
Structural Pruning of Large Language Models via Neural
Architecture Search

Aaron Klein1 Jacek Golebiowski1 Xingchen Ma1 Valerio Perrone1 Cedric Archambeau1

1
AWS AI Labs

Abstract Large Language Models (LLM) achieved considerable results on natural language under-

standing tasks. However, their sheer size causes a large memory consumption or high

latency at inference time, which renders deployment on hardware-constrained applications

challenging. Neural architecture search (NAS) demonstrated to be a promising framework

to automatically design efficient neural network architectures. In this work, we discuss

the relationship between NAS and structural pruning and apply multi-objective NAS to

compress LLMs while optimizing their performance when fine-tuned on a downstream task.

We provide an in-depth analysis of existing NAS strategies and compare different search

space definitions. On sentence classification tasks, we can prune the popular BERT model

by up to 50% without deteriorating performance.

1 Introduction
Large language models (LLM) are now the de-facto standard for natural language understanding

(NLU) tasks (Devlin et al., 2019). While LLM started to become ubiquitous, deploying them for

inference can be challenging due to their considerable size. Contemporary LLMs require large GPU

memory when deployed and tend to have large inference latency that is infeasible for real-world

applications within a web service or an embedded system.

A recent body of work (Blalock et al., 2020; Kwon et al., 2022; Michel et al., 2019; Sajjad et al., 2022)

showed that often only a subset of the pre-trained model actually contributes to the downstream

task performance. Unstructured pruning (Blalock et al., 2020) computes a score for each weight in

the network, for example the weight’s magnitude, and prunes all weights with a score lower than a

pre-defined threshold. It often achieves high pruning rates with small deterioration in performance,

but also causes sparse weight matrices, which are hardly supported by commonly used machine

learning frameworks. Structured pruning considers larger components of the networks, such as

layers or heads. Even though it usually does not achieve the same pruning rates as unstructured

pruning, it only prunes full columns/rows of the weight matrix, making it amenable for popular

deep learning frameworks and hardware.

Neural Architecture Search (NAS) (see Elsken et al. (2018) for an overview) automates the

design of neural network architectures to maximize generalization performance and efficiency,

for example, in terms of latency, model size or memory consumption. The limiting factor of

NAS is the computational burden of the search, which consists of multiple rounds of training

and validating neural network architectures (Zoph and Le, 2017; Real et al., 2017). To reduce the

overall cost, weight-sharing NAS (Pham et al., 2018; Liu et al., 2019) trains a single super-network

consisting of all architectures in the search space. Initially, Liu et al. (2019) framed this as a bi-level

optimization problem, where the inner objective represents the optimization of the network weights,

and the outer objective the selection of the architecture. After training the super-network, the best

architecture is selected based on the shared weights and then re-trained from scratch. However,

several papers (Li and Talwalkar, 2020; Yang et al., 2020) reported that this formulation heavily

depends on the search space and does not yield better results than just randomly sampling an

architecture. Yu et al. (2020) proposed to update this strategy with a two-stage NAS process. First,

AutoML 2023 Workshop Track © 2023 the authors, released under CC BY 4.0

mailto:kleiaaro@amazon.com
mailto:jacekgo@amazon.com
mailto:xgchenma@amazon.com
mailto:vperrone@amazon.com
mailto:cedrica@amazon.com
https://creativecommons.org/licenses/by/4.0/

1083 × 107 4 × 107 6 × 107

number of parameters

0.34

0.36

0.38

0.40

0.42

0.44

0.46

va
lid

at
io

n
er

ro
r

Pareto front
unpruned model

(a) Pareto Front

FFN Layer

MHA Layer

FFN Layer

MHA Layer

FFN Layer

MHA Layer

FFN Layer

MHA Layer

FFN Layer

MHA Layer

MHA Layer

Unpruned Network

FFN Layer

FFN Layer

MHA Layer

FFN Layer

MHA Layer

FFN Layer

MHA Layer

FFN Layer

MHA Layer

FFN Layer

MHA Layer

MHA Layer

Sub-Network

FFN Layer

FFN Layer

MHA Layer

FFN Layer

MHA Layer

FFN Layer

MHA Layer

FFN Layer

MHA Layer

FFN Layer

MHA Layer

MHA Layer

Sub-Network

FFN Layer

FFN Layer

MHA Layer

FFN Layer

MHA Layer

FFN Layer

MHA Layer

FFN Layer

MHA Layer

FFN Layer

MHA Layer

MHA Layer

Sub-Network

FFN Layer

(b) Sub-Networks

Figure 1: a) Pareto front of sub-networks on the RTE dataset. We can find sub-networks that are

roughly 50% smaller without loss in performance compared to the un-pruned network. b)

Illustration of our approach. We treat the entire pre-trained architecture as super-network

with multi-head (yellow) and fully-connected layers (blue) and select sub-networks (coloured)

by placing a mask over head and units (grayed out).

the super-network is trained by updating individual sub-networks in each iteration (as opposed

to the whole super-network). After training, the final model is selected by running gradient-free

optimization based on the shared-weights of the super-network without any further training. Cai

et al. (2020) adapted this to the multi-objective setting to train a single super-network and then

search for sub-networks to minimize latency on some target device.

Weight-sharing NAS can be seen as structural pruning, where we prune the super-network

to select a sub-network. However, compared to other pruning strategies, NAS allows for a multi-

objective approach to find the Pareto optimal set of sub-networks that balance between performance

and model size instead of just returning a single solution based on a pre-defined threshold on the

number of parameters. Especially in settings without a hard constraint on the model size, it might be

difficult to define such fixed threshold a-priori. Furthermore, a multi-objective approach allows us

to model the often non-linear relationship (see Figure 1) between model size and performance such

that we can select post-hoc the best model that fits our requirements. In this paper we explore this

property and provide a NAS approach to prune pre-trained LLMs when fine-tuned on a downstream

task. Our contributions are:

• We propose to treat structural pruning of LLMs as a multi-objective NAS problem. Based on recent

work on weight-sharing based NAS, we view the pre-trained network as a super-network and

search for the set of sub-networks that optimally balance between downstream task performance

and parameter count. As shown in Figure 1, our NAS strategy is able to prune a BERT model by

up to 50% without loss in performance.

• We present a carefully designed ablation study of weight-sharing based NAS to analyse the effect

of different search space definitions and NAS techniques, such as super-network training and

sub-network search. We show that less expressive search spaces are superior for a fixed search

budget. We also present a simple local search approach that outperforms more sophisticated

state-of-the-art methods.

2 Structural Pruning via Neural Architecture Search

Given a pre-trained transformer model with parameters w ∈ R𝑛
, where 𝑛 is the total number of

trainable parameters, denote its number of heads ℎ ∈ N for each multi-head attention layer, the

number of units 𝑢 ∈ N in the intermediate fully-connected layer and the number of blocks 𝑙 ∈ N
consisting of one multi-head attention and one fully-connected layer. We first define a search space

Θ that contains a large, but finite set of possible sub-networks with varying number of heads ≤ ℎ,
units ≤ 𝑢 and layers ≤ 𝑙 (see Figure 1(b) for an example). To select a sub-network, we place a binary

2

mask over all heads for each multi-head attention layer and every unit for each fully-connected

layer (see Appendix B for more details). Based on Θ, we jointly optimize the validation error and

parameter count of the sub-networks. In the multi-objective setting, there is no single sub-network

𝜽 ∈ Θ that jointly optimizes all objectives. Instead we search for the Pareto set of sub-networks

that dominate all other sub-networks in at least one objective.

Next, we describe our super-network training strategy and how to tackle this multi-objective

problem. Afterwards, we discuss several example to define a search space Θ.

2.1 Weight-sharing based NAS

Super-network training. We treat the pre-trained network as super-network with shared weights

that contains all possible sub-networks ∀𝜽 ∈ Θ. To avoid that sub-networks co-adapt and still work
outside the super-network, previous work (Yu et al., 2020; Wang et al., 2021) suggested to update

only a subset of sub-networks in each update step, instead of the full super-network. We adapt

this strategy and in each update step, sample sub-networks according to the sandwich rule (Yu

et al., 2020), which always updates the smallest, the largest and 𝑘 random sub-networks. The

sandwich rule has shown promising results in NAS (Yu et al., 2020; Wang et al., 2021) to joinlty

train independent sub-networks. The smallest and largest sub-network correspond to the lower

and upper bound of Θ, respectively. Here the upper bound is equal to full network architecture, i.e,

the super-network and the lower bound removes all layers except the embedding and classification

layer. Additionally, we use in-place knowledge distillation (Yu et al., 2019) which has been shown to

stabilize the training in NAS. The idea is to distill the knowledge of the super-network into the sub-

networks by minimizing the Kullback-Leiber divergence between the logits of the super-network -

which we obtain for free with the sandwich rule - and sub-networks.

Sub-networks selection. After training the super-network, we run multi-objective search to jointly

optimize validation performance and parameter count of sub-networks. Each function evaluation

only requires a full pass over the validation without any further training.

Previous work (White et al., 2021) showed that simple local search often performs competitively

to more advanced NAS method. We propose a simple multi-objective local search approach. Given

the current Pareto front 𝑃 , we first sample a random element 𝜽★ ∼ 𝑃 and then sample a random

neighbour point by permuting a single random entry of 𝜽★. We provide pseudo code for our local

search in Appendix D.

2.2 Search Space

The search space Θ defines structural components of the pre-trained network architecture to be

pruned. An expressive Θ allows for fine-grained pruning but might also become infeasible to

explore. We identify the following search spaces that exhibit different levels of complexity:

• Large: For each head and neuron in the fully-connected layer we define a single binary Θ =

{0, 1}𝑙∗(ℎ+𝑢) . This is themost expressive search space, but also grows exponentially with themodel

size. This search space is also commonly used by other structural pruning approaches (Kwon et al.,

2022). It might not be very useful in practice, because we cannot easily remove single entries of

weight matrices with most transformer implementations and hence it will not necessarily reduce

the inference latency . However, it provides us a reference in terms of predictive performances

that can be retained under a certain pruning ratios.

• Layer: Instead of single heads and neurons, we prune individual attention and fully-connected

layers. The search space Θ = {0, 1}2∗𝑙 contains one binary for each multi-head attention layer

and fully-connected layer, respectively.

• Small: We define the number of heads H = [0, 𝐻], the number of units U = [0,𝑈] and the total

number of layers L = [0, 𝐿], such that Θ = H × U × L. Compared to the other search spaces, the

3

dimensionality of this search space remains constant when we scale-up the number of layers,

and only its upper bound increases. For each layer, we always keep the first ℎ ∈ H heads and

𝑢 ∈ U units, respectively.

• Medium: Based on the previous search space, we allow for a flexible number of heads / units per

layer. For each layer 𝑙 ∈ [0, 𝐿], we define H𝑙 = [0, 𝐻] and U𝑙 = [0,𝑈], such that the final search

space is Θ = H0 × U0 . . .H𝐿 × U𝐿 .

Each search space induces a different pattern for the head / unit masks that we place over

the super-network to select sub-networks (see Appendix B for some examples). We also show in

Appendix C the variations of the distribution of number of parameters for randomly sampled 𝜽
from the different search spaces.

3 Experiments

To evaluate our approach, we use four datasets from the GLUE (Wang et al., 2019) benchmark suite:

RTE, MRPC, COLA and STSB. GLUE datasets come with a predefined training and evaluation set

with labels and a hold-out test set without labels. We split the training set into a training and

validation set (70%/30% split). For all multi-objective search methods, we use Syne Tune (Salinas

et al., 2022) on a single GPU instance. We use BERT-base (Devlin et al., 2019) (cased) as pre-trained

network, which consists of 𝑙 = 12 layers, 𝑢 = 3072 units and ℎ = 12 heads. Weights are quantized

as float16 during the fine-tuning of the super-network.

To evaluate the performance of a Pareto set, we compute the Hypervolume (Zitzler et al., 2003)

based on a fixed reference point. We first normalize each objective independently based on all

observed values across all methods and repetitions via Quantile normalization. This results in a

uniform distribution between [0, 1], and we use (2, 2) as reference point. We train each super-

network five times with a different random seed. For each model checkpoint, i.e super-network, we

runmulti-objective NAS five times also with different random seeds. This leads to 25 different Pareto

sets and we report mean and standard deviation of the corresponding hypervolume. We report

here results averaged across all datasets in Figure 2 and show results per dataset in Appendix A.

3.1 Search Space

First, we compare the search spaces definitions from Section 2.2. We fine-tune the super-network

as described in Section 2.1 and sample 100 sub-networks uniformly at random to compute the

hypervolume. Within this budget (see Figure 2 left), the Small search space achieves the best

performance. Interestingly, even though the Medium search space allows for a more fine-grained

per layer pruning, it leads to worse results. We attribute this to the non-uniform distribution of

parameter count (see Appendix C). The Large search space, which is a superset of the other search

spaces, seems infeasible to explore with random sampling over so few observations.

3.2 Super-network Training

Next, we compare the following super-network training strategies:

• standard: Which trains all weights of super-network in the standard fine-tuning setting

• random: Samples a single random sub-network in each update steps

• random-linear : We either sample a random sub-network with probability 𝑝 or the full-network

with probability of 1 − 𝑝 in each update step. Thereby, 𝑝 is linearly increased from 0 to 1 after

each step.

• sandwich: The super-network is updated according to the sandwich rule described in Section 2.1.

We set the number of random sub-networks in each update step to 𝑘 = 2.

4

Layer Medium Small Large

2.6

2.8

3.0

3.2

3.4

3.6

3.8

hy
p

er
vo

lu
m

e

search space

standard random linear sandwich full

2.8

3.0

3.2

3.4

3.6

3.8

hy
p

er
vo

lu
m

e

super-network training strategy

100 200 300 400 500

function evaluations

3.45

3.50

3.55

3.60

3.65

3.70

3.75

3.80

hy
p

er
vo

lu
m

e

multi-objective search

LS

MO-REA

NSGA-2

RS

Figure 2: Results of the ablation study averaged across repetitions and datasets.

• full: Implements the training protocol described in Section 2.1, i.e it combines the sandwich rule

with in-place knowledge distillation to update sub-networks.

Based on the previous results, we use the Small search space for each training strategy. Figure 2

middle shows the hypervolume based on the same set of 100 random configurations. Standard

fine-tuning without accounting for sub-networks leads to significantly worse results. Linearly

increasing the probability of sampling a random sub-networks leads to better results than always

sampling a random sub-network. Better results are achieved by using the sandwich rule. Thereby,

combining it with knowledge distillation slightly improves results further.

3.3 Multi-objective Search
Lastly, we compare (see Figure 2 right) the following multi-objective search methods against our

local search (LS): Random search (RS) (Bergstra and Bengio, 2012) samples architectures uniformly

at random from the search space. MO-REA is a multi-objective version of the popular NAS

method regularized evolution (Real et al., 2019) where elements in the population are sorted via

non-dominated sorting. NSGA-2 is a frequently used genetic algorithm from the multi-objective

literature.

NSGA-2 performs slightly slower in the beginning than other methods, which we attribute to

the initialization of the population. However, with larger budget it catches up and on RTE dataset,

where it slightly improves upon RS and MO-REA. LS starts to outperform all other baseline after

roughly 100 iterations.

4 Conclusions
We propose weight-sharing based multi-objective NAS for structural pruning of LLMs to approxi-

mate the Pareto set of sub-networks that optimize model size and performance. In the future, we

will extend this study to larger auto-regressive models. We will also explore the relationship to

quantization. Apart from this, we think there are several direction to improve the local search

method, such as multi-fidelity optimization or transfer learning.

5 Limitation
Themain limitation is the fine-tuning of the super-network on each downstream task independently,

which becomes infeasible for very large models. Future work could explore the compression of

large auto-regressive models that can directly be applied to task without any parameter updates.

6 Broader Impact Statement
While still in early stage, we hope that this line of work will eventually lead to more efficient LLMs,

to reduce the demand for large compute resources which mitigates costs and carbon footprint. In

the long run, we hope our work will help to make LLMs more accessible and democratizes research

in this timely area.

5

References

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of
Machine Learning Research.

Blalock, D., Ortiz, J. J. G., Frankle, J., and Guttag, J. (2020). What is the state of neural network

pruning? arXiv:2003.03033 [cs.LG].

Cai, H., Gan, C., Wang, T., Zhang, Z., and Han, S. (2020). Once-for-all: Train one network and

specialize it for efficient deployment. In International Conference on Learning Representations
(ICLR’20).

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep bidirectional

transformers for language understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies.

Elsken, T., Metzen, J. H., and Hutter, F. (2018). Neural architecture search: A survey. arXiv:1808.05377
[stat.ML].

Kwon, W., Kim, S., Mahoney, M. W., Hassoun, J., Keutzer, K., and Gholami, A. (2022). A fast

post-training pruning framework for transformers. arXiv:2204.09656 [cs.CL].

Li, L. and Talwalkar, A. (2020). Random search and reproducibility for neural architecture search.

In Proceedings of The 35th Uncertainty in Artificial Intelligence Conference.

Liu, H., Simonyan, K., and Yang, Y. (2019). DARTS: Differentiable architecture search. In International
Conference on Learning Representations (ICLR’19).

Michel, P., Levy, O., and Neubig, G. (2019). Are sixteen heads really better than one? In Proceedings of
the 32th International Conference on Advances in Neural Information Processing Systems (NIPS’19).

Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. (2018). Efficient neural architecture search via

parameters sharing. In Proceedings of the 35th International Conference on Machine Learning
(ICML’18).

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. (2019). Regularized Evolution for Image Classifier

Architecture Search. In Proceedings of the Conference on Artificial Intelligence (AAAI’19).

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Tan, J., Le, Q. V., and Kurakin, A. (2017).

Large-scale evolution of image classifiers. In Proceedings of the 34th International Conference on
Machine Learning (ICML’17).

Sajjad, H., Dalvi, F., Durrani, N., and Nakov, P. (2022). On the effect of dropping layers of pre-trained

transformer models. arXiv:2004.03844 [cs.CL].

Salinas, D., Seeger, M., Klein, A., Perrone, V., Wistuba, M., and Archambeau, C. (2022). Syne tune:

A library for large scale hyperparameter tuning and reproducible research. In First Conference on
Automated Machine Learning (Main Track).

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. R. (2019). GLUE: A multi-task

benchmark and analysis platform for natural language understanding. In International Conference
on Learning Representations (ICLR’19).

Wang, D., Li, M., Gong, C., and Chandra, V. (2021). AttentiveNAS: Improving Neural Architecture

Search via Attentive Sampling. arXiv:2011.09011 [cs.CV].

6

White, C., Nolen, S., and Savani, Y. (2021). Exploring the loss landscape in neural architecture

search. In Proceedings of the 37th conference on Uncertainty in Artificial Intelligence (UAI’21).

Yang, A., Esperança, P. M., and Carlucci, F. M. (2020). NAS valuation is frustratingly hard. In

International Conference on Learning Representations (ICLR’20).

Yu, J., Jin, P., Liu, H., Bender, G., Kindermans, P. J., Tan, M., Huang, T., Song, X., Pang, R., and Le, Q.

(2020). BigNAS: Scaling Up Neural Architecture Search with Big Single-Stage Models. In The
European Conference on Computer Vision (ECCV’20).

Yu, J., Yang, L., Xu, N., Yang, J., and Huang, T. (2019). Slimmable neural networks. In International
Conference on Learning Representations (ICLR’19).

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and Fonseca, V. G. D. (2003). Performance as-

sessment of multiobjective optimizers: An analysis and review. IEEE Transactions on evolutionary
computation.

Zoph, B. and Le, Q. V. (2017). Neural architecture searchwith reinforcement learning. In International
Conference on Learning Representations (ICLR’17).

A Detailed Results

Figure 3 shows the comparison of different search spaces across all datasets. Figure 5 and Figure 4 the

comparison of super-network training strategies and multi-objective search methods, respectively.

See main text for a more detailed analysis of the results.

Layer Medium Small Large

search space

2.6

2.8

3.0

3.2

3.4

3.6

3.8

hy
p

er
vo

lu
m

e

RTE

Layer Medium Small Large

search space

3.0

3.2

3.4

3.6

3.8

hy
p

er
vo

lu
m

e

MRPC

Layer Medium Small Large

search space

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

hy
p

er
vo

lu
m

e

COLA

Layer Medium Small Large

search space

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

hy
p

er
vo

lu
m

e

STSB

Figure 3: Comparison of different search spaces to define sub-networks. Even though larger search

spaces are more expressive, they under-perform within the select budget.

100 200 300 400 500

function evaluations

3.55

3.60

3.65

3.70

3.75

3.80

3.85

hy
p

er
vo

lu
m

e

RTE
LS

MO-REA

NSGA-2

RS

100 200 300 400 500

function evaluations

3.4

3.5

3.6

3.7

3.8

hy
p

er
vo

lu
m

e

MRPC
LS

MO-REA

NSGA-2

RS

100 200 300 400 500

function evaluations

3.40

3.45

3.50

3.55

3.60

3.65

3.70

hy
p

er
vo

lu
m

e

COLA

LS

MO-REA

NSGA-2

RS

100 200 300 400 500

function evaluations

3.50

3.55

3.60

3.65

3.70

hy
p

er
vo

lu
m

e

STSB
LS

MO-REA

NSGA-2

RS

Figure 4: Comparison of different multi-objective search strategies. Simple local search improves upon

more sophisticated genetic or evolutionary algorithms.

7

standard random linear sandwich full

super-network training strategy

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

hy
p

er
vo

lu
m

e

RTE

standard random linear sandwich full

super-network training strategy

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

hy
p

er
vo

lu
m

e

MRPC

standard random linear sandwich full

super-network training strategy

2.8

3.0

3.2

3.4

3.6

hy
p

er
vo

lu
m

e

COLA

standard random linear sandwich full

super-network training strategy

3.3

3.4

3.5

3.6

3.7

hy
p

er
vo

lu
m

e

STSB

Figure 5: Comparison of super-network training strategies. More advances training strategies that

sample a set of sub-network outperform standard fine-tuning as well as just sampling a

single random sub-network. Full corresponds to our approach described in Section 2.1 which

combines the sandwich rule with in-place knowledge distillation.

1 2 3 4 5 6 7 8 9 10 11 12

head

1

2

3

4

5

6

7

8

9

10

11

12

la
ye

r

Small

1 2 3 4 5 6 7 8 9 10 11 12

head

1

2

3

4

5

6

7

8

9

10

11

12

la
ye

r

Medium

1 2 3 4 5 6 7 8 9 10 11 12

head

1

2

3

4

5

6

7

8

9

10

11

12
la

ye
r

Layer

1 2 3 4 5 6 7 8 9 10 11 12

head

1

2

3

4

5

6

7

8

9

10

11

12

la
ye

r

Large

Figure 6: Example masks for heads by different search spaces.

B Masking

We define a binary mask𝑚ℎ𝑒𝑎𝑑 ∈ {0, 1}𝐿×𝐻 for each head in the multi-head attention layer and

𝑚𝑛𝑒𝑢𝑟𝑜𝑛 ∈ {0, 1}𝐿×𝑈 for each neuron in the fully-connected layers. We query a sub-network

𝑊𝑠𝑢𝑏𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ⊂𝑊 by selecting only weights that correspond to the active heads / neurons in the

corresponding mask. Given a search space Θ described in Section 2.2 that contains a finite set

of possible sub-networks, we use an auxiliary function𝑚ℎ𝑒𝑎𝑑 ,𝑚𝑛𝑒𝑢𝑟𝑜𝑛 = 𝐶𝑅𝐸𝐴𝑇𝐸𝑀𝐴𝑆𝐾 (𝜽) that
maps from configurations 𝜽 ∈ Θ in the search space Θ to a binary mask for head and neurons,

respectively (see Figure 1 right for an illustration). Let’s denote the function 𝑓0 : Θ → R as the

validation error based on𝑊𝑠𝑢𝑏𝑛𝑒𝑡𝑤𝑜𝑟𝑘 on some downstream task and 𝑓1 : Θ→ {0, ..., 𝑁 } the total
number of trainable parameters, i.e |𝑊𝑠𝑢𝑏𝑛𝑒𝑡𝑤𝑜𝑟𝑘 |, we minimize:

𝑚𝑖𝑛(𝑓0(𝜽), 𝑓1(𝜽)) . (1)

Figure 6 shows the head mask based on random 𝜃 ∈ Θ for each of the search spaces. The

different search space induce different patterns in these head masks.

C Sampling Distributions of Search Spaces

For each Θ described in Section 2.2 we sample 𝑁 = 500 random configurations {𝜃0, ..., 𝜃𝑁 } and
compute the number of traininable parameters {𝑓1(𝜃0), ..., 𝑓1(𝜃𝑁 }. Figure 7 shows the distribution
over the number of parameters for each search space. Interestingly, the small search space is

somewhat bias towards smaller networks. The medium search, even though it’s more expressive,

is focused on a medium sized networks. For the Layer and Large search space, we can achieve

a uniform distribution over the number of parameters, by first sampling an integer 𝑘 ∼ 𝑈 (0, 𝐾),
where 𝑘 = 2 ∗ 𝐿 for the Layer search space, and 𝑘 = 𝐿 ∗ (𝑈 + 𝐻) for the Large search space.

Afterwards, we randomly select 𝑘 entries of the binary vector 𝜽 and set them to 1.

8

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

relative number of parameters
0

50

100

150

200

250

300

350

Small

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

relative number of parameters
0

20

40

60

80

100

120

140

Medium

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

relative number of parameters
0

100

200

300

400

Layer

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

relative number of parameters
0

10

20

30

40

50

60

70

Large

Figure 7: Sampling distribution of the parameter count for uniformly sampled 𝜽 from the four search

spaces described in Section 2.2.

D Multi-objective Local Search

We start with evaluating a starting point 𝜽𝑠𝑡𝑎𝑟𝑡 , which we set as the upper bound of our search

space. The initial Pareto front 𝑃0 is initialized with the start point 𝑃0 ← {𝜽𝑠𝑡𝑎𝑟𝑡 }. Afterwards, in
each step our local search samples a random neighbour of a randomly selected points of the current

Pareto front until we reach a fix number of iteration. We consider 1-step neighbourhood, which

randomly permutes the given point only in a single dimension.

input :Search space Θ, number of iteration 𝑇 , starting point 𝜽𝑠𝑡𝑎𝑟𝑡
output :Pareto front 𝑃

/* evaluate starting point */
𝑃0 ← {𝜽𝑠𝑡𝑎𝑟𝑡 };
𝑦𝑠𝑡𝑎𝑟𝑡 = [𝑓0(𝜽𝑠𝑡𝑎𝑟𝑡), 𝑓1(𝜽𝑠𝑡𝑎𝑟𝑡];
𝑌 ← {𝑦𝑠𝑡𝑎𝑟𝑡 };
/* main loop */
for 𝑡 = 1, . . . ,𝑇 do

/* sample random element from the population */
𝜽𝑡 ∼ U (𝑃𝑡−1);
/* mutate */
𝑑 ∼ U (0, |𝜽𝑡 |); // sample random dimension
ˆ𝜽 ← 𝑐𝑜𝑝𝑦 (𝜽𝑡);
ˆ𝜽 [𝑑] ← U (Θ𝑑); // sample a new value from the search space
/* evaluate */

𝑦𝑡 = [𝑓0(ˆ𝜽), 𝑓1(ˆ𝜽)];
𝑌 ← 𝑌 ∪ 𝑦𝑡
/* update population */
𝑆 (𝑌) = {𝑦′ ∈ 𝑌 : {𝑦′′ ∈ 𝑌 : 𝑦′′ ≻ 𝑦′, 𝑦′ ≠ 𝑦′′} = ∅}; // Pareto front
𝑃𝑡 ← {𝜽 : 𝑦 (𝜽) ∈ 𝑆 (𝑌)};

end
Algorithm 1: Local Search

9

E Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Experiment Section

(b) Did you describe the limitations of your work? [Yes] See Limitations

(c) Did you discuss any potential negative societal impacts of your work? [No] We do not see

any negative societal impacts of our work

(d) Have you read the ethics author’s and review guidelines and ensured that your paper

conforms to them? https://automl.cc/ethics-accessibility/ [Yes]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-

tal results, including all requirements (e.g., requirements.txt with explicit version), an

instructive README with installation, and execution commands (either in the supplemental

material or as a url)? [No] Code will be shared with the full paper submission

(b) Did you include the raw results of running the given instructions on the given code and

data? [N/A]

(c) Did you include scripts and commands that can be used to generate the figures and tables

in your paper based on the raw results of the code, data, and instructions given? [N/A]

(d) Did you ensure sufficient code quality such that your code can be safely executed and the

code is properly documented? [N/A]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed

hyperparameter settings, and how they were chosen)? [N/A]

(f) Did you ensure that you compared different methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [Yes] More details can be found in the Experiment section

of our paper

(g) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] See Experiment Section

(h) Did you use the same evaluation protocol for the methods being compared? [Yes]

(i) Did you compare performance over time? [No] All search strategies have a negligible

overhead and function evaluations consume the same time, hence the analysis would not

change

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes]

(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [Yes]

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A]

10

https://automl.cc/ethics-accessibility/

(m) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [No]

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach;

and also hyperparameters of your own method)? [Yes] One contribution of the paper is to

provide a detailed ablation study.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [No] Licenses can be found in the original

publication which is referenced in the paper.

(c) Did you include any new assets either in the supplemental material or as a url? [No]

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

11

	Introduction
	Structural Pruning via Neural Architecture Search
	Weight-sharing based NAS
	Search Space

	Experiments
	Search Space
	Super-network Training
	Multi-objective Search

	Conclusions
	Limitation
	Broader Impact Statement
	Detailed Results
	Masking
	Sampling Distributions of Search Spaces
	Multi-objective Local Search
	Submission Checklist

