be
equally effective.

We hope that our work will spark further discussion in the community about the best practices for
depth model evaluation and pave the way for further research and development of depth estimation.

2 RELATED WORKS

2.1 DEPTH FOUNDATION MODEL (DFM)

Monocular depth estimation has seen significant advancements with the availability of large-scale
public datasets Silberman et al.| (2012); |Geiger et al.| (2012); |Cordts et al.| (2016)), improved archi-
tectural designs [Eigen et al.| (2014)); [Li et al.|(2023d); Bhat et al.| (2021); [Li et al. (2023c), and
enhanced training strategies [Chen et al.[(2016); [Fu et al.| (2018); [Li et al|(2022), efc. While earlier
works primarily focused on achieving high performance in in-domain inference, the scaling of both
models and datasets in deep learning Kaplan et al.| (2020) has shifted recent research toward devel-
oping foundation models with strong zero-shot generalization across unseen domains (i.e., diverse
real-world images).

For example, MiDaS Ranftl et al.| (2022) introduces a mixture-dataset training approach and adopts
an affine-invariant disparity representation to handle cross-dataset inconsistencies. DAV?2|Yang et al.
(2024azb)) follows a similar formulation but scaled training further using a semi-supervised learning
paradigm. Other works leverage the prior knowledge of Stable Diffusion|[Rombach et al.|(2022) and
fine-tune pretrained models for affine-invariant depth estimation [Ke et al.| (2024); Xu et al.| (2024).
Other lines of research such as Metric3DV2 Hu et al.| (2024) and UniDepth |Piccinelli et al.| (2024)
aim to predict metric depth by incorporating explicit camera models. MoGe|Wang et al.|(2024a)) pro-
poses a novel formulation using affine-invariant point maps|Wang et al.| (2024b)) to represent monoc-
ular geometry. Despite the rapid progress in depth foundation models, a key challenge remains: how
to evaluate and compare these models in a way that meaningfully reflects their effectiveness across
diverse real-world applications.

2.2  EVALUATIONS OF DFMs

Eigen et al Eigen et al.| (2014) introduced the first deep learning framework for monocular metric
depth estimation, along with several standard evaluation metrics that remain widely used today.
However, while depth estimation methods have diversified into various depth representations (as
summarized in Tab. [I)), existing works attempt to adopt the same evaluation protocol designed for
metric depth estimation Ranftl et al.| (2022)); |Yang et al.|(2024b); |Hu et al.| (2024); |[Ke et al.| (2024));
Xu et al.|(2024);|Wang et al.| (2024a).

In contrast, recent progress in other domains such as large language models (LLMs), vision-language
models (VLMs), and self-supervised learning methods |Achiam et al.| (2023); |L1 et al.| (2023al);
He et al.| (2020); Oquab et al,| (2023); Siméoni et al.| (2025)—demonstrates the importance of
downstream-task evaluation for revealing the true potential of foundation models. Inspired by this,
we propose an application-driven benchmark that assesses DFMs through five carefully selected
proxy tasks, ranging from low-level to high-level vision.

Compared with previous benchmarks such as E3D-Bench Cong et al.| (2025), which emphasizes
multi-view geometry, and GeoBench |Ge et al.| (2024), which focuses on monocular depth estima-
tion with traditional metrics, our benchmark shifts the emphasis toward downstream applications.
By focusing on the monocular setting and evaluating depth estimation through real-world tasks,
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BenchDepth provides a complementary perspective to geometry-centric evaluation and contributes
to a more holistic understanding of depth foundation models.

3 BENCHDEPTH

We introduce BenchDepth, a novel benchmark for depth estimation based on carefully selected
proxy tasks in a bottom-up manner (Fig. [T). Our design philosophy is to span a wide range of
applications, from low-level tasks closely tied to depth prediction to high-level tasks where depth
provides auxiliary guidance. This ensures that the evaluation reflects the practical utility of DFMs
across diverse downstream scenarios.

3.1 TASK SELECTION

We group the proxy tasks into three levels:

Low-level tasks: depth completion and stereo matching. These tasks are closely related to metric
depth estimation and differ mainly in their input prompts—sparse depth from sensors or stereo pairs
with a fixed baseline. While the methods include task-specific components, we keep the architecture,
training pipeline, and datasets strictly fixed across all experiments. The only variable is the input
depth map from each DFM. As a result, performance differences serve as a fair and informative
evaluation signal of the practical effectiveness of DFMs.

Mid-level tasks: feed-forward 3D Gaussian Splatting (3DGS) and SLAM. These tasks require
more complex 3D reconstruction and differ in both representation (Gaussian splats vs. neural im-
plicit) and input regime (single-view vs. multi-view), broadening the scope of our benchmark. Al-
though less directly tied to DFMs than low-level tasks, recent studies have shown the growing use of
DFM predictions as priors in these domains|Szymanowicz et al.| (2024); Zhu et al.| (2024)). By align-
ing architectures, training setups, and datasets, we ensure that observed performance differences can
be attributed solely to the depth predictions of DFMs.

High-level task: vision-language spatial understanding. At the highest level, we evaluate the
contribution of DFMs to VLMs |Cai et al.| (2024)), where depth serves as a geometric prior for rea-
soning about 3D spatial relations. While performance differences are less pronounced here, the
results reveal an important limitation: current VLMs tend to rely on coarse layout cues, showing
limited sensitivity to fine-grained depth errors. Including this task highlights both the opportunities
and the challenges of integrating depth into semantic reasoning systems, pointing to future research
directions.

Together, these five tasks span different levels of abstraction, allowing users to focus on the evalua-
tions most relevant to their applications.

3.2 MODEL SELECTION

Selected depth foundation estimation methods for benchmarking are summarized in Tab. We
choose the most representative methods from each depth estimation category. Note that though
DAV2-Met |Yang et al.|(2024b), Metric3DV2 [Hu et al.|(2024), and UniDepth Piccinelli et al.| (2024
are all metric methods, DAV2-Met is fine-tuned on a single metric dataset (Hypersim Roberts et al.
(2021)), whereas the other two methods are trained with a mixture of many datasets. We use the
default camera parameter assumption for Metric3DV2 and UniDepth. Since the original version of
Marigold Ke et al.|(2024) is hard to adapt to online training due to the large number of inference
steps, we use the end-to-end fine-tuned version of Marigold Garcia et al.| (2024)) that supports one-
step inference as a replacement.

For each proxy task, we use recent and well-integrated baselines selected for their compatibility with
external depth inputs and representation diversity. DepthPrompting |Park et al.|(2024), Flash3D |Szy-
manowicz et al.[(2024), NICER-SLAM [Zhu et al.[ (2024), and SpatialBot |Cai et al.| (2024) are all
representative methods that explicitly incorporate DFMs in their design. IGEV Xu et al.| (2023)
does not use DFMs directly but serves as an important baseline for subsequent DFM-integrated
stereo models such as FoundationStereo [Wen et al.| (2025) and DEFOM-Stereo Jiang et al.[ (2025).
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Table 1: Benchmark with metric depth completion. We select DepthPrompting |Park et al.| (2024)
as the baseline method and apply depth predictions from various foundation models as the guidance.
We use different amounts of sparse samples (from 100 to 1) in this experiment. Best results are in
bold, second best are underlined. imp. (%) indicates the average improvement ratio, and rank is
calculated based on it. w/o depth refers to the baseline with only GT sparse depth as guidance.

Method 100 32 8 4 ! ‘ imp. ‘ rank
RMSE MAE | RMSE MAE | RMSE MAE | RMSE MAE | RMSE MAE
w/o depth 0.206 0.102 | 0.334 0.199 | 0486 0.340 | 0.514 0.370 | 0.550 0.406 - -
Midas 0204 0.114 | 0.294 0.182 | 0449 0.311 | 0.493 0.355 | 0.556 0.414 | +3.09 4
DAV2-Rel 0.191 0.099 | 0.279 0.166 | 0.427 0.292 | 0471 0.336 | 0.533 0.396 | +9.26 1
DAV2-Met 0.202 0.112 | 0.287 0.178 | 0431 0.297 | 0472 0.338 | 0.529 0.392 | +6.48 2
Metric3DV2 0216 0.128 | 0.306 0.195 | 0.454 0317 | 0.497 0.359 | 0.557 0415 | -0.38 8
UniDepth 0.210 0.122 | 0.296 0.187 | 0.438 0.308 | 0.480 0.349 | 0.540 0.404 | +2.97 5
Marigold 0.210 0.121 | 0.296 0.187 | 0.448 0.314 | 0.491 0.356 | 0.555 0414 | +1.76 6
GenPercept 0.199 0.110 | 0.284 0.174 | 0436 0301 | 0.479 0.342 | 0.542 0402 | +6.16 3
MoGe 0.210 0.124 | 0.295 0.188 | 0444 0.312 | 0489 0.355 | 0.558 0.417 | +1.53 7

Most importantly, all selected baselines provide official training code, and our benchmark is directly
developed on top of their implementations. More details are presented in Sec.[3.4]

When developing BenchDepth, we intentionally fix all aspects of the downstream pipeline. We
either follow the default integration strategy used in the original papers or apply the most straight-
forward approach [Zhang et al| (2023)); |Xu et al.| (2023). Importantly, we restrict evaluation to the
predicted depth maps from DFMs, excluding intermediate features. This avoids unfair advantages
from model-specific backbones and ensures that the only factor varying across experiments is the
DFM output. Although DFMs are not explicitly optimized for these tasks, the consistent perfor-
mance differences observed validate BenchDepth as a fair measure of their relative effectiveness.

3.3 SCALABILITY

We acknowledge that downstream performance can also depend on the choice of the task archi-
tecture. In this work, we evaluate one representative model per task. While this design provides
a controlled comparison and keeps the benchmark tractable, we view BenchDepth as a framework
rather than a fixed set of results. Future work could include additional architectures, tasks such as
video depth estimation or surface reconstruction, and stronger baselines (e.g., 3DGS-based SLAM).

Our evaluation metrics are reported per task, reflecting the standards commonly used in each domain
(e.g., EPE for stereo, PSNR for view synthesis). To provide a broader perspective, we also compute
improvement-over-baseline percentages and average rankings across tasks (Fig. [I)).

In addition, we conduct a correlation study between BenchDepth results and traditional benchmarks.
Specifically, we compute the Pearson correlation matrix between the average improvement on our
proxy tasks and the standard benchmark results. The analysis (Fig.[1) reveals two key observations:
(1) proxy tasks exhibit strong internal consistency, with depth completion and SLAM showing a par-
ticularly high correlation (0.88), indicating that our benchmark captures meaningful shared structure
across tasks and has the potential to generalize to other proxy tasks; (2) correlations between proxy
tasks and traditional benchmarks are generally weak and even negative, underscoring the gap be-
tween geometry-centric metrics and downstream utility. More details about this correlation study
are presented in Sec.

BenchDepth thus establishes a starting point for application-driven evaluation of DFMs. While
not exhaustive, it demonstrates that DFMs have measurable and consistent impacts across diverse
downstream settings, and highlights both their strengths and limitations when applied in practice.

3.4 DETAILS

Below, we present the five proxy tasks in detail and describe the modifications applied to selected
methods to support depth evaluation using DepthBench. We use 8 GPUs to conduct the benchmark.

Depth Completion: Given sparse metric-scale depth measurements from sensors (e.g.LiDAR,
Radar) and corresponding images, depth completion aims to generate dense metric depth predic-
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Figure 2: (a) Depth completion framework and (b) Stereo matching framework for depth bench-
mark. We adopt zero convolutions [Zhang et al.| (2023)) to introduce depth guidance without modify-
ing core components of proxy tasks.

tions. We select DepthPrompting [Park et al.|(2024) as the baseline method. While DepthPrompting
enables the adaptation of foundation depth models for completion, its reliance on feature extractors
from these models |[Li et al.| (2023d) introduces bias, as the extractor quality may influence perfor-
mance more than the predicted depth itself. To mitigate this, we standardize feature extractors across
models and inject depth predictions using zero convolutions Zhang et al.|(2023) (Fig.[2a). Addition-
ally, we omit the alignment module in DepthPrompting to enable direct comparisons across depth
methods. We use the NYU Depth V2 dataset |Silberman et al.|(2012) for this proxy task, following
the official split with about 50k training samples and 654 testing samples.

Stereo Matching: This task estimates disparity from two images with a known baseline. Metric
depth can be recovered from disparity using camera parameters. We adopt IGEV [Xu et al.|(2023)
as our baseline and incorporate zero convolutions Zhang et al.| (2023) to inject depth predictions as
shown in Fig. 2b] Unlike prior works that develop task-specific strategies to integrate depth into
stereo matching models |(Cheng et al.| (2025); Jiang et al.| (2025), our simple yet general approach
allows for a more straightforward assessment of depth prediction quality. We use the SceneFlow
dataset Mayer et al.| (2016)), which contains 35,454 training pairs and 4,370 test pairs with dense
disparity maps. Middlebury 2014 |Scharstein et al.|(2014) and ETH3D |Schops et al.|(2017) are used
for zero-shot evaluation.

Feed-Forward Monocular 3DGS: This task reconstructs scenes and synthesizes novel views from
a single image using 3D Gaussian Splatting |[Kerbl et al.| (2023). We use Flash3D [Szymanowicz
et al.| (2024) as the baseline model. Flash3D incorporates a frozen depth foundation model in its first
stage to estimate depth from the input image. The predicted depth and image are then processed by
a UNet-like Ronneberger et al.[(2015) network to estimate 3DGS parameters. Since the foundation
depth model remains frozen and no features from the foundation model are used in the second stage,
we can adopt different foundation models for the first stage and train Flash3D following the default
recipe. We use the RealEstate10k dataset Zhou et al.[|(2018]). It consists of real estate videos from
YouTube, with 67,477 training scenes and 7,289 test scenes. Some outdated samples were removed,
causing slight deviations from the results reported in|Szymanowicz et al.|(2024). The baseline result
is obtained by directly using the officially released model with unmodified code.

Simultaneous Localization and Mapping: Simultaneous Localization and Mapping (SLAM) is a
fundamental problem in computer vision with broad applications. We employ NICER-SLAM [Zhu
et al.| (2024) as our baseline, as it integrates dense SLAM with a neural implicit representation for
tracking and mapping from monocular RGB videos. Since NICER-SLAM can process RGB-D
sequences, we replace the original sensor depth with depth predictions from different foundation
models and train the system accordingly. To better assess the impact of depth predictions, we omit
pseudo-depth loss during training. We evaluate models on the Replica dataset [Straub et al.| (2019),
which provides RGB-(D) images rendered using the official renderer. All 8 scenes are used for
benchmarking. For benchmarking, we replace the original input depth with estimated depth from
different methods and omit the monocular depth loss (Eq. 13 in [Zhu et al.| (2024))), which depends
on another depth model. We exclude Metric3DV2 since it was trained on this dataset, though there
is no evidence of overfitting.
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Table 2: Benchmark with stereo matching. We select IGEV Xu et al| (2023) as the baseline
method and apply depth predictions from various foundation models as the guidance to fine-tune the
baseline model.

Method SceneFlow Middlebury ETH3D im rank
EPE| >3pt(%) L | EPEl  >2p%)) | EPE] >1pt(%) | P
w/o depth 0.496 2.599 0.857 6.655 0.283 3.575 - -
Midas 0.483 2.502 1.061 7316 0.273 3383 3.07 7
DAV2-Rel 0.456 2.432 0.834 6.399 0.275 3.189 +5.77 1
DAV2-Met 0.471 2473 0.938 6.177 0.270 3.698 +1.46 5
Metric3DV2 0.482 2.521 0.949 7.309 0.275 3.523 -1.74 6
UniDepth 0.477 2.521 0.964 7.242 0.285 3.822 3.68 8
Marigold 0.475 2.499 0.899 6.519 0.273 3.485 +1.87 4
GenPercept 0.473 2485 0.935 6.649 0.265 3.374 +1.99 3
MoGe 0473 2.481 0.907 5.951 0.279 3.544 +2.70 2

Table 3: Benchmark with feed-forward monocular 3D scene reconstruction by novel view syn-
thesis. We select Flash3D |[Szymanowicz et al.|(2024) as the baseline method and apply depth pre-
dictions from various foundation models as the model input. Following |Szymanowicz et al.| (2024),
we present results of small, medium and large baseline ranges separately.

5 frames 10 frames U [—30, 30] frames

Method PSNRT SSIM{ LPIP| | PSNRt SSIMt LPIP| | PSNRT SSIM{ LPIP| mp ‘ rank
w/o depth 24285 0803  0.151 | 21767 0729 0203 | 21.241 0705  0.230

Midas 24964 0812 0125 | 22290 0735 0.179 | 21.769 0710  0.212 | +5.24 1
DAV2-Rel 24965 0812 0129 | 22305 0733 0.185 | 21.703 0706 0218 | +4.21 3
DAV2-Met 25000 0812 0.128 | 22341 0735  0.182 | 21.842 0711 0215 | +4.81 2
Metric3DV2 24468 0787  0.150 | 21.994 0713 0204 | 21396 0.690 0233 | -0.05 5
UniDepth 23983 0786  0.145 | 21.530 0708 0202 | 21.036 0.687  0.235 | -0.10 6
Marigold 23974 0779 0162 | 21.515 0701 0219 | 20952 0676 0248 | -4.19 8
GenPercept 24119 0787  0.140 | 21489 0705 0.197 | 21.029 0.682 0230 | -0.14 4
MoGe 23930 0780 0.144 | 21.309 0.696 0202 | 20.851 0673 0235 | -1.60 7

VLM Spatial Understanding: Vision-Language Models (VLMs) have demonstrated strong per-
formance in 2D image understanding but remain limited in spatial reasoning [Cai et al.| (2024).
Since depth maps contain spatial information, incorporating them as additional inputs may improve
VLMs’ 3D understanding. For this proxy task, we adopt SpatialBench |Cai et al.| (2024) to evaluate
the impact of different depth models on VLM spatial reasoning. We use two VLMs: ChatGPT-40
and SpatialBot-Phi2-3B |Cai et al| (2024). As ChatGPT-4o is not trained with depth, we render
predicted depth maps with the magma colormap and provide paired textual prompts. In contrast,
SpatialBot is jointly trained with paired images and depth maps. Although the released model is
trained with ZoeDepth Bhat et al.| (2023)), it supports inference with estimated depth from any DFM,
as confirmed in the Official Github Issue #12. We therefore use the official implementation to encode
DFM-predicted depth maps and benchmark all models under the same setup.

4 BENCHMARK RESULTS

Depth Completion. Tab.[T|presents the benchmark results. DAV2-Rel|Yang et al.|(2024b) is the only
method that consistently improves performance across almost all settings, achieving rank 1. Most
methods provide a performance boost, except for Metric3DV2 |Hu et al.| (2024), which performs
worse than the baseline. Interestingly, depth methods tend to be more beneficial when the available
sparse ground-truth (GT) depth is limited. This suggests that foundation models provide useful
guidance when GT depth is scarce. However, as GT depth increases, the ambiguity in selecting the
appropriate depth source limits further improvements compared to using only sparse GT depth for
guidance. In this case, some DFMs even lead to worse performance than the baseline, highlighting
the strong dependence of this task on downstream-compatible DFMs.

Stereo Matching. Tab. |2| presents the results for stereo matching. In the in-domain setting, all
foundation depth models significantly improve baseline performance, with an average 4.5% EPE
gain. However, in zero-shot cross-domain evaluation, not all methods generalize well. DAV2-Rel,
GenPercept|Xu et al.[(2024), and Marigold Ke et al.|(2024) perform best. Metric depth models, such
as Metric3DV2 Hu et al.| (2024) and UniDepth |Piccinelli et al.| (2024), underperform compared to
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Table 4: Benchmark with Simultaneous Localization and Mapping (SLAM). We select Nicer-
SLAM/[Zhu et al| as the baseline method and apply depth predictions from various foundation
models as the model input. acc and com are short for accuracy and completion, respectively. Ren-
dered indicates that the input depth map is rendered by the dataset. We exclude Metric3DV2 and
use gray for its results as it is trained with this dataset.

Method rm-0 rm-1 m-2 off-0 off-1 off-2 off-3 off-4 imp.  rank
acc] coml | acc] coml| acc] com|| acc] com| | acc] coml| acc] com) | acc/ coml| acc/ coml :
wi/o depth 337 393 | 401 461 | 358 397 | 726 825 | 582 652 | 698 772 | 698 692 | 426 6.09 - -
Midas 325 3.63 | 359 412 | 349 378 | 809 9.04 | 6.02 7.08 | 463 619 | 493 540 | 395 571 | +232 5
DAV2-Rel 330 392 | 352 3.85 | 328 359 | 616 694 | 578 6.62 | 655 7.09 | 700 643 | 426 6.09 | +10.00 1
DAV2-Met 322 339 | 348 398 | 347 3.87 | 858 9.64 | 459 540 | 638 743 | 6.13 559 | 398 629 | +195 6
Metric3DV2 348 3.64 | 345 393 373 409 | 955 10.53| 5.82  6.41 520 6.67 6.73 6.78 | 451 6.65 | -4.19 -
UniDepth 311 349 | 373 438 | 380 4.06 | 596 691 | 505 6.05 | 648 741 | 583 595 | 460 6.76 | +7.08 2
Marigold 3.01 367 | 377 407 | 370 400 | 7.07 793 | 623 7.0l | 483 643 | 632 626 | 452 679 | +4.67 4
GenPercept 328 347 | 377 434 | 333 373 | 706 7.65 | 414 5.06 | 438 635 | 530 5.05 | 440 620 | +6.16 3
MoGe 326 3.67 | 367 423 | 389 433 | 886 9.83 | 455 558 | 568 6.73 | 640 632 | 3.92 598 | 404 7
Rendered 3.00 329 | 3.69 441 4.14 447 | 557 685 | 595 675 | 591 791 6.64 6.65 | 401 6.05 - -

Text Prompt

We will provide you two images, the first one is the RGB image and the second one is the disparity image. For the
disparity image, we use the magma colormap to render the disparity value. Deeper (farther) areas are depicted in black,
transitioning through purple and pink, to the shallowest (closer) areas in bright yellow. The depth map can be
inaccurate in some areas since it is predicted by a deep learning model. Please ignore this kind of mistake. Your task
is to answer the following question by analyzing the image. Please use the depth map whenever necessary to provide
more accurate and insightful answers.

What is the spatial relationship between the police officer
and the beige SUV?

(A) The police officer is in front of the beige SUV. (V)
(B) The police officer is behind the beige SUV.

(C) The police officer is to the right of the beige SUV.
(D) The police officer is inside the beige SUV.

Answer: A v/

The RGB image shows the police officer standing in front of
the beige SUV. In the depth image, the police officer
appears in darker colors compared to the SUV, indicating
that the officer is closer to the viewer. Therefore, the
officer is in front of the SUV.

In the real world, what is the positional relationship of the man in red
shirt and the man in blue shirt?

(A) The man in red shirt is to the left of the man in blue shirt.

(B) The man in red shirt is to the right of the man in blue shirt.

(C) The man in red shirt is in front of the man in blue shirt. (V)

(D) The man in red shirt is behind the man in blue shirt.

Answer: D X

The disparity image shows the man in the red shirt in bright yellow,
indicating he is closer to the camera. The man in the blue shirt is
depicted in darker colors, suggesting he is farther away. Therefore, the
man in the red shirt is behind the man in the blue shirt.

Figure 3: Showcases of ChatGPT-40 on SpatialBot positional benchmark. We highlight the

text prompt describing rendered depth map in blue and mistakes made by ChatGPT-40 in red ,
respectively. In the first case, ChatGPT-40 correctly answers the question but misinterprets the
depth map despite detailed prompts. As for the second one, despite correctly parsing the depth map,
ChatGPT-40 provides an incorrect answer.

other types of depth estimation methods. Notably, DAV2-Met|Yang et al.|(2024b) outperforms other
metric depth models, possibly benefiting from fine-tuning DAV2-Rel, despite being trained on only
one dataset (Hypersim Roberts et al| (2021)). It somehow aligns with the conclusion in [Bhat et al.|
(2023). The ability to predict sharper metric depth may also contribute to its superior performance.

Feed-Forward Monocular 3DGS. Tab. [3[shows the benchmark results. DAV2-Met achieves better
performance compared with DAV2-Rel, suggesting that metric depth properties are beneficial for
novel view synthesis tasks in real 3D environments. MiDaS [Ranftl et al.| (2022}, despite being an
older method, performs remarkably well with a rank of 1. DAV2-Rel also achieves strong results but
slightly underperforms compared to MiDaS. Most metric depth methods, except for DAV2-Met and
affine-invariant depth methods, fail to improve the baseline. Notably, this task exhibits the lowest
correlation with the other proxy tasks, suggesting that it captures a complementary perspective on
DFM quality that is not reflected by the other evaluation metrics.

Simultaneous Localization and Mapping. Tab. ] presents the SLAM results. DAV2-Rel achieves
the best results with a promising gap with other methods, indicating a superior potential for this
task. UniDepth achieves the second-best results, highlighting the importance of metric depth for
this task. GenPercept also obtains good results, possibly due to fine-tuning on Hypersim, a sim-
ilar synthetic dataset. Nevertheless, the performance gap between GenPercept and Marigold still
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Table 5: Benchmark with spatial understanding of Vision Language Model (VLM). We evaluate
the effectiveness of depth predictions from various foundation models on the SpatialBench |Cai et al.
(2024). The rank column is omitted since all depth models perform similarly.

Method | Pos.t Existt  Countf  Reachf Sizet | Method | Pos.t Existt  Countf  Reachf Sizet
ChatGPT-40 64.70 95.00 80.88 54.44 31.11 ‘ SpatialBot 61.76 75.00 92.41 51.67 28.33
Midas 62.74 90.00 80.26 54.44 37.22 Midas 55.88 55.00 92.41 46.67 30.00
DAV2-Rel 61.76 88.33 77.11 5222 35.55 DAV2-Rel 55.88 60.00 93.13 46.67 30.00
DAV2-Met 61.76 86.66 80.44 59.44 38.88 DAV2-Met 55.88 65.00 93.13 45.00 28.33
Metric3DV2 62.74 88.33 79.45 59.44 28.88 Metric3DV2 58.82 55.00 93.13 50.00 28.33
UniDepth 64.70 93.33 80.55 62.22 37.77 UniDepth 58.82 60.00 92.41 53.33 28.33
Marigold 57.84 83.33 80.68 58.88 31.66 Marigold 55.88 60.00 93.13 46.67 30.00
GenPercept 60.78 85.00 81.03 57.77 37.77 GenPercept 55.88 65.00 93.13 48.33 28.33
MoGe 60.78 85.00 79.06 56.11 33.33 MoGe 55.88 60.00 93.13 50.00 28.33

highlights the effectiveness of its fine-tuning strategy. Interestingly, we also report results obtained
from the ground-truth depth sensor provided by the dataset, and find that several DFMs even outper-
form this baseline. This promising result suggests that high-quality DFMs could serve as effective
alternatives to traditional depth sensors in SLAM applications.

VLM Spatial Understanding. We use SpatialBench |Cai et al.|(2024) for this task. Unlike its origi-
nal purpose of benchmarking different vision-language models (VLMs), we focus on evaluating the
effectiveness of different depth estimations for the same VLM. We select ChatGPT-40 and Spatial-
Bot|Cai et al.|(2024) as baseline VLMs, without and with depth inputs during training, respectively.

Surprisingly, for both VLMs, replacing ZoeDepth in SpatialBot with other DFMs does not signif-
icantly change performance, and ChatGPT-40 also shows little improvement when depth is added.
All DFMs yield similar results, indicating no clear separation among models for this high-level spa-
tial reasoning task. This saturation likely arises because VLMs are more sensitive to coarse layout
cues and semantic structure, while being less responsive to fine-grained geometric detail. And most
DFMs perform similarly well by providing sufficiently accurate coarse structures.

For this reason, we exclude VLM spatial understanding from the aggregated results, as it does not
offer meaningful differentiation among DFMs. Nevertheless, we include qualitative results to high-
light current limitations. Fig. [3]illustrates two examples from the positional benchmark in Spatial-
Bench. In the first, ChatGPT-40 correctly answers the question but misinterprets the depth map
despite detailed prompts, suggesting that training with depth signals is crucial for effective usage. In
the second, ChatGPT-40 parses the depth map correctly but still produces an incorrect answer, un-
derscoring the broader limitations of VLMs in reasoning about 3D space. These findings emphasize
the importance of future research on how VLMs can better leverage depth beyond coarse structure.

Correlation Analysis. To further examine the representativeness of BenchDepth, we compute the
Pearson correlation between improvements on our proxy tasks and metrics (delta and AbsRel) from
traditional benchmarks. We use the benchmark from Lotus |He et al.| (2024) and the VGGT GitHub
Issue #36. We include MiDaS, DAV2-Rel, Metric3DV2, Marigold, GenPercept, and MoGe in this
calculation, as results for DAV2-Met and UniDepth are currently unavailable.

As shown in Fig. [T} proxy tasks exhibit strong internal consistency—for example, depth completion
and SLAM show a high correlation of 0.88—suggesting that the selected tasks capture meaningful
shared structure. In contrast, correlations between proxy tasks and traditional benchmarks are weak
or even negative, indicating a clear gap between geometry-centric metrics and downstream utility.
This finding further underscores the importance of BenchDepth as a complementary benchmark for
evaluating DFMs.

5 CONCLUSION

We introduced BenchDepth, a benchmark for evaluating depth foundation models (DFMs) through
downstream proxy tasks rather than alignment-based metrics. By benchmarking eight SOTA DFMs
across depth completion, stereo matching, 3D scene reconstruction, SLAM, and vision-language
spatial understanding, we provide a practical assessment of their effectiveness. Our experiments
reveal key insights into the performance improvement of DFMs in real-world applications. We hope
BenchDepth can assist the community in selecting DFMs for downstream applications.


https://github.com/facebookresearch/vggt/issues/36
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A LARGE LANGUAGE MODELS USAGE

We used ChatGPT to polish the paper.
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