Usefulness-Driven Learning of Formal Mathematics

Timothe Kasriel Thomas Lu Devon Ding
UC Berkeley UC Berkeley UC Berkeley
tkasriel@berkeley.edu thomaslu@berkeley.edu devon_ding@berkeley.edu

Jingxuan He Dawn Song
UC Berkeley UC Berkeley
jingxuan.he@berkeley.edu dawnsong@berkeley.edu
Abstract

Creating an Al that can truly “do” mathematics requires more than just solving
isolated problems: it must be able to progressively build up a corpora of useful
knowledge in a similar manner as do mathematicians. To this end, we introduce
UseFor, a novel framework to formalize this notion of building up knowledge,
and demonstrate how it can be used to train a usefulness-driven Al mathematician.
UseFor determines a theorem’s usefulness based on two criteria: its reusability
in subsequent proofs and its contribution to increasing proof likelihood. We
integrate UseFor into the self-play setting of Minimo ([[10]), training a model
from scratch through a conjecturing and proving self-play loop with usefulness
testing. We experimentally evaluate this usefulness-driven self-play approach
across three mathematical domains: arithmetic, propositional logic, and group
theory with two metrics: intrinsic usefulness, a measure of how often the lemmas
are used, and extrinsic usefulness, a measure driven by LLM evaluation. Our
results demonstrate that our usefulness-trained model effectively generates a large
number of intrinsically and extrinsically useful formal theorems.

1 Introduction

While large language models (LLMs) have achieved rapid progress in formal theorem proving [18]],
most approaches depend on extensive human-written corpora of proofs and conjectures [[19} [20].
Further, mathematical research involves far more than proving problems alone, requiring accumulated
knowledge of a domain and the ability to determine which problems are worth pursuing. As such,
we propose the following: Can an artificial agent, starting only from axioms, learn via self-play
between conjecturing and proving, bootstrapping its own knowledge and progressively discovering
new mathematics? This paradigm [8]] would reduce the need for human data, enable exploration of
domains where no proofs exist, and produce a scalable source of synthetic data for training models.

Inspired by the perspective [14} 2] that a theorem should be judged not in isolation but with respect to
its applicability to other problems, we propose UseFor, a tractable metric for evaluating the usefulness
of mathematical conjectures. UseFor contributes most directly to the problems of premise discovery
[17] and theory exploration [[1]. (We discuss related work in Appendix [A). We leverage UseFor to
develop a usefulness-aware self-play loop that builds directly on Minimo’s [[10] self-play loop of
conjecturing and proving from minimal axioms. By training the model on an extra step of usefulness
testing, we guide the model toward structures that accelerate cumulative theory building.

We evaluate our usefulness-driven self-play framework on three domains: arithmetic, propositional
logic, and group theory. Our results show that UseFor allows our model to learn to leverage previously

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AL

proven theorems in proofs, and generate significantly more useful conjectures compared to baseline
Minimo, as evaluated by LLM-as-a-judge.

Main contributions. Our key contributions are: (i) We formalize the notion of theorem usefulness
as a dual criterion of usage and improvement, and propose a tractable procedure for measuring it within
self-play. (ii) We introduce a usefulness-aware self-play loop that augments Minimo by selecting
conjectures according to relational usefulness rather than difficulty. (iii) We provide empirical
results across arithmetic, propositional logic, and group theory, demonstrating that usefulness-driven
conjectures are more reusable and lead to higher prover success rates than difficulty-based baselines.

2 Methodology

2.1 Base Self-Play Framework (Minimo)

Conjecturing. At the base of Minimo is a self-play loop which begins with conjecturing. The
conjecturer Cyg, with € denoting the model parameters, generates statements in the Peano language,
a dependently typed formal language [[11] with finite action space. To prevent invalid formulas,
Minimo employs constrained decoding [[12f]: at each step, candidate tokens are filtered so that only
those extending the current tree into a valid continuation remain.

Proving. Once the conjectures {cg, ¢1, ..., ¢, } are established, the prover Py attempts prove these
conjectures using a Monte Carlo tree search (MCTS). Guided by the prover’s policy 7y (a | s) on the
proof state s action a, and value estimates, MCTS expands trajectories 7 = (S, @g, $1, 25 -y Sny an,)
starting from the initial state so. Which can be scored by their log-likelihood £(c) under the prover’s
policy, with a less negative indicating a higher prover certainty. To exploit partial progress, Minimo
applies hindsight relabeling: even when a conjecture cannot be proved in full, explored search
trees are decomposed into valid subtraces corresponding to intermediate lemmas, which are then
incorporated as additional training data [10].

Self-Play Loop. The conjecturer Cy, and prover Py, interact in an iterative loop. At iteration 4,
the conjecturer samples a batch of N candidate statements Q; = {c1,...,cn} ~ Cp, (- | T;), where
T; is the current theory consisting of axioms and previously promoted lemmas. For each ¢ € Q;,
the prover attempts to establish it via MCTS: (proof(c), ¢(c), trace(c)) <— MCTS_PROVE(c; T;, Pe,),
where proof(c) is a complete proof trajectory 7 if one is found (or @ otherwise), trace(c) is the
explored search tree, and £(c) is the log-likelihood of the trajectory under the prover’s policy.

The conjectures Q; are then stratified by empirical difficulty, as measured by proof log-probability:
conjectures below the 50th percentile of difficulty are labeled as "trivial", the top 20th percentile as
"hard", and others as "easy". The combined prover-conjecturer model is then trained on the results of
our iteration &;:

&; = {(trace(c), label(c)) : c € Q;},

which aggregates conjectures, proofs when available, and hindsight-relabeled subproofs extracted
from failed searches. As conjectures for which proving has failed cannot be labeled, we instead
extract proof examples from trace(c) and add to &;.

2.2 Usefulness-Aware Self-Play Loop

The self-play framework of Minimo provides a compelling basis for data-free theory exploration.
However, its training signal is limited to conjectural difficulty, measured as the negative log-probability
of a proof under the current prover. As a result, the system often promotes conjectures that are labeled
as “hard” but not necessarily useful statements: isolated identities that stretch the prover temporarily
but are rarely reused and add little structure to the theory.

To address this limitation, we introduce a usefulness-based self-play loop. We ask whether incorpo-
rating a new lemma makes other statements easier to prove. Conjectures that are both provable and
demonstrably beneficial in downstream proofs are promoted into the growing library.

UseFor: Our Usefulness Metric. The perspectives of Benigo et. al [2] and Tao [14] converge on
the idea that the value of a theorem is relational: it derives its significance not from truth alone, but

from its effect on subsequent reasoning. Benigo et. al [2] frames usefulness in information-theoretic
terms, proposing that a theorem acts as a compression primitive—its addition to a base theory reduces
the description length of other proofs. Tao [14] instead emphasizes the pragmatic dimension: the
strength of a theorem is revealed only by confronting new problems and observing the range of
arguments it simplifies.

Our contribution is to construct a practical formulation of these metrics. Formally, let B be a
benchmark set consisting of theorems that are difficult, but not impossible, for the prover to prove.
For each b € B, let pg(7, | b) denote the prover’s probability of producing a proof trajectory 7, under
theory 7, and let pj (73 | b) denote the same quantity when a candidate lemma £ is available. We say
that £ is useful if there exists b € 3 such that

(i) £ is invoked in the proof trace of b, and (ii) log py(ms | b) —logpe(Ty | b) > 0.

Both conditions are essential: usage without improvement admits trivial tautologies such as Vz. z = z,
which the prover may frequently attempt but which yield no real progress. To evaluate this metric,
given a set of previously proven lemmas C, we subsample a subset of size [\/@ | and temporarily
add them to the context. Each b € B is then reproven once under this extended theory. If a candidate
¢ € C appears in the proof of b and the resulting log-likelihood improves relative to baseline, the gain
is attributed to £. Their total log probability increase (ii) is then used to rank the lemmas, and promote
them in the library. This provides a tractable mechanism for selecting conjectures that repeatedly
demonstrate both reuse and measurable downstream gains.

Training Loop with UseFor. We now describe how the usefulness metric is integrated into the
conjecturing—proving loop. The outer structure mirrors Minimo [10]]: in each iteration the agent
generates conjectures, the prover attempts proofs via MCTS, and traces are collected. The crucial
difference lies in how conjectures are filtered, promoted, and fed back into training. At iteration
i, the conjecturer first proposes a batch C;. During conjecturing, we penalize the conjecturer for
repeating previously generated prefixes, encouraging diversity and avoiding local minima. Trivial
tautologies (ex: x = x) are also removed using heuristic filters. Each conjecture is then attempted
under the current theory 7; using MCTS, producing proofs, log-likelihoods, and hindsight examples.
Following Minimo, conjectures are provisionally bucketed into “hard,” “easy,” and “trivial” categories
by percentile of log-likelihood.

The key departure comes in how the “hard” subset is treated. Rather than promoting them directly,
we apply the usefulness test using the current pool of non-failing lemmas as context. A random
subsample L; C H,; of size [/|H;|] is drawn, and each benchmark b € B is reproven under both
the baseline theory 7; and the augmented theory 7; U L;. If a lemma A\ € L; is invoked in the
augmented proof of b and improves its log-likelihood relative to the baseline, the gain is added to its
cumulative usefulness score U;(\). Candidates are then ranked by U; (), and only the top p fraction
are promoted into the persistent theory 7;41. Because L; is resampled at every iteration, different
subsets of candidates are tested over time, so all conjectures eventually receive usefulness credit.

Finally, the training dataset &; is assembled. It contains the conjectures, their proofs, and percentile
labels, and the hindsight traces from the base loop, as well as the useful lemmas and re-proving
examples produced during usefulness testing. The agent is updated on &;, and the promoted lemmas
are added to 7;; for future iterations.

3 Experimental Evaluation

We evaluate UseFor on three domains: arithmetic, propositional logic, and group theory. The axioms
for each domain are listed in Appendix [C] Due to space constraints, we only showcase the results
for arithmetic in this section. Results for propositional-logic and group theory can be found in
Appendix [E] Our goal is to assess whether UseFor demonstrates the essential qualities of a desirable
reasoning system: (a) the ability to accumulate knowledge across iterations, (b) the ability to generate
conjectures of intrinsic value, and (c) whether our usefulness-driven training is necessary. We employ
two complementary metrics designed to capture structural usefulness:

o Intrinsic usefulness: measured as the number of times a previously proven theorem is reused during
usefulness testing. A high score indicates that the system is both conjecturing and successfully
reusing theorems in its own proving process.

* Extrinsic usefulness: measured via an LLM-as-judge (details can be found in Appendix [D), which
rates conjectures for mathematical value. These conjectures are additionally proven by an external
prover based on the Z3 SMT solver [4]]. This metric evaluates whether conjectures would be judged
useful by a human mathematician, beyond the system’s internal dynamics.

Details about experimental setup are in Appendix

(RQ1) Can the prover reuse theorems proven in previous
iterations to prove current conjectures? Reuse is essential for
cumulative theory building: without it, a system risks repeatedly
rediscovering tautologies or isolated results. In our experiments,
UseFor shows a steady increase in lemma usage during usefulness
testing (Figure[T). Although the first few iterations provide little
signal, usage accelerates in later iterations, demonstrating that
the model progressively conjectures more useful theorems and
becomes increasingly capable of applying them. This trend is
consistent across all domains, and we expect it to persist with
additional iterations. As MINIMO’s method does not include
usefulness testing and so does not have access to previously
proven theorems, its intrinsic metric is 0, will only be included
as a baseline in RQ2 and RQ3.

(RQ2) Do likelihoods of theorem-reusing proofs increase
across multiple iterations? Here we evaluate whether the
prover gains more capabilities and confidence in theorem reuse
during the training progress. Figure [2| shows that the average
likelihood of proofs where previous conjectures were used consis-
tently increases across the training process. This aligns with the
significant increase in intrinsically useful conjectures across mul-
tiple iterations, as shown in Figure[I] and shows that the UseFor
training objective is effective in encouraging theorem reuse.

(RQ?3) Are the conjectures useful beyond self-play? Extrinsic
usefulness (Figure3)) tests whether the system discovers theorems
a human mathematician would value (simulated by LL.M-as-a-
judge and an SMT solver in our evaluation), beyond the self-play
training loop itself. In early iterations, UseFor quickly identifies
many “easy’”’ theorems accessible through shallow search. Use-
fulness continues to increase in later iterations, indicating that
the system discovers progressively deeper and less trivial results.
In Appendix [D.4] we provide examples of extrinsically useful
theorems conjectured by our model.

(RQ4) Is the usefulness metric essential for both conjecturing
and proving? This experiment evaluates how our usefulness
training signal affects performance (Figure). As seen in Fig-
ure[] if training is omitted, the system performs markedly worse:
extrinsically, fewer theorems are judged to be useful by LLM-
as-a-judge and SMT solver. This demonstrates the importance
of training for updating the conjecturer with usefulness feedback
steers it toward generating conjectures that are genuinely valuable
for future proofs.

4 Conclusion

—— Our method

N
S

Arithmetic

= =
o N) &

Intrinsic Usefulness

~

Iteration

Figure 1: Intrinsic Evaluation:
Total theorem usages.

—— Our method

Arithmetic

-8
-10

Log-probability

0 1 2 3 4 5 6 7 8 9
Iteration

Figure 2: Mean log-probabilities
of proofs in which a previously
conjecture was used.

--- Base minimo --- Our method

18 Arithmetic

Extrinsic Usefulness
©

Iteration
Figure 3: Extrinsic Evalua-
tion: Number of useful theorems
judged by GPT-4.1 and Z3 solver.

—— Ourmodel —— No usefulness training

18 Arithmetic

,_.
&
A

—
[N)

©
\

o

Extrinsic Usefulness

w
\

Iteration

Figure 4: Ablation showing the
necessity of usefulness training.

Across considered domains, UseFor increases both the intrinsic reuse of conjectured theorems and
the extrinsic usefulness of its discoveries, confirming that usefulness-aware self-play can build
coherent and cumulative theories directly from axioms. However, our study is confined to relatively

small models, limited axioms, and fixed search budgets; scaling to richer foundations (e.g., Lean,
Isabelle) and larger models remains an open challenge. Applying approaches like UseFor on bigger
models, such as large language models pretrained large corpora, brings the additional risk of data
contamination, and so future work must find ways to distinguish between truly novel conjectures and
ones duplicated from the pretraining corpus in the setting where LLMs are used for conjecturing new
mathematical theorems.

References

[1] Yousef Alhessi, S6lrin Halla Einarsdéttir, George Granberry, Emily First, Moa Johansson,
Sorin Lerner, and Nicholas Smallbone. Lemmanaid: Neuro-symbolic lemma conjecturing,
2025.

[2] Yoshua Bengio and Nikolay Malkin. Machine learning and information theory concepts towards
an ai mathematician. Bulletin of the American Mathematical Society, 61(3):457-469, 2024.

[3] Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran
Jin, Xing Jin, Chenggang Li, Kaijing Ma, Cheng Ren, Jiawei Shen, Wenlei Shi, Tong Sun,
He Sun, Jiahui Wang, Siran Wang, Zhihong Wang, Chenrui Wei, Shufa Wei, Yonghui Wu,
Yuchen Wu, Yihang Xia, Huajian Xin, Fan Yang, Huaiyuan Ying, Hongyi Yuan, Zheng Yuan,
Tianyang Zhan, Chi Zhang, Yue Zhang, Ge Zhang, Tianyun Zhao, Jianqiu Zhao, Yichi Zhou,
and Thomas Hanwen Zhu. Seed-prover: Deep and broad reasoning for automated theorem
proving, 2025.

[4] Leonardo De Moura and Nikolaj Bjgrner. 7Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, 2008.

[5] Kefan Dong and Tengyu Ma. Stp: Self-play llm theorem provers with iterative conjecturing and
proving, 2025.

[6] Thibault Gauthier and Josef Urban. Learning conjecturing from scratch, 2025.

[7] Moa Johansson and Nicholas Smallbone. Conjectures, tests and proofs: An overview of theory
exploration. Electronic Proceedings in Theoretical Computer Science, 341:1-16, September
2021.

[8] David McAllester. Mathzero, the classification problem, and set-theoretic type theory, 2020.

[9] Naoto Onda, Kazumi Kasaura, Yuta Oriike, Masaya Taniguchi, Akiyoshi Sannai, and Sho
Sonoda. Leanconjecturer: Automatic generation of mathematical conjectures for theorem
proving, 2025.

[10] Gabriel Poesia, David Broman, Nick Haber, and Noah D. Goodman. Learning formal mathe-
matics from intrinsic motivation, 2024.

[11] Gabriel Poesia and Noah D. Goodman. Peano: learning formal mathematical reasoning.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 381(2251), June 2023.

[12] Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and
Sumit Gulwani. Synchromesh: Reliable code generation from pre-trained language models. In
International Conference on Learning Representations (ICLR), 2021.

[13] Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving,
2020.

[14] Terence Tao. On the strength of theorems. https://terrytao.wordpress.com/
advice-on-writing-papers/on-the-strength-of-theorems/, 2007. Accessed: 2025-
09-15.

[15] Josef Urban and Jan Jakubiiv. First neural conjecturing datasets and experiments, 2020.

https://terrytao.wordpress.com/advice-on-writing-papers/on-the-strength-of-theorems/
https://terrytao.wordpress.com/advice-on-writing-papers/on-the-strength-of-theorems/

[16] Haiming Wang, Huajian Xin, Chuanyang Zheng, Lin Li, Zhengying Liu, Qingxing Cao, Yinya
Huang, Jing Xiong, Han Shi, Enze Xie, Jian Yin, Zhenguo Li, Heng Liao, and Xiaodan Liang.
Lego-prover: Neural theorem proving with growing libraries, 2023.

[17] Yutong Xin, Jimmy Xin, Gabriel Poesia, Noah Goodman, Qiaochu Chen, and Isil Dillig.
Automated discovery of tactic libraries for interactive theorem proving, 2025.

[18] Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin Lauter, Swarat Chaudhuri, and
Dawn Song. Formal mathematical reasoning: A new frontier in ai, 2024.

[19] Kaiyu Yang, Aidan M. Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad
Godil, Ryan Prenger, and Anima Anandkumar. Leandojo: Theorem proving with retrieval-
augmented language models, 2023.

[20] Huaiyuan Ying, Zijian Wu, Yihan Geng, Zheng Yuan, Dahua Lin, and Kai Chen. Lean workbook:
A large-scale lean problem set formalized from natural language math problems, 2025.

A Related Work

Our work is primarily related to prior bodies of work on mathematical conjecturing, tactic discovery,
and theory exploration. Our approach is distinguished by the fact that our model is trained in a tabula
rasa fashion, without any pre-existing examples, and evaluated on the theory exploration task.

Mathematical conjecturing. Our work is most closely based on Minimo [10], which proposes a
theorem-proving model in the Peano [11]] formal language that is trained through iterative conjecturing
and proving from scratch. [[13] also propose a model that is trained via self-play, while [5] demonstrate
the ability of the iterative conjecturing-proving paradigm to enhance a pretrained theorem prover.
However, these works only use conjecturing as a means to improve the proof-search capabilities of the
model, and do not attempt to evaluate the conjecturing abilities of the model directly. LeanConjecturer
[9] proposes a model specifically designed for the conjecturing task, but uses a pretrained LLM; in
doing so, the ability of the LeanConjecturer model to generate novel conjectures cannot be faithfully
evaluated due to inevitable contamination from pre-training data. Compared to these works, our
approach evaluates conjecturing as a stand-alone task, while our tabula rasa setting allows us to
definitively confirm the novelty of conjectures generated by our model.

Tactic and premise discovery. There is also a body of work concerning the task of tactic discovery,
which aims to construct tactics in an interactive theorem prover setting that simplify proofs or
otherwise enhance proving capabilities. TacMiner [[17] proposes a method to find tactic simplifications
in RCoq, given an existing high-quality corpus of proofs. Lego-Prover [16]] and Seed-Prover [3]
use already proven lemmas as a way to strengthen a theorem proving model, in the Isabelle and
Lean 4 settings, respectively. However, all of these approaches require a dataset of high-quality,
human-generated proofs, while our approach generates useful premises from scratch.

Theory exploration using machine learning. Finally, a third body of work is theory exploration
using ML methods, the task of formulating interesting conjectures about a given problem domain [7]].
We consider this problem to be the one our work addresses most closely. While a number of classical
and neural approaches have been proposed for this task, existing neural methods work by training
or finetuning a model based on an existing proof corpus [[15]. Lemmanaid [1] uses neuro-symbolic
methods by finetuning a model with a subset of an existing proof library, and then evaluating it on
another subset of conjectures. In search of a purely intrinsic approach in order to discover how a
model could discover this usefulness without relying on human data, we distinguish ourselves by not
training on external data, an approach similar to what has been done for SMT solvers [6].

B Details about Experimental Setup

All models were trained for 10 iterations, with 200 conjectures generated per iteration. Each
experiment was repeated three times, and we report mean values with standard deviations across
runs. Proof search was conducted using Monte Carlo Tree Search (MCTS) with a budget of 1000

expansions per conjecture. We repeat all experiments for three times and report averaged results to
account for stochastic variations.

C Axioms

We now provide all the axioms for the three domains considered in our experiments in Section
They are taken from the Minimo paper [10] and formalized in the Peano languages [11].

Arithmetic

= : [nat -> nat -> prop].

nat : type.

Zz : nat.

s [nat -> nat].
o : nat.

: [nat -> nat -> nat].
* : [nat -> nat -> nat].

os : (=0 (s 2)).

+_z : [(n : nat) -> (= (+ ’n z) ’n)].
+_s : [(’n : nat) -> (Pm : nat) -> (= (+ ’n (s ’m)) (s (+ ’n ’m)))].

_z : [(°n : nat) -> (= (’n z) 2)].
¥_s : [(°n : nat) -> (’m : nat) -> (= (*x ’n (s ’m)) (+ ’n (* ’n ’m)))].

nat_ind : [(’p : [mnat -> propl) -> (’p z) -> [(’n : nat) ->
Cp ’n) -> Cp (s ’n))] -> [Cn : nat) -> Cp ’n)]].

#backward nat_ind.

#forward +_z ((+ ’n z) : nat).
#forward +_s ((+ ’n (s ’m)) : nat).
#forward *_z ((x ’n z) : nat).
#forward *_s ((x ’n (s ’m)) : nat).

Propositional logic
prop : type.
false : prop.

/* Connectives */

not : [prop -> propl.

and : [prop -> prop -> prop].
or : [prop -> prop -> prop].
iff : [prop -> prop -> prop].

/* Introduction rule for conjunction */

#backward and_i.

and_i : [(°P : prop) -> (°Q : prop) -> ’P -> ’Q -> (and ’P ’Q)].
/* Elimination rules for conjunction */

#forward and_el (°_ : (and ’P ’Q)).

and_el : [(°P : prop) -> (°Q : prop) -> (and ’P °Q) -> ’P].
#forward and_er (°_ : (and ’P ’Q)).

and_er : [(°P : prop) -> (°Q : prop) -> (and ’P °Q) -> ’Q].

/* Introduction rules for disjunction */

#backward or_il.

or_il : [(°P : prop) -> (°Q : prop) -> ’P -> (or ’P ’Q)].
#backward or_ir.

or_ir : [(°P : prop) -> (°Q : prop) -> ’Q -> (or ’P ’Q)].

/* Elimination rule for disjunction */

#backward or_e infer infer infer infer subgoal subgoal.

or_e : [(°P : prop) -> (°Q : prop) -> (°R : prop) ->
(or P °Q) -> [°P -> °R] -> [’Q -> ’R] -> °’R].

/* Introduction rule for negation */

#backward not_i.

not_i : [(°P : prop) -> [’P -> false] -> (mot ’P)].
/* Elimination rule for negation */

not_e : [(°P : prop) -> (not ’P) -> ’P -> false].
#backward exfalso.

exfalso : [false -> (’P : prop) -> ’P].

/* Introduction rules for equivalence */

#backward iff_i.

iff i : [C°P : prop) -> (°Q : prop) -> [’P -> Q] -> [’Q -> ’P] -> (iff ’P ’Q)].
/* Elimination rules for equivalence */

#forward iff_el (°_ : (iff ’P ’Q)).

iff_el : [(°P : prop) -> (°Q : prop) -> (iff ’P °Q) -> [’P -> ’Q]].

#forward iff_er (°_ : (iff °P °Q)).

iff_er : [(°P : prop) -> (°Q : prop) -> (iff °P °Q) -> [’Q -> °PI].

/* Excluded middle */
#forward em.
em : [(°’P : prop) -> (or ’P (mot ’P))].

Group theory

=: [t : type) -> ’t -> ’t -> prop].
G : type.

op : [G->G ->G].
id : G.

/* Associativity */
#forward op_assoc ((op (op ’a ’b) ’c) : G).
op_assoc : [(Pa : G) -> (b : G) -> (’°c : G) ->
(= (op (op ’a ’b) ’c) (op ’a (op ’b ’c)))I.

/* Commutativity */
#forward op_comm ((op ’a ’b) : G).
op_comm : [(’a : G) -> (°b : G) -> (= (op ’a ’b) (op ’b ’a))].

/* Identity */
#forward id_1.
id_1 : [(Pa : G) -> (= (op id ’a) ’a)].

/* Inverse */

inv : [G -> G].

#forward inv_1.

inv_l : [(Pa : G -> (= (op (inv ’a) ’a) id)].

D Extrinsic Evaluation

In order to perform extrinsic evaluation, we run 5 iterations of our extrinisc evaluation pipeline, and
take the average of the 5 results in order to mitigate variance from different runs of LLM evals. Our
extrinsic evaluation pipeline consists of two steps: usefulness checking (Appendix[D.T}), deduplication
(Appendix [D.2), and SMT solving. In usefulness checking, we prompt the model concurrently on
all conjectures generated by the model and keep the ones marked as useful by the LLM. As we are
concurrently requesting for usefulness, we are likely to get a large amount of duplicate conjectures.
We therefore make a second pass, calling the model on the useful conjectures to deduplicate them,

keeping only sufficiently different theorems so as to get more reasonable results. Finally, we leverage
the Z3 SMT solver [4] to automatically prove the remaining conjectures and count only the proven
ones. We found Z3 to be highly effective in proving these conjectures, as they are derived from
axioms.

In the specific case of group theory, we noticed the variance in LLM evaluations was significantly
higher than other domains, and the LLM had a very high rate of returning false problems. We solved
this by running the SMT solver first, and giving a custom deduplication prompt (Appendix with
examples for group theory.

D.1 Usefulness Checking Prompt

You are tasked to judge whether a given lean theorem could be considered useful for
an automatic theorem prover to have among its known theorems.

This theorem prover has only access to the following axioms and known theorems:
(X3

[

{known_theorems}

As well as access to the ‘rfl‘ and ‘rewrite‘ commands

Here is the theorem you are to evaluate

¢¢¢leand

{generated_conjecture}

ccc

Think through the problem step by step. Translate the problem into natural language,
then think of what the possible uses of the theorem could be, whether it’s
obviously true and whether it means something.

On the last line, say either USEFUL or NOT USEFUL and nothing else.

D.2 Deduplication Prompt

I have a set of lean theorems, some of which are very similar to each other. I want
to use them as tactics for proof generation.

Please remove the duplicates, so that I can have a list of only unique theorems.

For example, the following four theorems would be duplicates of each other:

¢¢‘leand

theorem probleml : (vO : Nat) -> vO * 1 = vO

theorem problem2 : (vO : Nat) -> (vl : Nat) -> vl x 1 = v1

theorem problem3 : (vO : Nat) -> (vl : Nat) -> (v2 : vO = vl) -> vl *x 1 = vl

theorem problem4 : (vO : Nat) -> vO * (Nat.succ 0) = vO

(X3

The inclusion of an extra variable in problem 2 doesn’t change the fact that the
result is exactly the same, and the different names for the variable doesn’t
affect the result.

Problem 3 introduces an irrelevant hypothesis, which doesn’t get used in the theorem
, and the conclusion is still the same.

The last one is a trivial result of the others, as 1 is defined as Nat.succ 0 in

this case.

Here is my list of theorems for you to remove duplicates for.

{}

I also have attached an explanation for why each could be useful for a theorem
prover.

{}

Think it through step by step, and then return the list of unique theorems from this
list in a list format inside of a ‘‘‘leand4‘‘‘ code block. Make sure your
answer is inside the very last lean codeblock. Please make sure to repeat the
theorems exactly as I wrote them.

D.3 Group Theory Specific Prompts
I have a set of lean theorems, some of which are very similar to each other. I want

to use them as lemmas for proof generation.
Please remove the duplicates, so that I can have a list of only unique theorems.

For example, the following four theorems would be duplicates of each other:

¢¢¢leand

theorem probleml : ((vO : Group) -> (vi : (vO = (vO * (1~{-1})))) -> ((1~{-1}) = 1))

theorem problem2 : ((vO : Group) -> (vl : Group) -> ((1~{-1}) = 1))

theorem problem3 : ((vO : Group) -> ((1~{-1}) = 1))

theorem problem4 : ((vO : Group) -> (1 = (1~{-1}))

cc¢

Problem 1 introduces an irrelevant hypothesis as compared to problem 3, as it makes
no mention of vO in its final claim. Therefore, these two problems are
duplicates of each other.

Problem 2 is a similar case to problem 1: It introduces an extra variable, but does
nothing with it. This is irrelevant, and makes for the same problem.

Problem 4 is the same as problem 3, but is flipped. As we are running this using rw,
we can simply call this problem in the inverse direction, so these two lemmas
are the same.

In this case, our final result would likely be:
¢¢¢leand
theorem problem3 : ((vO : Group) -> ((1~{-1}) = 1))

[

Here is my list of theorems for you to remove duplicates for.

{}

I also have attached an explanation for why each could be useful for a theorem
prover.

{}

Think it through step by step, and then return the list of unique theorems from this
list in a list format inside of a ‘‘‘lean4‘‘‘ code block. Make sure your
answer is inside the very last lean codeblock. Please make sure to repeat the
theorems exactly as I wrote them.

D.4 Examples of Extrinsically Useful Conjectures

Table [1| highlights representative conjectures that our evaluation judged to be extrinsically useful
across three domains. These serve as concrete examples of the kinds of results UseFor is capable
of producing. As an illustration, UseFor produces a 5-step proof of the first propositional-logic
conjecture in Table [I] using only the base axioms. However, given the tactic iff_elim, which
reduces an equivalence to two implications, together with the axioms

False — P, (1)
PANQ = P, 2)

UseFor found the following 5-step proof:

1.Split the problem into cases: by iff_elim
— Case 1: False = P A False

2.introduce F'alse into hypothesis context

3.False = P A False by (1)
— Case 2: P A False —> False

4.introduce P A False into hypothesis context

5.P A False = False by (2)

This example demonstrates how UseFor produces lemmas that apply broadly and compress multiple
reasoning steps into a single inference step in practice. This ability provides a crucial advantage in
Monte Carlo Tree Search, where the search space expands exponentially with depth.

We remark that these proven conjectures are also observed to be very important to the prover in future
iterations. For instance, P =—> ——P and 1~! = 1 often serve as powerful shortcuts, condensing
multi-step reasoning into a single step and thereby streamlining longer proofs.

10

Arithmetic

Propositional Logic Group Theory

Ve e Nyz(z?+1) =2 +2°
20 =0 = =0
VreNzxl==z

False <= (P A False) 1=t=1
P = ——P
P << P VeeGr-z=2 = =1

Table 1: Representative conjectures judged extrinsically useful across three considered domains.

E Results for other domains

—— Our method
60 ~ Propositional Logic 1001 Group Theory
w 48 80
w
[
£
2 36 60
wu
=2
G 24 40 -
£
b=
[
124 20
U e L e
01 2 3 4 5 6 7 8 9 10 01 2 3 4 5 6 7 8 9 10

lteration

lteration

Figure 5: Intrinsic Evaluation: number of times lemmas were used during proving.

--- Base minimo --- Our method
4 — -
Propositional Logic g4 Group Theory_.----="""
34 ’,""’ /--: —————————————————
e | - -
— ‘-— s
%2_ f'-’ 44 "’,
3 % .
/ "I
2o .] i)
.El .', _________ - 27 l:’
= s PP i
Lﬁ /, _a" r#
O_L ------- 0_
01 2 3 4 5 6 7 8 9 10 01 2 3 4 5 6 7 8 9 10
lteration lteration

Figure 6: Extrinsic Evaluation: Number of deduplicated useful theorems per iteration, as determined
by GPT-4.1 as a judge and proved by an SMT solver.

11

	Introduction
	Methodology
	Base Self-Play Framework (Minimo)
	Usefulness-Aware Self-Play Loop

	Experimental Evaluation
	Conclusion
	Related Work
	Details about Experimental Setup
	Axioms
	Extrinsic Evaluation
	Usefulness Checking Prompt
	Deduplication Prompt
	Group Theory Specific Prompts
	Examples of Extrinsically Useful Conjectures

	Results for other domains

