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ABSTRACT

Visual odometry (VO) aims to estimate camera poses from visual inputs — a fun-
damental building block for many applications such as VR/AR and robotics. This
work focuses on monocular RGB VO where camera poses are directly estimated
from a monocular RGB video without IMU or 3D sensors. Existing approaches
lack robustness under this challenging scenario and fail to generalize to unseen
data (especially outdoors); they also cannot recover metric-scale poses. Several
methods have attempted to address these problems with priors from predicted
depth. However, especially on unseen data, depth prediction noise can drastically
degrade performance. We propose Robust Metric Visual Odometry (RoMeO), the
first method that can leverage (noisy) depth priors to enable robust VO and recover
metric scale poses. RoMeO incorporates both pre-trained monocular metric depth
and multi-view stereo (MVS) models to recover metric-scale, simplify correspon-
dence search, provide better initialization and regularize optimization. Effective
strategies ensure the efficiency and the robustness to prior noise. RoMeO advances
the state-of-the-art (SOTA) by a large margin across 6 diverse datasets covering
both indoor and outdoor scenes. Compared to the current SOTA DPVO, RoMeO
reduces the relative (align the trajectory scale with GT) and absolute trajectory er-
rors on average by 55.2% and 77.8% respectively (Fig. 1). The performance gain
also transfers to the full SLAM pipeline (with global BA & loop closure). Code
will be released upon acceptance.

1 INTRODUCTION

Visual Odometry (VO) estimates the sensor pose from visual signals. It is the core problem of many
applications such as mapping, robot navigation, and autonomous driving. This work focuses on
monocular RGB VO, where the input is only a monocular RGB video and no information from a 3D
sensor or inertial measurement unit (IMU) is available.

Classical methods rely on hand-crafted features and explicit geometric optimizations to estimate
poses. The geometric optimization is executed either directly on pixel intensities (Engel et al., 2014;
2017; Zubizarreta et al., 2020), or indirectly on matches between keypoints (Mur-Artal et al., 2015;
Rosinol et al., 2020). Due to the instability of hand-crafted features, classical methods suffer from
frequent tracking failures on challenging data with large motions or extreme weather.

Learning-based approaches (Wang et al., 2021; Teed & Deng, 2021; Teed et al., 2024) train end-
to-end systems for both correspondence search and pose optimization, which minimizes tracking
failures. However, these approaches have limited robustness, i.e., they generalize poorly on zero-
shot data, where classical methods often perform better when they do not fail. Moreover, both types
of methods lack mechanisms to recover metric-scale trajectories without 3D sensors or IMU.

A common reason for these drawbacks is the lack of priors. As a result, the joint pose-depth op-
timization suffers from local optima and cannot recover the metric-scale. Though previous works
have explored the use of predicted depth (Yang et al., 2020; Yin et al., 2023) to VO, the depth pre-
diction noise limits their robustness, making them often perform worse on challenging datasets than
pure correspondence-based SOTA (Teed & Deng, 2021; Teed et al., 2024). To this end, we propose
Robust Metric Visual Odometry (RoMeO), a novel method that can leverage potentially noisy priors
from pre-trained depth models to enhance VO robustness and recover metric-scale poses.

RoMeO initializes VO with light-weight monocular metric depth models to recover metric scale
poses. Robust depth-guided bundle adjustment adaptively detects accurate monocular and MVS
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Figure 1: Teaser. We propose RoMeO, a robust metric-scale VO system for monocular RGB videos.
RoMeO effectively introduces priors from pre-trained depth estimation models to standard flow-
based VO systems. (a) On 6 diverse datasets covering both indoor and outdoor scenes, RoMeO
consistently and significantly improves the performance, both in terms of the trajectory shape (rel-
ative trajectory error (RTE)) and scale (absolute trajectory error (ATE)). (b) RoMeO trajectories
closely align with the ground truth, even without scale alignment. (c) RoMeO enables dense 3D
reconstructions with a much higher quality compared to previous SOTA.

priors, and uses them to regularize pose-depth optimization. Effective conditions are introduced
to avoid poor MVS priors generated by inaccurate poses, low multi-view overlaps, or insufficient
motions. Noise augmented training adapts the flow estimation network to the depth-enhanced inputs,
which maximizes the accuracy while maintaining the robustness to depth prediction noise.

As shown in Fig. 1 (a), RoMeO significantly advances the SOTA across 6 diverse benchmarks cov-
ering both indoor and outdoor scenes. Compared to the current SOTA DPVO (Teed et al., 2024),
RoMeO achieves 55.2% and 77.8% reduction respectively for relative and absolute trajectory er-
rors, i.e., both the trajectory shape and scale are significantly improved (Fig. 1 (b)). Unlike previous
depth-based approaches (Yin et al., 2023) that hurt the VO accuracy on challenging data, the perfor-
mance improvement of RoMeO is consistent across the board. RoMeO also enables dense and much
more accurate 3D reconstructions (Fig. 1 (c)). These improvements also propagate to the full SLAM
system with global BA enabled. Extensive analyses validate the individual RoMeO components.

Contributions: (1) We devise a novel learning-based VO-system that generalizes to unseen data
and outperforms SOTA by a large margin across 6 benchmarks. (2) We analyze both monocular
and MVS depth models and provide solutions to obtain high-quality priors while maintaining effi-
ciency. (3) We introduce robust depth guidance into flow estimation and bundle adjustments, which
significantly improves the accuracy even under noisy depth priors.

2 RELATED WORK

Visual odometry. Practical VO systems may rely on inputs beyond a monocular video, for example,
IMU in visual-inertial odometry (Forster et al., 2015), sensor depth in RGB-D VO (Whelan et al.,
2013; Teed & Deng, 2021; Handa et al., 2014), and multi-view sensors in stereo VO (Wang et al.,
2017; Engel et al., 2014). The focus of this work is VO from only monocular RGB video.
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Figure 2: Overview. RoMeO initializes each frame using monocular metric depth models. MVS
models are used to further refine intermediate BA depth. Besides replacing the initial/intermediate
depth, monocular and MVS depth priors are also added into the regularization terms of BA, with
adaptive conditions to filter noisy depth priors and enable effective MVS prediction. Noise aug-
mented training is used to adapt the flow network to depth-enhanced inputs, which maximizes the
accuracy while maintaining the robustness to prior noise.

Classical methods use hand-crafted features to find correspondences and perform joint pose-depth
optimization. Indirect approaches (Mur-Artal et al., 2015; Rosinol et al., 2020) find correspondences
through feature matching and then minimize the projection error on the correspondences. Direct ap-
proaches (Engel et al., 2014; 2017; Zubizarreta et al., 2020) minimize the photometric error directly
without feature matching. A common drawback of classical methods is the frequent tracking failure
on challenging data with large motions or extreme weather.

Learning-based methods train differentiable systems end-to-end on labeled data to avoid tracking
failures. Teed & Deng (2018) proposed a differentiable structure-from-motion architecture that
alternates between motion and depth estimation. Wang et al. (2021) incorporated camera intrin-
sics into VO and pioneered training on the large-scale synthetic dataset TartanAir (Wang et al.,
2020). Teed & Deng (2021) significantly improved prior works by introducing RAFT (Teed &
Deng, 2020) into VO systems and designing a differentiable bundle adjustment layer for pose-depth
joint optimization. Teed et al. (2024) sped up Droid-SLAM by sparse flow estimation and opti-
mization. The major drawback of learning-based approaches is the limited robustness to zero-shot
data, especially for outdoor scenes with challenging motion and dynamic objects. As a result, they
can perform worse than classical methods which fail less in such cases. Meanwhile, existing ap-
proaches cannot recover metric-scale poses without 3D sensors (depth, stereo, or IMU). Though
several works (Tateno et al., 2017; Yang et al., 2020; Yin et al., 2023) tried to introduce predicted
depth to VO, they suffer from performance drop due to the depth prediction noise, especially on
zero-shot data. RoMeO improves VO by introducing depth priors from pre-trained monocular and
MVS models to both the initialization and the iterative optimization of VO. Effective strategies are
proposed to ensure the robustness of RoMeO under (severe) prior noise, which enables consistent
and significant error reduction across diverse zero-shot data.

Depth estimation. Monocular depth estimation aims to recover the depth from a single input image.
Recent methods (Ranftl et al., 2020; 2021; Bhat et al., 2023; Yin et al., 2023; Yang et al., 2024)
have trained models on large-scale data to enable zero-shot monocular depth estimation. Multi-view
stereo (MVS) methods (Yao et al., 2018; Bae et al., 2022; Cao et al., 2022) estimate depth from posed
multi-view images. With accurate poses for the input images, they can recover more consistent and
accurate depth than monocular methods. RoMeO leverages both monocular and MVS models to
better initialize and regularize VO.

3 METHOD

As shown in Fig. 2, RoMeO maintains a frame graph on-the-fly during VO, which contains a sliding
window of keyframes. Every new frame is initialized with an identity relative pose and the pre-
dicted monocular metric depth from a pre-trained model. Given the current frame graph, RoMeO
jointly refines the poses and depth by alternating between flow estimation and differentiable bundle
adjustment (BA), with robust guidance from both monocular and MVS depth.
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Inspired by the recent SOTA (Teed & Deng, 2021; Teed et al., 2024), each flow estimation step first
obtains an initial optical flow by projecting the pixels of each keyframe to the others using camera
intrinsics and the current pose and depth. This initial flow is then fed to a flow network that predicts
a residual flow and a confidence map. RoMeO leverages depth priors to obtain more accurate initial
flow, which simplifies residual flow prediction. Any flow model can in principle be used in this step.
Due to the wide adoption and the ability to perform dense reconstructions, we use a RAFT-style
architecture following (Teed & Deng, 2021). After flow estimation, 2 iterations of BA are performed
to optimize the pose and depth. RoMeO leverages monocular metric depth to initialize BA such that
it can recover metric scale poses without 3D sensor or IMU. Both monocular and MVS depth are
further used to effectively regularize the BA objective. This process is repeated 6 times, resulting in
6 flow estimation steps and 12 BA iterations for each new keyframe. Pose-only BA is performed for
non-keyframes, with monocular depth initialization.

3.1 ROBUST DEPTH-GUIDED BUNDLE ADJUSTMENT

RoMeO guides BA with both monocular and MVS depth. Besides using them to replace ini-
tial/intermediate BA depth, it embeds them into the BA objective below:

E(G,d) =
∑

(i,j)∈ε

(∥p∗
ij −Πc(Gij ◦Π−1

c (pi,di))∥2Σij
+ Ciλ∥di − d∗

i ∥2Σij
), (1)

where G and d are the optimized poses and depth, and ϵ is the current frame graph. The first term is
the standard BA objective (Teed & Deng, 2021) where p∗

ij ∈ RH×W×2 denotes the image coordi-
nates when we project the pixels from frame i to j with the estimated flow. Πc(Gij ◦ Π−1(pi,di))
corresponds to the image coordinates when we project the pixels from frame i to j with the cur-
rent depth di of frame i, the relative pose Gij between frames i and j. Πc is the world-to-camera
projection. Intuitively, the first term encourages the consistency between flow-based and geometric-
projection-based correspondences. The second term is a robust depth regularization term where we
encourage the BA-optimized depth map di ∈ RH×W to be close to the predicted monocular/MVS
depth d∗

i . λ = 0.05 is the penalty weight for regularization. The condition weight Ci ∈ {0, 1} turns
off depth regularization when severe noise exists in d∗

i . ∥ · ∥Σij
is the Mahalanobis distance which

weights the error terms based on the confidence wij ∈ [0, 1]H×W of the flow estimation.

RoMeO automatically determines the value of Ci, which is the key to making depth-guided BA
robust to prior noise. During the construction of the initial frame graph containing the first 12
keyframes of the scene, we do not enable depth regularization (Ci = 0). After the initial frame
graph has been built and the pose-depth optimization is completed on this graph, we compute the
average photometric error from the latest keyframe i to the connected frames in the graph:

η(i) =
∑

(i,j)∈ε′

||ci(pi)− cj(Πc(Gij ◦Π−1
c (pi,di)))||2Σij

, (2)

where ci(pi) ∈ RH×W×3 returns the colors of the pixels in frame i. Eq. 2 essentially computes
the color difference between the pixels in frame i with their corresponding pixels in frame j where
the correspondences are obtained by the same pose-depth re-projection in Eq. 1. When the depth
of frame i is accurate, the photometric error η(i) should be small. We denote the error on the latest
keyframe as ηinit.

For every new keyframe in the future, we compute the same photometric error η′ using Eq. 2, where
the depth is the initial monocular depth, and the pose is obtained from the first BA iteration. We
only set Ci to 1 if η′ < αηinit, where α is a pre-defined constant. Intuitively, when this condition is
violated, the predicted depth is potentially unreliable and should not be used to regularize BA. This
strategy is robust to noise: it not only maintains the strong performance gain from accurate depth
priors but also mitigates the negative impacts of severe depth noise. As a result, RoMeO achieves
much higher zero-shot accuracy than current SOTA across a diverse set of datasets.

3.2 METRIC DEPTH PRIOR

The non-convex nature makes VO optimization highly sensitive to initialization. State-of-the-art
methods often initialize the depth of a new frame to a constant (e.g. 1m) (Teed & Deng, 2021) for
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all pixels, which might be acceptable for indoor scenes where the depth variation is small. However,
it is unsuitable for outdoor scenes where close and distant pixels can have highly different depths.
Uniform initialization also hinders the recovery of metric-scale poses. To address both problems,
we initialize the depth of each frame with the output of a pre-trained monocular metric depth model.

Table 1: Different monocular depth models for initializa-
tion and depth guided BA. Other strategies mentioned in
later sections are not applied.

Model KITTI Odometry TUM-RGBD

RTE (m) / ATE (m) FPS RTE (m) / ATE (m) FPS
No depth prior 47.53/137.33 5.33 0.116/0.551 10.77
DepthAnythingV2-Small 11.15/18.78 4.19 0.104/0.273 7.56
DepthAnythingV2-Large 7.97/13.47 1.59 0.107/0.456 4.20
Metric3DV2-Small 5.71/8.74 4.08 0.104/0.235 6.41
Metric3DV2-Large 4.08/5.73 1.70 0.105/0.247 2.39
DPT-Hybrid 4.25/8.54 3.96 0.098/0.205 8.55

Though more recent methods (Hu
et al., 2024; Yang et al., 2024) with
large pre-trained models are avail-
able, they introduce severe overheads
to the VO system and hinder the
practicality. To minimize overhead
while maintaining robustness, we use
the lightweight DPT-Hybrid (Ranftl
et al., 2021) with the provided scale
and shift parameters to obtain the
metric depth. Tab. 1 shows the accu-
racy and speed of VO using different

metric depth models for initialization and BA regularization. We use 1 indoor (KITTI) and 1 out-
door (TUM-RGBD) datasets for analysis. Interestingly, though all depth models can provide rea-
sonable error reduction, bigger models such as DepthAnythingV2-Large (Yang et al., 2024) and
Metric3DV2-Large (Hu et al., 2024) introduce severe overheads to VO, and are not obviously better
than DPT-Hybrid. We conjecture that this is because the BA of RoMeO will optimize the depth
details and filter out noisy depth priors. Therefore, the key to practical monocular depth guidance in
VO is a light-weight model that can provide rough but robust metric-scale depth.

3.3 MVS PRIOR

Creating effective MVS guidance in a VO system is non-trivial for three main reasons: (1) Accurate
MVS requires a reasonable amount of camera translations and rotations, and large overlapping
areas between multiple views. These conditions are not ensured by standard keyframe selection
strategies. (2) Accurate MVS needs accurate poses. Naively adding MVS guidance at early iterations
can hurt VO. (3) MVS outputs often contain noise.

To address the first issue, we denote the intermediate relative translation estimated by BA between
the last 3 keyframes (i− 2, i− 1, i) as ti−2,i−1 and ti−1,i, and only enable MVS guidance when

∥tk−1,k∥+ ∥tk−2,k−1∥ > 0.1m & ∠(tk−2,k−1, tk−1,k) ∈ [10◦, 30◦]. (3)

This strategy can effectively filter keyframes with extreme motions or small cross-view overlaps.
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Figure 3: Residual flow magnitudes in different
BA iterations.

For the second issue, an interesting observation
is that, given effective monocular depth guid-
ance, BA can return reasonably accurate inter-
mediate poses within a small number of iter-
ations. This is evident from Fig. 3 where we
plot the magnitude of the residual flow over
different BA iterations for the KITTI Odometry
dataset (Geiger et al., 2012). The magnitude of
RoMeO at early iterations is already lower than
the final iteration of the baseline without any
depth prior, which indicates better pose accu-
racy. Based on this observation, if E.q. 3 is sat-
isfied after the 8-th BA iteration, RoMeO uses
the intermediate poses and the most recent 3
keyframes to compute the MVS depth for the
newest keyframe. We use pre-trained MaGNet(Bae et al., 2022) as the MVS estimator. The inter-
mediate BA depth and d∗

i in E.q. 1 are then replaced with the MVS depth to improve the remaining
flow generation and pose-depth optimization accuracy.

To address the third issue, we leverage the output confidence map M ∈ RH×W of MVS, which
indicates the probability that the prediction on each pixel is correct. Specifically, we ignore the
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pixels corresponding to the lowest 20% of the values in M during future flow generation and BA
iterations. Essentially, sparse BA is conducted on selected pixels with reliable depth.

These strategies not only improve the robustness of MVS guidance but also reduce the overhead.

3.4 NOISE AUGMENTED TRAINING

The trainable parameters of RoMeO lie in the flow network. Besides benefiting BA optimization,
accurate depth priors effectively simplifies flow estimation since the initial flow obtained by pose-
depth based reprojection would be more accurate. Empirically we can train the flow network without
depth priors, and insert depth priors during inference to achieve non-trivial performance improve-
ments. However, this naive strategy cannot fully adapt the trainable parameters to the prior-enhanced
inputs. Specifically, our prior-enhanced poses and depth lead to more accurate initial flow, which
requires a much smaller residual flow during inference. Hence, we jointly train the flow network
with the depth-enhanced inputs.

Since predicted depth can have (severe) noise on unseen data, we purposely maintain some noise
during training to ensure the robustness to prior noise. Specifically, we first pre-train the flow net-
work without any depth prior. Then, we fine-tune the pre-trained system with monocular depth
initialization with a much smaller learning rate. MVS depth is not used during fine-tuning to ensure
a reasonable amount of depth noise.

The fine-tuning is done on TartanAir (Wang et al., 2020), the same simulation dataset used for
pre-training. There is a strong domain gap between simulation and real data, for example, some
TartanAir scenes contain extreme depth values rarely seen in real-world data (e.g., objects that are
16km away). The monocular depth models often return heavily erroneous predictions in these
cases, making fine-tuning ineffective. To address this problem, we align the scale and shift of the
predicted depth to the ground truth when the relative prediction error exceeds 20%. This strategy
minimizes the negative impact of domain shift, making the flow network adapt to more accurate
depth in practice. Meanwhile, only aligning predictions with large errors ensures that the fine-tuning
data still contain a reasonable amount of noise.

With effective noise handling strategies, the depth prior in RoMeO significantly enhances flow gen-
eration since the cross-view re-projection is much more accurate. As supported by Fig. 3, a strong
depth prior leads to much smaller flow adjustment during iterative refinement, i.e., reliable corre-
spondences are obtained much faster. A strong depth prior also helps BA to avoid bad local optima,
making it easier to find accurate poses. These advantages create a positive feedback loop, where
better depth leads to better flow and poses, which further enhance depth optimization.

4 EXPERIMENTS

Implementation. RoMeO is implemented using a mixture of PyTorch and C++ following the of-
ficial code of (Teed & Deng, 2021). To maximize the performance, we use separate depth mod-
els/hyperparameters for indoor and outdoor scenes. For depth initialization, we use DPT-Hybrid
with the provided scale and shift hyperparameters (scale=0.000305, shift=0.1378 for indoor and
scale=0.00006016, shift=0.00579 for outdoor) (DPT). For MVS guidance, we use the corresponding
MaGNet (Bae et al., 2022) models for indoor and outdoor scenes. We set α in E.q. 2 to 1.75 and 1.5
respectively for outdoor and indoor scenes. Note that although the depth models/hyperparameters
are different, we only train a single VO system and use it for both indoor and outdoor scenes. During
RoMeO fine-tuning, we only use the outdoor DPT scale and shift to predict the initial depth, since
TartanAir is mostly outdoor. The improper scale and shift will be re-aligned with GT anyway when
they create large prediction errors. The initial learning rate of fine-tuning is reduced to 0.0001, with
other setups the same as pre-training. Both stages of noise augmented training require roughly 7
days on 4 RTX-3090 GPUs.

Data. Previous monocular RGB VO systems are mostly evaluated on indoor scenes. We use 6
zero-shot datasets with diverse indoor and outdoor scenes to thoroughly evaluate the robustness of
different algorithms:

• KITTI Odometry (Geiger et al., 2012): an outdoor self-driving dataset.
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Table 2: Visual Odometry Evaluation. Results are reported as RTE (m) (with scale alignment)
/ ATE (m). Missing values (–) indicate that the method loses track in some sequences. ORB-
SLAM3 (VO) means the VO front-end of ORB-SLAM3. RoMeO outperforms both learning-free
and learning-based baselines significantly across the board. Both the metric-scale (ATE) and trajec-
tory shape (RTE) improve by a large margin.
Dataset KITTI Odometry 4Seasons Cambridge EuRoC ETH3D TUM-RGBD Avg

ORB-SLAM3 (VO) 29.10/163.25 – – 0.488/1.677 – – –
DSO 47.23/154.25 – – 0.404/1.532 – – –
DeepV2d 22.20/154.52 74.70/344.75 27.21/34.50 1.173/3.452 0.324/0.582 0.225/0.415 20.97/89.70
TrianFlow 42.07/168.17 40.44/150.46 27.35/34.60 1.731/1.848 0.706/0.868 0.444/0.565 18.79/59.41
TartanVO 32.25/45.30 59.25/81.70 19.40/24.23 0.632/4.135 0.421/26.273 0.320/16.692 18.71/33.06
DROID-VO 47.53/137.33 58.87/149.54 13.56/33.67 0.141/1.307 0.367/0.628 0.116/0.551 20.09/54.31
DROID-Metric3d 3.95/5.57 125.44/140.32 13.55/47.68 0.109/1.310 0.420/1.077 0.190/0.330 23.94/32.71
DPVO 46.04/140.28 9.95/141.36 15.89/36.03 0.101/1.865 0.203/0.646 0.107/0.324 12.05/53.42
RoMeO-VO(Ours) 2.71/3.81 19.59/42.56 9.96/23.47 0.098/1.126 0.022/0.238 0.067/0.091 5.40/11.88

• 4Seasons (Wenzel et al., 2021): an outdoor driving dataset with diverse scenes and weather
conditions.

• Cambridge (Kendall et al., 2015): a large-scale outdoor visual localization dataset taken
around Cambridge University using a handheld camera.

• EuRoC (Burri et al., 2016): an indoor dataset captured by a Micro Aerial Vehicle (MAV).

• TUM-RGBD (Sturm et al., 2012): an indoor dataset captured with a handheld camera.

• ETH3D (Schops et al., 2019): we use the SLAM benchmark of ETH3D, which is an indoor
dataset with LiDAR captured depth.

Since 4Seasons and ETH3D contain too many sequences, we randomly select 1 training sequence
of each scene for evaluation, see Appendix A for details.

Metrics. Following RGBD VO Campos et al. (2021), we evaluate different methods using the Ab-
solute Trajectory Error (ATE). To distinguish the metric scale accuracy and the trajectory shape
accuracy, we define an additional metric where we align the scale of the output trajectory with the
ground truth (GT); we call this metric Relative Trajectory Error (RTE). Note that previous monocu-
lar VO papers Teed & Deng (2021); Teed et al. (2024) report RTE as ATE since they cannot recover
metric scale poses and by default assume scale alignment with GT.

4.1 MAIN RESULTS

We first compare RoMeO with state-of-the-art methods. Since RoMeO can be used as a standalone
VO system and also as part of a full SLAM pipeline, we conduct experiments for both applications.

Table 2 shows the comparison to VO systems. Learning-free baselines (ORB-SLAM3 (VO) and
DSO) fail frequently on challenging data due to the instability of hand-crafted features. ORB-
SLAM3 (VO) and DSO have 100% success rates only on KITTI Odometry and EuRoC. Appendix A
further reports results on individual sequences of each dataset. Learning-based baselines rarely lose
track due to the improved stability of the end-to-end framework. However, the trajectory accuracy
is limited especially on outdoor scenes. Most of them perform worse than ORB-SLAM3 (VO) on
KITTI Odometry. The closest baseline to RoMeO is DROID-Metric3d, where Metric3d (Yin et al.,
2023) depth is applied to the initialization and BA regularization of DROID-VO. Our implemen-
tation uses the original code from the Metric3d authors. The Metric3d paper showed significant
performance improvement on KITTI Odometry, which was consistent with our experiment. How-
ever, the same strategy can hurt the performance on other datasets (e.g., RTE on 4Seasons and
TUM-RGBD, ATE on Cambridge and ETH3D).

RoMeO significantly and consistently outperforms both learning-based and learning-free baselines.
Compared to the current SOTA DPVO, RoMeO reduces RTE and ATE respectively by 55.2% and
77.8% on average, and > 90% on challenging data, e.g., the ATE of KITTI Odometry improves from
140.28m to 3.81m. This shows that RoMeO can significantly improve both the trajectory scale and
shape, and generalizes to both indoor and outdoor scenes.
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Figure 4: Trajectory. For each scene, the two rows show respectively the trajectory with and without
scale alignment. RoMeO aligns much better with GT both with and without scale alignment.

Fig. 4 shows the trajectory visualizations. Consistent with the quantitative results, the predicted
trajectory of RoMeO aligns better with GT both with and without scale alignment. Moreover, it is
the only method that can close the loop without applying global bundle adjustment or loop closure.
Fig. 5 shows the visualization of reconstructed point clouds. For both indoor and outdoor scenes,
RoMeO provides dense reconstructions of much higher quality. The reconstruction of DPVO is
extremely sparse since it applies sparse flow estimation to accelerate VO.

Table 3 shows the comparison to SLAM systems. We build RoMeO-SLAM with global bundle
adjustment enabled. Similar to the case of VO, RoMeO effectively improves the accuracy of the full

8
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Figure 5: Point cloud visualization. First two columns: results on KITTI Odometry. Last two
columns: results on TUM-RGBD. RoMeO provides dense and more accurate 3D reconstructions.

Table 3: SLAM Evaluation. Results are reported as RTE (m) (with scale alignment) / ATE (m).
Missing values (–) indicate that the method loses track in some sequences. The performance gain of
RoMeO on VO propagates to the full SLAM system.
Dataset KITTI odometry 4Seasons Cambridge EuRoC ETH3D TUM-RGBD Avg

ORB-SLAM3 16.42/165.28 – – 0.214/1.437 – – –
Droid-SLAM 39.12/155.89 58.12/144.20 12.37/33.13 0.019/1.238 0.010/0.011 0.028/0.168 18.28/55.77
RoMeO-SLAM (Ours) 2.64/3.72 20.39/44.20 9.90/23.23 0.016/1.100 0.008/0.060 0.021/0.071 5.50/12.06

SLAM system. The improvement level remains similar as in the VO case, e.g., 93.3% and 97.6%
reduction rate on KITTI Odometry for RTE and ATE respectively.

4.2 ANALYSIS

In this section, we provide a detailed method analysis. We first conduct ablation studies to vali-
date each RoMeO component. Due to the computation cost, the ablation study is conducted on 3
evaluation datasets (1 indoor and 2 outdoor). The results are reported in Table 4.

Depth guided BA. To verify the effectiveness of our depth regularization in BA (E.q. 1), we report
in row 2 (always regularize depth) and 3 (no depth regularization) of Table 4 the performance
of RoMeO with depth regularization always enabled (whether the predicted depth is accurate or
not) and always disabled. When the depth regularization is always enabled, the performance of
RoMeO drops severely on 4Seasnos (19.59m → 117.95m for RTE) due to the negative impact of
noisy monocular/MVS depth. On the other hand, when the depth regularization is always disabled,
the performance on KITTI Odometry drops heavily (3.81m → 47.91m for ATE) due to the lack
of effective BA regularization. With adaptive noise filtering, RoMeO maintains most performance
gain from depth regularization, and minimizes the negative impact from inaccurate monocular/MVS
depth, performing robustly across different datasets.

Table 4: Ablation study. Removing or replacing RoMeO components hurts the performance
(RTE/ATE). Noise augmented training is abbreviated as NAT.
Model Mono depth NAT MVS KITTI Odometry 4Seasons TUM-RGBD Mean RTE/ATE

RoMeO-VO (ours) DPT ✓ ✓ 2.71/3.81 19.59/42.56 0.067/0.091 7.45/15.49
always regularize depth DPT ✓ ✓ 2.48/3.63 117.95/154.78 0.136/0.158 40.20/52.86
no depth regularization DPT ✓ ✓ 11.25/47.91 16.99/39.63 0.058/0.088 9.44/29.21
DPT → Metric3D Metric3D ✓ ✓ 3.23/4.67 53.43/89.28 0.135/0.288 18.94/31.41
no MVS DPT ✓ 3.35/5.14 23.49/55.38 0.075/0.121 8.96/20.21
no NAT & no MVS DPT 4.25/8.54 34.32/121.65 0.098/0.205 12.89/43.47
no depth prior 47.53/137.33 58.87/149.54 0.116/0.551 35.52/95.79
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MVS prior. RoMeO applies MVS depth to enhance the intermediate flow and pose estimation. As
shown in row 5 of Table 4 (no MVS), removing MVS priors hurts both ATE and RTE, showing the
importance of the proposed module.

Noise augmented training. Noise augmented training plays a crucial role in adapting the VO
network to the depth-prior-enhanced inputs. As shown in row 6 of Table 4 (no NAT & no MVS),
removing noise augmented training from no MVS, i.e., only using the pre-trained flow model in
RoMeO, further worsens both ATE and RTE. E.g., in 4Seasons, the ATE increases by > 2x. This
result demonstrates the importance of fine-tuning to maximize the performance gain of RoMeO.

Metric depth prior. Depth initialization enables not only better flow initialization but also the
ability to obtain accurate metric-scale poses. The last row of Table 4 (no depth prior) removes depth
initialization from no NAT & no MVR, leading to a drastic error increase. On KITTI Odometry, both
ATE and RTE increase by more than 10x, showing that the model cannot maintain a reasonable
metric scale and accurate trajectory shape without depth initialization.

Depth model compatibility. RoMeO uses DPT-Hybrid as the monocular depth prior. To verify that
RoMeO is compatible with other depth models, we apply the techniques of RoMeO to the Droid-
Metric3D (Yin et al., 2023) baseline. We perform the same training and evaluation as for the DPT-
based RoMeO except that the monocular depth model is changed to Metric3D. Comparing row 3 of
Table 4 (DPT → Metric3D) with the Droid-Metric3D baseline in Table 2, we see that RoMeO is also
compatible with other depth models and can effectively improve the general robustness. Meanwhile,
changing DPT to Metric3D increases both ATE and RTE. This result shows the effectiveness of our
depth model choice.

Table 5: Efficiency of RoMeO and a fast variant. The
speed is measured on the same RTX-3090 GPU.

Model KITTI Odometry TUM-RGBD

RTE (m) / ATE (m) FPS RTE (m) / ATE (m) FPS
No depth prior 47.53/137.33 5.33 0.116/0.551 10.77
RoMeO-VO 2.71/3.81 3.54 0.067/0.091 7.65
RoMeO-VO-fast 4.23/6.89 6.28 0.077/0.140 20.57

Efficiency. RoMeO introduces two
depth models to improve the perfor-
mance and enable metric scale VO.
Here we show that the overhead of in-
troducing depth priors is small. We
also demonstrate a fast version of
RoMeO which is even faster than the
base VO system without depth priors,

while maintaining most performance gain. Tab. 5 compares the original and the fast version of
RoMeO with the base architecture without depth priors. RoMeO-VO improves the accuracy signif-
icantly with marginal overhead. To create the fast version (RoMeO-VO-fast), we first reduce the
input resolution, e.g., from 320*512 to 224*448 on KITTI Odometry and from 240*320 to 192*256
at TUM-RGBD. Then, we disable the monocular depth initialization on non-keyframes. To ensure
the scale consistency of the non-keyframes, we use the depth of the nearest keyframe to initialize
the non-keyframes. These simple strategies preserve most of the accuracy improvement while mak-
ing RoMeO-VO-fast even faster than the base VO system without depth priors, achieving twice the
speed of the base system on TUM-RGBD.

5 CONCLUSION

We propose RoMeO, a robust visual odometry (VO) system that can return metric-scale trajecto-
ries from monocular RGB videos without 3D sensors. RoMeO utilizes pre-trained monocular and
multi-view depth models as effective priors for VO. It adaptively selects accurate depth outputs to
regularize BA, creating a positive feedback loop that enhances optimization robustness against lo-
cal minima. Noise-augmented training is introduced to fully adapt VO networks to depth-enhanced
inputs while maintaining robustness to prior noise. RoMeO generalizes to both indoor and outdoor
data. It consistently and significantly outperforms SOTA across 6 diverse zero-shot datasets. Be-
sides improving the trajectory accuracy, RoMeO also enables more accurate 3D reconstructions.
The performance gain also transfers to the full SLAM system. In terms of limitations, RoMeO cur-
rently uses separate models/hyperparameters for indoor and outdoor scenes. An interesting future
direction would be to develop better depth estimation methods that are lightweight, and generalize
to both indoor and outdoor scenes with a single model and hyperparameter setting. We also create
a fast version of RoMeO by reducing the resolution and only initializing depth on keyframes. We
believe these strategies can be further optimized with a more comprehensive study in the future.
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A APPENDIX

As shown in Tables 6 to 10, RoMeO outperforms the baselines on most individual sequences of
each dataset. Unlike previous learning-based methods that often perform worse than conventional
methods when they do not fail, RoMeO performs better and improves over SOTA on most sequences.

Table 6: VO (top) and SLAM (bottom) results on the individual sequences of KITTI Odome-
try(Geiger et al., 2012).

VO result 00 03 04 05 06 07 08 09 10 average

ORB-SLAM3 (VO) 49.43/182.37 0.64/148.71 1.81/120.53 33.22/146.49 54.28/125.27 16.20/81.15 52.58/249.35 46.61/208.96 7.13/200.24 29.10/163.25
DSO 48.04/180.58 0.80/142.58 0.36/73.46 48.45/143.82 57.59/136.59 53.67/66.80 113.02/230.02 92.19/218.11 11.03/196.32 47.23/154.25

DeepV2d 101.65/173.50 7.15/150.03 4.08/98.86 27.05/142.89 7.39/120.58 8.70/80.53 18.91/236.56 10.13/199.01 14.77/188.74 22.20/154.52
TrianFlow 96.43/186.91 10.26/163.78 6.05/109.07 52.69/154.90 39.00/132.37 15.69/88.18 56.63/256.00 72.59/218.89 29.35/203.44 42.07/168.17
TartanVO 63.84/63.91 7.71/21.56 2.89/49.45 54.61/56.57 24.67/47.10 19.29/19.95 59.55/59.56 32.61/59.23 25.04/30.41 32.25/45.30
DROID-VO 109.00/111.17 5.57/150.5 1.05/108.5 60.37/121.25 38.03/123.50 21.41/74.33 105.64/159.03 73.04/193.30 13.77/194.52 47.53/137.33
DROID-Metric3d 4.38/5.35 1.01/5.90 0.74/2.11 5.27/7.72 3.19/3.76 8.84/11.27 6.59/8.09 2.99/3.00 2.55/2.97 3.95/5.57
DPVO 110.93/111.78 1.67/156.68 1.05/107.81 55.89/127.76 59.84/118.55 18.21/69.27 97.19/189.61 60.25/196.83 9.37/184.23 46.04/140.28
RoMeO-VO (ours) 4.78/5.88 0.98/2.22 0.62/1.77 3.35/7.84 1.93/1.97 3.95/3.96 4.46/6.31 2.65/2.73 1.63/1.67 2.71/3.81

SLAM result 00 03 04 05 06 07 08 09 10 average

ORB-SLAM3 9.27/189.54 0.58/144.83 1.69/119.27 5.73/162.10 16.21/136.77 2.71/83.21 51.01/246.46 53.70/210.03 6.88/195.34 16.42/165.28
Droid-SLAM 74.41/167.26 7.37/156.09 0.43/105.63 60.14/140.15 38.45/126.85 20.66/81.38 69.33/228.68 65.81/207.15 15.48/189.84 39.12/155.89
RoMeO-SLAM (ours) 4.74/5.75 0.95/2.18 0.57/1.76 3.28/7.28 1.88/1.90 3.55/3.78 4.52/6.45 2.63/2.69 1.65/1.71 2.64/3.72

Table 7: VO (top) and SLAM (bottom) results on the individual sequences of 4Seasons (Wenzel
et al., 2021).

VO result business campus old town parking garage neighborhood office loop city loop countryside average

ORB-SLAM3 (VO) 88.21/163.57 15.10/201.25 4.58/18.54 74.95/160.62 48.32/80.13 – – –
DSO 143.23/163.79 – – – 72.52/166.32 56.31/69.72 56.72/102.61 –

DeepV2d 62.03/1547.58 36.01/204.19 18.81/19.06 98.33/129.06 88.50/173.16 105.75/137.01 113.49/203.21 74.70/344.75
TrianFlow 20.92/161.39 37.05/216.35 13.29/19.02 27.80/143.48 31.94/172.04 63.32/116.43 88.75/224.53 40.44/150.46
TartanVO 80.37/133.28 69.18/69.93 10.69/37.92 88.83/136.69 68.75/68.81 17.69/31.23 79.23/94.03 59.25/81.70
DROID-VO 23.06/161.54 8.85/209.24 14.32/19.15 12.19/143.04 60.71/171.98 115.03/116.57 177.93/225.24 58.87/149.54
DROID-Metric3d 94.33/104.09 212.85/217.34 12.92/13.78 98.37/135.31 142.19/170.17 96.77/116.40 220.63/225.13 125.44/140.32
DPVO 8.19/161.27 19.68/161.88 0.98/14.89 7.68/140.77 21.54/170.91 1.96/115.41 9.63/224.38 9.95/141.36
RoMeO-VO (ours) 7.41/13.74 3.97/27.87 10.86/35.60 11.89/18.13 38.78/72.22 24.59/77.69 39.62/52.67 19.59/42.56

SLAM result business campus old town parking garage neighborhood office loop city loop countryside average

ORB-SLAM3 100.35/163.21 14.02/206.53 2.79/16.83 78.82/163.25 48.16/82.07 – – –
Droid-SLAM 23.55/152.99 8.54/205.85 14.38/16.40 14.28/134.05 59.04/158.63 113.54/116.52 173.50/224.93 58.12/144.20
RoMeO-SLAM (ours) 8.32/13.84 4.04/27.49 10.51/36.03 11.59/20.49 42.05/77.89 26.87/80.26 39.37/53.45 20.39/44.20

Table 8: VO (top) and SLAM (bottom) results on the individual sequences of Cam-
bridge (Kendall et al., 2015).

VO result GreatCourt KingsCollege OldHospital ShopFacade StMarysChurch Street average

ORB-SLAM3 (VO) – – – – – – –
DSO – – – – – – –

DeepV2d 27.55/33.38 15.27/29.24 8.17/10.78 7.18/8.73 12.04/15.75 93.06/109.12 27.21/34.50
TrianFlow 27.93/32.93 21.42/30.15 7.30/10.84 5.97/8.96 11.93/16.05 89.52/108.67 27.35/34.60
TartanVO 28.09/34.31 12.81/16.92 6.60/7.54 4.01/4.22 10.60/11.82 54.28/70.60 19.40/24.23
DROID-VO 14.79/32.48 1.11/29.2 0.94/11.92 0.53/8.09 4.35/14.99 59.66/105.34 13.56/33.67
DROID-Metric3d 13.87/40.80 0.81/18.08 1.31/7.53 0.75/12.98 4.41/21.51 60.16/185.23 13.55/47.68
DPVO 37.28/38.34 0.18/16.12 4.07/10.86 0.12/8.68 5.27/18.09 48.39/124.06 15.89/36.03
RoMeO-VO (ours) 12.78/26.79 0.40/19.2 1.14//8.56 0.52/3.27 4.28/10.28 40.68/72.76 9.96/23.47

SLAM result GreatCourt KingsCollege OldHospital ShopFacade StMarysChurch Street average

ORB-SLAM3 – – – – – – –
Droid-SLAM 13.78/32.49 0.34/29.23 0.89/10.58 0.51/8.25 4.17/15.14 54.50/103.08 12.37/33.13
RoMeO-SLAM (ours) 12.70/26.73 0.30/18.70 1.06/8.44 0.49/3.23 4.25/10.35 40.61/69.66 9.90/23.23
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Table 9: VO (top) and SLAM (bottom) results on the individual sequences of EuRoC (Burri
et al., 2016).

VO result V101 V102 V103 V201 V202 V203 average

ORB-SLAM3 (VO) 0.036/1.045 0.139/4.210 0.713/1.108 1.352/1.866 0.047/0.302 0.642/1.529 0.488/1.677
DSO 0.089/0.937 0.107/3.859 0.903/1.236 0.044/1.244 0.132/0.361 1.152/1.555 0.404/1.532

DeepV2d 0.717/1.365 0.695/6.210 1.483/5.544 0.839/3.109 1.052/2.331 0.591/2.153 1.173/3.452
TrianFlow 0.895/1.243 3.956/4.038 0.974/1.076 1.849/1.927 0.483/0.547 2.229/2.257 1.731/1.848
TartanVO 0.447/2.357 0.389/6.901 0.622/5.921 0.433/3.644 0.749/3.015 1.152/2.973 0.632/4.135
DROID-VO 0.103/1.203 0.165/1.847 0.158/1.061 0.102/1.360 0.115/0.992 0.204/1.378 0.141/1.307
DROID-Metric3d 0.054/1.234 0.141/1.815 0.112/1.135 0.075/1.253 0.116/1.057 0.156/1.366 0.109/1.310
DPVO 0.048/1.190 0.148/3.658 0.093/0.759 0.059/1.626 0.051/2.361 0.207/1.598 0.101/1.865
RoMeO-VO (ours) 0.073/0.892 0.136/2.634 0.101/0.991 0.056/0.970 0.107/0.132 0.117/1.139 0.098/1.126

SLAM result GreatCourt KingsCollege OldHospital ShopFacade StMarysChurch Street average

ORB-SLAM3 0.033/0.992 0.042/3.854 0.395/0.952 0.683/1.705 0.028/0.282 0.103/0.837 0.214/1.437
Droid-SLAM 0.037/0.920 0.013/1.430 0.019/1.123 0.017/1.437 0.014/1.100 0.013/1.418 0.019/1.238
RoMeO-SLAM (ours) 0.031/0.88 0.013/2.556 0.018/0.990 0.016/0.963 0.013/0.111 0.013/1.118 0.016/1.100

Table 10: VO (top) and SLAM (bottom) results on the individual sequences of ETH3D
SLAM (Schops et al., 2019).

VO result cables camera shake desk changing einstein planar mannequin face sfm lab room average

ORB-SLAM3 (VO) – – – – 0.021/0.088 0.535/0.539 – –
DSO – – 1.312/1.530 – 0.686/0.689 0.490/0.491 – –

DeepV2d 0.172/0.130 0.155/1.394 0.943/1.065 0.407/0.467 0.424/0.430 0.119/0.124 0.051/0.466 0.324/0.582
TrianFlow 0.262/0.601 0.152/0.206 1.373/1.485 1.037/1.044 0.729/0.730 0.447/0.475 0.941/1.535 0.706/0.868
TartanVO 0.132/24.768 0.152/9.070 0.851/51.524 0.831/33.775 0.506/27.802 0.197/17.822 0.277/19.152 0.421/26.273
DROID-VO 0.013/0.261 0.140/0.194 0.186/1.090 0.824/0.876 0.010/0.126 0.329/0.366 1.066/1.485 0.367/0.628
DROID-Metric3d 0.262/0.364 0.137/0.525 1.139/2.668 0.612/1.023 0.354/0.492 0.290/2.139 0.146/0.328 0.420/1.077
DPVO 0.020/0.551 0.142/0.332 1.192/2.383 0.022/0.358 0.022/0.289 0.003/0.134 0.021/0.479 0.203/0.646
RoMeO-VO (ours) 0.027/0.042 0.048/0.131 0.028/0.396 0.008/0.340 0.006/0.550 0.002/0.158 0.036/0.050 0.022/0.238

SLAM result cables camera shake desk changing einstein planar mannequin face sfm lab room average

ORB-SLAM3 – – – – 0.012/0.224 0.287/0.335 – –
Droid-SLAM 0.005/0.007 0.049/0.049 0.004/0.005 0.004/0.005 0.002/0.002 0.002/0.004 0.005/0.008 0.010/0.011
RoMeO-SLAM (ours) 0.017/0.028 0.015/0.032 0.004/0.118 0.002/0.108 0.002/0.004 0.002/0.060 0.016/0.070 0.008/0.060

Table 11: VO (top) and SLAM (bottom) results on the individual sequences of TUM-
RGBD (Sturm et al., 2012).

VO result 360 desk desk2 floor plant room rpy teddy xyz average

ORB-SLAM3 (VO) – 0.017/0.065 – – 0.034/0.492 – – – 0.009/0.061 –
DSO – 0.405/0.535 0.322/0.818 0.041/0.119 0.108/0.302 0.800/0.850 – – 0.058/0.073 –

DeepV2d 0.144/0.250 0.105/0.327 0.321/0.578 0.628/1.514 0.217/0.330 0.215/0.250 0.046/0.115 0.294/0.312 0.051/0.055 0.225/0.415
TrianFlow 0.187/0.187 0.526/0.698 0.483/0.764 0.739/0.741 0.388/0.610 0.884/0.929 0.050/0.158 0.554/0.762 0.182/0.236 0.444/0.565
TartanVO 0.160/7.212 0.478/23.082 0.539/25.080 0.348/20.811 0.395/10.374 0.417/19.490 0.050/10.289 0.329/19.791 0.160/14.095 0.320/16.692
DROID-VO 0.141/0.556 0.064/0.335 0.078/1.001 0.063/0.152 0.041/0.631 0.393/0.704 0.030/0.811 0.221/0.714 0.017/0.057 0.116/0.551
DROID-Metric3d 0.222/0.263 0.139/0.260 0.075/0.109 0.195/0.769 0.271/0.470 0.264/0.378 0.019/0.019 0.507/0.669 0.019/0.036 0.190/0.330
DPVO 0.156/ 0.174 0.034/0.258 0.050/0.216 0.183/0.270 0.034/0.575 0.383/0.400 0.038/0.104 0.073/0.852 0.012/0.069 0.107/0.324
RoMeO-VO (ours) 0.084/0.085 0.049/0.051 0.038/0.059 0.103/0.104 0.079/0.133 0.167/0.169 0.015/0.030 0.069/0.217 0.005/0.006 0.067/0.091

SLAM result 360 desk desk2 floor plant room rpy teddy xyz average

ORB-SLAM3 – 0.016/0.069 – – 0.038/0.510 – – 0.145/0.728 0.005/0.087 –
Droid-SLAM 0.063/0.081 0.017/0.100 0.026/0.152 0.022/0.055 0.016/0.291 0.043/0.280 0.023/0.023 0.035/0.515 0.010/0.022 0.028/0.168
RoMeO-SLAM (ours) 0.038/0.038 0.012/0.083 0.027/0.080 0.033/0.105 0.011/0.014 0.035/0.083 0.012/0.019 0.020/0.213 0.005/0.005 0.021/0.071
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