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Abstract

Radiative transfer is often the dominant mode of heat transfer in fires, and solv-
ing the governing radiative transfer equation (RTE) in CFD fire simulations is
computationally intensive. This work develops a new versatile toolkit for training
neural surrogates to solve various RTEs across different geometries and boundary
conditions. We generalize previous work in the area to include unknown boundary
conditions and to perform Principal Component Analysis (PCA) for dimension
reduction in this context. This enables efficient training of high-dimensional neural
surrogate solvers for a large class of RTEs. The mesh free nature of these surro-
gates enables them to overcome the ray effect suffered by traditional solvers. Our
results demonstrate that neural surrogate can provide fast and accurate radiation
predictions for practical problems important to fire safety research.

1 Introduction

FireFOAM Wang et al. [2011, 2014] is an open-source CFD solver for large-scale fires, capable
of modeling all of the complex physics that occur during an industrial fire, including heat transfer,
pyrolysis, turbulent combustion, and water suppression. Despite being highly scalable on parallel
computers, the solver takes several days to over two months to simulate practical fires. The high
computational cost is primarily attributed to solving pressure and radiation equations.

GPU acceleration in FireFOAM is achieved by employing NVIDIA’s AMGx solvers to offload
linear solver computations from CPUs to GPUs, significantly reducing the time required to solve the
pressure equation. However, since matrix and vector assembly still occur on CPUs, this method is
not applicable for radiation calculations using the discrete ordinate method, which would require
extensive code refactoring to be effective on GPUs.

The recent advances in machine learning has transformed the way we approach scientific computing.
Mishra and Molinaro Mishra and Molinaro [2021] demonstrated that physics-informed neural
networks (PINNs) can effectively solve the radiative transfer equation (RTE) with fixed temperature
and absorption coefficients, noting their ease of implementation, speed, robustness, and accuracy.
Recent research Lu and Wang [2024] has expanded this approach by using physics-informed deep
operator networks (PI-DeepONets) to solve parameterized RTEs, achieving significant speedups for
1D radiation problems.
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The present study extends the work of Lu and Wang [2024] by developing surrogate RTE solvers
for multi-dimensional radiation problems. We introduce a new model formulation that solves RTEs
with complex boundary conditions. We use PCA to encode input functions into low-dimensional
representations, resulting in more compact DeepONet architectures. PCA has been coupled with
operator learning in prior literature, see [Bhattacharya et al., 2021] and the references therein, or see
[Tang et al., 2021] for a geological sciML example modeling carbon storage. The new methodology
is implemented in a flexible and extensible sciML toolkit for training neural surrogate RTE solvers
using physics-informed, data-driven, or hybrid loss functions. We utilize the developed library to
solve radiation problems in fire safety research.

2 Methods

In CFD simulations, radiation is incorporated into the energy equation as a volumetric radiative
heat loss term. This requires solving the radiative intensity field I(x, s) at various locations x and
directions s from the radiative transport equation (RTE), given by

RRTE(I, (x, s)) = s · ∇I(x, s) + κ(x)I(x, s)− κ(x)Ib(x) = 0, (1)

subject to the boundary condition imposed for radiation rays emitting from bounding surfaces to the
radiatively participating media within the domain

RBC(I, (x, s)) = ϵ(x)Ib(x)+
ρd(x)

π

∫
I(x, s′)|n(x).s′|dΩ+ρs(x)I(x, ss)−I(x, s) = 0. (2)

n denotes the boundary surface normal, ss = s− 2n(n.s) is the direction of a specular reflection,
and dΩ is the solid angle on the unit sphere Ω.

The input functions of the RTE are the absorption coefficient u1(= −κ) ∈ U1, the black body emissive
power u2(= Ib) ∈ U2, the surface emissivity u3(= ϵ) ∈ U3, the diffusive reflection coefficient u4(=
ρd) ∈ U4, and the specular reflection coefficient u5(= ρs) ∈ U5. Here Ib(x) = σ/πT 4(x) where T
is the temperature and σ is the Stefan–Boltzmann constant. Boundary operators are generalized and
parameterized, whereas prior work Lu and Wang [2024] assumed black walls at fixed temperatures.
We use a DeepONet to approximate the RTE solution operator G : U1 × U2 × U3 × U4 × U5 → I
which maps input functions to the solution I(x, s) ∈ I as

G(u1, . . . , u5) = I. (3)
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Figure 1: The architecture of DeepONet for learning the mapping between function spaces. We only
show two of the five random coefficients for simplicity.

DeepONet comprises two main components: the branch net and the trunk net (see Lu et al. [2021]),
as illustrated in Figure 1. As shown in the leftmost panel, the branch nets g1, . . . g5 encode input
functions u1(x), . . .u5(x) at a fixed number of discrete sensor locations xi, i = 1, . . . , n. The trunk
net f encodes the location and direction y = (x, s) where the output function G(u1, . . .u5)(y) is
evaluated within a given domain. The multiple-input DeepONet prediction is

G̃Θ(u
1, . . . ,u5)(y) = FΘ0(y)⊙ GΘ1(u

1)⊙ · · · ⊙ GΘ5(u
5) + b (4)

where ⊙ is the Hadamard product of the H outputs from each MLP, b is a trainable bias parameter,
and Θ = ∪R

i=0Θi aggregates all networks parameters.
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The data for training a DeepONet is the Cartesian product of random coefficients (u1
k, . . . ,u

5
k)

NRC

k=1

and collocation points (xi, si)
NC
i=1. The collocation points are input to the trunk net while the random

coefficients are sampled at sensor locations to get sensor values which are input to the branch nets.
Our implementation support both aligned datasets, where the sensor locations match the collocation
points, and unaligned datasets. Moreover, we lazily construct batches of the Cartesian product dataset
on GPU to significantly reduce the time spent loading data.

We support PCA to reduce the number of sensor values. Auto-encoders for SciML have also shown
success for dimensionality reduction Kontolati et al. [2023], but they require additional training for
the encoder and are not amenable to distributed evaluation. PCA instead can be done via a simple
matrix vector multiplication in a distributed manner when integrated in parallel CFD solvers.

The weighted hybrid loss function combines terms for the RTE (1), boundary condition (2), and data
from a traditional solver into

L(Θ) = ωRTE∥RRTE(G̃Θ,DRTE)∥+ ωBC∥RBC(G̃Θ,DBC)∥+ ωdata∥Rdata(G̃Θ,Ddata)∥. (5)

Here ω are the weights, R are the residuals, and D are subsets of the sensor-collocation data with
Ddata also containing solution data from the reference solver. The gradient in (1) is evaluated exactly
using automatic differentiation, while the integral in (2) is approximated using either Gauss-Legendre
quadrature or Quasi-Monte Carlo Niederreiter [1992]. These cubature routines are also used to infer
the incident radiation, radiative heat flux, or radiative heat loss.

The core functionalities of the developed sciML library are implemented into two abstract classes.
The first constructs the sensor-collocation datasets D while the second defines the loss function L(Θ)

by implementing both the residuals R and the DeepONet G̃Θ. The complete code will be made
available upon publications.

3 Numerical Experiments

Numerical experiments are conducted using the developed sciML library RTENet, showcasing trained
neural surrogates solving RTEs with complex boundary conditions and in practical settings of fire
radiation transfer. The selected test problems include a cylinder enclosure problem from [Chui et al.,
1992, Fig. 5], the four special cases considered in [Ge et al., 2016, Section 4.3], and the small pool
fire case from FireFOAM/tutorials.

DeepONet training hyperparameters are summarized below where LT and LB are the number of
hidden layers in trunk and branch nets respectively, γ is the learning rate, B is the equal batch size
across datasets, and E is the number of epochs. Note that the number of network parameters |Θ| is
also a function of the number of sensor locations which is described in the following paragraphs. All
training uses the AMSGrad variant of the Adam optimizer.

dataset DeepONet training
problem coefficients NRC NC |Θ| LT LB H γ B E

Chui et al. [1992] (κ) 200 12K 166K 5 4 128 10−3 2K 500
Ge et al. [2016] (ϵ, ρd, ρs) 259 2K 150K 4 3 128 10−3 1K 700

pool fire (κ, Ib) 4000 365K 3.1M 5 4 512 10−4 33K 12

Figure 2: DeepONets overcome the ray effect and yield small pointwise relative errors.

A first test solves gas radiation transfer in a cylindrical enclosure. Boundaries are cold black walls
and gas temperature is constant. The DeepONet was trained with NRC = 200 random realizations of
constant κ between κ = 0.01 [m−1] and κ = 6 [m−1] and no traditional solver data was provided i.e.
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this was a purely physics-informed training. L2 relative errors of 1.53%, 1.17%, and 1.88% were
attained for κ = 0.1, κ = 1, and κ = 5 respectively as compared to the analytic gray gas solution.
The pointwise relative errors are shown in Figure 2. The discrete ordinate method in FireFOAM,
when the angular discretization is coarse, suffers from the ray effect, which is quickly mitigated in
DeepONet.

Figure 3: DeepONet predicted heat loss
compared to the higher order spherical
harmonics P7 models in Ge et al. [2016].

A second test problem in [Ge et al., 2016, Section 4.3]
considers gas radiation transfer in a rectangular domain
with mixed boundary conditions. The gas temperature
is prescribed and the absorption coefficient is constant
κ = 0.5 [m−1], while ϵ, ρd, ρs are unknown piecewise
constant functions satisfying ϵ+ρd+ρs = 1. The top and
bottom boundary have fixed ϵ = 1 while the left and right
boundary are random constants ϵLR, ρdLR, and ρsLR. The
DeepONet is trained on NRC = 259 random realizations
of ϵLR, ρdLR, and ρsLR, and tested with the parameters spec-
ified in [Ge et al., 2016, Section 4.3]. Figure 3 compares
the predicted volumetric heat loss along a vertical slice of
the domain between DeepONet and the P7 model from
Ge et al. [2016].

The third problem trains DeepONet on NRC = 4K Fire-
FOAM pool fire simulation snapshots, which use 151×151
cells and 16 discrete ordinates. The high-dimensional datasets are encoded into lower-dimensional
latent spaces using PCA, reducing the branch net input size from 23K to 500. Figure 4 compares
predicted incident radiation results on withheld testing realizations. Notably, the DeepONet approxi-
mation does not suffer from the ray effect observed in the discrete ordinate solver.

Figure 4: Comparison of predicted incident radiation from temperature and absorption in a pool fire
between the DeepONet and a reference Finite Volume Discrete-Ordinate Method (FVDOM) solver.

4 Conclusions

This work introduces a new ML toolkit for training neural surrogates to solve radiation transfer.
Users can select from 1, 2, or 3D geometries and random coefficients from the governing equation
or boundary condition. PCA can be optionally used to reduce the branch network input sizes for
more compact DeepONet architectures. The SciML models are trained using physics-informed, data-
driven, or hybrid loss functions. While this article only describes DeepONets, the implementation
also supports PINNs. The next step will focus on evaluating performance and deploying neural
surrogate solvers in CFD of large-scale fires; this includes three dimensional fire simulations which
are immediately supported in the described framework.
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