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ABSTRACT

Large language models (LLMs) are increasingly being applied to economic tasks
like stock picking and financial analysis. Existing LLM benchmarks tend to fo-
cus on specific applications and often fail to describe a rich variety of economic
tasks. Raman et al. (2024) offer a blueprint for comprehensively benchmarking
strategic decision-making. However, their work failed to address the non-strategic
settings prevalent in micro-economics. We address this gap by taxonomizing
micro-economic reasoning into 58 distinct elements, each grounded in up to 10
distinct domains, 5 perspectives, and 3 types. The generation of benchmark data
across this combinatorial space is powered by a novel LLM-assisted data gen-
eration protocol that we dub auto-STEER, which generates a set of questions
by adapting handwritten templates to target new domains and perspectives. By
generating fresh questions for each element, auto-STEER helps reduce the risk
of data contamination, ensuring that LLM evaluations remain valuable over time.
We leveraged our benchmark to evaluate 27 LLMs over each of the instantiated
elements, examined their ability to reason through and solve microeconomic prob-
lems and compared LLM performance across a suite of adaptations and metrics.
Our work provides insights into the current capabilities and limitations of LLMs in
non-strategic economic decision-making and a tool for fine-tuning these models to
improve performance.

1 INTRODUCTION

There is much recent interest in using language models (LLMs) to reason about economic topics.
Some prominent examples include financial sentiment analysis, where LLMs are tasked with an-
alyzing the sentiment information of financial texts (Malo et al., 2013; Maia et al., 2018; Araci,
2019; Yang et al., 2020); Named Entity Recognition, which asks the model to detect critical financial
entities such as persons, organizations, and locations (Salinas Alvarado et al., 2015; Shah et al.,
2022); financial text summarization, which entails condensing long unstructured financial texts into
short summaries that capture crucial information and maintain factual consistency with the original
long texts (Mukherjee et al., 2022; Zhou et al., 2021); and question answering, where LLMs are
tasked with answering an economic question based on the provided information (Maia et al., 2018;
Chen et al., 2021; 2022; Shah et al., 2022; Xie et al., 2023b; Raman et al., 2024). More open-ended
applications are also starting to emerge. LLMs such as WallStreetBERT, TradingGPT, FinGPT,
FinTral, and BloombergGPT are already giving advice to investors and financial advisors (Xie et al.,
2023a; Li et al., 2023; Yang et al., 2023; Bhatia et al., 2024; Wu et al., 2023a). LLMs can help to
automate budgetary planning and allocation (Chen et al., 2023). LLMs are also being deployed as
agents in simulations to analyze the impact of policy changes on key indicators like inflation and
GDP growth (Carriero et al., 2024; Li et al., 2024a).

Before LLMs should be trusted in such open-ended applications, they should demonstrate robustly
strong performance on the fundamentals of economic reasoning (just as, e.g., financial advisors,
budget planners, and economists are required to do). Many existing benchmarks have been proposed,
many of which were introduced in papers cited above. However, most of these are quite narrowly
focused on a single task and/or application, rather than assessing economic reasoning more broadly. A
second—useful but insufficient—category of benchmarks tests foundational concepts in mathematics,
ranging from basic arithmetic to complex problem-solving tasks (Huang et al., 2016; Ling et al.,
2017; Amini et al., 2019; Lample & Charton, 2019; Zhao et al., 2020). Notable benchmarks include
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GSM8K (Cobbe et al., 2021), a small but varied dataset that contains moderately difficult math
problems and MATH (Hendrycks et al., 2021c), a challenging benchmark for which no evaluated
model has yet attained expert-level performance across any of the 57 tested scenarios.

What might it look like to assess an LLM’s economic reasoning more comprehensively? Economics
encompasses a wide array of problems, such as determining optimal consumption bundles, forecasting
profit in the face of uncertainty, or analyzing how a shift in supply impacts equilibrium prices and
quantities. Each of these problems can occur in a wide range of contexts such as labor markets,
consumer product markets, financial markets, or public policy. Beyond the breadth of inputs that must
be considered, evaluating LLMs presents further challenges to benchmark designers. There is no
guarantee that an LLM will perform equally well on problems that appear similar or are conceptually
related (e.g., Hendrycks et al., 2021a). For instance, an LLM that excels at maximizing profit may
struggle with minimizing cost. Similarly, LLMs can be susceptible to perturbations in the text
of a question, which can impact their performance on otherwise similar problems (Ribeiro et al.,
2020). For example, LLMs may excel in allocating budgets as a doctor, but struggle to allocate
budgets as an educator. Finally, LLMs may reason correctly about their own incentives, but fail to
apply this logic to other participants and hence have difficulty understanding market or aggregate
level responses (e.g., total supply, demand, and prices). Therefore, in order to be comprehensive,
a micro-economic benchmark must exhibit broad variation across problems, contexts, and textual
perturbations. It is similarly nontrivial actually to conduct experiments that comprehensively assesses
how well different LLMs perform at economic reasoning tasks. Different models may leverage
distinct architectures, driving performance differences (Sanh et al., 2020; Islam et al., 2023; Raman
et al., 2024). Additionally, adaptation strategies—such as fine-tuning, prompt engineering, and
output distribution modification—can dramatically influence a model’s effectiveness (Brown et al.,
2020; Lester et al., 2021; Kojima et al., 2023). Under the right adaptations, models with as few
as 7B parameters can achieve state-of-the-art performance (e.g., Bhatia et al., 2024). Furthermore,
robustness across multiple task formats (e.g., multiple-choice QA, free-text QA, etc.) is crucial for
understanding the gaps in an LLM’s reasoning capabilities. A model that performs well on one task
format may underperform on others, which suggests gaps in its reasoning processes. Finally, scoring
performance using only a single metric can give a skewed understanding of an LLM’s abilities and
limitations (Schaeffer et al., 2023), or obscure tradeoffs that are relevant to practitioners (Ethayarajh
& Jurafsky, 2020). Without a comprehensive evaluation, we risk misattributing performance to a
LLM when it is instead driven by an adaptation strategy or is an artifact of the metric used.

A recent paper by Raman et al. (2024) developed a benchmark distribution for assessing economic
reasoning in strategic settings that aims for comprehensiveness in the senses just described. This
work serves as a starting point for our own paper, and so we describe it in detail. First, they developed
a taxonomy that divided the space of game theory and foundational decision theory into 64 distinct
“elements of economic rationality,” ensuring that the elements in the benchmark covered a wide range
of strategic contexts and decision-making problems. Second, they formalized a hierarchy across
elements so that an LLM’s performance could be better understood in the context of its dependent
subtasks. They generated a huge set of questions from this taxonomy, dubbed STEER, which vary
in their difficulty and domain (e.g., finance, medicine, public policy). Finally, they evaluated a
spectrum of LLMs over two adaptation strategies and scored with a suite of metrics. They defined
this evaluation framework as a STEER Report Card (SRC), a flexible scoring rubric that can be
tuned by the user for their particular needs.

A key drawback of STEER is that, in its focus on game-theoretic reasoning, it neglects much of the
subject matter of microeconomics: multiagent settings in which agents nevertheless act nonstrate-
gically. Such reasoning is widespread in competitive markets, where each agent’s impact on the
market is too small to affect prices unilaterally. For example, while a mobile phone manufacturer
might make a strategic decision about the number of handsets to produce and the price to sell them
at, a small farm’s decision to produce wheat instead of corn given market prices is non-strategic.
We employ—and expand upon—the STEER blueprint to construct a benchmark for testing LLMs
on economics in non-strategic environments. Following Raman et al. (2024), we first identified a
taxonomy of 58 elements for non-strategic economics. We then instantiated each element in the
taxonomy across 8–10 domains and up to 2 types. From here, we expanded on the blueprint in
two ways. First, we increased the diversity of the questions in the dataset and instantiated each
element in 5 different perspectives and up to 3 types (as defined in Section 3.1). Second, we expanded
their evaluation framework to include newer LLMs (27 in total), some new adaptations (3 that we
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developed and 2 more from the literature) adaptations, and many new scoring metrics (a family of 4
calibration metrics). We dub our benchmark STEER-ME.

Even given the best possible LLM benchmark, data contamination poses an increasingly important
challenge (Sainz et al., 2023; Deng et al., 2023; Ravaut et al., 2024). Data contamination occurs
when the test data used to evaluate an LLM is similar or identical to data the LLM encountered
during training, leading to inflated performance metrics that do not accurately reflect the LLM’s
true capabilities. To tackle this issue, we introduce a new dynamic data generation process called
auto-STEER which we used to generate all of the questions in STEER-ME. auto-STEER combines
many of the features present in existing dynamic and modular frameworks (Gioacchini et al., 2024;
Wang et al., 2024; White et al., 2024) that we detail in Appendix B.

In what follows, Section 2 gives an overview of our taxonomy; for space reasons we defer definitions
and examples of each element to Appendix A. Section 3 describes how we used this taxonomy to
build the benchmark distribution. For 37 elements, we have written LLM prompts to synthetically
generate 1, 000–5, 000 multiple-choice questions and manually validated 500 generations per element.
Section 4 describes the setup of an experiment in which we generated full SRCs for 27 LLMs, ranging
from Llama-2 7B to GPT-4o, evaluated on a total of 21, 000 test questions. We spent $5, 896.33
making requests to OpenAI and Anthropic’s API and 6.81 GPU years of compute to evaluate
open-source models.

Finally, we discuss the results in Section 5. Here, we offer a few highlights. We observed a
significant variation in performance across both LLMs and elements. Even among large models,
most underperform on at least a few tasks, indicating that size alone is not a sufficient predictor of
success across our benchmark. The one exception is o1-preview, which consistently achieved top
performance on every element we tested, standing out as the most robust and accurate model in
our evaluations. Across domains and perspectives, LLMs generally exhibited stable performance,
although certain elements, particularly those testing conceptual understanding of economic principles,
exposed weaknesses in even the more advanced LLMs. Additionally, we observed considerable
variation in LLM performance across different adaptation strategies. For instance, when models were
not able to view the options prior to answering, performance dropped significantly. This performance
gap further underscores a general reliance on external cues and hints at limitations in the ability to
independently derive solutions from first principles.

We release all model outputs to support evaluation research and contributions, and provide a public
website with all results, underlying model predictions details, alongside an extensible codebase to
support the community in taking STEER-ME further.

2 ELEMENTS OF ECONOMIC RATIONALITY

Our first step in generating a benchmark for non-strategic microeconomics is to taxonomize this space.
Previous work by Raman et al. (2024) developed a taxonomy for economic rationality within strategic
domains. Their approach involved identifying foundational principles that define how agents should
make decisions in specific environments and then organizing these principles, or “elements,” into
progressively more complex decision-making scenarios. We adopt a similar hierarchical approach for
STEER-ME, focusing on organizing economic decision-making principles into structured categories.
However, unlike STEER, which assesses decision-making in strategic environments, our focus is
assessing how agents make decisions given prices and quantities that are determined by the forces of
supply and demand. We call this sub-field non-strategic microeconomics.

Two of the settings from STEER remain directly relevant to non-strategic microeconomics: FOUNDA-
TIONS and DECISIONS IN SINGLE-AGENT ENVIRONMENTS. As we describe our taxonomy, we be-
gin with these foundational settings. The elements we incorporate from FOUNDATIONS—arithmetic,
optimization, probability, and logic—are core mathematical skills essential for microeconomic rea-
soning and are already present in STEER. In STEER-ME, we expand this setting by adding elements
that test basic calculus, such as single-variable derivatives and linear systems of equations. In STEER,
DECISIONS IN SINGLE-AGENT ENVIRONMENTS focused on testing whether an agent can adhere
to the von Neumann-Morgenstern utility axioms when making decisions over a set of alternative
choices. We include those axiomatic elements and extend this setting to include testing the properties
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Setting 1: Foundations
Module 1.1: Optimization �

Module 1.2: Systems of Equations �
Module 1.3: Derivatives and Homotheticity �

Number of elements: 6
Number of questions: 127, 342
Average # of characters: 134.2
Number of types: 1

Setting 2: Consumption Decisions in Non-Strategic Environments
Module 2.1: Properties of Utility Functions �
Module 2.2: Deriving Demand �

Module 2.3: Comparative Statics of Demand �

Module 2.4: Labor Supply �

Module 2.5: Dynamic Consumption Decisions �

Number of elements: 22
# of questions: 3, 295, 770
Avg. # chars: 458.35
Number of types: 14

Setting 3: Production Decisions in Non-Strategic Environments
Module 3.1: Properties of Production Functions �
Module 3.2: Deriving Factor Demand �

Module 3.3: Comparative Statics with Production �

Module 3.4: Dynamic Production Decisions �

Number of elements: 16
# of questions: 1, 333, 330
Avg. # chars: 434.48
Number of types: 20

Setting 4: Non-Strategic Decisions in Multi-Agent Environments
Module 4.1: Consumer Goods Market Aggregation �

Module 4.2: Factor Market Aggregation �

Module 4.3: Prices in Static Market Equilibrium �

Module 4.4: Comparative Statics of Equilibrium Prices �

Number of elements: 10
# of questions: 750, 060
Avg. # chars: 362.69
Number of types: 6

Setting 5: Evaluating Equilibria and Externalities
Module 5.1: Welfare and Decentralization �

Module 5.2: Welfare Analysis of Market Equilibrium �

Number of elements: 10
# of questions: 698, 367
Avg. # chars: 311.50
Number of types: 5

Table 1: High-level diagram of the taxonomy of elements of rationality. At the top level, we divide the
space of decision making into 5 settings; we further subdivide settings into modules (e.g., Comparative
Statics of Demand) that capture conceptually similar behaviors. We also include a few summary
statistics about the dataset.

of commonly used parameterizations of utility functions in non-strategic microeconomic contexts,
such as utility functions with satiation points, monotone preferences, and budget constraints.

Building directly on these foundational settings, we introduce the next setting, DECISIONS ON
CONSUMPTION IN NON-STRATEGIC ENVIRONMENTS, which tests an agent’s ability to optimally
exchange time and money for desired goods and services. Elements in this setting assume that
the agent is a price taker, meaning that the agent accepts market prices as given rather than fore-
casting how a purchase might move the market. First, we test the agent’s ability to derive demand
functions consistent with the axioms and functional forms from DECISIONS IN SINGLE-AGENT
ENVIRONMENTS. These foundational elements are useful in assessing whether an agent can make
consistent, rational choices in response to market prices. We then include elements testing the agent’s
ability to determine optimal consumption bundles, decide when to leave the workforce, and conduct
comparative statics with demand functions.

DECISIONS ON PRODUCTION IN NON-STRATEGIC ENVIRONMENTS tests an agent’s ability to
decide on the combination of inputs to efficiently produce goods and services to maximize their profits.
The setting starts by assessing the agent’s ability to identify and analyze basic properties of production
functions, such as the relationship between input quantities and output levels. This includes concepts
like returns to scale, diminishing marginal returns, and the technological constraints that shape
production capabilities. We then test the agent’s ability to conduct expenditure minimization and its
dual, profit maximization. This involves solving optimization problems where the agent must use
marginal analysis to determine the quantity of output that maximizes profit (i.e., minimizes cost).

DECISIONS IN MULTI-AGENT NON-STRATEGIC ENVIRONMENTS considers consumers and pro-
ducers who each reason according to the principles just described to trade with each other. This
more complex setting requires an agent to reason about how the aggregated behaviors of consumers
and producers lead to market-clearing prices that balance supply and demand. This setting covers
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elements such as finding market-clearing prices, computing competitive equilibria, and analyzing the
comparative statics of equilibrium in markets where individual actions do not directly impact others.

Our last setting, EVALUATING EQUILIBRIA AND EXTERNALITIES, tests agents on their ability to
evaluate whether equilibria are efficient and to analyze the effects of interventions, such as taxes
or price ceilings, on welfare. In this setting, agents must not only be able to analyze how supply
and demand dynamics establish equilibrium prices but also consider how external interventions shift
these dynamics and alter the behavior of both consumers and producers. The elements in this setting
can be relatively simple (e.g., compute consumer/producer surplus) or involve detailed counterfactual
analysis (e.g., predict how interventions impact prices, the allocation of resources, and welfare
outcomes).

For a more detailed discussion on the structure of these elements and the methodology we used to
group the elements, including formal definitions, we refer the reader to Appendix A.

3 THE STEER-ME BENCHMARK

We first give an overview of STEER-ME dataset and then explain the process we used to generate and
validate these questions, which we call auto-STEER. Finally, we describe our evaluation framework.

3.1 DATASET

We adopted the widely used Multiple-Choice Question Answering (MCQA) format for our benchmark
(see, e.g., Rajpurkar, 2016; Wang et al., 2018; 2019; Zellers et al., 2019; Hendrycks et al., 2021b;
Shah et al., 2022; Liang et al., 2022; Suzgun et al., 2022). In this format, each test question presents
a decision-making scenario along with several candidate options, where only one is correct. As
an evaluation paradigm, a benefit of MCQA is that it provides a standardized way to evaluate an
LLM’s ability to correctly respond to given prompts. MCQA tasks have well-established metrics
like exact-match accuracy or expected calibrated error that provide interpretable measures of how
well an LLM answers questions (Liang et al., 2022; Li et al., 2024b). Furthermore, many real-world
applications of LLMs in economics involve answering questions: e.g., chatbots (Inserte et al., 2024)
and virtual assistants (BloombergGPT Wu et al., 2023b).

Our own benchmark consists of a total of 30 instantiated elements, each containing 5000-20, 000
MCQA questions. Each question is characterized by a (type, domain, perspective) tuple. Different
types represent distinct ways of testing an agent’s abilities within an element. For example, we could
assess an agent’s ability to perform profit maximization by asking “What is the maximum profit?”
or “How much labor is needed to maximize profit?” The domain of a question indicates which of
10 predefined topic areas it pertains to: consumer goods, medical, finance, education, technology,
entertainment, environmental policy, politics, sports, or gambling. Finally, the perspective of a
question represents which of the 5 predefined perspective the question was written in: first-person,
second-person, third-person anonymous, third-person female and third-person male. We skip over
(type, domain, perspective) combinations that do not lead to coherent questions; for example,
questions about welfare theorems do not make sense in gambling settings.

3.2 AUTO-STEER

Like Raman et al. (2024), we leveraged a state-of-the-art LLM to help generate our dataset. We
substantially extended their methodology, however, by adding an additional style-transfer step where
we asked the LLM to rewrite questions in new domains or perspectives. This greatly increased the
variety of questions we were able to add. This section describes how we used our new approach to
design STEER-ME.

First, for each type we hand-wrote a set of gold-standard example templates that served as the seeds
for the data generating process. As can be seen in Figure 12, these templates were tagged with a
domain, a perspective, and a type, if appropriate. The majority of these questions had labeled fields
for numbers (e.g., “. . . the cost of labor is {cost}. . . ”) which were programmatically filled for test
time. See Figure 1 for an example.
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Next, we asked the LLM to style-transfer these templates into each of the domains. Our prompt
included explicit instructions to maintain the same set of labeled fields as the hand-written templates.
Figure 13 depicts the style-transfer page in our web application along with the prompting instructions.
LLMs can be inconsistent in maintaining the economic meaning of questions after domain style
transfer, so we hand-checked each of the outputted templates and edited them when necessary. This
was all done in the web application: see Figure 15. We then further style-transferred each of these
newly generated templates into each perspective, resulting in up to 40 unique domain-perspective
pairs for each type. We ran an additional check on the style-transfer process by filling the labeled
fields in the templates with values and asking the LLM to solve the questions as written, which
we found could highlight mistakes in question wording or in programmatically filled values. See
Figure 14. (We were careful only to use his procedure to correct mistakes in the templates, not to
tune the difficulty of the questions in a way that would bias our benchmark.)

Sophie is buying textbooks for  her  univer si ty classes, her  demand 
for  textbooks at any given pr ice is expressed by the fol low ing 
demand function {d_function}. What is Sophie's consumer  
surplus i f  the pr ice of textbooks is {pr ice}?

John is pur chasing hockey sticks, his demand for  hockey sticks at 
any given pr ice is expressed by the fol low ing demand function 
{d_function}. What is John's consumer  surplus i f  the pr ice of 
hockey sticks is {pr ice}?

Domain: Spor ts, Perspective: Thir d Person Man

Domain: Education, Perspective: Thir d Person Woman

Quest ion:

Quest ion:

Figure 1: This figure depicts two questions in the
consumer surplus element with different domains
and perspectives. The text colored in red are the
labeled fields that will be filled for test time and the
text in blue is the perspective. On top, a question
is framed in the education domain from a third-
person woman perspective, while on the bottom,
the same question is written for the sports domain
from a third person man perspective. These were
both generated during the style-transfer step in the
data generation process.

We then took each of these templates and asked
the LLM to replicate the template, keeping the
domain, perspective and labeled fields fixed
but modifying exact words or objects used in
the question. We generated 100 new templates
for each element, crossing every domain and
perspective pair, resulting in 30, 000 templates
across the dataset. We then spot-checked 500
of the resulting templates for each element, and
flagged 99.88% of the templates as valid.

Finally, we created 20 instantiated questions
from each template by filling its labeled fields
with randomly generated values. We restricted
the random generator to output numbers that
were appropriate given the context: e.g., demand
functions had negative slopes, positive values for
equilibrium prices, etc. We programmatically
solved each question and filled in the appropri-
ate options and answer. In the end, we produced
1, 000 questions per (domain, perspective) pair
and up to 40, 000 per type.

3.3 EVALUATION FRAMEWORK

We now turn to describing our evaluation framework. Following other work in this space, we consider
an LLM as a black box to which we provide inputs in the form of prompts (i.e., strings) and adjust
the decoding parameters (e.g., temperature) to analyze the resulting output completions (i.e., strings)
and log probabilities, when available. Within this black-box framework, we consider two classes
of adaptations: performance adaptations, which modify inputs to affect performance on a task, and
diagnostic adaptations, which aim to analyze specific behaviors or model characteristics. We then
score LLMs across a suite of metrics.

We follow Raman et al. (2024) by allowing a user to tune the evaluation framework for their specific
needs by choosing for their set of LLMs: the set of elements in the evaluation, the adaptation chosen
for each LLM and a scoring metric. For instance, one may only want to evaluate specific economic
modules in our taxonomy (e.g., utility maximization for individual decision-making in DECISIONS
ON CONSUMPTION IN NON-STRATEGIC ENVIRONMENTS or production optimization scenarios
in DECISIONS ON PRODUCTION IN NON-STRATEGIC ENVIRONMENTS), or conduct comparative
assessments across adaptation strategies, or evaluate targeted use cases like medical or financial
decision-making. We provide a number of predefined evaluation frameworks in our web application
as well as allowing users to create new evaluation frameworks.

We classify any adaptation as a performance adaptation when the inputs are modified in a way that
is intended to increase an LLM’s performance on a task. Common performance adaptations are
chain-of-thought reasoning (Wei et al., 2022; Yoran et al., 2023; Huang et al., 2023; Kojima et al.,
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2023) and few-shot prompting (Brown et al., 2020; Perez et al., 2021). We focus on zero-shot
chain-of-thought reasoning.

Zero-Shot Chain-of-Thought (0-CoT). There has been work showing that performance can be
improved by asking an LLM to explain its reasoning before outputting an answer (Wei et al., 2022;
Yoran et al., 2023; Huang et al., 2023; Kojima et al., 2023). We follow Kojima et al. (2023) in
implementing 0-CoT by first asking the LLM to explain its reasoning and then subsequently asking it
to select the correct answer. We take two approaches to adapting 0-CoT to MCQA, which we denote
hidden and shown. In the hidden approach, we give the LLM the question text and ask it to explain
its reasoning—we only provide the candidate options in the second step. In the shown approach, the
LLM is given both the question text and candidate options when it is asked to explain its reasoning.
See Figure 11 in the appendix for an example.

3.3.1 DIAGNOSTIC ADAPTATIONS

Diagnostic adaptations alter the prompt or decoding parameters not to improve performance, but
rather to gain a better understanding of an LLM’s behavior.

Calibrated Answer Replacement (CAR). In CAR, we modify the candidate options by replacing
one of the options with the following string: “No other option is correct.” For a test containing
questions with n options, we replace the correct answer with this placeholder in a 1/n fraction of
questions. For the remaining questions, we replace one of the incorrect answers instead. This ensures
that an LLM that always chooses “No other option is correct” receives the same accuracy as random
guessing.

Reshaped Probability Mapping (RPM). Sometimes, LLMs can assign nonzero probability to tokens
that do not correspond to any of the options available. Such errors are trivial to fix in any downstream
application. However, if not corrected for, such errors can distort performance metrics, e.g., leading
models to appear to perform worse than random guessing. We call the adaptation that addresses this
issue RPM and take two approaches to reshaping the outputs. The first approach is conditioning the
output distribution to only valid options. However, in cases where the model puts very little weight
on any correct option this renormalization can make the model appear overconfident. Our second
approach attempts to deal with this by mixing the output distribution with a uniform distribution over
valid options, this means if very little probabilistic mass is given to any correct option its output will
look more uniform and hence less confident in its answer. We define these adaptations and offer
further discussion in Appendix C. Importantly, neither implementation changes which of the valid
option tokens receives the largest weight in the output distribution, and therefore the LLM’s accuracy.

Free-Text QA. In addition to the diagnostic adaptations discussed earlier, we conducted experiments
involving free-text generation question answering to more closely align with real-world use cases.
We ask an evaluator LLM to report the answer the chain of thought reasoning arrived at and None if
there is no easily findable answer. We then scored a model’s answer as correct if it was within 98%
of the correct answer value and is closer to the correct answer than any other option. We include the
prompt we used in Appendix C.3.

3.3.2 SCORING

Given a complete set of model responses, it is far from straightforward to choose a way of computing
a single, overall performance score. Consequently, benchmarks often employ a suite of metrics to
provide a more comprehensive assessment of performance (Wang et al., 2019; Gehrmann et al., 2021;
Liang et al., 2022; Srivastava et al., 2023). We evaluate LLMs using three categories of metrics:
accuracy, calibration, and robustness. We leave the discussion and definitions of our scoring metrics
in the Appendix D and simply list the metrics below:

• Accuracy: Exact-match accuracy and Normalized accuracy
• Calibration: Expected calibration error, Brier Score, and Expected Probability Assignment
• Robustness: Domain Robustness and Type Robustness.

We score LLMs on their restricted output distribution over valid option tokens, modified using
the diagnostic adaptation RPM as described in Section 3.3.1. For each model, we also report the
proportion of responses where the top token is not a valid option token.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 2: This figure plots a heatmap of the closed-source LLM performance measured with normal-
ized accuracy on the 30 elements we instantiated. The LLMs, on the y-axis, are sorted in terms of
parameter size. The elements, on the x-axis, are grouped by setting.

A LLM’s score on an element is the average taken over all questions in an element. We consider an
element a base concept in our benchmark and therefore define the accuracy and confidence metrics
with respect to an element.

4 EXPERIMENTAL SETUP

Table 7 in the appendix lists the 15 LLMs we evaluated. We ran gpt-4o, gpt-4o-mini, and o1-preview
using OpenAI’s API (OpenAI, 2020); claude-3-5-sonnet and claude-3-haiku using Anthropic’s API
(Anthropic). We obtained 10 open-source LLMs from the HuggingFace Hub (Wolf et al., 2019) and
ran them on between 1 and 4 A100, Tesla M60, and V100 GPUs (depending on model size) on one
of several dedicated compute clusters to which we have access.

In multiple-choice classification, there are a few ways one might represent the input to an LLM.
We follow prior work by Hendrycks et al. (2020) who introduced the joint approach where all
answer choices are combined with the question into a single prompt, and the LLM predicts the most
likely option letter.1. We then decoded valid multiple choice responses from all LLMs as described
in Section 3.3.2. For those LLMs where we had no access to the output distribution (claude-3-5-
sonnet, claude-3-haiku, o1-preview) we took the top token.2 In the free-text QA adaptation, we used
gpt-4o-mini as the evaluator LLM due to its low cost and high performance in text retrieval.

Due to time and budget constraints we evaluated the closed-source LLMs, claude-3-5-sonnet, claude-
3-haiku, gpt-4o, and gpt-4o-mini, on all 30 of the instantiated elements, all open-source models on
20 of the instantiated elements, and o1-preview on 13 elements. We applied our benchmark across all
combinations of adaptations and LLMs, except for in the case of o1-preview. We did not explicitly
ask o1-preview to conduct 0-CoT reasoning because it is a reasoning model and simply asked for the
top token. Consequently, we did not run o1-preview on the hidden implementation of 0-CoT. This
led to a total of 4 experiments for o1-preview and 8 for all other LLMs.

5 RESULTS

Figure 2 depicts aggregate performance across our whole benchmark, using normalized accuracy with
the shown implementation of 0-CoT and without CAR. We chose these adaptations as we observed
that LLMs performed the best on that adaptation configuration on average. We plot the models
in descending order of parameter size and the elements in taxonomical order (i.e., FOUNDATIONS
elements first) breaking ties alphabetically. Due to space constraints we only include LLMs that
performed sufficiently better than random guessing: with normalized accuracy greater than 0.2 on

1There is another approach, called separate and employed by Brown et al. (2020). However, this approach is
better suited to tasks where the answer choices are long-form generations.

2OpenAI models only return the top 20 tokens, however, we never saw a valid option token not present in
those top 20 tokens.
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average (see Figure 3 in the appendix for the remaining models). Furthermore, we observed that
for the LLMs that we plot, our calibration metrics were correlated with normalized accuracy and
hereafter focus mainly on normalized accuracy.

Elements across the settings in our benchmark proved to be difficult from FOUNDATIONS to EVALU-
ATING EQUILIBRIA AND EXTERNALITIES, however, on the 13 elements that were tested, o1-preview
was the most accurate model (see the top row in Figure 2). Even in elements where every other
model was close to random guessing (e.g., Profit Maximization and Dynamic Profit Maximization)
o1-preview obtained high accuracy. Besides o1-preview, no LLM consistently outperformed other
LLMs across our benchmark.

A common struggle for LLMs was the precision required to solve optimization problems, particularly
those that involve multiple sequential steps of computation and economic interpretation. For instance,
in a challenging task like Dynamic Profit Maximization, LLMs are tasked with solving a 2-stage
optimization problem that requires accurately performing a series of interdependent calculations.
Each step, from identifying the correct approach to interpreting the economic implications and
executing precise computations, presents opportunities for errors to accumulate.

However, even elements with simple mathematical problems presented opportunities for errors. None
of the closed-source LLMs, except for o1-preview were able to consistently compute the Deadweight
Loss of a Monopoly; an element whose primary mathematical requirement is computing the area of a
triangle. We discovered that models like claude-3-5-sonnet and gpt-4o often used an incorrect formula
for computing deadweight loss and made errors in interpreting the marginal cost, a crucial step in the
problem-solving process. To better understand these errors we investigated model performance in
the free-text QA adaptation. Figure 4 and Figure 5 show the distribution of correct responses and
specific errors for claude-3-5-sonnet and gpt-4o, respectively. While gpt-4o displayed performance
better than random guessing, errors stemming from the use of an incorrect formula consisted of
the majority of responses. claude-3-5-sonnet, on the other hand, exhibited a higher prevalence of
incorrect formula errors, with nearly 44% of its responses relying on a particular incorrect formula
for deadweight loss. Furthermore, gpt-4o was more susceptible to compounding issues, incorrectly
computing marginal cost and using an incorrect deadweight loss formula, than claude-3-5-sonnet.
We describe these errors in more detail in Appendix I.2.

5.1 ROBUSTNESS

Domain Robustness. While overall the variation across domains was limited, we observed noticeable
differences in specific elements. In particular, elements testing conceptual understanding of founda-
tional principles (e.g., first welfare theorem) showed that certain domains provided more effective
contextual cues for the LLMs. For example, in the consumer goods domain—where items like apples,
chairs, or mugs are familiar in economic word problems—LLMs were more likely to recognize the
task as an economic problem and anchor their reasoning in classical economic principles.

In contrast, the technology domain, where the economic context could be interpreted as a real-world
scenario presented more challenges. The LLMs often failed to recognize what was being asked and
equivocated when reasoning about the problem. The largest performance gaps appeared in the First
Welfare Theorem and Second Welfare Theorem elements. For instance, claude-3-5-sonnet exhibited
a gap of 0.657 in accuracy between the consumer goods and technology domains, claude-3-haiku
had a gap of 0.48, and gpt-4o-mini showed a gap of 0.278.

Type Robustness. Here, we examine LLM performance across different families of functions used
in economic reasoning. These include Cobb-Douglas, Leontief, linear, and non-linear functions.
Each family of functions poses distinct challenges depending on the mathematical operations and
economic concepts being tested. While Cobb-Douglas functions are ubiquitous in economics, they
can often be more challenging for language models as they feature non-integral exponents, which
add a layer of difficulty in operations like differentiation. For instance, in Figure 6, we observe that,
with the exception of claude-3-haiku, performance on non-linear functions (polynomials with integer
exponents of degree  3) surpasses performance on Cobb-Douglas functions.

For any given element, the family of functions that is the most difficult can vary. For example,
computing the Returns to Scale of a Cobb-Douglas production function is the sum of the exponents
and computing the Output Elasticity corresponds to the exponent on the input.
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5.2 ADAPTATIONS

We observed that in the hidden implementation, LLM performance was worse overall compared to
the shown implementation. This suggests that LLMs benefit from being able to reason directly over
the options.

One pattern we observed was models exploiting the provided options to “cheat” the question. Instead
of deriving the answer from first principles, LLMs would insert the candidate options directly into
functions in the question text and select the correct answer based on which option produced the
best result. This strategy was particularly prevalent in the Profit Maximization element, where
models were asked to find the amount of labor to employ that maximizes a profit function. While
the intended approach was for the model to take the derivative of the profit function and identify the
profit-maximizing labor, LLMs often bypassed this by simply plugging in each of the given options
and selecting the one that resulted in the highest profit. We observed this behavior in every question
that we spot-checked where gpt-4o answered correctly (see Appendix E.3).

We also found that the inclusion of options could signal how to reason about the question. This
was particularly prevalent in the aggregation elements in EVALUATING EQUILIBRIA AND EXTER-
NALITIES and especially in the Aggregation of Consumer Demand element, which ask models to
aggregate the quantity demanded for some number of consumers. In the hidden implementation,
models often failed to multiply the quantity demanded by the number of consumers in the market.
When presented with the options, the additional signal in the magnitude of each of the candidate
options increased performance. Providing evidence of this, we found that as the number of digits in
the answer increased so too did the exact-match accuracy. Figure 7 (in the appendix) shows that as
the number of digits in the answer increased, so too did the exact-match accuracy, providing evidence
that models use the magnitude as a hint for reasoning. We show an example of this behavior in
Appendix E.1.

To further investigate this effect, we examined four elements (Intertemporal Consumption Smoothing,
Profit Maximization, Aggregation of Consumer Demand, and Producer Surplus) that exhibited
the largest gap in accuracy between hidden and shown adaptations. Our analysis revealed that
performance was almost always worse under the free-text QA adaptation compared to the hidden
adaptation, see Figure 9. This performance gap appears to stem from the models’ tendency to
selecting the closest option to the free-text answer. Figure 10 shows the percentage of times that
models were correct under the hidden adaptation but incorrect under the free-text adaptation due to
guessing the closest answer. In almost all cases the majority of the gap is due to this phenomenon.
We offer more discussion in Appendix I.3.

6 DISCUSSION AND CONCLUSIONS

Our work introduces a novel benchmark specifically designed to evaluate LLMs’ performance in
non-strategic microeconomics, focusing on tasks that require a deep understanding of optimization,
marginal analysis, and economic reasoning in individual decision-making contexts. This benchmark
provides a comprehensive tool to assess the strengths and weaknesses of current models, revealing
where they excel and where they struggle in applying foundational economic concepts. By identifying
these areas, our benchmark can guide users in determining when LLMs can be trusted to perform
well in economic analyses and when further development is needed.

In cases where models fall short, our benchmark serves as a practical resource for targeted im-
provements—whether through fine-tuning models, curating more specific datasets, or developing
architectures better suited for microeconomic reasoning. These enhancements have the potential to
impact a variety of economic applications, such as simulating consumer behavior, analyzing market
dynamics, or conducting policy evaluations.

Looking ahead, we plan to expand our benchmark by incorporating additional elements from the
microeconomics literature, deepening the evaluation of non-strategic decision-making. We encourage
suggestions on new elements to include and make auto-STEER public for others to add more elements
or expand on the elements we have currently. We also intend to explore further experimentation with
additional LLMs, adaptation strategies, and prompt configurations, along with more detailed analyses
of model performance.
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