
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRANSFORMERS LEARN LATENT MIXTURE MODELS
IN-CONTEXT VIA MIRROR DESCENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Sequence modelling requires determining which past tokens are causally relevant
from the context and their importance: a process inherent to the attention layers
in transformers, yet whose underlying learned mechanisms remain poorly under-
stood. In this work, we formalize the task of estimating token importance as an
in-context learning problem by introducing a novel framework based on Mixture
of Transition Distributions, whereby a latent variable, whose distribution is param-
eterized by a set of unobserved mixture weights, determines the influence of past
tokens on the next. To correctly predict the next token, transformers need to learn
the mixture weights in-context. We demonstrate that transformers can implement
Mirror Descent to learn the mixture weights from the context. To this end, we give
an explicit construction of a three-layer transformer that exactly implements one
step of Mirror Descent and prove that the resulting estimator is a first-order ap-
proximation of the Bayes-optimal predictor. Corroborating our construction and
its learnability via gradient descent, we empirically show that transformers trained
from scratch converge to this solution: attention maps match our construction, and
deeper models’ performance aligns with multi-step Mirror Descent.

1 INTRODUCTION

In recent years, Machine Learning has been transformed by large language models (LLMs). These
massive, complex models achieve unprecedented performance across diverse tasks beyond text gen-
eration (Bubeck et al., 2023). A striking example is in-context learning (ICL) (Brown et al., 2020;
Min et al., 2022), where models adapt to new tasks using only examples in the prompt without
parameter updates. Mechanistic interpretability has made significant strides in explaining this phe-
nomenon, revealing that transformers can implement computational circuits (Elhage et al., 2021;
Olsson et al., 2022; D’Angelo et al., 2025) that mimic known algorithms. For instance, in set-
tings like linear regression, they learn to implement gradient-based optimization (Garg et al., 2022;
Akyürek et al., 2022; Von Oswald et al., 2023a;b; Zhang et al., 2023; Ahn et al., 2023; Mahankali
et al., 2024), while for Markov Chains, they implement counting-based estimators for the transition
probabilities (Nichani et al., 2024; Edelman et al., 2024; Bietti et al., 2023a; Rajaraman et al., 2024;
Ildiz et al., 2024; Svete & Cotterell, 2024; Chen et al., 2024). However, these successes are con-
fined to problems where all the sequences rely on the same, fixed causal structure: the relationship
between tokens is static. For instance, in the case of regression, the model only needs to learn that
every even token depends on the previous odd token; in Markov chains, it learns that the next token
depends only on the previous one.

Real-world sequential data, particularly language, defies such simplicity. The meaning of a sentence
arises not from the fixed sequence of word meanings, but from the dynamic causal links between the
words that must be inferred from the context. These underlying structures, which are fundamental
to language, are latent variables hidden from direct observation. Consider the sentence in Figure 1.
To predict the final action, a model cannot rely on simple recency. It must infer a latent structure:
that “dog” is the agent, “ball” is the relevant object, and “bird” is a distractor. The influence of a past
token is not merely a function of its position, but of its inferred role. This ability to infer and reason
over unobserved variables, be it syntactic roles, speaker intent, or the causal topic of a discourse, is a
hallmark of intelligence. A robust model must therefore move beyond fixed dependencies and learn
to infer this latent structure, dynamically identifying which tokens are causally relevant in a given
context. These considerations give rise to the core question of this paper:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

The dog that saw the bird threw the ball , and then ran to .fetch
High λg

High λg′

Low λg′′

fetch chase roll · · · fly

dog 0.6 0.3 0.0 · · · 0.0

· · · · · · · ·

ball 0.5 0.0 0.4 · · · 0.0

bird 0.0 0.1 0.0 · · · 0.8

π⋆ =

Figure 1: To predict the final word, the model must infer the causal relevance of past tokens. Our MTD
framework models this by separating a static, context-free unigram (π⋆) from dynamic, context-dependent
weights (λ) that are inferred in-context. The model learns to assign high weights to the causally relevant
positions (’dog’) and (’ball’), activating their respective slices of the unigram (e.g., π⋆(dog, ·) favouring verbs
like fetch or chase). Conversely, a low weight is assigned to the distractor (’bird’), suppressing its influence.

Can transformers infer latent structures in-context, and what algorithm do they learn?

To investigate this question, we introduce a synthetic task based on the Mixture of Transition Dis-
tributions (MTD) model (Raftery, 1985; André Berchtold, 2002). This framework recasts token-
importance estimation as learning latent mixture weights in-context. While prior work have used
mixture models in regressions (Pathak et al., 2024) or HMMs (Xie et al., 2022) to study ICL, they
did not unveil the mechanism through which transformers learn to infer the latent mixture weights.

We make the following contributions:
(I) A framework for ICL based on latent variables using MTD: we create a synthetic task that frames
the estimation of the influence of past tokens as learning latent mixture weights in-context. (II) We
identify Mirror Descent as the algorithm transformers can implement to solve this task and pro-
vide a construction of a 3-layer transformer that exactly implements one-step of this algorithm.
(III) We empirically demonstrate that transformers trained with Adam actually learn this estimator
and the learned attention patterns math our construction and that deeper models match multi-step
MD. (IV) We prove that this estimator is an approximation to the Bayes-optimal solution. Taken to-
gether, our results extend the gradient-based interpretation of ICL beyond the regression setting. We
show for the first time that the same algorithmic perspective holds also in sequential domains over
finite sets of discrete tokens. Our results reveal that Transformers effectively can implement mirror
descent to in-context learn latent parameters of Markov-chain tasks, providing a gradient-based ex-
planation of ICL in sequence modeling. We defer to the Appendix C a more detailed discussion of
related work.

Why MTD? Our choice of the MTD model is motivated by the desire to capture both in-weight
and in-context learning in a single, controlled setting. In contrast to much of the ICL literature,
where tasks are designed so that nearly all useful structure must be inferred from the prompt (e.g.,
gradient-descent ICL in linear regression or counting estimators for simple Markov chains), our
setup explicitly assumes that some statistical structure, namely the transition matrix π⋆, can be
stored in the model’s weights during pretraining and reused at inference time, while the mixture
weights λ are inferred and adapted in-context from a single sequence. This mirrors a plausible
regime for large language models, which cannot memorize full high-order n-grams due to their
sample complexity growing exponentially with n but can realistically encode lower-order n-grams
in their weights and dynamically reweight different lags depending on the given prompt. To the best
of our knowledge, this is the first in-context learning framework that explicitly couples an in-weight
component (learning π⋆) with an in-context component (inferring λ), providing a natural testbed for
studying the fundamental in-weight / in-context dichotomy in LLMs.

2 DISENTANGLED TRANSFORMERS

The disentangled transformer (Friedman et al., 2023) is a modification of a standard Transformer
with relative positional encodings (RPE) (Shaw et al., 2018), designed for enhanced interpretability
by: (1) removing MLPs; (2) replacing residual connections with concatenation, creating an ex-
plicit residual stream that preserves computations from all previous layers; and (3) simplifying
the attention mechanism to use a single attention matrix instead of query and key, and incorpo-
rates the value in the output matrix. Nichani et al. (2024) demonstrated that disentangled trans-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

formers are equivalent to standard transformers using only attention layers. The model maps a
sequence of tokens s = (s1, . . . , sT) from a finite alphabet S to a sequence of vectors. Each
token si is represented by its one-hot vector esi ∈ {0, 1}|S|. This yields the initial representa-
tions H(0) = (es1 , . . . ,esT) ∈ Rd0×T , whith d0 = |S|. The model consists of L layers. Let
H(l−1) ∈ Rdl−1×T be the input to layer l, where h

(l−1)
i is its i-th column vector. For each head

h ∈ {1, . . . , Hl}, the pre-softmax attention score e
(l,h)
ij from token i to j is computed as:

e
(l,h)
ij = (h

(l−1)
i)⊤W

(l,h)
A h

(l−1)
j + (h

(l−1)
i)⊤r

(l,h)
ij . (1)

Here, W (l,h)
A ∈ Rdl−1×dl−1 is a learnable attention matrix and r

(l,h)
ij = (R

(l,h)
A)i−j+1,: is a relative

positional encoding vector retrieved from a learnable lookup table R
(l,h)
A ∈ R(T)×dl−1 . The atten-

tion weights are computed via a causally masked softmax: A(l,h)
ij = [softmax(e(l,h)i)]j , where e(l,h)i

is the vector of scores. The output of a single attention head is formed by concatenating the content
vector h(l−1)

j with a positional value embedding r′
(l,h)
ij before the sum and it is then concatenated

with the input to form the layer output:

ĥ
(l,h)
i =

∑T

j=1
A(l,h)

ij Concat
(
h
(l−1)
j , r′

(l,h)
ij

)
H(l) = Concat

(
H(l−1), Ĥ(l,1), . . . , Ĥ(l,Hl)

)
.

The positional value embeddings r′(l,h)ij are retrieved from a second lookup table R
(l,h)
V ∈ RT×dR ,

where dR is a fixed hyperparameter. The dimension of the representation thus grows according
to the recurrence dl = dl−1 + Hl · (dl−1 + dR). After L layers, a final linear layer with matrix
WO ∈ R|S|×dL maps the final representation H(L) to logit predictions.

3 MIXTURE OF TRANSITION DISTRIBUTIONS FOR IN-CONTEXT LEARNING

The Mixture of Transition Distributions (MTD) model, introduced by Raftery (1985), is a higher-
order Markov chain that offers a parsimonious representation of long-range dependencies. The core
idea is to model the probability of the next state as a convex combination of several first-order
transition probabilities, each conditioned on a different past state (or lag).

Model Definition: Let Y = (Y1, . . . , YT) be a sequence of random variables tak-
ing values in a finite alphabet Y = {1, . . . , q}. The MTD model of order m ex-
plains this sequence by positing a corresponding sequence of unobserved latent vari-
ables Z = (Zm+1, . . . , ZT), where each Zt ∈ {1, . . . ,m} acts as a switch, select-
ing which of the m previous tokens, Yt−1, . . . , Yt−m, will influence the current token Yt.

Zt−2

Yt−2

Zt−1

Yt−1

Zt

Yt

Figure 2: MTD for m=2.

The selection of this lag is a random event, governed by the mixture
weights λ = (λ1, . . . , λm) with λg ≥ 0 for all g and

∑m
g=1 λg = 1,

such that the probability of choosing lag g is given by P(Zt = g) = λg .
Once the lag Zt = g is sampled, the next token Yt is generated from a
first-order transition that depends only on the state at the sampled po-
sition, Yt−g . This is captured by a transition matrix π ∈ P with P the
set of q×q row-stochastic matrix defining the conditional probabilities
π(i, j) = P(Yt = j | Yt−g = i, Zt = g). By marginalizing over the
unobserved latent variable Zt, we obtain the model’s overall predictive
distribution:
Definition 1 (Mixture Transition Distribution). A sequence of random variables Y follows an m-th
order MTD model if for all t > m and any history yt−1

1 , the conditional probability of Yt is:

P(Yt = yt | Y t−1
1 = yt−1

1 ,λ) =
∑m

g=1
λg π(yt−g, yt), (2)

where the parameters λ = (λ1, . . . , λm) are the mixture weights and π the transition matrix.

This structure allows to model different effective contexts, making it more flexible than a first-order
Markov chain preserving tractability by requiring only m − 1 + q(q − 1) parameters compared to
the qm(q − 1) of a full m-th order Markov chain.

The In-Context Learning Task: We design an in-context learning task based on the MTD model
structured as follows: Given a transition matrix π we generate sequences y, by sampling for each a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

new vector of mixture weights λ from a prior λ ∼ Dirichlet(α = 1). This λ vector is the hidden
task that defines the statistical structure of that particular sequence. The sequence y = (y1, . . . , yT)
is then generated according to the MTD model in equation 2. The learning objective for a model
f ∈ F , such as a transformer, is to predict the next token yt given the context yt−1

1 :

inf
f∈F

Eλ∼Dirichlet(α)Ey∼MTD(λ,π⋆)

[
KL
(
p(Yt|yt−1

1 ,λ) ∥ f(yt−1
1)

)]
. (3)

To perform this prediction optimally, the model must effectively learn the mixture weights λ of the
latent variables Zt, which are not directly observable in the sequence and differ across sequences:

In-Context Task: Learn the unknown mixture weights λ given a single sequence y.

The Bayes Optimal Solution: The solution to the ICL task (Eq. 3) is the Bayesian predictive
distribution, p(Yt+1 | yt

1,α).
Proposition 1 (Bayes-Optimal MTD Predictor). Given the MTD model with a known transition
matrix π, a prior p(λ|α), and an observed sequence yt

1, the Bayesian predictive distribution for
Yt+1 = j is a convex combination of the lag-specific transition probabilities, weighted by the poste-
rior mean of the mixture weights λ:

p(Yt+1 = j | yt
1,α) =

m∑
g=1

λ̂Bayes
g ·π(yt+1−g, j) λ̂Bayes

g := E[λg | yt
1,α] =

∫
∆m−1

λg·p(λ | yt
1,α) dλ,

(4)
where p(λ | yt

1,α) ∝ p(yt
1 | λ)p(λ | α) is the posterior distribution with p(yt

1 | λ) =∏t
k=m+1 (

∑m
h=1 λhπ(yk−h, yk)) being the likelihood.

The derivation is provided in Appendix E. While elegant, the Bayes-optimal predictor is analytically
intractable. The core issue is that the Dirichlet prior is not conjugate to the MTD likelihood, mean-
ing the posterior distribution does not have a closed form. Consequently, the integral defining the
posterior mean λ̂Bayes

g cannot be computed directly, necessitating the use of approximation methods.

Mirror Descent (MD): The intractability of the posterior mean motivates considering simpler point
estimates, such as the Maximum Likelihood Estimate (MLE) or the Maximum A Posteriori (MAP)
estimate which are equivalent under uniform Dirichlet prior. However, analytical computation of
either the MLE or MAP is intractable necessitating iterative optimization methods. Methods such
as Expectation–Maximization (EM) or Mirror Descent (MD) are preferred over standard gradient
descent, as they are naturally adapted to the geometry of the simplex. For an extended discussion,
see Appendix G. Furthermore, even if the MAP estimate could be found, it represents the mode
of the posterior distribution, which does not coincide with the posterior mean in the Bayes-optimal
predictor therefore leading to suboptimal predictions.

Mirror Descent, is a first-order method particularly well-suited for optimizing over the probability
simplex ∆m−1 Nemirovskij & Yudin (1983); Beck & Teboulle (2003). By using a Bregman diver-
gence based on the negative entropy potential, MD results in the Exponentiated Gradient (EG)
algorithm, which has a simple multiplicative update rule (see Appendix G.4 for details):

λ(k+1)
g =

λ
(k)
g exp(η · ∇λℓ(λ

(k))g)∑m
h=1 λ

(k)
h exp(η · ∇λℓ(λ(k))h)

, (5)

where η > 0 is the learning rate and ∇λℓ(λ
(k)) the gradient of the log-likelihood evaluated

at λ(k). Instead of iterating the EG algorithm to convergence, we analyze a non-iterative es-
timator derived from a single update step, initialized at the center of the probability simplex
(λ(0) = (1/m, . . . , 1/m)). This approach yields a computationally efficient, regularized approx-
imation of the MLE, which we demonstrate serves as an effective proxy for the posterior mean.
Proposition 2 (One-Step MD Estimator). Initializing the EG algorithm (Eq. 5) at λ(0) =
(1/m, . . . , 1/m) and applying a single update step for the MTD model yields the estimator:

λ̂MD
g :=

exp
(
η ·m

∑t
k=m+1 γk(g)

)
∑m

j=1 exp
(
η ·m

∑t
k=m+1 γk(j)

) γk(g) := p(Zk = g | yk
1 ,λ

(0)) =
π(yk−g, yk)∑m
h=1 π(yk−h, yk)

,

(6)
where γk(g) is the posterior responsibility of lag g at step k > m, under the uniform prior.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The derivation is provided in Appendix G.4. This one-step estimator computes, for each step k in
the sequence, the posterior probability that lag g was responsible for generating yk (assuming all
lags equally likely a priori). These responsibilities are summed across the sequence and fed into a
softmax function to produce the estimate λ̂MD with the learning rate η controlling its sharpness.

4 TRANSFORMERS IMPLEMENT ONE-STEP OF MIRROR DESCENT

We present our main theoretical result: a constructive proof that the one-step MD estimator can be
implemented by a Transformer. The crucial mechanism relies on relative position encodings to cor-
rectly route information, allowing the self-attention layer to compute the posterior responsibilities.

Proposition 3 (Transformer Implementation of the One-Step MD Estimator). Given an MTD model
of order m with a known transition matrix π⋆ ∈ P . For any sequence y1:T of length T ≥ m,
there exists a three-layer disentangled Transformer T̃ with single head, d0 = q and dR ≥ m that
implements the one-step MD estimator. The Transformer produces the predictive distribution for the
next token Yt+1 at position t as:

T̃ (y1:T)T =

m∑
g=1

λ̃g(y1:T) · π(yT+1−g, :) λ̃g(y1:T) =
exp

(
β

T−m

∑T
i=m+1 γi(g)

)
∑m

h=1 exp
(

β
T−m

∑T
i=m+1 γi(h)

) ,
(7)

with the weights λ̃(y1:t) computed exactly as the one-step MD estimate and β is a learnable param-
eter corresponding to the scaled learning rate of the MD algorithm.

In the following we prove Proposition 3 by explicitly constructing a 3-layer disentangled Trans-
former that implements the one-step MD estimator. The first layer computes the posterior responsi-
bilities γi(g), the second layer computes the logits

∑T
i=m+1 γi(g), and the third layer produces the

final estimate vector λ̃(y1:T) within its attention weights.

Layer 1, Posterior Responsibilities: The first layer uses the attenttion matrix W
(1)
A to compute the

posterior responsabilities and the relative positional encoding r′ij to store it in the residual stream:

W
(1)
A = logπ⋆, (R

(1)
A)k,: =

{
+δ1 · 1⊤ 2 ≤ k ≤ m+ 1

−δ1 · 1⊤ otherwise
, (R

(1)
V)k,: =

{
e⊤k−1 2 ≤ k ≤ m+ 1

0⊤ otherwise

R
(1)⊤
A = δ1

1 2 . . . m+1 m+2 . . . T


-1 1 . . . 1 -1 . . . -1
-1 1 . . . 1 -1 . . . -1
...

...
. . .

...
...

...
...

-1 1 . . . 1 -1 . . . -1

R
(1)⊤
V =

1 2 m+1 m+2 . . . T


0 1 0 . . . 0 0 . . . 0
0 0 1 . . . 0 0 . . . 0
...

...
. . .

...
...

...
...

...

0 0 . . . 0 1 0 . . . 0

where log is applied element-wise, k = i−j+1 is the relative position between token i and j shifted
by 1. The lookup table R(1)

A biases attention to focus only on the first m relative positions (the lags).
The lookup table R

(1)
V uses one-hot vectors ek to copy the computed attention weight for a specific

lag into the corresponding dimension of the output vector, thereby storing the responsibilities for
different lags in distinct positions. The attention score eij for this layer is computed as per Equation
1. Given that the input is one-hot encoded, i.e., h(0)

i = eyi
, the score becomes:

eij = e⊤yi
(logπ⋆)eyj

+ e⊤yi
r
(1)
ij = log π⋆(yi, yj) +

{
+δ if 1 ≤ i− j ≤ m

−δ otherwise
,

where we used that the RPE vector rij is constant with respect to the token values yi. For a large
δ1, the softmax only attends to keys j such that their relative position k = i − j is within the
range [1,m]. The causal attention weights A(1)

ij for j ≤ i are given by: A(1)
ij =

exp(eij)∑i
j′=1

exp(eij′)
=

π⋆(yi,yj) exp(e
⊤
yi

r
(1)
ij)∑i

j′=1
π⋆(yi,yj′) exp(e

⊤
yi

r
(1)

ij′)
. In the limit δ1 →∞, the behavior of the softmax changes based on the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

position i. For the first token (i = 1), the only valid key is itself (j′ = 1), which means the attention
is entirely self-contained, resulting in A(1)

11 = 1. For any subsequent token (i > 1), the terms in the
denominator corresponding to lags k ∈ [1,m] are scaled by exp(δ1), while all other terms, including
the diagonal (k = 0), are scaled by exp(−δ1) and vanish. This yields the following limit for i > 1:

A(1)
ij =


π⋆(yi,yj)

m̂∑
k=1

π⋆(yi,yi−k)

i− j ∈ [m]

0 otherwise
A(1) =



1 0 0 0 0 0 0 . . .

∗ 0 0 0 0 0 0 . . .

∗ ∗ 0 0 0 0 0 . . .
...

...
...

. . .
...

...
...

...

0 . . . γT−1(m) . . . γT−1(2) γT−1(1) 0 . . .

0 . . . 0 γT (m) . . . γT (2) γT (1) 0


where m̂ = min(i − 1,m). For positions i > m, where the MTD model is defined, the attention
mechanism thus computes A(1)

ij = γi(i− j) for the active lags (1 ≤ i− j ≤ m). This expression is
precisely the posterior responsibility γi(g) from Equation 6, where the lag is g = i− j. For earlier
steps (1 < i ≤ m), the attention mechanism computes the natural counterpart by normalizing over
the i − 1 available lags. The resulting attention matrix A(1) has a specific banded lower-triangular
structure. The output of this layer, ĥ(1)

i , is the attention-weighted sum over the concatenated value
vectors. Given that the attention weights Aij compute the posterior responsibilities γi(g) (for i >
m), and R

(1)
V embeds the lag g = i− j as a one-hot vector eg , the output for a position i > m is:

ĥ
(1)
i =

i−1∑
j=1

Aij Concat(eyj
, r

′(1)
ij) =

m∑
g=1

γi(g)Concat(eyi−g
, eg) . (8)

This output is a convex combination, weighted by the posterior responsibilities, of vectors that each
concatenate two pieces of information: the one-hot encoding of the token at a given lag (eyi−g

) and
the one-hot encoding of eg of the lag itself (g):

ĥ
(1)
i = γi(m)


eyi−m

0
...
1


︸ ︷︷ ︸

Lag m

+ · · ·+ γi(2)


eyi−2

0
1
...


︸ ︷︷ ︸

Lag 2

+ γi(1)


eyi−1

1
0
...


︸ ︷︷ ︸

Lag 1

=



∑m
g=1 γi(g)eyi−g

γi(1)

γi(2)
...

γi(m)



In essence, the top part of ĥ(1)
i contains a weighted sum of past tokens (which is not be used), while

its bottom part explicitly stores the vector of posterior responsibilities with the value γi(g) for lag g
stored at the g-th position within this second block (i.e., γi(1) is first, followed by γi(2), etc.).

Layer 2, Summing Responsibilities: The second layer sums along the sequence the responsi-
bility vectors computed in Layer 1, for tokens at positions i > m. This is achieved by setting
the content-based attention to zero (W (2)

A = 0) and the value-rpe matrix to zero (R(2)
V = 0).

The mechanism relies on the content-position interaction (h
(1)
i)⊤r

(2)
ij . Crucially, the input vector

h
(1)
i = Concat(eyi , ĥ

(1)
i) retains in the residual stream the one-hot embedding eyi of the current

token in its first q dimensions. The RPE table R(2)
A is structured to interact only with this part of the

vector, turning the dot product into a fixed bias:

W
(2)
A = 0d1×d1

, (R
(2)
A)k,: =

{
01×d1

if 1 ≤ k ≤ T −m

[−δ2 · 11×q,01×(q+m)] otherwise
, R

(2)
V = 0

The attention score for the final query at i = T therefore simplifies to:

eTj = (h
(1)
T)⊤r

(2)
Tj =

(h
(1)
T)⊤

(
−δ2 · 1q

0q+m

)
= −δ2 · (e⊤yT

1q) = −δ2 if 1 ≤ j ≤ m

(h
(1)
T)⊤0d1 = 0 otherwise

In the limit δ2 → ∞, the softmax places uniform attention only on the keys where the score is not
−∞. This results in uniform attention weights ATj = 1/(T − m) for j ∈ [m + 1, T], and zero

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

otherwise. The layer’s output for the final token is therefore the exact average of the desired vectors:

ĥ
(2)
T =

T∑
j=1

ATj Concat(h
(1)
j , r′

Tj) =
1

T −m

T∑
j=m+1

Concat(h
(1)
j ,0) =

1

T −m



∑T
j=m+1

(∑m
g=1 γj(g)eyj−g

)
∑T

j=m+1 γj(1)∑T
j=m+1 γj(2)

·∑T
j=m+1 γj(m)

0



Defining Γj = (γj(1), γj(2), . . . , γj(m))⊤; the m-dimensional sub-block ĥ
(2)
q+1:q+m =

∑
j Γj

contains the average responsibility vectors, 1
T−m

∑T
j=m+1 γj , which is exactly the quantity needed

to implement the one-step MD estimator in Prop. 2.

Layer 3, Final Predictive Weights: The third and final layer uses the averaged responsibilities com-
puted in Layer 2 to produce the final predictive weights, λ̃, which correspond to the one-step MD
estimate from Prop. 2. This is accomplished by using the RPE table, R(3)

A , to perform a selective dot
product. The query vector for the final token, h(2)

T , contains the vector of averaged responsibilities
in its final m coordinates. The RPE vectors in R

(3)
A are constructed as scaled one-hot vectors that

align with this sub-block, effectively using the dot product to ”read out” the corresponding averaged
responsibility. Similarly to layer 2, to only have non-zero attention only at the positions correspond-
ing to the m lags, we use the one-hot embedding of the current token eyi

from the residual stream
h
(2)
i = Concat(eyi

, ĥ
(1)
i , ĥ

(2)
i) to add a fixed bias δ3 which drives the softmax to zero in the limit.

The content-based attention and value-rpe are again disabled:

W
(3)
A = 0d2×d2

R
(3)
V = 0

, (R
(3)
A)k,: =

{
[

on h(0)︷ ︸︸ ︷
+δ3 · 1⊤

q ,

on ĥ(1)︷ ︸︸ ︷
0⊤
q+m,

on ĥ
(2)
1:q︷︸︸︷

0⊤
q ,

on Γ︷ ︸︸ ︷
β · e⊤k ,

on ĥ
(2)
q+m+1:d2︷︸︸︷
0⊤
q] if k ∈ [m]

[−δ3 · 1⊤
q ,0

⊤
q+m,0⊤

q ,0
⊤
m,0⊤

q] otherwise

Here, ek is a one-hot vector in Rd2 that selects the coordinate corresponding to the k-th responsibility
in h

(2)
T , and β is the learnable scaled learning rate. Visually, the RPE table R

(3)
A is a sparse matrix

of scaled one-hot vectors:

R
(3)⊤
A =

[1, · · · ,m] · · · · · · T


h(0) +δ3 · 1q, · · · ,+δ3 · 1q −δ3 · 1q −δ3 · 1q −δ3 · 1q

ĥ(1) 0 0 0 0

ĥ
(2)
1:q 0 0 0 0

Γ
[
βe1 βe2 · · · βem

]
0 0 0

ĥ
(2)
q+m+1:d2

0 0 0 0

Since W
(3)
A = 0, the score simplifies to the content-position interaction (h

(2)
T)⊤r

(3)
Tj and r

(3)
Tj is

constructed to be non-zero only for relative positions g = T−j+1 ∈ [1,m]. For these lags, the RPE
is a scaled one-hot vector that acts as a selector, using the dot product to extract the corresponding
averaged responsibility stored in h

(2)
T :

eTj = (h
(2)
T)⊤r

(3)
Tj =

{
(h

(0)
T)⊤(δ31q) + (Γ)⊤T (βeg)

−δ3 · (e⊤yT
1q)

=

{
+δ3 + β ·

∑T
i=m+1 γi(g)

T−m if g ∈ [m]

−δ3 otherwise.

The attention scores for the final token, eT,:, becomes the scaled averaged responsibility:

eT,: =
(
−δ3, . . . ,−δ3, +δ3 + β

∑T
i=m+1 γi(m)

T−m︸ ︷︷ ︸
pos T−m+1

, . . . , +δ3 + β
∑T

i=m+1 γi(2)

T−m︸ ︷︷ ︸
pos T−1

, +δ3 + β
∑T

i=m+1 γi(1)

T−m︸ ︷︷ ︸
pos T

)
After applying the softmax and in the limit of large δ3, the attention weights for the last token

compute the MD estimate of the mixture weights λ̃g and place them at the correct positions:

lim
δ3→∞

AT,T−g =

exp

(
β

∑T
i=m+1 γi(g)

T−m

)
∑m

k=1 exp
(
β

∑T
i=m+1 γi(k)

T−m

) lim
δ3→∞

AT,: =
(
. . . , 0, λ̃m︸︷︷︸

T−m+1

, . . . , λ̃2︸︷︷︸
T−1

, λ̃1︸︷︷︸
T

)
.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

This final attention operation is the core of the estimation process. It computes the mixture weights
λ̃, which serve as the in-context estimates of token importance, thus realizing the mechanism of
in-context learning this work seeks to understand.

Output Layer: The final step of the construction is to apply the output matrix W̃O to the final hid-
den state h

(3)
T to produce the predictive distribution over the next token. The matrix W̃O learns the

known transition matrix π⋆ and selectively applies it to the embedding of the last token. The output
of the third attention layer, ĥ(3)

T , is a weighted sum of the hidden states from the second layer, where
the weights are the estimated mixture weights λ̃g: ĥ(3)

T =
∑T

j=1A
(3)
Tjh

(2)
j =

∑m
g=1 λ̃gh

(2)
T−g. The

first q components of any hidden state h
(k)
j , due to the residual stream, simply contain the original

input h(0)
j = eyj

. Consequently, the first q components of ĥ(3)
T are a λ̃-weighted combination of the

one-hot embeddings of the relevant past tokens: (ĥ(3)
T)1:q =

∑m
g=1 λ̃g(h

(2)
T−g)1:q =

∑m
g=1 λ̃geyT−g

.

The full hidden stat is h
(3)
T = Concat(h

(0)
T , ĥ

(1)
T , ĥ

(2)
T , ĥ

(3)
T) and the output matrix W̃O ∈ Rq×d3

is structured to ignore all preceding blocks and operate only on the first q components of the final
block, ĥ(3)

T . This is achieved by storing the transition matrix, π⋆⊤, in the corresponding sub-block:

W̃O =
from h

(0)
T from ĥ

(1)
T from ĥ

(2)
T from ĥ

(3)
T

()0q×q 0q×(q+m) 0q×(2q+2m) [π⋆⊤
q×q 0q×(3q+4m)] .

Applying this matrix to the fully expanded final hidden state yields the predictive distribution:

T̃ (y1:T)T = [π⋆⊤ 0] ĥ
(3)
T = π⋆⊤(ĥ

(3)
T)1:q = π⋆⊤

(
m∑

g=1

λ̃geyT−g

)
=

m∑
g=1

λ̃gπ
⋆(yT−g, :) .

This final vector is exactly the predictive distribution from Proposition 3, completing the proof.

5 WHY ONE-STEP MIRROR DESCENT WORKS

This section provides a theoretical analysis of the one-step MD estimator to formally justify its
success. We prove that a single MD update, initialized from a uniform prior, corresponds to an
estimator that is an approximation of the Bayesian posterior mean. Our results therefore, elucidate
the mechanism by which this simple, non-iterative procedure achieves good performance.

One-Step MD as a First-Order Bayesian Approximation: We establish a theoretical connec-
tion between the one-step Mirror Descent (MD) estimator and the Bayesian posterior mean. We
show that their first-order Taylor expansions around the state of no evidence coincide up to a scalar
constant. This result justifies interpreting the one-step MD estimator as a principled approxima-
tion to the Bayes-optimal predictor, especially in low-data regimes. The analysis hinges on treating
both estimators as functions of the log-likelihood gradient evaluated at the center of the simplex,
g := ∇λℓ(λ

(0)), and expanding them around the point of no evidence, g = 0.

Theorem 1 (First-Order Equivalence of the Estimators). Let λ̂MD(g; η) be the one-step MD esti-
mator with learning rate η, and let λ̂Bayes(g) be the Bayesian posterior mean under the linearized
likelihood. The two estimators are first-order equivalent at g = 0 for η = 1

m+1 .

Learning-rate scaling via a Lipschitz (smoothness) constant: We established a first-order equiv-
alence between the one-step MD estimator and the Bayesian posterior mean at g = 0 (the “no-
evidence” regime). For a sequence of length T , however, the gradient norm |g| scales with T see
App. J, raising the question of how to scale the learning rate of λ̂MD = softmax(ηg) with T . Mirror
Descent theory suggests choosing the learning rate inversely proportional to the relative smoothness
constant Lrel (Bauschke et al., 2017). Because our MD update uses a negative entropy regularizer,
smoothness is defined w.r.t. the KL-divergence. Convergence requires η ≤ 1/Lrel. We now bound
this constant and find exactly the scaling implemented in the Transformer in Prop. 3.

Theorem 2 (Relative Smoothness and η scaling at the uniform mixture). At the uniform vector
λ = (1/m, . . . , 1/m), the loss f(λ) = −ℓ(λ) is Lrel-smooth relative to the KL-divergence, with

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

C
on

st
ru

ct
ed

Layer 1 Layer 2 Layer 3

Tr
ai

ne
d

(d
is

en
ta

ng
le

d)
Tr

ai
ne

d
(s

ta
nd

ar
d)

0 1 2 3 4
To State

0

1

2

3

4

Fr
om

 S
ta

te

0.33 0.21 0.35 0.01 0.09

0.04 0.26 0.27 0.27 0.16

0.05 0.17 0.30 0.17 0.30

0.37 0.07 0.02 0.23 0.31

0.16 0.16 0.30 0.22 0.16

True

0 1 2 3 4
Key Dimension

0

1

2

3

4

Q
ue

ry
 D

im
en

si
on

0.32 0.27 0.35 0.00 0.06

0.08 0.32 0.22 0.26 0.12

0.09 0.18 0.26 0.19 0.30

0.33 0.04 0.00 0.26 0.37

0.20 0.16 0.27 0.23 0.13

Softmax(W(1)
A)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Trained SeqLen 192 | KL=0.0376

Figure 4: Comparison of Trained and Constructed Transformers. Left: Attention maps of the trained
transformer (disentanged and standard) versus our theoretical construction (seq. length 64). Right (top):
KL divergence to the ground truth transition probabilities for the trained transformers, the constructed trans-
former, and the one-step MD estimator across sequence lengths. Right (bottom): First-layer attention softmax
Softmax(WA

1) vs. true transitions matrix π⋆ for a trained model.

Lrel ≤ (T − m)m2. Consequently, the stable MD step-size rule η ≤ 1
Lrel

yields the asymptotic

scaling η = Θ
(

1
T

)
for fixed m.

Beyond the Local Approximation, The Implicit Regularization of Mirror Descent:

101 102

Sequence Length

10 2

10 1

K
L

D
iv

er
ge

nc
e

MLE
Bayes

Reg

Figure 3: Regularized Es-
timator. Comparison with
Bayes and MLE estimators.

The first-order equivalence in Theorem 3 holds only for short se-
quences, where the log-likelihood gradient is small. For longer se-
quences, neglected higher-order terms become significant, and the
one-step estimator diverges from the Bayesian mean. Empirically,
however, a few additional Mirror Descent substantially reduces this
gap (see Figure 5). In this regime, iterating MD to convergence
yields the suboptimal MLE, while early stopping provides a much
closer match to the Bayesian mean. We propose that this effect arises
from implicit regularization. Specifically, early-stopped MD approx-
imately solves an entropy-regularized optimization problem of the
form minλ−ℓ(λ)+ γH(λ) with the iterates tracking the correspond-
ing regularization path (Suggala et al., 2018). Along this path, per-
formance on par with the Bayes-optimal estimator is achieved for an
appropriate choice of regularization γ (see Figure. 3). Thus, early
stopping is effectively equivalent to selecting this favorable point on
the entropy-regularized path, avoiding the suboptimal MLE.

6 EXPERIMENTS

We report empirical validation of the main claims and additional experimental details in App.B as
well as additional experiments in App.D.

Setup: We train 3-layer disentangled transformers T̃disent with single head with learned relative
positional and one-hot semantic embeddings as well as 3-layer standard transformers Tstandard (no
disentanglement) with single head attention with standard parameterization given by Query-Key-
Value with learned relative positional and learned semantic embeddings. We sample a fixed q, m, π

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

and at each iteration we sample a set of {λi}Bi=1 with B = 128 the batch size and λi ∼ Dir(α) and
generate B sequences according to the MTD model. We train the model for 106 iterations using the
Adam optimizer and MSE loss over the last token in the sequence for various sequence lengths. The
learning rate is 10−2 and decaying it at 0.5 and 0.75 of the iterations by a factor of 0.1.

Results for one-step MD: We plot the KL divergence with the ground truth transition probabilities
between the trained transformer T̃disent. and Tstandard. compared to our theoretical construction T̃constr.,
the one-step MD estimator λ̂MD and the optimal-Bayes estimator λ̂Bayes (we compute it via MCMC
see App. F.1) for various sequence lengths in Figure 4 (right). We observe that both the disentangled
and standard trained transformers match the performance of the theoretical construction and the
one-step MD estimator: for small sequence lengths, the latter serves as a good proxy for the optimal
Bayes estimator, validating our theoretical result in Theorem 3, whereas for longer sequences it
becomes suboptimal. By inspecting the attention maps of the trained transformers (both standard
and disentangled) in Figure 4 (left) we can see that they actually learn to extract the responsibilities
γ(g)i as expected from our construction (for all three models, the locations of low and high attention
entries, and the diagonal structure induced by the MTD order, are closely aligned). To further
validate if the attention matrix in the first layer actually learns the ground truth transition matrix π⋆

we plot the heatmap of the first attention softmax Softmax(WA
1) vs. π⋆ as well compute the averge

row-wise KL divergence between the two matrices Figure 4 (bottom-right) more results in App. D.
For both the λ̂MD and T̃constr. we tune the learning rate β and η via grid search to minimize the KL
divergence (see Section B.1 for more details).

0 500 1000 1500 2000
Sequence Length

10 3

10 2

K
L

di
ve

rg
en

ce

 train.
Bayes

MD, k = 1

MD, k = 2

 train.
Bayes

MD, k = 1

MD, k = 2

Figure 5: Multi-Step MD vs. 5-
Layer Transformer. Comparison of
the KL divergence to the Bayesian pos-
terior mean.

Results multi-step MD: To further validate the hypothesis
that Transformers can learn to implement Mirror Descent to
solve the task, we plot the KL divergence for the 5-layer
trained transformer T̃ train. compared to the multi-step MD
estimator λ̂MD,k=i where i is the number of steps for vari-
ous sequence lengths in Figure 5. We observe that the trained
transformers match the performance of 2-step of Mirror De-
scent. Importantly, for longer sequences where the difference
between the 2-step MD and the Bayes-optimal solution be-
comes significant, the transformer still matches the 2-step per-
formance thus confirming that it is implementing an estimator
which matches at least in performance the 2-step MD. While
this evidence offers useful insights into how the transformer
behaves, it does not constitute direct evidence that it is im-
plementing multi-step MD. Extending our construction to the
multi-step MD setting is nontrivial and we leave this to future
work Empirically, we find that a 5-layer transformer suffices
to match the performance of two steps, suggesting that the
responsibility computed from the first step might be reused to approximate the second.

7 CONCLUSIONS

This work identifies Mirror Descent as the core algorithm that transformers implement for in-context
learning of latent mixture weights. We introduced a novel framework using Mixture of Transition
Distribution (MTD) models to frame the inference of token importance as an in-context, latent vari-
able estimation task. Within this framework, we provided a constructive proof that a 3-layer trans-
former can exactly implement one-step of Mirror Descent, and we showed empirically that deeper
models learn to approximate multiple steps of the algorithm. Our theoretical analysis provides in-
sight into te one-step MD estimator, establishing its connection to the Bayes-optimal estimator and
deriving practical scaling laws for stable learning. Taken together, our findings extend the gradient-
based interpretation of ICL to sequential tasks over discrete domains, providing a new algorithmic
explanation for how transformers reason over latent structures.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to imple-
ment preconditioned gradient descent for in-context learning. Advances in Neural Information
Processing Systems, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2022.

Adrian Raftery André Berchtold. The Mixture Transition Distribution Model for High-Order
Markov Chains and Non-Gaussian Time Series. Statistical Science, 17(3):328 – 356, 2002. doi:
10.1214/ss/1042727943.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023a. URL https://openreview.net/forum?
id=liMSqUuVg9.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. Advances in neural information
processing systems, 36, 2023b.

Heinz H Bauschke, Jérôme Bolte, and Marc Teboulle. A descent lemma beyond lipschitz gradient
continuity: first-order methods revisited and applications. Mathematics of Operations Research,
42(2):330–348, 2017.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters, 31(3):167–175, 2003.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
transformer: A memory viewpoint. Advances in Neural Information Processing Systems, 2023a.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
transformer: A memory viewpoint. Advances in Neural Information Processing Systems, 36,
2023b.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learn-
ing in transformers. Advances in neural information processing systems, 35:18878–18891, 2022.

Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Unveiling induction heads: Prov-
able training dynamics and feature learning in transformers. In The Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems, 2024. URL https://openreview.net/
forum?id=4fN2REs0Ma.

Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià
Garriga-Alonso. Towards automated circuit discovery for mechanistic interpretability. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=89ia77nZ8u.

Francesco D’Angelo, Francesco Croce, and Nicolas Flammarion. Selective induction heads:
How transformers select causal structures in context. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
bnJgzAQjWf.

11

https://openreview.net/forum?id=liMSqUuVg9
https://openreview.net/forum?id=liMSqUuVg9
https://openreview.net/forum?id=4fN2REs0Ma
https://openreview.net/forum?id=4fN2REs0Ma
https://openreview.net/forum?id=89ia77nZ8u
https://openreview.net/forum?id=89ia77nZ8u
https://openreview.net/forum?id=bnJgzAQjWf
https://openreview.net/forum?id=bnJgzAQjWf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ezra Edelman, Nikolaos Tsilivis, Benjamin Edelman, Eran Malach, and Surbhi Goel. The evolution
of statistical induction heads: In-context learning markov chains. Advances in Neural Information
Processing Systems, 37:64273–64311, 2024.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021.

Dan Friedman, Alexander Wettig, and Danqi Chen. Learning transformer programs. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=Pe9WxkN8Ff.

Deqing Fu, Tian qi Chen, Robin Jia, and Vatsal Sharan. Transformers learn to achieve second-order
convergence rates for in-context linear regression. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=L8h6cozcbn.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Jiachen Hu, Qinghua Liu, and Chi Jin. On limitation of transformer for learning hmms. arXiv
preprint arXiv:2406.04089, 2024.

M Emrullah Ildiz, Yixiao Huang, Yingcong Li, Ankit Singh Rawat, and Samet Oymak. From self-
attention to markov models: Unveiling the dynamics of generative transformers. arXiv preprint
arXiv:2402.13512, 2024.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards
a mechanistic understanding. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp. 19689–19729. PMLR, 23–29 Jul 2023.

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is provably
the optimal in-context learner with one layer of linear self-attention. In The Twelfth International
Conference on Learning Representations, 2024.

Ashok Vardhan Makkuva, Marco Bondaschi, Adway Girish, Alliot Nagle, Martin Jaggi, Hyeji Kim,
and Michael Gastpar. Attention with markov: A framework for principled analysis of transformers
via markov chains. arXiv preprint arXiv:2402.04161, 2024.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pp. 11048–11064, Abu Dhabi, United
Arab Emirates, December 2022. Association for Computational Linguistics.

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

Timothy Nguyen. Understanding transformers via n-gram statistics. arXiv preprint
arXiv:2407.12034, 2024.

Eshaan Nichani, Alex Damian, and Jason D. Lee. How transformers learn causal structure with
gradient descent. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=jNM4imlHZv.

12

https://openreview.net/forum?id=Pe9WxkN8Ff
https://openreview.net/forum?id=Pe9WxkN8Ff
https://openreview.net/forum?id=L8h6cozcbn
https://openreview.net/forum?id=L8h6cozcbn
https://openreview.net/forum?id=jNM4imlHZv

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.

Reese Pathak, Rajat Sen, Weihao Kong, and Abhimanyu Das. Transformers can optimally learn
regression mixture models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=sLkj91HIZU.

Adrian E Raftery. A model for high-order markov chains. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 47(3):528–539, 1985.

Nived Rajaraman, Marco Bondaschi, Kannan Ramchandran, Michael Gastpar, and Ashok Vard-
han Makkuva. Transformers on markov data: Constant depth suffices. arXiv preprint
arXiv:2407.17686, 2024.

Allan Raventos, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and the
emergence of non-bayesian in-context learning for regression. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Michael Eli Sander, Raja Giryes, Taiji Suzuki, Mathieu Blondel, and Gabriel Peyré. How do trans-
formers perform in-context autoregressive learning ? In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=kZbTkpnafR.

Adam Shai, Paul M. Riechers, Lucas Teixeira, Alexander Gietelink Oldenziel, and Sarah Marzen.
Transformers represent belief state geometry in their residual stream. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL https://openreview.
net/forum?id=YIB7REL8UC.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
tions. In North American Chapter of the Association for Computational Linguistics, 2018. URL
https://api.semanticscholar.org/CorpusID:3725815.

Aaditya K Singh, Ted Moskovitz, Felix Hill, Stephanie C.Y. Chan, and Andrew M Saxe. What needs
to go right for an induction head? a mechanistic study of in-context learning circuits and their
formation. In Forty-first International Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=O8rrXl71D5.

Arun Suggala, Adarsh Prasad, and Pradeep K Ravikumar. Connecting optimization and regulariza-
tion paths. Advances in Neural Information Processing Systems, 31, 2018.

Anej Svete and Ryan Cotterell. Transformers can represent n-gram language models. arXiv preprint
arXiv:2404.14994, 2024.

Aditya Varre, Gizem Yüce, and Nicolas Flammarion. Learning in-context n-grams with trans-
formers: Sub-n-grams are near-stationary points. In Forty-second International Conference on
Machine Learning, 2025. URL https://openreview.net/forum?id=OMwdvGDeHL.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023a.

Johannes Von Oswald, Eyvind Niklasson, Maximilian Schlegel, Seijin Kobayashi, Nicolas Zucchet,
Nino Scherrer, Nolan Miller, Mark Sandler, Max Vladymyrov, Razvan Pascanu, et al. Uncovering
mesa-optimization algorithms in transformers. arXiv preprint arXiv:2309.05858, 2023b.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In International Conference on Learning Representations,
2022.

Steve Yadlowsky, Lyric Doshi, and Nilesh Tripuraneni. Pretraining data mixtures enable narrow
model selection capabilities in transformer models. arXiv preprint arXiv:2311.00871, 2023.

13

https://openreview.net/forum?id=sLkj91HIZU
https://openreview.net/forum?id=kZbTkpnafR
https://openreview.net/forum?id=YIB7REL8UC
https://openreview.net/forum?id=YIB7REL8UC
https://api.semanticscholar.org/CorpusID:3725815
https://openreview.net/forum?id=O8rrXl71D5
https://openreview.net/forum?id=O8rrXl71D5
https://openreview.net/forum?id=OMwdvGDeHL

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Oğuz Kaan Yüksel and Nicolas Flammarion. On the sample complexity of next-token prediction. In
The 28th International Conference on Artificial Intelligence and Statistics, 2025. URL https:
//openreview.net/forum?id=eJkNMwzZzy.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
arXiv preprint arXiv:2306.09927, 2023.

Nicolas Zucchet, Francesco d’Angelo, Andrew K Lampinen, and Stephanie CY Chan. The emer-
gence of sparse attention: impact of data distribution and benefits of repetition. arXiv preprint
arXiv:2505.17863, 2025.

14

https://openreview.net/forum?id=eJkNMwzZzy
https://openreview.net/forum?id=eJkNMwzZzy

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A NOTATION

Throughout this paper, we use non-bold letters for scalars (e.g., η, α), lowercase bold letters for
vectors (e.g., h,λ), and uppercase bold letters for matrices (e.g., W ,H,π). The i-th element of
a vector v is denoted by vi, and the vector at position i in a sequence of vectors H is written as
hi. The element in the i-th row and j-th column of a matrix A is Aij , and its i-th row vector is
Ai,:. We use 1 and 0 to denote vectors or matrices of ones and zeros, respectively, with dimensions
inferred from context. We use ek to denote a one-hot vector with a one at the k-th position; its
dimensionality is specified or clear from context. The set of integers {1, . . . ,m} is denoted by [m].
The probability simplex in Rm is denoted by ∆m−1. The operator Concat(·, ·) denotes the vertical
concatenation of vectors or matrices. For vectors a ∈ Rda and b ∈ Rdb , their concatenation results
in a vector in Rda+db . For matrices A ∈ RdA×T and B ∈ RdB×T with the same number of columns,
Concat(A,B) is the block matrix (A

B) ∈ R(dA+dB)×T . Superscripts in parentheses, such as H(l),
are used to index the layers of the Transformer. In the context of Transformer relative positional
encodings, we use 1-based indexing for token positions i, j ∈ [T]. The relative position is mapped
to a lookup table index k = i− j+1. The approximations will be expressed using Landau notation,
where a vector function f(g) = O(∥g∥p) signifies that ∥f(g)∥ ≤ C∥g∥p for some constant C in a
neighborhood of g = 0.

A.1 DIMENSIONALITY OF THE TRANSFORMER CONSTRUCTION

The disentangled Transformer architecture results in a hidden state that grows with each layer. The
following table provides a summary of the dimensions at each stage of the construction. Note that
the input to layer l is h(l−1), and its output is h(l), which is formed by concatenating the input with
the result of the attention mechanism, ĥ(l). We use q for the alphabet size and m for the MTD model
order. For this construction, the RPE value dimension dR is set to m.

Table 1: Dimensionality of Hidden States in the Disentangled Transformer

Layer Description Attention Output ĥ(l) Concatenated Hidden State h(l)

0 (Input) Token Embeddings — h(0) ∈ Rq

1 Responsibilities ĥ(1) ∈ Rq+m h(1) = Concat(h(0), ĥ(1)) ∈ R2q+m

2 Summation ĥ(2) ∈ R2q+m h(2) = Concat(h(1), ĥ(2)) ∈ R4q+2m

3 Weighting ĥ(3) ∈ R4q+2m h(3) = Concat(h(2), ĥ(3)) ∈ R8q+4m

Final Output Matrix W̃O ∈ Rq×(8q+4m)

B EXPERIMENTAL DETAILS

This section provides additional details on the experimental setup, including the hyperparameter
settings for all models and estimators used in our empirical validation.

B.1 HYPERPARAMETER TUNING

For the one-step Mirror Descent estimator (λ̂MD) and our theoretical Transformer construction
(T̃constr.), the learning rate parameters η and β were not fixed but were tuned to optimize perfor-
mance. For each sequence length evaluated, we performed a grid search over a range of potential
values for η and β. The value that minimized the KL divergence to the true Bayesian posterior mean
was selected for the final comparison plots. This ensures that both methods were evaluated under
their optimal conditions.

B.2 PARAMETER SUMMARY

The following table summarizes the key parameters used in our experiments.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 2: Summary of Experimental Parameters

Component Parameter Value

Data Generation
MTD model order (m) 3,4,5
Vocabulary size (q) 5
Sequence Length (T) Varied (64 to 1984)
Dirichlet Prior (α) Uniform (αg = 1 for all g)
Transition Matrix (π) Rows from Dirichlet (α = 1)

Mirror Descent (MD) Estimator
Learning Rate (η) Log grid: [10−5, 10−1], 1000 points

Constructed Transformer (T̃constr.)
Large Constant (δ1, δ2, δ3) [100,100,100]
Scaled Learning Rate (β) Log grid: [10−5, 10−1], 1000 points

Trained Transformer (T̃disent.)
Architecture 3-layer & 5-layer Disentangled Transformer
Attention Heads 1
Concatenation True
Semantic Embeddings one-hot
Relative Positional Encodings Learned
RPE value dimension m

Embedding Dimension q

QK parametrization False
Value matrix False
Head output projection matrix False
Optimizer Adam
Learning Rate 1× 10−3

LR Schedule Decay by 0.1 at 50% and 75% of training
Batch Size 128
Training Iterations 1× 106

Loss Function MSE on the last token prediction

Trained Transformer (Tstandard.)
Architecture 3-layer Standard Transformer
Attention Heads 1
Concatenation False
Semantic Embeddings Learned
Relative Positional Encodings Learned
Embedding Dimension 32
QK parametrization True
Value matrix True
Head output projection matrix True
Optimizer Adam
Learning Rate 1× 10−3

LR Schedule Decay by 0.1 at 50% and 75% of training
Batch Size 128
Training Iterations 5× 105

Loss Function MSE on the last token prediction

MCMC for Bayes Estimator
Sampler Gibbs Sampling
Burn-in Iterations [200]
Number of Samples (K) [2000]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C RELATED WORKS

Induction heads and interpretability The emergence of ICL, as well as the more general ability
of transformers to implement algorithms, has been linked to the formation of interpretable com-
putational circuits Elhage et al. (2021) such as induction heads (Olsson et al., 2022), which are
woven into sparse attention patterns (Zucchet et al., 2025). The development of these circuits is not
monolithic; rather, they emerge in phases through the interaction of simpler subcircuits. Singh et al.
(2024), for instance, use a causal framework to identify the key subcircuits whose interplay leads
to the sudden formation of induction heads during training. This emergence itself also critically de-
pends on the training data; specific distributional properties, such as burstiness and class imbalance,
have been shown to be key drivers of this capability Chan et al. (2022); Zucchet et al. (2025). While
much of this understanding comes from reverse-engineering circuits in pretrained models Conmy
et al. (2023), a parallel line of research aims to create transformers that are interpretable by de-
sign, for example by training models that can be directly decompiled into human-readable programs
Friedman et al. (2023).

In-Context learning and gradient descent Following initial empirical observations of ICL in trans-
formers (Brown et al., 2020), a significant line of research has sought to understand its underlying
mechanisms. Early work demonstrated that transformers can learn simple function classes like
linear models in-context (Garg et al., 2022). This led to the hypothesis that transformer layers effec-
tively implement optimization algorithms, with several studies showing they can perform computa-
tions analogous to gradient descent for in-context linear regression (Akyürek et al., 2022; Bai et al.,
2023b; Von Oswald et al., 2023a;b). This gradient-based view has been extended to higher-order
algorithms (Ahn et al., 2023; Fu et al., 2024) and given theoretical grounding, with proofs that gra-
dient flow converges to a transformer that has learned the in-context task (Zhang et al., 2023). From
a statistical learning perspective, this process has been formalized as ”algorithm learning”, where
generalization is guaranteed by the algorithmic stability of the learned procedure (Li et al., 2023).
Crucially, the emergence of this behavior is not guaranteed; it depends on sufficient pretraining task
diversity (Raventos et al., 2023). This algorithmic paradigm also extends to linear autoregressive
processes, where transformers have been shown to implement a gradient descent step to learn the
transition matrix in-context (Sander et al., 2024).

In-Context learning, Markov chains and n-gram models Our work is closely related to the lit-
erature analyzing ICL for sequential probabilistic models like n-grams and Markov chains. Foun-
dational work by Yüksel & Flammarion (2025) established formal generalization bounds for next-
token prediction on Markovian data, analyzing its sample complexity. Regarding transformers, sev-
eral mechanistic studies have investigated how they implement learning algorithms for these models.
For bigrams, transformers have been shown to develop induction heads that function like associative
memories (Bietti et al., 2023b) and accurately compute posterior probabilities from statistical cues
(Edelman et al., 2024). For first order Markov chains, Nichani et al. (2024) demonstrated that trans-
formers learn the causal structure with gradient descent and implement induction heads to estimate
the transition probabilities in-context, effectively implementing a Bayes-optimal estimator. This
analysis was later extended to higher-order chains (Chen et al., 2024), while the work of D’Angelo
et al. (2025) shows that transformers can even learn to select the correct Markov causal structure at
inference time. Further theoretical results have explored the transformer loss landscape in this set-
ting (Makkuva et al., 2024), characterized in-context n-grams as near-stationary points (Varre et al.,
2025), and shown that constant-depth transformers are sufficient to learn k-th order Markov chains
(Rajaraman et al., 2024).

Transformers and sequential models Beyond specific learning algorithms, a broader line of work
has explored the fundamental capabilities and limitations of transformers as sequential models. In
terms of representational power, transformers with sparse attention have been shown to be capa-
ble of exactly representing any n-gram model (Svete & Cotterell, 2024). However, this expressive
power has limits; for instance, transformers may be less effective at learning certain Hidden Markov
Models (HMMs) compared to RNNs (Hu et al., 2024). Interestingly, when investigating the in-
ternal representations that enable inference in HMMs, Shai et al. (2024) showed that transformers
maintain interpretable belief states that are linearly encoded in the residual stream. A strength of
transformers is their ability to perform in-context model selection. It has been demonstrated that
a single transformer can adaptively choose between different base algorithms or even qualitatively
different tasks (e.g., regression vs. classification) based on the prompt (Bai et al., 2023a), effectively

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

selecting between different function classes in-context (Yadlowsky et al., 2023). While high-level
n-gram statistics can approximate transformer predictions, the mechanism for how the correct ”rule”
is selected in-context remains an open question (Nguyen, 2024).

D ADDITIONAL EXPERIMENTS

In this section we repeat the main-text experiments for different MTD orders, comparing the trained
and constructed transformers: in addition to the m = 4 case in the main text, we report results
for m = 3 and m = 5. In Figure 6, we plot the KL divergence to the ground-truth transition
probabilities across sequence lengths for the trained transformers, the constructed transformer, and
the one-step MD estimator (orders 3 and 5). In Figure 7, we instead compare the learned first-layer
attention (softmax) to the true transition matrices for orders 3 and 5, with the average row-wise KL
divergence reported directly in each panel. Finally, Figure 8 reports attention grids for the trained
and constructed transformers (disentangled) at sequence length 64 for MTD orders m = 3 and
m = 5, analogous to the attention maps shown in Figure 4 (left) in the main text.

0 200 400 600 800 1000
Sequence Length

0.002

0.003

0.004
0.005
0.006
0.007
0.008
0.009
0.010

0.020

K
L

di
ve

rg
en

ce

 train.
MD

Bayes

Figure 6: KL divergence to the ground-truth We report the KL divergence to the ground truth transition
probabilities for the trained transformers, the constructed transformer, and the one-step MD estimator across
sequence lengths Left: order 3 Right: order 5.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 1 2 3 4
To State

0

1

2

3

4

Fr
om

 S
ta

te

0.33 0.21 0.35 0.01 0.09

0.04 0.26 0.27 0.27 0.16

0.05 0.17 0.30 0.17 0.30

0.37 0.07 0.02 0.23 0.31

0.16 0.16 0.30 0.22 0.16

True

0 1 2 3 4
Key Dimension

0

1

2

3

4

Q
ue

ry
 D

im
en

si
on

0.32 0.28 0.32 0.03 0.05

0.08 0.32 0.22 0.27 0.12

0.09 0.18 0.26 0.19 0.29

0.33 0.03 0.02 0.25 0.37

0.20 0.16 0.27 0.24 0.13

Softmax Attention

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Trained SeqLen 128 | KL=0.0231

0 1 2 3 4
To State

0

1

2

3

4

Fr
om

 S
ta

te

0.33 0.21 0.35 0.01 0.09

0.04 0.26 0.27 0.27 0.16

0.05 0.17 0.30 0.17 0.30

0.37 0.07 0.02 0.23 0.31

0.16 0.16 0.30 0.22 0.16

True

0 1 2 3 4
Key Dimension

0

1

2

3

4

Q
ue

ry
 D

im
en

si
on

0.32 0.28 0.34 0.01 0.05

0.07 0.30 0.22 0.32 0.09

0.09 0.17 0.27 0.22 0.25

0.31 0.04 0.02 0.31 0.32

0.19 0.15 0.27 0.28 0.11

Softmax Attention

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.25

0.30

Trained SeqLen 256 | KL=0.0282

0 1 2 3 4
To State

0

1

2

3

4

Fr
om

 S
ta

te

0.33 0.21 0.35 0.01 0.09

0.04 0.26 0.27 0.27 0.16

0.05 0.17 0.30 0.17 0.30

0.37 0.07 0.02 0.23 0.31

0.16 0.16 0.30 0.22 0.16

True

0 1 2 3 4
Key Dimension

0

1

2

3

4

Q
ue

ry
 D

im
en

si
on

0.35 0.27 0.31 0.02 0.05

0.08 0.30 0.21 0.29 0.11

0.10 0.16 0.24 0.22 0.28

0.35 0.03 0.00 0.28 0.34

0.21 0.15 0.26 0.26 0.12

Softmax Attention

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.25

0.30

Trained SeqLen 384 | KL=0.0305

0 1 2 3 4
To State

0

1

2

3

4

Fr
om

 S
ta

te

0.33 0.21 0.35 0.01 0.09

0.04 0.26 0.27 0.27 0.16

0.05 0.17 0.30 0.17 0.30

0.37 0.07 0.02 0.23 0.31

0.16 0.16 0.30 0.22 0.16

True

0 1 2 3 4
Key Dimension

0

1

2

3

4

Q
ue

ry
 D

im
en

si
on

0.31 0.25 0.38 0.01 0.05

0.09 0.27 0.24 0.30 0.10

0.10 0.15 0.30 0.22 0.23

0.33 0.02 0.01 0.34 0.30

0.19 0.13 0.30 0.27 0.11

Softmax Attention

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Trained SeqLen 512 | KL=0.0334

0 1 2 3 4
To State

0

1

2

3

4

Fr
om

 S
ta

te

0.33 0.21 0.35 0.01 0.09

0.04 0.26 0.27 0.27 0.16

0.05 0.17 0.30 0.17 0.30

0.37 0.07 0.02 0.23 0.31

0.16 0.16 0.30 0.22 0.16

True

0 1 2 3 4
Key Dimension

0

1

2

3

4

Q
ue

ry
 D

im
en

si
on

0.29 0.24 0.38 0.00 0.09

0.08 0.27 0.31 0.24 0.11

0.09 0.17 0.33 0.14 0.27

0.35 0.04 0.04 0.24 0.33

0.19 0.16 0.34 0.19 0.12

Softmax Attention

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Trained SeqLen 640 | KL=0.0189

0 1 2 3 4
To State

0

1

2

3

4

Fr
om

 S
ta

te
0.33 0.21 0.35 0.01 0.09

0.04 0.26 0.27 0.27 0.16

0.05 0.17 0.30 0.17 0.30

0.37 0.07 0.02 0.23 0.31

0.16 0.16 0.30 0.22 0.16

True

0 1 2 3 4
Key Dimension

0

1

2

3

4

Q
ue

ry
 D

im
en

si
on

0.28 0.26 0.36 0.01 0.09

0.08 0.25 0.28 0.36 0.03

0.09 0.15 0.30 0.18 0.28

0.31 0.00 0.02 0.33 0.34

0.19 0.14 0.32 0.29 0.06

Softmax Attention

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Trained SeqLen 768 | KL=0.0945

0 1 2 3 4
To State

0

1

2

3

4

Fr
om

 S
ta

te

0.33 0.21 0.35 0.01 0.09

0.04 0.26 0.27 0.27 0.16

0.05 0.17 0.30 0.17 0.30

0.37 0.07 0.02 0.23 0.31

0.16 0.16 0.30 0.22 0.16

True

0 1 2 3 4
Key Dimension

0

1

2

3

4

Qu
er

y
Di

m
en

sio
n

0.33 0.30 0.33 0.02 0.02

0.07 0.31 0.21 0.29 0.12

0.08 0.18 0.23 0.20 0.31

0.32 0.02 0.00 0.28 0.39

0.19 0.17 0.25 0.26 0.13

Softmax Attention

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Trained SeqLen 128 | KL=0.0521

0 1 2 3 4
To State

0

1

2

3

4

Fr
om

 S
ta

te

0.33 0.21 0.35 0.01 0.09

0.04 0.26 0.27 0.27 0.16

0.05 0.17 0.30 0.17 0.30

0.37 0.07 0.02 0.23 0.31

0.16 0.16 0.30 0.22 0.16

True

0 1 2 3 4
Key Dimension

0

1

2

3

4

Qu
er

y
Di

m
en

sio
n

0.29 0.32 0.36 0.01 0.02

0.06 0.35 0.24 0.26 0.08

0.07 0.20 0.28 0.19 0.27

0.34 0.02 0.00 0.29 0.36

0.18 0.19 0.30 0.24 0.10

Softmax Attention

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Trained SeqLen 256 | KL=0.0674

0 1 2 3 4
To State

0

1

2

3

4

Fr
om

 S
ta

te

0.33 0.21 0.35 0.01 0.09

0.04 0.26 0.27 0.27 0.16

0.05 0.17 0.30 0.17 0.30

0.37 0.07 0.02 0.23 0.31

0.16 0.16 0.30 0.22 0.16

True

0 1 2 3 4
Key Dimension

0

1

2

3

4

Qu
er

y
Di

m
en

sio
n

0.30 0.28 0.33 0.03 0.05

0.09 0.32 0.22 0.25 0.12

0.11 0.18 0.26 0.18 0.27

0.33 0.06 0.00 0.26 0.35

0.21 0.15 0.28 0.23 0.13

Softmax Attention

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.25

0.30

Trained SeqLen 384 | KL=0.0286

0 1 2 3 4
To State

0

1

2

3

4

Fr
om

 S
ta

te

0.33 0.21 0.35 0.01 0.09

0.04 0.26 0.27 0.27 0.16

0.05 0.17 0.30 0.17 0.30

0.37 0.07 0.02 0.23 0.31

0.16 0.16 0.30 0.22 0.16

True

0 1 2 3 4
Key Dimension

0

1

2

3

4

Qu
er

y
Di

m
en

sio
n

0.35 0.27 0.33 0.01 0.03

0.07 0.32 0.23 0.27 0.11

0.08 0.18 0.27 0.18 0.29

0.38 0.02 0.00 0.25 0.35

0.21 0.16 0.28 0.23 0.12

Softmax Attention

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Trained SeqLen 512 | KL=0.0401

0 1 2 3 4
To State

0

1

2

3

4

Fr
om

 S
ta

te

0.33 0.21 0.35 0.01 0.09

0.04 0.26 0.27 0.27 0.16

0.05 0.17 0.30 0.17 0.30

0.37 0.07 0.02 0.23 0.31

0.16 0.16 0.30 0.22 0.16

True

0 1 2 3 4
Key Dimension

0

1

2

3

4

Qu
er

y
Di

m
en

sio
n

0.30 0.28 0.34 0.02 0.06

0.07 0.32 0.22 0.28 0.11

0.09 0.18 0.26 0.20 0.27

0.34 0.04 0.00 0.29 0.33

0.18 0.16 0.28 0.25 0.13

Softmax Attention

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.25

0.30

Trained SeqLen 640 | KL=0.0353

0 1 2 3 4
To State

0

1

2

3

4

Fr
om

 S
ta

te

0.33 0.21 0.35 0.01 0.09

0.04 0.26 0.27 0.27 0.16

0.05 0.17 0.30 0.17 0.30

0.37 0.07 0.02 0.23 0.31

0.16 0.16 0.30 0.22 0.16

True

0 1 2 3 4
Key Dimension

0

1

2

3

4

Qu
er

y
Di

m
en

sio
n

0.31 0.22 0.26 0.09 0.13

0.15 0.26 0.21 0.23 0.16

0.17 0.18 0.22 0.20 0.24

0.20 0.17 0.20 0.21 0.22

0.22 0.16 0.22 0.23 0.17

Softmax Attention

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

Trained SeqLen 768 | KL=0.0986

Figure 7: Layer-1 Attention Softmax vs. True Transition matrices for orders 3 and 5. For both orders
(m = 3 top 3 rows, m = 5 bottom 3 rows), each panel reports the learned first-layer attention with the softmax
applied row-wise alongside the true transition matrix; the average row-wise KL divergence is reported in the
panel title. Sequence lengths increase left-to-right, top-to-bottom.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C
on

st
ru

ct
ed

Layer 1 Layer 2 Layer 3

Tr
ai

ne
d

(d
is

en
ta

ng
le

d)
C

on
st

ru
ct

ed

Layer 1 Layer 2 Layer 3

Tr
ai

ne
d

(d
is

en
ta

ng
le

d)

Figure 8: Comparison of Trained and Constructed Transformers (attention grids). Top: Attention maps
of the trained transformer (disentangled) versus our theoretical construction (seq. length 64, MTD order m =
3). Bottom: Same as top but for MTD order m = 5.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E DERIVATION OF THE BAYES-OPTIMAL MTD PREDICTOR

Here, we provide the full derivation for the Bayes-optimal predictive distribution stated in Proposi-
tion 1.

Our goal is to derive the predictive distribution for the next state, p(Yt+1|yt
1,α), given an observed

data prefix yt
1 = (y1, . . . , yt). The unknown mixture weights λ = (λ1, . . . , λm) are assumed to be

drawn from a Dirichlet prior distribution:

p(λ|α) = Dirichlet(λ|α) =
Γ(
∑m

g=1 αg)∏m
g=1 Γ(αg)

m∏
g=1

λαg−1
g .

The likelihood of the observed data given the parameters λ is defined by the MTD model:

p(yt
1 | λ) =

t∏
k=m+1

p(yk | yk−1
1 ,λ) =

t∏
k=m+1

(
m∑

h=1

λhπ(yk−h, yk)

)
.

Combining the likelihood and prior via Bayes’ theorem yields the posterior distribution over the
mixture weights:

p(λ | yt
1,α) ∝ p(yt

1 | λ) · p(λ | α).

The Bayesian predictive distribution is formulated by marginalizing the single-step prediction
p(Yt+1 = j | yt

1,λ) over this posterior distribution of λ:

p(Yt+1 = j | yt
1,α) =

∫
∆m−1

p(Yt+1 = j | yt
1,λ) · p(λ | yt

1,α) dλ,

where S is the probability simplex. The single-step prediction is simply the MTD model definition:

p(Yt+1 = j | yt
1,λ) =

m∑
g=1

λgπ(yt+1−g, j).

Substituting this into the integral gives:

p(Yt+1 = j | yt
1,α) =

∫
∆m−1

(
m∑

g=1

λgπ(yt+1−g, j)

)
p(λ | yt

1,α) dλ.

By the linearity of expectation (and integration), the integral and the finite sum can be interchanged:

p(Yt+1 = j | yt
1,α) =

m∑
g=1

π(yt+1−g, j)

(∫
∆m−1

λg · p(λ | yt
1,α) dλ

)
.

We recognize the term in the parentheses as the definition of the posterior mean of the parameter λg:

λ̂Bayes
g := E[λg | yt

1,α] =

∫
∆m−1

λg · p(λ | yt
1,α) dλ.

This substitution yields the final form of the Bayes-optimal predictor, completing the proof:

p(Yt+1 = j | yt
1,α) =

m∑
g=1

λ̂Bayes
g · π(yt+1−g, j).

E.1 THE STRUCTURE OF THE BAYES-OPTIMAL ESTIMATOR

While the posterior mean is intractable to compute, its structure can be derived exactly. In particular
it can be shown that the MTD posterior is a finite mixture of Dirichlet distributions, and from this, we
can derive that the mean of the posterior preserves the classic ’add-constant’ structure of conjugate
Bayesian models, where the unobserved data counts are replaced by their posterior expectation.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proposition 4 (Posterior as a Mixture of Dirichlets). Given the MTD likelihood L(λ) = p(yt
1 | λ)

and a Dirichlet prior p(λ | α) = Dir(λ | α), the posterior distribution is a finite mixture of
Dirichlet distributions:

p(λ | yt
1,α) =

∑
z∈{1,...,m}t−m

π(z) · Dir(λ | α+ k(z)), (9)

where z = (zm+1, . . . , zt) is a latent assignment path, k(z) is the vector of counts of each lag in
path z, and π(z) = p(Z = z | yt

1,α) are the true posterior probabilities of the latent paths.

Proof. We begin with Bayes’ theorem for the posterior distribution:

p(λ | yt
1,α) ∝ p(yt

1 | λ) · p(λ | α).

The central idea is to express the observed-data likelihood, p(yt
1 | λ), by marginalizing over all

possible latent assignment paths z. A path z = (zm+1, . . . , zt) specifies which lag was used at each
step k.

p(yt
1 | λ) =

∑
z∈{1,...,m}t−m

p(yt
1, z | λ).

The joint probability of the data and a specific path z, known as the complete-data likelihood, is
given by:

p(yt
1, z | λ) =

t∏
k=m+1

p(yk, zk | yk−1
1 ,λ)

=

t∏
k=m+1

p(zk | λ) · p(yk | yk−1
1 , zk,λ)

=

t∏
k=m+1

λzk · π(yk−zk , yk).

We can group the terms that depend on λ and those that do not. Let kg(z) =
∑t

k=m+1 I(zk = g)
be the number of times lag g is used in path z. Then:

p(yt
1, z | λ) =

(
m∏

g=1

λkg(z)
g

)(
t∏

k=m+1

π(yk−zk , yk)

)
.

Let P (y | z) :=
∏t

k=m+1 π(yk−zk , yk), which is constant with respect to λ. The prior is given by
p(λ | α) = 1

B(α)

∏m
g=1 λ

αg−1
g , where B(α) is the multivariate beta function. Substituting these

into the expression for the posterior:

p(λ | yt
1,α) ∝

(∑
z

P (y | z)
m∏

g=1

λkg(z)
g

)(
1

B(α)

m∏
g=1

λαg−1
g

)

∝
∑
z

P (y | z)
m∏

g=1

λαg+kg(z)−1
g .

We recognize that the term
∏

g λ
(αg+kg(z))−1
g is the kernel of a Dirichlet distribution, Dir(λ | α +

k(z)). We can write it as B(α+ k(z)) · Dir(λ | α+ k(z)). Thus, the posterior takes the form of a
weighted sum of Dirichlet densities:

p(λ | yt
1,α) =

∑
z

π(z) · Dir(λ | α+ k(z)),

where the mixture weights π(z) are the normalized coefficients, which are precisely the true poste-
rior probabilities of the latent paths, p(Z = z | yt

1,α). This completes the proof.

From this mixture structure, we can derive an exact identity for the posterior mean.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Proposition 5 (Bayes Mean as Add-Constant-to-Expected-Counts). The components of the
Bayesian posterior mean, λ̂Bayes = E[λ | yt

1,α], are given by:

λ̂Bayes
g =

αg + EZ∼π[kg(Z)]

α0 + (t−m)
, (10)

where α0 =
∑

j αj , and EZ∼π[kg(Z)] is the posterior expected number of times lag g was used,
which is computationally intractable.

Proof. The posterior mean is defined by the integral of λ over its posterior distribution:

λ̂Bayes =

∫
∆m−1

λ · p(λ | yt
1,α) dλ.

We substitute the mixture-of-Dirichlets form of the posterior from Proposition 4:

λ̂Bayes =

∫
∆m−1

λ ·

(∑
z

π(z) · Dir(λ | α+ k(z))

)
dλ.

Since the summation is over a finite set of paths z, we can swap the integral and the summation:

λ̂Bayes =
∑
z

π(z)

(∫
∆m−1

λ · Dir(λ | α+ k(z)) dλ

)
.

The term inside the parentheses is the definition of the mean of a Dirichlet distribution with parame-
ter vector β = α+ k(z). The mean of a Dir(β) distribution is the vector β/β0, where β0 =

∑
j βj .

In our case, the sum of the parameters is:
m∑

g=1

(αg + kg(z)) =

(∑
g

αg

)
+

(∑
g

kg(z)

)
= α0 + (t−m).

Therefore, the inner integral evaluates to the vector α+k(z)
α0+(t−m) . Substituting this back:

λ̂Bayes =
∑
z

π(z)
α+ k(z)

α0 + (t−m)
.

This expression is an expectation over the posterior distribution of latent paths, Z ∼ π(z). We can
write it as:

λ̂Bayes = EZ∼π

[
α+ k(Z)

α0 + (t−m)

]
.

By the linearity of expectation, we can take the expectation inside for each component g:

λ̂Bayes
g =

EZ∼π[αg + kg(Z)]

α0 + (t−m)
=

αg + EZ∼π[kg(Z)]

α0 + (t−m)
.

This reveals the ”add-constant-to-expected-counts” structure of the estimator, completing the proof.

F APPROXIMATIONS FOR THE MEAN OF THE POSTERIOR DISTRIBUTION

In this section, we outline the methods used to approximate the mean of the posterior distribution
over the mixture weights λ.

F.1 MARKOV CHAIN MONTE CARLO (MCMC)

Since an analytical solution is unavailable, we approximate the Bayesian predictive distribution
using samples from the posterior distribution generated by a Markov Chain Monte Carlo (MCMC)
method, specifically Gibbs sampling. Gibbs sampling is well-suited for this problem because, while
the full posterior is intractable, the conditional posteriors of the parameters and latent variables are
simple to sample from.

The procedure involves augmenting the model with latent variables Zt
1 = (Zm+1, . . . , Zt), where

Zk = g indicates that lag g was used to generate the transition to Yk. The Gibbs sampler iteratively
draws from the two full conditional distributions:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

1. Sample Latent Variables Z given Parameters λ: For a given parameter vector λ(k−1)

from the previous iteration, we sample each latent variable Zs for s ∈ {m+1, . . . , t} from
its categorical conditional posterior:

P(Zs = g | yt
1,λ

(k−1)) =
λ
(k−1)
g π(ys−g, ys)∑m

h=1 λ
(k−1)
h π(ys−h, ys)

. (11)

This provides a complete sampled sequence of lags, z(k) = (z
(k)
m+1, . . . , z

(k)
t).

2. Sample Parameters λ given Latent Variables Z: Given the sampled lags z(k), the
Dirichlet prior is now conjugate to the complete-data likelihood. We first count the oc-
currences of each lag, ng =

∑t
s=m+1 I(z

(k)
s = g). The full conditional posterior for λ is a

Dirichlet distribution, from which we draw the next sample λ(k):

p(λ | yt
1, z

(k),α) = Dirichlet(λ | α1 + n1, . . . , αm + nm). (12)

After running the sampler for Ktotal iterations and discarding an initial burn-in period, we obtain
a set of K samples, {λ(1),λ(2), . . . ,λ(K)}, that are approximately drawn from the true posterior
p(λ | yt

1,α) shown in Equation 4.

The integral in Equation 4 is then approximated via a Monte Carlo average:

p̂(Yt+1 = j | yt
1) =

1

K

K∑
k=1

p(Yt+1 = j | yt
1,λ

(k))

=
1

K

K∑
k=1

(
m∑

g=1

λ(k)
g π(yt+1−g, j)

)
. (13)

This estimate converges to the true Bayes optimal predictive distribution as K → ∞. It represents
the theoretical performance limit for inference under the MTD model assumptions, providing a
gold-standard benchmark against which other estimators can be compared.

G ALGORITHMS FOR MAXIMUM LIKELIHOOD ESTIMATION OF MTD

Maximum Likelihood Estimation (MLE) for the Mixture Transition Distribution (MTD) does not
admit a close-form solution therefore iterative optimization algorithms are required. This section
details two iterative algorithms suited for this task. We first review the Expectation-Maximization
(EM) algorithm, a standard and widely-used method for latent variable models. We then present
Mirror Descent (MD), an alternative optimization framework that is central to our work.

G.1 EXPECTATION-MAXIMIZATION (EM) ALGORITHM

The Expectation-Maximization (EM) algorithm is a widely-used iterative method for finding Max-
imum Likelihood estimates in statistical models with latent variables. In the context of the MTD
model, the latent variables correspond to the specific mixture component responsible for generating
each observation. The algorithm alternates between two steps: the Expectation (E) step, where it
computes the expected log-likelihood with respect to the posterior distribution of the latent variables,
and the Maximization (M) step, where it updates the model parameters to maximize this expected
value.

Given the latent variables Z = (Zm+1, . . . , Zn), where each Zt ∈ {1, . . . ,m}. The variable Zt = g
indicates that the gth mixture component (corresponding to lag g) was responsible for generating
the transition to Yt at time t. The complete data are (y, z).

The likelihood of the complete data (yn
m+1, z

n
m+1), conditional on ym

1 , is given by:

P(yn
m+1, z

n
m+1 | ym

1 ;λ) =

n∏
t=m+1

P(yt, zt | yt−1
1 ;λ)

=

n∏
t=m+1

P(Zt = zt | yt−1
1 ;λ)P(yt | Zt = zt,y

t−1
1 ;λ).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Under the MTD model assumptions:

• P(Zt = g | yt−1
1 ;λ) = λg

• P(yt | Zt = g,yt−1
1 ;λ) = π(yt−g, yt)

Thus, P(yt, Zt = g | yt−1
1 ;λ) = λgπ(yt−g, yt). The complete data likelihood becomes:

P(yn
m+1, z

n
m+1 | ym

1 ;λ) =

n∏
t=m+1

λztπzt(yt−zt , yt).

The complete data log-likelihood, ℓc(λ;y,z) = logP(yn
m+1, z

n
m+1 | ym

1 ;λ), is:

ℓc(λ;y,z) =

n∑
t=m+1

log(λztπzt(yt−zt , yt))

=

n∑
t=m+1

m∑
g=1

I(zt = g) log(λgπ(yt−g, yt)), (14)

where I(·) is the indicator function.

G.2 EM ALGORITHM STEPS

Let λ(k) be the estimate of λ at iteration k.

E-Step (Expectation) The E-step computes the expectation of the complete-data log-likelihood
equation 14 with respect to the conditional distribution of the latent variables Z given the observed
data y and the current parameter estimate λ(k). This expectation defines the Q function:

Q(λ | λ(k)) = EZ|y,λ(k) [ℓc(λ;y,Z)]

= E

[
n∑

t=m+1

m∑
g=1

I(Zt = g) log(λgπ(yt−g, yt))

∣∣∣∣∣ y,λ(k)

]

=

n∑
t=m+1

m∑
g=1

E[I(Zt = g) | y,λ(k)] log(λgπ(yt−g, yt)).

The core computation is the posterior probability (responsibility) of Zt = g:

γ
(k)
t (g) := E[I(Zt = g) | y,λ(k)] = P(Zt = g | y,λ(k)).

Due to the MTD model structure, future observations yn
t+1 are conditionally independent of Zt given

yt
1. Thus, the posterior probability simplifies:

P(Zt = g | y,λ(k)) = P(Zt = g | yt
1,λ

(k)).

Using Bayes’ theorem:

γ
(k)
t (g) = P(Zt = g | yt

1,λ
(k))

=
P(yt | Zt = g,yt−1

1 ,λ(k))P(Zt = g | yt−1
1 ,λ(k))

P(yt | yt−1
1 ,λ(k))

=
π(yt−g, yt)λ

(k)
g∑m

h=1 P(yt, Zt = h | yt−1
1 ,λ(k))

=
λ
(k)
g π(yt−g, yt)∑m

h=1 λ
(k)
h πh(yt−h, yt)

. (15)

The E-step involves calculating these responsibilities γ
(k)
t (g) for all t ∈ {m + 1, . . . , n} and g ∈

{1, . . . ,m}. The Q function is then:

Q(λ | λ(k)) =

n∑
t=m+1

m∑
g=1

γ
(k)
t (g)(log λg + log π(yt−g, yt)). (16)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

M-Step (Maximization) The M-step finds the parameter values λ that maximize the Q function
equation 16 subject to the constraints λg ≥ 0 and

∑m
g=1 λg = 1. This gives the updated estimate

λ(k+1).
λ(k+1) = argmax

λ
Q(λ | λ(k)).

Since the terms log π(yt−g, yt) do not depend on λ, we maximize:

f(λ) =

n∑
t=m+1

m∑
g=1

γ
(k)
t (g) log λg =

m∑
g=1

(
n∑

t=m+1

γ
(k)
t (g)

)
log λg.

Let Cg =
∑n

t=m+1 γ
(k)
t (g). We maximize f(λ) =

∑m
g=1 Cg log λg subject to

∑m
g=1 λg = 1. We

use a Lagrange multiplier µ:

L(λ, µ) =
m∑

g=1

Cg log λg − µ

(
m∑

g=1

λg − 1

)
.

Setting partial derivatives to zero:
∂L
∂λg

=
Cg

λg
− µ = 0 =⇒ λg =

Cg

µ

∂L
∂µ

= −

(
m∑

g=1

λg − 1

)
= 0 =⇒

m∑
g=1

λg = 1.

Substituting λg = Cg/µ into the constraint yields µ =
∑m

h=1 Ch. Therefore:

λg =
Cg∑m
h=1 Ch

=

∑n
t=m+1 γ

(k)
t (g)∑m

h=1

∑n
t′=m+1 γ

(k)
t′ (h)

.

The denominator simplifies as
∑m

h=1

∑n
t′=m+1 γ

(k)
t′ (h) =

∑n
t′=m+1

∑m
h=1 γ

(k)
t′ (h) =∑n

t′=m+1 1 = n−m. The M-step update rule is thus:

λ(k+1)
g =

∑n
t=m+1 γ

(k)
t (g)

n−m
. (17)

G.3 SUMMARY OF THE EM ALGORITHM

The EM algorithm for estimating the mixture weights λ in the MTD model, assuming known tran-
sition matrices πg , proceeds as follows:

1. Initialization: Choose initial weights λ(0) = (λ
(0)
1 , . . . , λ

(0)
m) such that λ(0)

g ≥ 0 for all
g ∈ {1, . . . ,m} and

∑m
g=1 λ

(0)
g = 1. Set the iteration counter k = 0.

2. E-Step (Expectation): Compute the responsibilities γ
(k)
t (g) for each time point t ∈

{m+1, . . . , n} and each mixture component g ∈ {1, . . . ,m}, using the current parameter
estimates λ(k):

γ
(k)
t (g) =

λ
(k)
g π(yt−g, yt)∑m

h=1 λ
(k)
h πh(yt−h, yt)

. (18)

3. M-Step (Maximization): Update the mixture weights λ
(k+1)
g for each component g ∈

{1, . . . ,m} using the computed responsibilities:

λ(k+1)
g =

∑n
t=m+1 γ

(k)
t (g)

n−m
. (19)

4. Convergence Check: If the change in the parameter estimates (e.g., ||λ(k+1) − λ(k)||)
or the change in the observed data log-likelihood (e.g., ℓ(λ(k+1);y) − ℓ(λ(k);y), where
ℓ(λ;y) is the observed data log-likelihood) is below a predefined tolerance ϵ, stop the
algorithm and return λ̂ = λ(k+1) as the estimated mixture weights. Otherwise, set k ←
k + 1 and repeat from Step 2.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

G.4 MIRROR DESCENT

This appendix provides detailed derivations for Equation (5) and Proposition 2.

G.5 DERIVATION OF THE EXPONENTIATED GRADIENT ALGORITHM

The Exponentiated Gradient (EG) algorithm is a specific instance of the Mirror Descent (MD) online
optimization algorithm. We apply it to the problem of maximizing the MTD log-likelihood function,
ℓ(λ), with respect to the mixture weights λ = (λ1, . . . , λm). The weights are constrained to the
probability simplex, ∆m−1 = {λ ∈ Rm |

∑
g λg = 1, λg ≥ 0}.

The general MD update step at iteration k linearizes the objective function around the current esti-
mate λ(k) and adds a regularization term. The next iterate, λ(k+1), is found by solving:

λ(k+1) = argmax
λ∈∆m−1

{
⟨∇ℓ(λ(k)),λ⟩ − 1

η
DΨ(λ,λ

(k))

}
, (20)

where η > 0 is the learning rate, ∇ℓ(λ(k)) is the gradient of the log-likelihood evaluated at λ(k),
and DΨ is the Bregman divergence associated with a potential function Ψ. For optimization over
the simplex, the standard choice is the negative entropy potential, Ψ(λ) =

∑m
g=1 λg log λg . The

resulting Bregman divergence is the unnormalized Kullback-Leibler (KL) divergence:

DΨ(λ,λ
(k)) =

m∑
g=1

λg log
λg

λ
(k)
g

. (21)

Therefore the optizazion problem in Equation (20) becomes:

λ(k+1) = argmax
λ∈∆m−1

{
⟨∇ℓ(λ(k)),λ⟩ − 1

η

m∑
g=1

λg log
λg

λ
(k)
g

}
. (22)

To solve the optimization problem in Eq. 20, we form the Lagrangian with a multiplier µ for the
constraint

∑
g λg = 1:

L(λ, µ) = η⟨∇ℓ(λ(k)),λ⟩ −
∑
g

λg log
λg

λ
(k)
g

− µ

(∑
g

λg − 1

)
. (23)

Setting the derivative ∂L/∂λg to zero yields:

η∇λℓ(λ
(k))g −

(
log

λg

λ
(k)
g

+ 1

)
− µ = 0

log
λg

λ
(k)
g

= η∇λℓ(λ
(k))g − µ− 1

λg = λ(k)
g exp(η∇λℓ(λ

(k))g) exp(−µ− 1).

The term exp(−µ− 1) serves as a normalization constant to ensure
∑

g λg = 1. This leads directly
to the EG update rule presented in Equation (5):

λ(k+1)
g =

λ
(k)
g exp(η · ∇λℓ(λ

(k))g)∑m
h=1 λ

(k)
h exp(η · ∇λℓ(λ(k))h)

. (5, repeated)

G.6 DERIVATION OF THE ONE-STEP MTD ESTIMATOR

We now prove Proposition 2 by specializing the EG update to the MTD model and evaluating it at
the uniform prior λ(0) = (1/m, . . . , 1/m).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Step 1: MTD Log-Likelihood and its Gradient. Given an observed sequence prefix yt
1, the MTD

log-likelihood is:

ℓ(λ) = log p(yt
1 | λ) =

t∑
k=m+1

log

(
m∑

h=1

λhπ(yk−h, yk)

)
. (24)

The g-th component of its gradient is:

∇λℓ(λ)g =
∂ℓ(λ)

∂λg
=

t∑
k=m+1

π(yk−g, yk)∑m
h=1 λhπ(yk−h, yk)

. (25)

Step 2: Evaluate Gradient at the Uniform Prior. We evaluate this gradient at λ(0) =
(1/m, . . . , 1/m):

∇λℓ(λ
(0))g =

t∑
k=m+1

π(yk−g, yk)∑m
h=1(1/m)π(yk−h, yk)

= m

t∑
k=m+1

π(yk−g, yk)∑m
h=1 π(yk−h, yk)

. (26)

We recognize the term inside the summation as the posterior responsibility of lag g under the uniform
model:

γk(g) := p(Zk = g | yk
1 ,λ

(0)) (27)

=
p(yk | yk−g)p(Zk = g|λ(0))∑
h p(yk | yk−h)p(Zk = h|λ(0))

(28)

=
π(yk−g, yk) · (1/m)∑
h π(yk−h, yk) · (1/m)

(29)

=
π(yk−g, yk)∑m
h=1 π(yk−h, yk)

. (30)

Thus, the gradient at the uniform prior is a scaled sum of these responsibilities:

∇λℓ(λ
(0))g = m

t∑
k=m+1

γunif
k (g). (31)

Step 3: Apply the EG Update Rule. Finally, we substitute λ
(0)
g = 1/m and the derived gradient

into the EG update rule (Eq. 5) to find λ
(1)
g :

λ̂MD
g = λ(1)

g =
λ
(0)
g exp

(
η · ∇λℓ(λ

(0))g
)∑m

j=1 λ
(0)
j exp

(
η · ∇λℓ(λ(0))j

)
=

(1/m) · exp
(
η ·m

∑t
k=m+1 γ

unif
k (g)

)
∑m

j=1(1/m) · exp
(
η ·m

∑t
k=m+1 γ

unif
k (j)

)
=

exp
(
ηm
∑t

k=m+1 γ
unif
k (g)

)
∑m

j=1 exp
(
ηm
∑t

k=m+1 γ
unif
k (j)

) . (32)

This completes the proof of Proposition 2.

H ONE-STEP MD AS A FIRST-ORDER BAYESIAN APPROXIMATION

In this section, we formally establish a theoretical connection between the one-step Mirror Descent
(MD) estimator and the true Bayesian posterior mean. We demonstrate that their respective first-
order Taylor expansions around a state of “no evidence” are identical up to a scalar constant. This

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

result provides a rigorous basis for understanding the one-step MD estimator as a principled approx-
imation to the Bayes-optimal predictor, particularly in a low-data or low-signal regime.

The analysis hinges on treating both estimators as functions of the log-likelihood gradient evaluated
at the center of the simplex, g := ∇λℓ(λ

(0)), and expanding them around the point of no evidence,
g = 0. The approximations will be expressed using Landau notation, where a vector function
f(g) = O(∥g∥p) signifies that ∥f(g)∥ ≤ C∥g∥p for some constant C in a neighborhood of g = 0.

Proposition 6 (First-Order Approximation of the One-Step MD Estimator). Let λ̂MD(g) be the one-
step MD estimator defined as λ̂MD(g) = softmax(ηg), viewed as a function of the log-likelihood
gradient g. Its first-order Taylor expansion around g = 0 is given by:

λ̂MD
k (g) =

1

m
+

η

m
(gk − ḡ) +O(∥g∥2), (33)

where ḡ = 1
m

∑m
j=1 gj . In vector form, this is λ̂MD(g) = λ(0) + η

m Proj∆(g) + O(∥g∥2), where
λ(0) = (1/m, . . . , 1/m) and Proj∆ is the operator that projects a vector onto the hyperplane of
vectors that sum to zero.

Proof. The one-step MD update is given by the softmax function, λ̂MD
k (g) = exp(ηgk)∑m

j=1 exp(ηgj)
. Since

the exponential function is analytic, the softmax function is also analytic in g, and its Taylor series
expansion around g = 0 exists. The expansion is given by:

λ̂MD(g) = λ̂MD(0) + Jλ̂MD(0)g +O(∥g∥2),

where Jλ̂MD(0) is the Jacobian matrix of λ̂MD(g) evaluated at g = 0.

Zeroth-Order Term: At g = 0, the estimator evaluates to the uniform distribution, which is the
prior mean λ(0):

λ̂MD
k (0) =

exp(0)∑m
j=1 exp(0)

=
1

m
= λ

(0)
k .

First-Order Term (Jacobian): The entries of the Jacobian matrix, Jkj(g) = ∂
∂gj

λ̂MD
k (g), are given

by η · λ̂MD
k (g)(δkj − λ̂MD

j (g)). Evaluating at g = 0, where λ̂MD
j (0) = 1/m for all j:

∂λ̂MD
k

∂gj

∣∣∣∣
g=0

= η · 1
m

(
δkj −

1

m

)
.

Assembling the Expansion: The k-th component of the expansion is λ̂MD
k (g) = λ̂MD

k (0) +∑m
j=1

∂λ̂MD
k

∂gj

∣∣
0
· gj +O(∥g∥2):

λ̂MD
k (g) =

1

m
+

m∑
j=1

[
η

m

(
δkj −

1

m

)]
gj +O(∥g∥2)

=
1

m
+

η

m

 m∑
j=1

δkjgj −
1

m

m∑
j=1

gj

+O(∥g∥2)

=
1

m
+

η

m
(gk − ḡ) +O(∥g∥2).

This completes the proof.

Next, we derive the corresponding approximation for the Bayesian posterior mean. We linearize the
log-likelihood around the prior mean, λ(0), which allows for an analytical treatment of the posterior.

Proposition 7 (First-Order Approximation of the Bayesian Posterior Mean). Consider a Bayesian
model with a uniform Dirichlet(1) prior over λ ∈ ∆m−1 and a log-likelihood linearized around

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

the prior mean, ℓ(λ) = ℓ(λ(0)) + ⟨g,λ − λ(0)⟩. The resulting posterior mean, λ̂Bayes(g), has a
first-order Taylor expansion around g = 0 given by:

λ̂Bayes
k (g) =

1

m
+

1

m(m+ 1)
(gk − ḡ) +O(∥g∥2). (34)

In vector form, this is λ̂Bayes(g) = λ(0) + Covλ(0)(λ)g + O(∥g∥2), where Covλ(0)(λ) is the co-
variance matrix of the prior distribution.

Proof. Under the linearized likelihood, the posterior density is p(λ|g) ∝ p(λ) exp(ℓ(λ)) ∝
exp(⟨g,λ⟩), where terms constant in λ are absorbed into the normalization constant. The poste-
rior mean is:

λ̂Bayes(g) =

∫
∆m−1

λ · exp(⟨g,λ⟩) dµ(λ)∫
∆m−1

exp(⟨g,λ⟩) dµ(λ)
,

where dµ(λ) is the uniform probability measure over the simplex ∆m−1. Let Nk(g) be the numer-
ator’s k-th component and Z(g) be the denominator. The function λ̂Bayes(g) is analytic, allowing a
Taylor expansion.

Zeroth-Order Term: At g = 0, the exponential term is 1. The posterior equals the prior, so the
posterior mean is the prior mean:

λ̂Bayes(0) =

∫
∆m−1

λ dµ(λ)∫
∆m−1

1 dµ(λ)
= Eλ∼Dir(1)[λ] = λ(0).

First-Order Term (Jacobian): The Jacobian entries are ∂λ̂k

∂gj
= ∂

∂gj

(
Nk

Z

)
. Using the quotient rule:

∂λ̂k

∂gj
=

1

Z2

(
Z
∂Nk

∂gj
−Nk

∂Z

∂gj

)
.

We find the required derivatives of Nk(g) and Z(g) differentiating under the integral sign, which is
applicable here as the integrands are continuous on the compact domain ∆m−1:

∂Z

∂gj
=

∂

∂gj

∫
∆m−1

exp

(∑
i

giλi

)
dµ(λ) =

∫
∆m−1

λj exp

(∑
i

giλi

)
dµ(λ)

∂Nk

∂gj
=

∂

∂gj

∫
∆m−1

λk exp

(∑
i

giλi

)
dµ(λ) =

∫
∆m−1

λkλj exp

(∑
i

giλi

)
dµ(λ)

Now, we evaluate these components at g = 0:

• Z(0) =
∫
1 dµ(λ) = 1.

• Nk(0) =
∫
λk dµ(λ) = E[λk] = 1/m.

• ∂Z
∂gj

∣∣∣∣
g=0

=
∫
∆m−1

λj exp(⟨0,λ⟩) dµ(λ) =
∫
λj dµ(λ) = E[λj] = 1/m.

• ∂Nk

∂gj

∣∣∣∣
g=0

=
∫
∆m−1

λkλj exp(⟨0,λ⟩) dµ(λ) =
∫
λkλj dµ(λ) = E[λkλj].

Substituting these evaluated terms into the quotient rule expression at g = 0:

∂λ̂k

∂gj

∣∣∣∣
g=0

=
1 · E[λkλj]− (1/m) · (1/m)

12
= E[λkλj]− E[λk]E[λj] = Covλ(0)(λk, λj).

This establishes that the Jacobian of the posterior mean at g = 0 is the prior covariance matrix.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Assembling the Expansion: For a Dirichlet(1) distribution, the covariance matrix is Cov(λk, λj) =
mδkj−1
m2(m+1) . The k-th component of the expansion is:

λ̂Bayes
k (g) =

1

m
+

m∑
j=1

mδkj − 1

m2(m+ 1)
gj +O(∥g∥2)

=
1

m
+

1

m2(m+ 1)

mgk −
m∑
j=1

gj

+O(∥g∥2)

=
1

m
+

m

m2(m+ 1)
(gk − ḡ) +O(∥g∥2)

=
1

m
+

1

m(m+ 1)
(gk − ḡ) +O(∥g∥2).

This completes the proof of the proposition.

By comparing the results of Proposition 6 and Proposition 7, we arrive at our main result.

Theorem 3 (First-Order Equivalence of the Estimators). Let λ̂MD(g; η) be the one-step MD esti-
mator with learning rate η, and let λ̂Bayes(g) be the Bayesian posterior mean under the linearized
likelihood. There exists a unique learning rate η = 1

m+1 for which the two estimators are first-order
equivalent at g = 0.

Proof. Two estimators are first-order equivalent at g = 0 if their values and their Jacobian matrices
are identical at that point. As shown in Propositions 6 and 7, the first condition, λ̂MD(0; η) =

λ̂Bayes(0), holds for any η. The equivalence thus depends on matching their Jacobians.

From the proof of Proposition 6, the Jacobian of the MD estimator at g = 0 is:

Jλ̂MD(0) =
η

m

(
I − 1

m
11T

)
.

From the proof of Proposition 7, the Jacobian of the Bayesian posterior mean is:

Jλ̂Bayes(0) =
1

m(m+ 1)

(
I − 1

m
11T

)
.

Equating the two Jacobians, Jλ̂MD(0) = Jλ̂Bayes(0), requires their scalar coefficients to be equal,
since the matrix factor is non-zero for m > 1:

η

m
=

1

m(m+ 1)
.

Solving for η yields the unique solution η = 1
m+1 .

This theorem provides a theoretical justification for the performance of the one-step MD estimator.
It demonstrates that this simple, non-iterative update is not merely a heuristic but a principled, first-
order approximation of the Bayesian posterior mean under a linearized likelihood.

Remark (The Role of η and the Small-Gradient Assumption). The first-order equivalence es-
tablished in Theorem 3 holds in the regime where ∥g∥ → 0, as this is where the higher-order terms,
O(∥g∥2), are negligible. For many models, the gradient’s magnitude, ∥g∥, scales with the amount
of data (e.g., sequence length T), which appears to invalidate the approximation when the data size
is large.

However, the one-step MD estimator, λ̂MD = softmax(ηg), can remain a well-behaved estimator
even for large ∥g∥ if η is scaled appropriately. The term ηg determines the softmax behavior. If we
set the learning rate to be inversely proportional to the signal strength, for instance η(T) = Θ(1/T),
the norm of the argument, ∥ηg∥, can remain bounded. This scaling prevents the softmax output
from saturating and allows the estimator to remain sensitive to the information in g.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

On the Bayesian side, under the linearized likelihood, the posterior mean λ̂Bayes(g) lacks a scaling
parameter analogous to η. For large ∥g∥, the posterior density exp(⟨g,λ⟩) concentrates sharply at
the vertex of the simplex maximizing the inner product with g. In this case, the first-order approxi-
mation from Proposition 7 breaks down as the neglected O(∥g∥2) term becomes dominant.

The equivalence in Theorem 3 should therefore be interpreted as a local consistency result at g = 0.
It shows that for low-signal scenarios, the MD update is a principled approximation to the Bayesian
one, and it provides a theoretically grounded value for η in that regime. The empirical success of the
one-step estimator for large T suggests that while the functional forms of the two estimators diverge
beyond the first order, a properly tuned MD estimator may still serve as an effective proxy for the
Bayesian posterior mean, motivating analytical frameworks beyond local Taylor expansions.

I LEARNING-RATE SCALING VIA A LIPSCHITZ (SMOOTHNESS) CONSTANT

In our main analysis, we established a first-order equivalence between the one-step MD estimator
and the Bayesian posterior mean in the regime of ”no evidence,” where the log-likelihood gradient
g = 0. However, for a sequence of length T , the magnitude of the gradient, ∥g∥, typically scales
with T . This raises the question of how the learning rate of the one-step MD estimator, λ̂MD =
softmax(ηg) should be scaled with T to maintain good performance.

In this section, we provide a theoretical justification for scaling the learning rate as η = Θ(1/T). We
demonstrate that the negative log-likelihood function, viewed as a loss function over the simplex,
has a gradient that is Lipschitz continuous with a constant L that grows linearly with the sequence
length T . Standard optimization theory suggests setting the learning rate inversely proportional to
this Lipschitz constant, i.e., η ∝ 1/L, to ensure stable updates. We use the same notation as the
before:

ct,g = π(yt−g, yt), t = m+ 1, . . . , T, g = 1, . . . ,m,

and m is the number of lags.

Assumption. We assume there exists a constant

cmin > 0

such that for every t ∈ {m+ 1, . . . , T} and every g ∈ {1, . . . ,m},
ct,g = π(yt−g, yt) ≥ cmin. (35)

Because each ct,g is a conditional probability, we also have the trivial upper bound

ct,g ≤ 1 for all t, g. (36)

Under these assumptions the denominators that appear in derivatives are uniformly bounded away
from zero, and global, uniform bounds on the Hessian are valid.

Lemma 1 (Hessian decomposition). For ℓ(λ) =
∑T

t=m+1 log
(∑m

g=1 λgct,g
)

the Hessian satisfies

∇2ℓ(λ) = −
T∑

t=m+1

ctc
⊤
t(∑m

g=1 λgct,g
)2 , ct := (ct,1, . . . , ct,m)⊤.

Hence the Hessian of the negative log-likelihood f(λ) = −ℓ(λ) is

∇2f(λ) =

T∑
t=m+1

ctc
⊤
t(∑m

g=1 λgct,g
)2 .

Proof. Direct differentiation of ℓ(λ) yields the displayed formulas.

Write st(λ) :=
∑m

g=1 λgct,g and consequently the Hessian of the loss is

∇2f(λ) =

T∑
t=m+1

ctc
⊤
t

st(λ)2
. (37)

Each summand in equation 37 is a rank-one positive semi-definite matrix.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

I.1 UNIFORM OPERATOR-NORM BOUND ON THE HESSIAN

We now derive a uniform bound on the spectral (operator) norm of∇2f(λ) that depends linearly on
T −m.
Lemma 2 (Operator-norm bound). Under the standing assumption equation 35 (and equation 36),
for every λ in the full simplex ∆m−1 = {λ ≥ 0,

∑
g λg = 1} we have∥∥∇2f(λ)

∥∥
op
≤ (T −m)

m

c2min

. (38)

Proof. From equation 37 and subadditivity of the operator norm,

∥∥∇2f(λ)
∥∥
op

=
∥∥∥ T∑

t=m+1

ctc
⊤
t

st(λ)2

∥∥∥
op
≤

T∑
t=m+1

∥∥ctc⊤t ∥∥op
st(λ)2

.

For a rank-one matrix uu⊤ the operator norm equals ∥u∥22. Hence∥∥ctc⊤t ∥∥op = ∥ct∥22 =

m∑
g=1

c2t,g.

Using equation 36 we get the upper bound ∥ct∥22 ≤ m · 12 = m for every t.

For the denominator, by equation 35 and since
∑m

g=1 λg = 1,

st(λ) =

m∑
g=1

λgct,g ≥
m∑

g=1

λgcmin = cmin.

Therefore for every t, ∥∥ctc⊤t ∥∥op
st(λ)2

≤ m

c2min

.

Summing over t = m+ 1, . . . , T yields

∥∥∇2f(λ)
∥∥
op
≤

T∑
t=m+1

m

c2min

= (T −m)
m

c2min

,

which is the bound equation 38.

I.2 IMPROVED BOUND AT THE CENTER OF THE SIMPLEX

Here we show that evaluating exactly at the uniform vector λ∗ yields a strictly better constant: the
spectral norm of the Hessian at λ∗ is bounded by (T−m)m2. This gives a less pessimistic Lipschitz
constant and hence a looser restriction on the conservative step-size η.
Proposition 8 (Operator-norm bound at the uniform vector). Let λ∗ = (1/m, . . . , 1/m). For the
loss f(λ) = −ℓ(λ) we have ∥∥∇2f(λ∗)

∥∥
op
≤ (T −m)m2. (39)

In particular, the gradient ∇f is Lipschitz at λ∗ with constant L∗ ≤ (T −m)m2, and the conser-
vative step-size choice η ≤ 1/L∗ yields η = Θ(1/T) for fixed m.

Proof. Recall the Hessian decomposition (Eq. equation 37):

∇2f(λ) =

T∑
t=m+1

ctc
⊤
t

st(λ)2
, ct = (ct,1, . . . , ct,m)⊤, st(λ) =

m∑
g=1

λgct,g.

Evaluate at the uniform vector λ∗. Then

st(λ
∗) =

1

m

m∑
g=1

ct,g =:
St

m
, St :=

m∑
g=1

ct,g.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Hence the t-th summand becomes

ctc
⊤
t

st(λ∗)2
=

ctc
⊤
t

(St/m)2
=

m2

S2
t

ctc
⊤
t .

Taking operator norms and using subadditivity,

∥∥∇2f(λ∗)
∥∥
op
≤

T∑
t=m+1

m2

S2
t

∥∥ctc⊤t ∥∥op.
For each t, ∥ctc⊤t ∥op = ∥ct∥22. Observe the elementary inequality

∥ct∥22 ≤
(m∑

g=1

ct,g

)2
= S2

t ,

which holds because (
∑

i ai)
2 =

∑
i a

2
i + 2

∑
i<j aiaj ≥

∑
i a

2
i for nonnegative ai. Using this

inequality we obtain, for every t,

m2

S2
t

∥ct∥22 ≤
m2

S2
t

S2
t = m2.

Summing over t = m+ 1, . . . , T yields

∥∥∇2f(λ∗)
∥∥
op
≤

T∑
t=m+1

m2 = (T −m)m2,

which proves equation 39. The remaining claims follow immediately from the standard equiva-
lence between Hessian operator-norm bounds and local Lipschitz continuity of the gradient, and the
reciprocal step-size rule η ≤ 1/L∗.

Theorem 4 (Lipschitz gradient and η scaling at the uniform mixture). At the uniform vector λ∗ =
(1/m, . . . , 1/m) the loss f(λ) = −ℓ(λ) is L∗–smooth with

L∗ ≤ (T −m)m2. (40)

Consequently, the conservative step-size rule η ≤ 1
L∗ yields the asymptotic scaling

η = Θ
(1

T

)
(41)

for fixed m.

Proof. Proposition 8 establishes that at λ∗ the Hessian satisfies

∥∇2f(λ∗)∥op ≤ (T −m)m2.

By the standard equivalence between bounded Hessian operator norm and gradient Lipschitz conti-
nuity, this implies ∇f is L∗-Lipschitz at λ∗ with L∗ as in equation 40. The conservative step-size
choice η ≤ 1/L∗ is therefore sufficient to guarantee stability of gradient-based updates (and analo-
gously for mirror descent / exponentiated-gradient after translating to the mirror geometry). Since
T −m = Θ(T), the scaling η = Θ(1/T) follows for fixed m.

The assumption equation 35 (strict positivity of every transition probability appearing in the likeli-
hood) is the minimal condition that guarantees a uniform finite Lipschitz constant L over the entire
simplex ∆m−1. If some transitions were zero, then for parameter vectors placing mass on coor-
dinates corresponding to zero transitions some denominators st(λ) could vanish and the Hessian
operator norm would be unbounded (hence no global L exists).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

J ASYMPTOTIC PROPERTIES OF THE LIKELIHOOD GRADIENT

In this section, we study the asymptotic properties of the gradient of the log-likelihood function. We
are mostly interested in the asymptotic scaling of the gradient with the sequence length T .

Lemma 3 (Asymptotic Properties of the Gradient). Let the true parameter λ∗ ∈ int(∆m−1) induce
a Markov chain on the history space Ym that is aperiodic and irreducible on a finite state space.
This implies the chain is geometrically ergodic. Let Estat

λ∗ denote expectation with respect to the
stationary distribution of this chain. The mean of the score vector g(Y) exhibits the following
asymptotic properties as Nobs →∞: The expected score vector scales linearly with Nobs = T −m:

g0(λ
∗) := Eλ∗ [g(Y)] = Nobs · v(λ∗) +O(1), (42)

where v(λ∗) is the constant vector of stationary expected single-step scores, whose h-th component
is:

[v(λ∗)]h = m · Estat
λ∗

[
π(Yt−h, Yt)∑m
j=1 π(Yt−j , Yt)

]
. (43)

The O(1) term represents a constant offset due to initial conditions that does not grow with Nobs.

Proof. Let us first define the score contribution from a single time step t as the vector zt(Y) ∈ Rm,
whose h-th component is given by:

[zt(Y)]h = m
π(Yt−h, Yt)∑m
j=1 π(Yt−j , Yt)

.

The total score vector is the sum of these contributions over the observation period:

g(Y) =

n∑
t=m+1

zt(Y), where Nobs = T −m.

The process (zt)t>m is a sequence of random vectors. Because it is a function of the underlying
ergodic Markov chain (Yt−m, . . . , Yt), the sequence (zt) is also ergodic and its distribution con-
verges to a stationary distribution. By the linearity of expectation, the expected score is the sum of
the individual expectations:

Eλ∗ [g(Y)] =

n∑
t=m+1

Eλ∗ [zt(Y)].

The key assumption is the geometric ergodicity of the Markov chain. This implies that the distribu-
tion of the state (Yt−m, . . . , Yt) converges exponentially fast to the unique stationary distribution,
regardless of the initial state (Y1, . . . , Ym). Consequently, the expectation Eλ∗ [zt(Y)] converges
exponentially fast to its stationary-state expectation, v(λ∗). This convergence can be quantified.
There exist a constant vector C and a rate ρ ∈ (0, 1) such that for all t > m:

∥Eλ∗ [zt(Y)]− v(λ∗)∥ ≤ ∥C∥ρt−m.

We can now rewrite the sum of expectations:

Eλ∗ [g(Y)] =

n∑
t=m+1

(v(λ∗) + (Eλ∗ [zt(Y)]− v(λ∗)))

=

(
n∑

t=m+1

v(λ∗)

)
+

(
n∑

t=m+1

(Eλ∗ [zt(Y)]− v(λ∗))

)
= Nobs · v(λ∗) +En,

where En is the cumulative error term due to the process not having reached stationarity at early
time steps. We can bound the norm of this error term:

∥En∥ =

∥∥∥∥∥
n∑

t=m+1

(Eλ∗ [zt]− v(λ∗))

∥∥∥∥∥ ≤
n∑

t=m+1

∥Eλ∗ [zt]− v(λ∗)∥ ≤
n∑

t=m+1

∥C∥ρt−m.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Let k = t−m. The sum becomes a geometric series:

∥En∥ ≤ ∥C∥
n−m∑
k=1

ρk < ∥C∥
∞∑
k=1

ρk = ∥C∥ ρ

1− ρ
.

The sum of the error terms is bounded by a finite constant that does not depend on n or Nobs.
Therefore, the error term is O(1). This proves the first claim: g0(λ

∗) = Nobs · v(λ∗) +O(1). Note
that O(1) is also o(Nobs), so the term is asymptotically sub-linear.

36

	Introduction
	Disentangled Transformers
	Mixture of Transition Distributions for In-Context Learning
	Transformers implement One-Step of Mirror Descent
	Why One-Step Mirror Descent Works
	Experiments
	Conclusions
	Notation
	Dimensionality of the Transformer Construction

	Experimental Details
	Hyperparameter Tuning
	Parameter Summary

	Related works
	Additional Experiments
	Derivation of the Bayes-Optimal MTD Predictor
	The Structure of the Bayes-Optimal Estimator

	Approximations for the mean of the posterior distribution
	 Markov Chain Monte Carlo (MCMC)

	Algorithms for Maximum Likelihood Estimation of MTD
	Expectation-Maximization (EM) Algorithm
	EM Algorithm Steps
	Summary of the EM Algorithm
	Mirror Descent
	Derivation of the Exponentiated Gradient Algorithm
	Derivation of the One-Step MTD Estimator

	One-Step MD as a First-Order Bayesian Approximation
	Learning-rate scaling via a Lipschitz (smoothness) constant
	Uniform operator-norm bound on the Hessian
	Improved bound at the center of the simplex

	Asymptotic Properties of the Likelihood Gradient

