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Abstract

Representation learning lies at the heart of the em-
pirical success of deep learning for dealing with
the curse of dimensionality. However, the power of
representation learning has not been fully exploited
yet in reinforcement learning (RL), due to i), the
trade-off between expressiveness and tractability;
and ii), the coupling between exploration and rep-
resentation learning. In this paper, we first reveal
the fact that under some noise assumption in the
stochastic control model, we can obtain the lin-
ear spectral feature of its corresponding Markov
transition operator in closed-form for free. Based
on this observation, we propose Spectral Dynam-
ics Embedding (SPEDE), which breaks the trade-
off and completes optimistic exploration for rep-
resentation learning by exploiting the structure of
the noise. We provide rigorous theoretical analysis
of SPEDE, and demonstrate the practical superior
performance over the existing state-of-the-art em-
pirical algorithms on several benchmarks.

1 INTRODUCTION

Reinforcement learning (RL) dedicates to solve the sequen-
tial decision making problem, where an agent is interacting
with an unknown environment to find the best policy that
maximizes the expected cumulative rewards [Sutton and
Barto, 2018]. It is known that the tabular algorithms direct
controlling over the original state and action in Markov
decision processes (MDPs) achieve the minimax-optimal re-
gret depending on the cardinality of the state and action
space [Jaksch et al., 2010, Azar et al., 2017, Jin et al.,
2018]. However, these algorithms become computationally
intractable for the real-world problems with an enormous
number of states. Learning with function approximations
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upon good representation is a natural idea to tackle such
computational issue, which has already demonstrated its
effectiveness in the success of deep learning [Bengio et al.,
2013]. In fact, representation learning lies at the heart of the
empirical successes of deep RL in video games [Mnih et al.,
2013], robotics [Levine et al., 2016], Go [Silver et al., 2017]
to name a few. Meanwhile, the importance and benefits of
the representation in RL is rigorously justified [Jin et al.,
2020, Yang and Wang, 2020], which quantifies the regret in
terms of the dimension of the known representation based
on a subclass in MDPs [Puterman, 2014]. A natural question
raises:

How to design provably efficient and practical algorithm
for representation learning in RL?

Here, by “provably efficient” we mean the sample complex-
ity of the algorithm can be rigorously characterized only in
terms of the complexity of representation class, without ex-
plicit dependency on the number of states and actions, while
by “practical” we mean the algorithm can be implemented
and deployed for the real-world applications. Therefore, we
not only require the representation learned is expressive
enough for handling complex practical environments, but
also require the operations in the algorithm tractable and
computation/memory efficient. The major difficulty of this
question lies in two-fold:

i) The trade-off between the expressiveness and the
tractability in the design of the representations;

ii) The learning of representation is intimately coupled
with exploration.

Specifically, a desired representation should be sufficiently
expressive to capture the practical dynamic systems, while
still computationally tractable. However, in general, expres-
sive representation leads to complicated optimization in

For a formal definition of expressiveness, see [Agarwal et al.,
2020a].
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learning. For example, the representation in the linear MDP
is exponential stronger than the latent variable MDPs in
terms of expressiveness [Agarwal et al., 2020a]. However,
its representation learning depends on either a MLE ora-
cle that is computationally intractable due to the constraint
on the regularity of conditional density [Agarwal et al.,
2020a], or an optimization oracle that can solve compli-
cated constrained min-max-min-max optimization [Modi
et al., 2021]. On the other hand, Misra et al. [2020] con-
siders the representation introduced by an encoder in block
MDP [Du et al., 2019], in which the learning problem can
be completed by a regression, but with the payoff that the
representations in block MDP is even weaker than the latent
variable MDP [Agarwal et al., 2020a].

Meanwhile, the coupling of the representation learning and
exploration also induces the difficulty in practical algorithm
design and analysis. Specifically, one cannot learn a precise
representation without enough experiences from a compre-
hensive exploration, while the exploration depends on a
reliable estimation of the representation. Most of the known
results depends on a policy-cover-based exploration [Du
et al., 2019, Misra et al., 2020, Agarwal et al., 2020a, Modi
et al., 2021], which maintains and samples a set of policies
during training for systematic exploration, that significantly
increases the computation and memory cost in implementa-
tion.

In this work, we propose Spectral Dynamics Embed-
ding (SPEDE), dealing with the aforementioned difficul-
ties appropriately, and thus, answering the question affirma-
tively. SPEDE is established on a connection between the
stochastic control dynamics [Osband and Van Roy, 2014,
Kakade et al., 2020] and linear MDPs in Section 3. Specifi-
cally, by exploiting the property of the noise in the stochastic
control dynamics, we can recover the factorization of its cor-
responding Markov transition operator in closed-form with-
out extra computation. This equivalency immediately over-
comes the computational intractability in the linear MDP
estimation via the corresponding control dynamics form,
and thus, breaks the trade-off between expressiveness and
tractability. Meanwhile, as a byproduct, the linear MDP re-
formulation also introduce efficient planning for optimal
policy in nonlinear control through the linear sufficient fea-
ture from the spectral space of Markov operator, while in
most model-based RL, planning is conducted by treating
learned model as simulator, and thus, is inefficient and sub-
optimal.

More importantly, the two faces of one model also provide
the opportunity to tackle the coupling between representa-
tion learning and exploration. The optimism in the face of
uncertainty principle can be easily implemented through
Thompson sampling w.r.t. the stochastic nonlinear dynam-
ics, which leads to the posterior of representations implicitly,
while bypasses the unidentifiability issue in directly charac-
terizing the representation, therefore, can be theoretically

justified.

We rigorously characterize the statistical property of SPEDE
in terms of regret w.r.t. the complexity of representation
class in Section 4, without explicit dependence on the size
of raw state space and action space. With the established
unified view, our results generalize online control [Kakade
et al., 2020] and linear MDP [Jin et al., 2020] beyond known
features. We finally demonstrate the superiority of SPEDE
on the MuJoCo benchmarks in Section 5. It significantly
outperforms the empirical state-of-the-art RL algorithms. To
our knowledge, SPEDE is the first representation learning
algorithm achieving statistical, computational, and memory
efficiency with sufficient expressiveness.

1.1 RELATED WORK

There have been many great attempts on algorithmic rep-
resentation learning in RL for different purposes, e.g.,
bisimulation [Ferns et al., 2004, Gelada et al., 2019], re-
construction [Hafner et al., 2019]. Recently, there are also
several works considering the spectral features based on
decomposing different variants of the transition operator,
including successor features [Dayan, 1993, Kulkarni et al.,
2016], proto-value functions [Mahadevan and Maggioni,
2007, Wu et al., 2018], spectral state-aggregation [Duan
et al., 2018, Zhang and Wang, 2019], and contrastive fourier
features [Nachum and Yang, 2021]. These works are highly-
related to the proposed SPEDE. Besides these features fo-
cus on state-only representation, the major differences be-
tween SPEDE and these spectral features lie in i), the target
operators in existing spectral features are state-state tran-
sition, which cancel the effect of action; ii), the target op-
erators are estimated based on empirical data from a fixed
behavior policy under the implicit assumption that the es-
timated operator is uniformly accurate, ignoring the major
difficulty in exploration, while SPEDE carefully designed
the systematic exploration with theoretical guarantee; iii),
most of the existing spectral features rely on explicitly de-
composition of the operators, while SPEDE obtains the
spectral for free.

Turning to the theoretically-justified representation learn-
ing with online exploration, a large body of effort fo-
cuses on the policy-cover-based exploration [Du et al., 2019,
Misra et al., 2020, Agarwal et al., 2020a, Modi et al., 2021].
The major difficulty impedes their practical application is
the computation and memory cost: the policy-cover-based
exploration requires a set of exploratory polices to be main-
tained and sampled from during training, which can be ex-
tremely expensive. Uehara et al. [2021] introduced a UCB
mechanism that can enforce exploration without the require-
ments on maintaining the policy cover. However, the al-
gorithm requires an MLE oracle for unnormalized condi-
tional statistical model, which still prevents us from apply-
ing the algorithm in practice until recent attempt [Zhang



et al., 2022] using contrastive learning to replace the MLE.

Another two related lines of research are model-based RL
and online control, which are commonly known overlapped
but separate communities considering different formulations
of the dynamics. Our finding bridges these two communities
by establishing the equivalency between standard models
that are widely considered in the corresponding communi-
ties. Osband and Van Roy [2014] and Kakade et al. [2020]
are the most related to our work in each community. These
models generalize their corresponded linear models, i.e., Jin
et al. [2020] and Cohen et al. [2019], with general nonlinear
model and kernel function within a known RKHS, respec-
tively. The regret of the optimistic (pessimistic) algorithm
has been carefully characterized for these models. However,
both of the proposed algorithms in Osband and Van Roy
[2014] and Kakade et al. [2020] require a planning oracle to
seek the optimal policy, which might be computationally in-
tractable. In SPEDE, this is easily handled in the equivalent
linear MDP.

2 PRELIMINARIES

Markov Decision Process (MDP) is one of the most stan-
dard models studied in the reinforcement learning that can
be denoted by the tuple M = (S,A, r, T, ρ,H), where S
is the state space, A is the action space, r : S × A →
R+ is the reward function (where R+ denotes the set
of non-negative real numbers), T : S × A → ∆(S)
is the transition and ρ is an initial state distribution and
H is the horizon (i.e., the length of each episode). A
(potentially non-stationary) policy π can be defined as
{πh}h∈[H] where πh : S → ∆(A),∀h ∈ [H]. Fol-
lowing the standard notation, we define the value func-
tion V π

h (sh) := ET,π

[∑H−1
t=h r(st, at)|sh = s

]
and the

action-value function (i.e., the Q function) Qπ
h(sh, ah) =

ET,π

[∑H−1
t=h r(st, at)|sh = s, ah = a

]
, which are the ex-

pected cumulative rewards under transition T when exe-
cuting policy π starting from sh and (sh, ah). With these
two definitions at hand, it is straightforward to show the
following Bellman equation:

Qπ
h(sh, ah) = r(sh, ah) + Esh+1∼T (·|sh,ah)

[
V π
h+1(sh+1)

]
.

Most of RL algorithms aim at finding the optimal pol-
icy π∗ = argmaxπ Es∼ρ [V

π
0 (s)] under MDPs. It is well

known that in the tabular setting when the state space and
action space are finite, we can provably identify the opti-
mal policy with both sample-efficient and computational-
efficient optimism-based methods [e.g. Azar et al., 2017]

In general, the reward can be stochastic. Here for simplicity
we assume the reward is deterministic and known throughout the
paper, which is a common assumption in the literature [e.g., Jin
et al., 2018, 2020, Kakade et al., 2020].

Our method can be generalized to infinite horizon case, see
Section 3.2 for the detail.

with the complexity proportion to poly(|S|, |A|). However,
in practice, the cardinality of state and action space can be
large or even infinite. Hence, we need to incorporate func-
tion approximation into the learning algorithm when we
deal with such cases. The linear MDP [Jin et al., 2020] or
low-rank MDP [Agarwal et al., 2020a, Modi et al., 2021] is
the most well-known MDP class that can incorporate linear
function approximation with theoretical guarantee, thanks
to the following assumption on the transition and reward:

T (s′|s, a) = ⟨ϕ(s, a), µ(s′)⟩H, r(s, a) = ⟨ϕ (s, a) , θ⟩H,
(1)

where ϕ : S × A → H, µ : S → H are two feature maps
and H is a Hilbert space. The most essential observation
for them is that, Qπ

h(s, a) for any policy π is linear w.r.t
ϕ(sh, ah), due to the following observation [Jin et al., 2020]:

Qπ
h(s, a) = r(s, a) +

∫
V π
h+1(sh+1)T (sh+1|sh, ah) dsh+1

=

〈
ϕ(sh, ah), θ +

∫
V π
h+1(sh+1)µ(sh+1) dsh+1

〉
H
.

(2)

Therefore, ϕ serves as a sufficient representation for the
estimation of Qπ

h, that can provide uncertainty estimation
with standard linear model analysis and eventually lead to
sample-efficient learning when ϕ is fixed and known to the
agent [see Theorem 3.1 in Jin et al., 2020]. However, we
in general do not have such representations in advance and
we need to learn the representation from the data, which
constraints the applicability of the algorithms derived with
fixed and known representation.

Remark (Model-based RL vs. RL with Representation):
We would like to emphasize that, although most of the ex-
isting representation learning methods need to learn the
transition [Du et al., 2019, Misra et al., 2020, Agarwal et al.,
2020a, Uehara et al., 2021], RL with representation learning
is related but perpendicular to the concept of model-based
RL. The major difference lies in how to use the learned
transition for planning (i.e. finding the optimal policy). In
vanilla model-based RL methods [e.g., Sutton, 1990, Chua
et al., 2018, Kurutach et al., 2018], the learned transition is
played as a simulator generating samples for policy improve-
ment; while in representation-based RL, the representation
is extracted from the learned transition to compose the pol-
icy explicitly, which is significantly efficient comparing to
the model-based RL methods.

One exception is the tabular MDP, where we can choose
ϕ : S ×A → R|S||A| that each state-action pair has exclusive one
non-zero element and µ : S → R|S||A| correspondingly defined
to make (1) hold.



3 SPECTRAL DYNAMICS EMBEDDING

It is naturally to consider how to perform sample-efficient
representation learning (and hence sample-efficient rein-
forcement learning) that satisfies (1) in an online man-
ner. The most straightforward idea is performing the max-
imum likelihood estimation (MLE) in the representation
space [e.g., Agarwal et al., 2020a]. Unfortunately, for
general cases, such MLE is intractable, due to the con-
straints on the regularity of marginal distribution (i.e.,
⟨ϕ(s, a),

∫
s′
µ(s′) ds′⟩ = 1) for all (s, a) ∈ S × A. More-

over, even we can perform MLE for certain cases (for ex-
ample, the block MDP), as the representation is estimated
from the data, which can be inaccurate, most of the exist-
ing work apply the policy cover technique [Du et al., 2019,
Misra et al., 2020, Agarwal et al., 2020a, Modi et al., 2021]
to enforce exploration. However, such procedures can be
both computational and memory expensive when we need
amounts of exploratory policy to guarantee the coverage of
whole state space, which makes it not a practical choice.

To overcome these issues, we introduce Spectral Dynamics
Embedding (SPEDE), which leverages the noise structure
to provide a simple but provable efficient and practical algo-
rithm for representation learning in RL. We first introduce
our key observation, which induces the equivalency between
linear MDP and stochastic nonlinear control.

3.1 KEY OBSERVATION

Our fundamental observation is that, the density of isotropic
Gaussian distribution can be expressed as the inner product
of two feature maps, thanks to the reproducing property
and the random Fourier transform of the Gaussian kernel
[Rahimi and Recht, 2007]:

ϕ(x|µ, σ2I) ∝ exp

(
−∥x− µ∥2

2σ2

)
=⟨k(x, ·), k(µ, ·)⟩H (Reproducing Property)

(3)

= ⟨φ(x, ω, b), φ(µ, ω, b)⟩p(ω,b) (Random Fourier),
(4)

where k(·, ·) is the Gaussian kernel with bandwidth σ:
k(x, y) = exp

(
−∥x−y∥2

2

2σ2

)
, H is the Reproducing Ker-

nel Hilbert Space (RKHS) associated with k, φ(x, ω, b) =√
2 cos(ω⊤x+b), ⟨f, g⟩p = Ep(x)[f(x)g(x)] and p(ω, b) =

N (ω; 0, 1/σ2I)·U(b; [0, 2π]) with N and U denoting Gaus-
sian and Uniform distribution, respectively.

We provide a brief review on the related definitions in Ap-
pendix A.

Consider the general transition dynamics,

s′ = f∗(s, a) + ϵ, ϵ ∼ N (0, σ2), (5)

or equivalently T (s′|s, a) ∝ exp

(
−∥s′ − f∗(s, a)∥2

2σ2

)
,

(6)

which is a widely used setup in the empirical model-based
reinforcement learning [e.g., Chua et al., 2018, Kurutach
et al., 2018, Clavera et al., 2018, Wang et al., 2019], and
the online (non)-linear control [e.g., Abbasi-Yadkori and
Szepesvári, 2011, Mania et al., 2019, 2020, Simchowitz and
Foster, 2020, Kakade et al., 2020]. Here s ∈ Rd, a ∈ A that
can be continuous and f∗ is a dynamic function.

By applying the reproducing property (3) or random Fourier
transform (4) for the transition dynamics (5), we can obtain
the feature ϕ and µ satisfies (1) for free. Specifically, taking
the reproducing property as an example, we have that

T (s′|s, a) = ⟨k(f∗(s, a), ·), (2πσ2)−d/2k(s′, ·))⟩H, (7)

which means the problem (5) is indeed a linear MDP with
ϕ(s, a) = k(f∗(s, a), ·) and µ(s′) = (2πσ2)−d/2k(s′, ·).
Following (2), we know Q(s, a) is in the linear span of
the ϕ(s, a) that is transformed from f∗(s, a). Therefore,
finding a good representation of Q(s, a) is equivalent to
finding a good estimation of f∗. In the next section, we
will show that, with the well-known optimism in the face
of uncertainty (OFU) principle, we can estimate f∗ in an
online manner with a both sample-efficient in terms of regret
and computational-efficient algorithm.

Remark (Computation-free Factorizable Noise Model):
We remark that, similar observations also hold for large
amounts of distributions, e.g., the Laplace and Cauchy dis-
tribution. We refer the interested reader to Table 1 in Dai
et al. [2014] for the known transformation of kernels and
features. Here we focus on the Gaussian noise.

Remark (Reward Factorization): In the definition of
linear MDP (1), the reward function r(s, a) should also
have the ability to be linearly represented by ϕ (s, a). This
can be implemented by augmenting [ϕ (s, a) , r(s, a)] as
the new representation, therefore, we neglect the reward
function throughout the paper.

3.2 PRACTICAL ALGORITHM DESCRIPTION

Here, we introduce a generic Thompson Sampling (TS)
type algorithm in Algorithm 1 based on the OFU principle
that leverage our observation at the previous section. At the
beginning, we provide a prior distribution P(f) that reflects
our prior knowledge on f∗. Then for each episode, we draw
a f from the posterior, find the optimal policy with f using
the planning algorithm, execute this policy and eventually



Algorithm 1 Thompson Sampling (TS) Algorithm

Require: Number of Episodes K, Prior Distribution P(f),
Reward Function r(s, a).

1: Initialize the history set H0 = ∅.
2: for episodes k = 1, 2, · · · do
3: Sample fk ∼ P(f |Hk). ▷ Draw the Representation.
4: Find the optimal policy πk on fk with Algorithm 2.

▷ Planning with fk.
5: for steps h = 0, 1, · · · , H − 1 do ▷ Executing πk.
6: Execute akh ∼ πh

k (s
k
h).

7: Observe sh+1.
8: end for
9: Set Hk = Hk−1 ∪ {(skh, akh, skh+1)}

H−1
h=0 . ▷ Update

the History.
10: end for

inference the posterior with the new observation. Notice
that, we choose the policy optimistically with an sampled
f , which enforces the exploration following the principle of
OFU. Meanwhile, we only learn the dynamic with posterior
inference and directly obtain the representation with (3) or
(4), which avoids additional error from the representation
learning step. As all of our data is collected with f∗, our
posterior will shrink to a point mass of f∗, which guarantees
we can identify good representation and good policy with
sufficient number of data.

One significant part of SPEDE is the computational-efficient
planning with fk, thanks to the linear MDP formulation (7).
Prior work assumes an oracle [e.g., Kakade et al., 2020] for
such planning problem, but little is known on how to prov-
ably perform such planning efficiently. Notice that, with
the feature ϕ(s, a) defined via (3) and (4), we know that
Qπ

h(s, a) is exactly linear in ϕ(s, a), ∀h, π. Hence, we can
perform a dynamic programming style algorithm that cal-
culates Qπ

h(s, a) with the given feature ϕ(s, a), and then
greedily select the action at each level h, which is simple
yet efficient. It is straightforward to show that the policy ob-
tained with this dynamic programming algorithm is optimal
by induction. We illustrate the detailed algorithm in Algo-
rithm 2.

3.2.1 Implementation Details

In such a planning algorithm, we need to maintain the pos-
terior of f and calculate the term

∫
Vh+1(s

′)µ(s′) ds′ and
take the maximum of Qh(s, a) over a, which can be prob-
lematic. We will provide more discussion on this issue be-
low.

Posterior Sampling The exact posterior inference can
be hard if f∗ does not lie in simple function class (e.g.,
linear function class) or has some derived property (e.g.,
conjugacy), so in practice we apply the existing mature

Algorithm 2 Planning with Dynamic Programming

Require: Transition Model f , Reward Function r(s, a).
1: Initialize ϕ(s, a), µ(s′) with (3) or (4). VH(s) = 0,∀s.
2: for steps h = H − 1, H − 2, · · · , 0 do
3: Compute

Qh(s, a) = r(s, a) + ⟨ϕ(s, a),
∫

Vh+1(s
′)µ(s′) ds′⟩H.

▷ Bellman Update.
4: Set Vh(s) = maxa Qh(s, a), πh(s) =

argmaxa Qh(s, a). ▷ Choose the Optimal Policy.
5: end for
6: return {πh}H−1

h=0 .

approximate inference methods like Markov Chain Monte
Carlo (MCMC) [e.g., Neal et al., 2011] and variational in-
ference [see, Blei et al., 2017]. In our implementation, we
used stochastic gradient langevin dynamics [Welling and
Teh, 2011, Cheng and Bartlett, 2018] to train an ensemble
of models for posterior approximation.

Large State and Action Space In general, we need to
handle the case when the number of states and actions can
be large, or even infinite. Notice that, when the state space
is large, we can estimate the term

∫
Vh+1(s

′)µ(s′) ds′ with
regression based method using the samples from f [Antos
et al., 2008]. For the continuous action space, we can apply
principled policy optimization methods [e.g., Agarwal et al.,
2020b] with an energy-based model (EBM) parametrized
policy [Nachum et al., 2017, Dai et al., 2018], treat the linear
Qπ(s, a) as the gradient and perform mirror descent and
eventually obtain the optimal policy. However, this is at the
cost of an additional sampling step from the EBM policy.
In practice, we introduce a Gaussian policy and perform
soft actor-critic [Haarnoja et al., 2018] policy update, which
already provides good empirical performance. To sum up,
for large state and action cases, we learn the critic in the
learned representation space by regression, and obtain the
Gaussian parametrized actor with SAC policy update step,
in Line 3 and 4 in Algorithm 2, respectively.

Infinite Horizon Case Our algorithm can be provably ex-
tended to the infinite horizon case with specific termination
condition for each episode [e.g., see Jaksch et al., 2010]. In
practice, for the planning part we can solve the linear fixed-
point equation with the feature ϕ(s, a) using the popular
algorithms like Fitted Q-iteration (FQI) [Antos et al., 2008]
or dual embedding [Dai et al., 2018]. that still guarantees to
find the optimal policy.



4 THEORETICAL GUARANTEES

In this section, we provide theoretical justification
for SPEDE, showing that SPEDE can identify informa-
tive representation and as a result, near-optimal policy in a
sample-efficient way.

We first define the notation of regret. Assume at episode k,
the learner chooses the policy πk and observes a sequence
{(skh, akh)}

H−1
h=0 . We define the regret of the first K episodes

(and define T := KH) as:

Regret(K) :=
∑

k∈[K]

[
V ∗
0 (s

k
0)− V πk

0 (sk0)
]

(8)

The regret measures the sample complexity of the represen-
tation learning in RL. We want to provide a regret upper
bound that is sublinear in T . When T increases, we collect
more data that can help us build a much more accurate es-
timation on the representation, which should decrease the
per-step regret and make the overall regret scale sublinear in
T . As we consider the Thompson Sampling algorithm, we
would like to study the expected regret EP(f) [Regret(K)],
which takes the prior P(f) into account.

4.1 ASSUMPTIONS

Before we start, we first state the assumptions we use to
derive our theoretical results.

We assume the reward is bounded, which is common in the
literature [e.g. Azar et al., 2017, Jin et al., 2018, 2020].

Assumption 1 (Bounded Reward). r(s, a) ∈ [0, 1],
∀(s, a) ∈ S ×A.

In practice, we generally approximate f∗ with some com-
plicated function approximators, so we focus on the setting
where we want to find f∗ from a general function class F
This is important for MuJoCo dynamics modeling, which
have complicated transitions over angle, angular velocity
and torque of the agent in the raw state. We first state some
necessary definitions and assumptions on F .

Definition 1 (ℓ2-norm of functions). Define ∥f∥2 :=
max(s,a)∈S×A ∥f(s, a)∥2. Notice that it is not the com-
monly used ℓ2 norm for the function, but it suits our purpose
well.

Assumption 2 (Bounded Output). We assume that ∥f∥2 ≤
C, ∀f ∈ F .

Assumption 3 (Realizability). We assume the ground truth
dynamic function f∗ ∈ F .

We then define the notion of covering number, which will
be helpful in our algorithm derivation.

Definition 2 (Covering Number [Wainwright, 2019]). An ϵ-
cover of F with respect to a metric ρ is a set {fi}i∈[n] ⊆ F ,
such that ∀f ∈ F , there exists i ∈ [n], ρ(f, fi) ≤ ϵ. The
ϵ-covering number is the cardinality of the smallest ϵ-cover,
denoted as N (F , ϵ, ρ).

Assumption 4 (Bounded Covering Number). We assume
that N (F , ϵ, ∥ · ∥2) < ∞,∀ϵ > 0.

Remark Basically, Assumption 2 means the the transition
dynamic never pushes the state far from the origin, which
holds widely in practice. Assumption 3 guarantees that we
can find the exact f∗ in F , or we will always suffer from the
error induced by model mismatch. Assumption 4 ensures
that we can estimate f∗ with small error when we have
sufficient number of observations.

Besides the bounded covering number, we also need an
additional assumption on bounded eluder dimension, which
is defined in the following:

Definition 3 (ϵ-dependency [Osband and Van Roy, 2014]).
A state-action pair (s, a) ∈ S × A is ϵ-dependent on
{(si, ai)}i∈[n] ⊆ S × A with respect to F , if ∀f, f̃ ∈ F
satisfying

√∑
i∈[n] ∥f(si, ai)− f̃(si, ai)∥22 ≤ ϵ satisfies

that ∥f(s, a) − f̃(s, a)∥2 ≤ ϵ. Furthermore, (s, a) is said
to be ϵ-independent of {(si, ai)}i∈[n] with respect to F if it
is not ϵ-dependent on {(si, ai)}i∈[n].

Definition 4 (Eluder Dimension [Osband and Van Roy,
2014]). We define the eluder dimension dimE(F , ϵ) as the
length d of the longest sequence of elements in S × A,
such that ∃ϵ′ ≥ ϵ, every element is ϵ′-independent of its
predecessors.

Remark Intuitively, eluder dimension illustrates the num-
ber of samples we need to make our prediction on unseen
data accurate. If the eluder dimension is unbounded, then
we cannot make any meaningful prediction on unseen data
even with large amounts of collected samples. Hence, to
make the learning possible, we need the following bounded
eluder dimension assumption.

Assumption 5 (Bounded Eluder Dimension). We assume
dimE(F , ϵ) < ∞,∀ϵ > 0.

4.2 MAIN RESULT

Theorem 5 (Regret Bound). Assume Assumption 2 to 5
holds. We have that

EP(f) [Regret(K)] ≤ Õ

(√
H2T

·
√
logN (F , T−1/2, ∥ · ∥2) ·

√
dimE(F , T−1/2)

)
.

where Õ represents the order up to logarithm factors.



For finite dimensional function class, logN (F , T−1/2, ∥ ·
∥2) and dimE(F, T

−1/2)) should be scaled like
polylog(T ), hence our upper bound is sublinear in
T . The proof is in Appendix C. Here we briefly sketch the
proof idea.

Proof Sketch. We first construct an equivalent UCB algo-
rithm (see Appendix B) and bound Regret(K) for it. Then
by the conclusion from Russo and Van Roy [2013, 2014],
Osband and Van Roy [2014], we can directly translate the
upper bound on Regret(K) from UCB algorithm to an
upper bound on EP(f) [Regret(K)] of TS algorithm. We
emphasize that the UCB algorithm is solely designed for
analysis purpose.

With the optimism, we know for episode k, V ∗
0 (s

k
0) ≤

Ṽ πk

0,k(s
k
0), where Ṽ πk

h,k is the value function of policy
πk under the model f̃k introduced in the UCB algo-
rithm. Hence, the regret at episode k can be bounded
by Ṽ πk

0,k(s
k
0) − V πk

0 (sk0), which is the value difference of
the policy πk under the two models f̃k and f∗, that can

be bounded by
√

E
[∑H−1

h=0 ∥f∗(skh, a
k
h)− f̃k(skh, a

k
h)∥22

]
(see Lemma 9 for the details), which means when the es-
timated model f̂ is close to the real model f∗, the policy
obtained by planning on f̂ will only suffer from a small
regret. With Cauchy-Schwartz inequality, we only need
to bound E

[∑
k∈[K]

∑H−1
h=0 ∥f∗(skh, a

k
h)− f̃k(s

k
h, a

k
h)∥22

]
.

This term can be handled via Lemma 13. With some addi-
tional technical steps, we can obtain the upper bound on
Regret(K) for the UCB algorithm, and hence the upper
bound on EP(f) [Regret(K)] for the TS algorithm.

Kernelized Non-linear Regulator Notice that, for the
linear function class F = {θ⊤φ(s, a) : θ ∈ Rdφ×d} where
φ : S × A → Rdφ is a fixed and known feature map of
certain RKHS, when the feature and the parameters are
bounded, the logarithm covering number can be bounded
by logN (F , ϵ, ∥ · ∥2) ≲ dφ log(1/ϵ), and the eluder dimen-
sion can be bounded by dimE(F , ϵ) ≲ dφ log(1/ϵ) (see
Appendix D for the detail, notice that we provide a tighter
bound of the eluder dimension compared with the one de-
rived in Osband and Van Roy [2014]). Hence, for linear
function class, Theorem 5 can be translated into a regret
upper bound of Õ(HdφT

1/2) for sufficiently large T , that
matches the results of Kakade et al. [2020]. Moreover, for
the case of linear bandits when H = 1, our bound can be

Note that, the RKHS here is the Hilbert space that contains
f(s, a) with the feature from some fixed and known kernel, It is
different from the RKHS we introduced in Section 3, that contains
Q(s, a) with the feature k(f(s, a), ·) where k is the Gaussian
kernel.

Note that T in [Kakade et al., 2020] is the number of episodes,
and Vmax in [Kakade et al., 2020] can be viewed as H2 when the
per-step reward is bounded.

translated into a regret upper bound of Õ(dφT
1/2), that

matches the lower bound [Dani et al., 2008] up to logarith-
mic terms.

Compared with Kakade et al. [2020] and Osband and
Van Roy [2014] Our results have some connections with
the results from Kakade et al. [2020] and Osband and
Van Roy [2014]. However, in Kakade et al. [2020], the
authors only considers the case when F only contains linear
functions w.r.t some known feature map, which constrains
its application in practice. We instead, consider the general
function approximation, which makes our algorithm applica-
ble for more complicated models like deep neural networks.
Meanwhile, the regret bound from Osband and Van Roy
[2014] depends on a global Lipschitz constant for the value
function, which can be hard to quantify with either theo-
retical or empirical method. Instead, our regret bound gets
rid of such dependency on the Lipschitz constant with the
simulation lemma that carefully exploit the noise structure.

5 EXPERIMENTS

In this section, we study the empirical performance of
SPEDE in the OpenAI MuJoCo control suite [Brockman
et al., 2016]. We use the environments from MBBL [Wang
et al., 2019], which varies slightly from the original envi-
ronments in terms of modifying the reward function so its
gradient w.r.t. the states exists and introducing early termina-
tion (ET). Note that the set of environments contains various
control and manipulation tasks, which are commonly used
for benchmarking both model-free and model-based RL al-
gorithms [e.g., Kakade et al., 2020, Haarnoja et al., 2018].
As aforementioned, for practical implementation, our critic
network consists of a representation network ϕ(·) and a
linear layer on the top. We follow the same procedure of
Algorithm 1. Specifically, (1) for finding the optimal pol-
icy, we run an actor-critic algorithm (SAC); (2) we fix the
representation network of the critic function ϕ(·) and only
update the linear layer on the top. We provide the full set of
experiments in Appendix E.2 and the hyperparameter we
use in Appendix E.6.

Baselines We compare our method with various model-
based RL baselines: PETS [Chua et al., 2018] with random
shooting (RS) optimizer, PETS with cross entropy method
(CEM) optimizer and ME with TRPO policy optimizer [Ku-
rutach et al., 2018]. Note that these are strong empirical
baselines with many hand-tuned hyperparameters and en-
gineering features (e.g., ensemble of models). It is usually
hard for any theoretically guaranteed model-based RL al-
gorithm to match or surpass their performance [Kakade
et al., 2020]. Another natural baseline is the successor fea-
ture [Dayan, 1993], which is one of the representative spec-
tral features. We compare with the deep successor feature

Our code is available at https://sites.google.com/view/spede.

https://sites.google.com/view/spede


Table 1: Performance of SPEDE on various MuJoCo control tasks. All the results are averaged across 4 random seeds and a window size
of 10K. Results marked with ∗ is directly adopted from MBBL [Wang et al., 2019]. Our method achieves strong performance compared to
pure empirical baselines (e.g., PETS). We also compare SPEDE-REG which regularizes the critic using the model dynamics loss with
several model-free RL method. SPEDE-REG significantly improves the performance of the SoTA method SAC.

Swimmer Reacher MountainCar Pendulum I-Pendulum

ME-TRPO∗ 30.1±9.7 -13.4±5.2 -42.5±26.6 177.3±1.9 -126.2±86.6
PETS-RS∗ 42.1±20.2 -40.1±6.9 -78.5±2.1 167.9±35.8 -12.1±25.1
PETS-CEM∗ 22.1±25.2 -12.3±5.2 -57.9±3.6 167.4±53.0 -20.5±28.9
DeepSF 25.5±13.5 -16.8±3.6 -17.0±23.4 168.6±5.1 -0.2±0.3
SPEDE 42.6±4.2 -7.2±1.1 50.3±1.1 169.5±0.6 0.0±0.0

PPO∗ 38.0±1.5 -17.2±0.9 27.1±13.1 163.4±8.0 -40.8±21.0
TRPO∗ 37.9±2.0 -10.1±0.6 -37.2±16.4 166.7±7.3 -27.6±15.8
TD3∗ 40.4±8.3 -14.0±0.9 -60.0±1.2 161.4±14.4 -224.5±0.4
SAC∗ 41.2±4.6 -6.4±0.5 52.6±0.6 168.2±9.5 -0.2±0.1
SPEDE-REG 40.0±3.8 -5.8±0.6 40.0±3.8 168.5±4.3 0.0±0.1

Ant-ET Hopper-ET S-Humanoid-ET Humanoid-ET Walker-ET

ME-TRPO∗ 42.6±21.1 4.9±4.0 76.1±8.8 72.9±8.9 -9.5±4.6
PETS-RS∗ 130.0±148.1 205.8±36.5 320.9±182.2 106.9±106.9 -0.8±3.2
PETS-CEM∗ 81.6±145.8 129.3±36.0 355.1±157.1 110.8±91.0 -2.5±6.8
DeepSF 768.1±44.1 548.9±253.3 533.8±154.9 168.6±5.1 165.6±127.9
SPEDE 806.2±60.2 732.2±263.9 986.4±154.7 886.9±95.2 501.6±204.0

PPO∗ 80.1±17.3 758.0±62.0 454.3±36.7 451.4±39.1 306.1±17.2
TRPO∗ 116.8±47.3 237.4±33.5 281.3±10.9 289.8±5.2 229.5±27.1
TD3∗ 259.7±1.0 1057.1±29.5 1070.0±168.3 147.7±0.7 3299.7±1951.5
SAC∗ 2012.7±571.3 1815.5±655.1 834.6±313.1 1794.4±458.3 2216.4±678.7
SPEDE-REG 2073.1±119.7 2510.3±550.8 2710.3±277.5 3747.8±1078.1 2170.3±810.9

(DeepSF) [Kulkarni et al., 2016], and for a fair comparison,
we only swap the representation objective of SPEDE with
DeepSF and keep the other parts of the algorithm exactly
the same.

SPEDE: Performance with the Learned Representation
Following Algorithm 1, we are interested in how SPEDE
performs when we conduct planning on top of the represen-
tation induced by the dynamics model in each episode. As
most of the rigorously-justified representation learning algo-
rithms are computationally intractable/inefficient, to demon-
strate the effectiveness of representation used in SPEDE, we
compare SPEDE with the deep successor features, which
is one representative empirical representation learning al-
gorithm. Moreover, as our method learning representation
via fitting transition dynamics, to demonstrate the superior-
ity of representation in planning, we compare our methods
with the state-of-the-art model-based RL algorithms. We
summarize the results of our method in Table 1. We see that
our method achieves impressive performance comparing to
model-based RL methods. Even in some hard environments
that baselines fail to reach positive reward (e.g., Mountain-
Car, Walker-ET), SPEDE manage to achieve a reward of
52.6 and 501.6 respectively. We also evaluate our represen-
tation by comparing SPEDE to the usage of deep successor
feature (DeepSF). Results show that on hard tasks like Hu-
manoid and Walker, SPEDE manages to achieve 452.6 and
336.0 higher reward respectively.

SPEDE-REG: Policy Optimization with SPEDE Repre-
sentation Regularizer In order to evaluate whether our
assumption on linear MDP is valid in empirical settings

and study whether such assumption can help improve the
performance, we add our model dynamics representation
objective as a regularizer in addition to the original SAC
algorithm for learning the Q-function. Specifically, the algo-
rithm SPEDE-REG consists of vanilla SAC objective with
an additional loss putting constraints on the representation
learned by the critic function, due to the intuition that the
representation should satisfy the equivalent dynamics. We
compare its performance with the vanilla SAC algorithm to
show the benefits of dynamic representation. Results in Ta-
ble 1 show that adding such constraint significantly improve
the performance of SAC: on hard tasks like Hopper-ET, S-
Humanoid-ET and Humanoid-ET, SPEDE-REG improves
the performance of SAC by 694.8, 1875.7 and 2000.4.

Ablations We conduct ablations on: (1) What is the effect
of the momentum parameter. (2) How does the number of
random features affect the performance. Detailed results can
be found at E.3.

Performance Curves To better understand how the sam-
ple complexity of our algorithm comparing to the prior
model-based RL baselines, we plot the return versus en-
vironment steps in Figure 1. We see that comparing to
prior model-based baselines, SPEDE enjoys great sample
efficiency in these tasks. We want to emphasize that from
MBBL [Wang et al., 2019], model-based methods already
show significantly better sample efficiency compared to
model-free methods (e.g.PPO/TRPO). We provide addi-
tional results in Appendix E.2.
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Figure 1: Experiments on MuJoCo: We show curves of the return versus the training steps for SPEDE and model-based RL baselines.
Results show that in these tasks, our method enjoys better sample efficiency even compared to SoTA empirical model-based RL baselines.

Discussion of the Results We observe that in the environ-
ments with relatively simple dynamics (top row of Table 1),
SPEDE achieves the SoTA among all the model-based and
model-free RL algorithms. When the model dynamics of
the environment become harder (bottom row of Table 1), the
difference of the performance between the two approaches
begin to enlarge. Interestingly, our SPEDE achieves strong
results comparing to model-based approaches, while the
joint learning SPEDE-REG outperforms model-free algo-
rithm by a huge margin. The performance promotion of
SPEDE indicates the importance on learning a good repre-
sentation based on model dynamics and again shows the
effectiveness of our approach in both settings. The perfor-
mance gap might be caused by random feature approxima-
tion. To mitigate such approximation error, we also tried
using MLP upon the learned representation, instead of lin-
ear form, which leads to better performances. Please refer
to Appendix E.3 for details.

In fact, the differences in the SoTA usage of SPEDE in easy
environments and difficult environments also reveals the
important direction for our future work. The current rigor-
ous representation learning methods, e.g., Du et al. [2019],
Misra et al. [2020], Agarwal et al. [2020a] and the pro-
posed SPEDE, all rely on some model assumption. When
the assumptions are satisfied, e.g., Pendulum, Reacher, and
others, our theoretically derived SPEDE variant works ex-
tremely well, even better than current SoTA. However, when
the assumption is not fully satisfied, although the decoupled
SPEDE achieves best performance among existing model-
based RL and representation learning under fair compari-
son, the joint learned variant of SPEDE is more robust and
promotes the current SoTA with significant margin. An in-
teresting question is whether we can rigorously justify the
regularized SPEDE, which we leave as our future work.

6 CONCLUSION

We introduce SPEDE, which, to the best of our knowledge,
is the first provable and efficient representation learning
algorithm for RL, by exploiting the benefits from noise. We
provide thorough theoretical analysis and strong empirical

results, comparing to both model-free and model based RL,
that demonstrates the effectiveness of our algorithm.
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