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ABSTRACT

We construct a prime-dual network structure for few-shot learning which estab-
lishes a commutative relationship between the support set and the query set, as
well as a new self-supervision constraint for highly effective few-shot learning.
Specifically, the prime network performs the forward label prediction of the query
set from the support set, while the dual network performs the reverse label pre-
diction of the support set from the query set. This forward and reserve prediction
process with commutated support and query sets forms a label prediction loop
and establishes a self-supervision constraint between the ground-truth labels and
their predicted values. This unique constraint can be used to significantly improve
the training performance of few-shot learning through coupled prime and dual
network training. It can be also used as an objective function for optimization
during the testing stage to refine the query label prediction results. Our extensive
experimental results demonstrate that the proposed self-supervised commutative
learning and optimization outperforms existing state-of-the-art few-shot learning
methods by large margins on various benchmark datasets.

1 INTRODUCTION

Few-shot image classification aims to classify images from novel categories (query samples) based
on very few labeled samples from each class (support images) (Hong et al., 2020a; Sun et al., 2021).
During the training stage, the few-shot learning (FSL) is given a set of support-query set pairs with
class labels. Once successfully trained, the model needs to be tested on unseen classes. The major
challenge here is that the number of available support samples N is very small, often N ≤ 5. In an
extreme case, N = 1 where it is called one-shot learning. In order to achieve this so-called learn-
to-learn capability, the FSL needs to capture the inherent visual or semantic relationship between
the support samples and query samples, and more importantly, this learned relationship or prediction
should be able to generalize well onto unseen classes (Liu et al., 2020d).

A fundamental challenge in prediction is that: if we know entity A and are trying to predict entity
B, how do we know if the prediction of B, denoted by Φ(B), is accurate or not? Is there any
way that we can verify the accuracy of the prediction Φ(B)? As we know, this is impossible since
B has no ground-truth for us to evaluate or verify its prediction accuracy. If we can come up an
indirect approach to effectively evaluate the prediction accuracy, it is expected that the learning and
prediction performance can be significantly improved.

In this work, we propose to explore a prime-dual commutative network design for effective predic-
tion, specifically for few-shot image classification. As illustrated in Figure 1, the prime network Φ

is the original network that learns the forward prediction from A to B̂ = Φ(A). The dual network
Γ performs the reverse prediction from B to Â = Γ(B). If we cascade these two networks together
which establishes a prediction loop from A to B and then back to A, we have

Â = Γ(B̂) = Γ(Φ(A)). (1)

Since A is given, which has the ground-truth value, the difference between A and its prime-dual
loop prediction result Â forms a self-supervision loss

LS = d(A, Â) = d(A,Γ(Φ(A))), (2)
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Figure 1: Illustration of the proposed idea of self-supervised prime-dual network for prediction.

where d is a distance metric function. This self-supervision loss LS can be used to improve the
training performance based on the coupling between the prime and dual networks. Furthermore, it
can used to verify and adjust the prediction result by minimizing the self-supervision loss.

In this work, we propose to study this prime-dual network design with self-supervision for few-shot
learning by exploiting the commutative relationship between the support set (entityA) and the query
set (entity B). Specifically, the prime network learns to predict the labels of query samples using
the support set with ground-truth labels as training samples. Meanwhile, the dual network learns
to predict the labels of the support samples using the query set with ground-truth labels as training
samples. For example, in 5-way 1-shot learning, the support set consists of 5 images from 5 classes
with only one image per class. The query set also has 5 images from 5 classes. When training the
prime and dual networks, the support set and the query set are switched for training samples. This
forward and reserve prediction process with commutative support and query sets forms a label pre-
diction loop and establishes a self-supervision constraint between the ground-truth labels and their
predicted values. The prime-dual networks are jointly trained with the help from the self-supervision
loss. This loss is also used during the testing stage to adjust and optimize the prediction results. Our
extensive experimental results demonstrate that the proposed self-supervised commutative learning
and optimization method outperforms existing state-of-the-art few-shot learning methods by a large
margin on various benchmark datasets.

2 RELATED WORK AND UNIQUE CONTRIBUTIONS

Few-shot learning (FSL) aims to recognize instances from unseen categories with few labeled sam-
ples. There are three major categories of methods that have been developed for FSL. (1) Data
Augmentation is the most direct method for few-shot learning, which explores different approaches
to synthesize images to address the issue of few training samples. For example, self-training jigsaw
augmentation (Chen et al., 2019) is able to synthesize new images by segmenting and reorganiz-
ing labeled and unlabeled gallery images. Mangla et al. (2020) apply self-supervision algorithms
augmented with manifold mixup (Verma et al., 2019) for few-shot classification tasks. The F2GAN
(Hong et al., 2020b) and MatchingGAN methods (Hong et al., 2020a) use generative adversarial net-
works (GANs) to construct high-quality samples for new image categories. (2) Optimization-based
methods aim to learn a good initial network model for the classifier. This learned model can be then
quickly adapted to novel classes using a few labeled samples. MAML (Finn et al., 2017) proposes to
train a set of initialization models based on second-order gradients and meta-optimization. TAML
(Jamal & Qi, 2019) reduces the bias introduced by the MAML algorithm to enforce equity between
the tasks. In the Latent Embedding Optimization (LEO) method (Rusu et al., 2018), gradient-based
optimization is performed in a low-dimensional latent space instead of the original high-dimensional
parameter space. (3) Metric-based methods aim to learn a good metric space so that samples from
novel categories can be effectively distinguished and correctly classified. For example, MatchingNet
(Vinyals et al., 2016) applies a recurrent network to calculate the cosine similarity between samples.
ProtoNet (Snell et al., 2017) compares features between samples in the Euclidean space. Relation-
Net (Sung et al., 2018) uses a CNN model and (Garcia & Bruna, 2017) uses the graph convolution
network (GNN) to learn the metric relationship.

In this work, we also consider cross-domain FSL. For the cross-domain classification task, the model
needs to generalize well from the source domain to a new or unseen target domain without accessing
samples from the unseen domain during the training stage. Sun et al. (2021) propose a model-
agnostic explanation-guided training method that dynamically finds and emphasizes the features
which are important for the predictions. This improves the model generalization capability. To
characterize the variation of image feature distribution across different domains, the LFT method
(Tseng et al., 2020) learns the noise distribution by adding feature-wise transformation layers to the
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image encoder. To avoid over-fitting on the source domain and increase the generalization capability
to the target domain, the batch spectral regularization (BSR) method (Liu et al., 2020b) attempts to
suppress all singular values of the batch feature matrices during pre-training. Another set of methods
(Shankar et al., 2018; Volpi et al., 2018) learn to augment the input data with adversarial learning
(Yang et al., 2020b) in order to generalize the task from the source domain to the unseen target
domain.

In this work, we propose a commutative prime-dual network design for few-shot learning. In the
literature, the mutual dependency and reciprocal relationship between multiple modules have been
explored to achieve better performance. For example, (Xu et al., 2020) has developed a reciprocal
cross-task architecture for image segmentation, which improves the learning efficiency and genera-
tion accuracy by exploiting the commonalities and differences across tasks. Sun et al. (2020) design
a reciprocal learning network for human trajectory prediction, which consists of forward and back-
ward prediction neural networks. The reciprocal learning enforces consistency between the forward
and backward trajectory prediction, which helps each other to improve the learning performance
and achieve higher accuracy. Zhu et al. (2017) design the CycleGAN contains two GANs forming
a cycle network that can translate the images of the two domains into each other to achieve style
transfer. Liu et al. (2021) develop a Temporal Reciprocal Learning (TRL) approach to fully ex-
plore the discriminative information from the disentangled features. Zhang et al. (2021b) design a
support-query mutual guidance architecture for few-shot object detection.

Unique Contributions. Compared to existing work in the literature, the major contributions of
this work include: (1) We propose a new prime-dual network design to explore the commutative
relationship between support and query sets and establish a unique self-supervision constraint for
few-shot learning. (2) We incorporate the self-supervision loss into the coupled prime-dual network
training to improve the few-shot learning performance. (3) During the test stage, using the dual
network to map the prediction results back to the support set domain and using the self-supervision
constraint as an objective function, we develop an optimization-based scheme to verify and optimize
the performance few-shot learning. (4) Our proposed method has significantly advanced the state-
of-the-art performance of few-shot image classification.

Figure 2: Illustration of the proposed idea for self-supervised prime-dual network learning and
optimization for few-shot classification.

3 METHOD

In this section, we present our method of self-supervised prime-dual network (SPDN) learning and
optimization for few-shot image classification.

3.1 SELF-SUPERVISED COMMUTATIVE LEARNING

Figure 2 provides an overview of our proposed method of self-supervised commutative learning and
optimization for few-shot image classification. In a typical setting of K-way N -shot learning, N
labeled image samples from each of the K classes form the support set. For example, in a 5-way
1-shot learning, K = 5 and N = 1. Given a very small support set S = {Skn|1 ≤ k ≤ K, 1 ≤
n ≤ N}, the objective of the FSL is to predict the labels of the query images Q = {Qkm|1 ≤
k ≤ K, 1 ≤ m ≤ M} from the same K classes in M batches During the training stage, the
labels of both support and query samples are available. The prime network ΦS→Q for few-shot
classification is trained on these support-query sets, aiming to learn and represent the inherent visual
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or semantic relationship between the support and query images. Once successfully learned, we will
apply this network to unseen classes. Specifically, in the test stage, given a labeled support set
S′ = {S′kn|1 ≤ k ≤ K, 1 ≤ n ≤ N} from these K unseen classes, we need to predict the labels for
the query set Q′ = {Q′km|1 ≤ k ≤ K, 1 ≤ m ≤M} also from these unseen classes.

Therefore, the fundamental challenge of FSL is to characterize and learn the inherent relationship
between the support set S and the query set Q. Once learned, we can then shift or transfer this
relationship to S′ and Q′ of unseen classes to infer the labels of Q′. In this work, as discussed in the
following section, we propose to establish a graph neural network (GNN) to characterize and learn
this relationship.

We recognize that, within the framework of few-shot learning, the support set and the query set are
in an equal and symmetric position to each other. More specifically, if we can learn to predict the
labels of query set Q from support set S, certainly, we can switch their order, predicting the labels
of the support set S from the query set Q using the same network architecture. This observation
leads to an interesting commutative prime-dual network design for few-shot learning. As illustrated
in Figure 2, we introduce a dual network ΓQ→S, which performs the reverse label prediction of the
support set S from the query set Q. Let L(S) and L(Q) be the label vectors of S and Q, respectively.
Let L̂(S) and L̂(Q) be the predicted labels. The forward prediction by the prime network can be
written as

L̂(Q) = ΦS→Q[L(S)], (3)

while the reverse prediction by the dual network can be written as

L̂(S) = ΓQ→S[L(Q)], (4)

If both networks Φ and Γ are well trained, and if we pass the label prediction output of the prime
network as input to the dual network, then, we expect that the predicted labels for the support set
should be close to its ground-truth. This leads to the following self-supervision loss

LSS = ||L(S)− L̂(S)||2
= ||L(S)− ΓQ→S[L̂(Q)] ||2 (5)
= ||L(S)− ΓQ→S[ΦS→Q[L(S)]] ||2.

Figure 3: Illustration of the proposed idea for self-supervised commutative learning and optimization
for few-shot classification.

This self-supervision constraint can be established on both support set and query set, resulting in a
coupled prime-dual network training. Figure 3 (a) and (b) shows the training processes for the prime
network and the dual network, respectively. Specifically, from the support set S, the prime network
learns to predict the labels of the query set Q. As in existing few-shot learning, we have the loss
LP
Q = ||L̂(Q)−L(Q)||2 between the predicted query labels and their ground-truth values. We then

use the query samples and their predicted labels as input to the dual network ΓQ→S, we can predict
the labels of the support set L̂(S) and compute the self-supervision loss LP

S = ||L̂(S) − L(S)||2.
These two losses are combined to form the loss function for training the prime network

LP = ||L̂Φ(Q)− L(Q)||2 + α · ||L̂Φ,Γ(S)− L(S)||2. (6)

α is a weighting parameter whose default value is set to be 0.5 in our experiments. Similarly, for the
training of the dual network, as shown in Figure 3(b), its loss function is given by

LD = ||L̂Γ(S)− L(S)||2 + α · ||L̂Γ,Φ(Q)− L(Q)||2. (7)
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Figure 4: (a) Structure of the prime and dual network. (b) Optimizing the predicted query labels.

3.2 GRAPH NEURAL NETWORK FOR FEW-SHOT IMAGE CLASSIFICATION

The proposed prime and dual networks share the same network design, which will be discussed in
this section. The only difference between these two networks is that their support and query samples
are switched. In the following, we use the prime network as an example to explain its design.

The central task of few-shot learning is to characterize the inherent relationship between the query
and support samples, based on which we can infer the labels of the query samples from the support
samples (Tseng et al., 2020; Liu et al., 2020b). In this work, we propose to use a graph neural
network (GNN) to model and analyze this relationship. InK-wayN -shot learning, givenK classes,
each with N support samples {Skn}, we need to learn the prime network to predict the labels for
K query samples {Qk}. This implies, in each of the total M training batch, we have K × (N + 1)
support samples and query samples. As illustrated in Figure 4(a), we use a backbone network, for
example, Resnet-10 or Resnet-12, to extract feature for each of these support and query samples.
We denote their features by S = {stkn} and Q = {qt

k} where t represents the update iteration index
in the GNN. Initially, t = 0. These support-query sample features form the nodes for the GNN,
denoted by {xt

j |1 ≤ j ≤ J}, J = K × (N + 1), for the simplicity of notations. The edge between
two graph nodes represents the correlation ψ(xt

i,x
t
j) between nodes xt

i and xt
j . Note that our GNN

has two groups of nodes: support sample nodes and query sample nodes. The support samples nodes
have labels while the labels of the query samples need to be predicted by the prime network. If xt

i
and xt

j are both support nodes, we have

ψ(xt
i,x

t
j) =

{
1 if L(xt

i) = L(xt
j),

0 if L(xt
i) 6= L(xt

j).
(8)

Here, L(·) represents the label of the corresponding support sample. Since the labels for the query
nodes are unknown, the correlation for edges linked to these query nodes need to be learned by the
GNN. Initially, we set them to be random values between 0 and 1.

Each node of the GNN combines features from these neighboring nodes with the corresponding cor-
relation as weights and updates its own feature by learning a multi-layer perceptron (MLP) network
Go[·] as follows

xt+1
j = Go

[
J∑

i=1

xt
j · ψ(xt

i,x
t
j)

]
. (9)

At each edge, another MLP network Ge[·, ·] is learned to predict the correlation between two graph
nodes,

ψ(xt
i,x

t
j) = Ge[xt

i,x
t
j ], (10)

whose ground-truth values are obtained using the scheme discussed in the above. The feature gen-
erated by the prime GNN is then passed to a classification network to predict the query labels. Both
the prime and dual GNNs are jointly trained with their final classification networks.

3.3 SELF-SUPERVISED OPTIMIZATION OF FEW-SHOT IMAGE CLASSIFICATION

Besides improving the training performance through mutual enforcement, the proposed self-
supervised prime-dual network design can be also used in the testing stage to optimize the label
prediction of query samples. Specifically, we can use the dual network to refine and optimize the
label prediction results obtained by the prime network. As illustrated in Figure 4(b), given a support
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set S and a query set Q, the support set has class labels L(S). Let L̂(Q) be the prediction result,
the output of the softmax layer of the classification network. In existing approaches of few-shot
learning or other network prediction scenarios, we are not able to verify if the prediction is accurate
or not since the ground-truth is not available for test samples. However, in this work, with the dual
network ΓQ→S being successfully trained, we can use the prediction result L̂(Q) as input to the
dual network to predict the class labels of the original support samples

L̂(S) = ΓQ→S[L̂(Q)]. (11)

Note that these support samples DO have ground-truth labels L(S). Define the label prediction error
by

El(S) = ||L(S)− L̂(S)||2. (12)
We assume that the correct query sample labels L∗(Q) is within the neighborhood of the predic-
tion result L̂(Q). Let Ω be the set of candidate assignments of query labels which are within the
neighborhood of L̂(Q). For example,

Ω = {L̃(Q) : ||L̃(Q)− L̂(Q)||2 ≤ ∆}, (13)

where ∆ is a given threshold for the label vector distance. We then search the candidate query labels
L̃(Q) within the neighborhood set Ω to minimize the support label prediction error El(S) in (12).
The optimized prediction of the query samples is given by

L∗(Q) = arg min
L̃(Q)∈Ω

|| L(S)− ΓQ→S[L̃(Q)] ||2. (14)

From the experimental results, we will see that this unique self-supervised optimization of the query
label prediction is able to significantly improve the few-shot image classification performance.

4 EXPERIMENTAL RESULTS

In this section, we provide experimental results on various benchmark datasets to demonstrate the
performance of our proposed SPDN method for few-shot learning.

4.1 IMPLEMENTATION DETAILS

We use ResNet-10 as the backbone of our feature encoder. The input images are resized to 224×224
and the output feature vector size is 1 × 1 × 512. We choose the Adam optimizer with a learning
rate of 0.01 and a batch size of 64 for training of 400 epochs. In the episodic meta-training stage,
we use the graph neural network (GNN) discussed in the above section to generate the feature
embedding for query samples. The prime network ΦS→Q and the dual network ΓQ→S are jointly
trained. These two networks are both trained for 400 epochs with 100 episodes per epoch. In each
episode, we randomly select K categories (K=5, 5-way) from the training set. Then, we randomly
select N samples (N=1 or 5 for 1-shot or 5-shot) from each category to compose support set and
query set, respectively. In the test stage, we use the average of 1000 trials as the final result for all
the experiments. For each trial, we randomly select K categories from the test set. Similar to the
training stage, N (1 or 5) samples are randomly selected as the support set and 15 samples as the
query set from each category.

4.2 DATASETS

Five benchmark datasets are used for performance evaluation and comparison with other methods
in the literature, Mini-ImageNet (Ravi & Larochelle, 2016), CUB (Wah et al., 2011), Cars (Krause
et al., 2013), Places (Zhou et al., 2017) and Plantae (Van Horn et al., 2018). More details about
dataset settings are presented in Appendix A.1.

4.3 RESULTS

To demonstrate the performance of our SPDN method, we conduct a series of experiments under
different few-shot classification settings. In the literature, there are two major scenarios for testing
the FSL methods: (1) intra-domain learning where the training classes and test classes are from
the same object domain, for example, both from the Mini-ImageNet classess, and (2) cross-domain
learning where the FSL is trained on one dataset (e.g., Mini-ImageNet) and the testing is performed
on another dataset (e.g., CUB). Certainly, the cross-domain scenario is more challenging.
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4.3.1 INTRA-DOMAIN FSL RESULTS.
First, we conduct intra-domain FSL experiments on the Mini-ImageNet. Table 1 summarizes the
performance comparison with state-of-the-art FSL methods mainly developed in the past two years.
We also list the backbone network used for extracting the features for the input images. We can
see that, for the 5-way 1-shot image classification task, our method (with ResNet-10 backbone) out-
perform the current best method (with ResNet-12 backbone) from (Zhang et al., 2021a) by 5.42%.
Another method which uses the same ResNet-10 backbone is the GNN+FT method (Tseng et al.,
2020). Our method outperforms this method by 12.23%. For the 5-way 5-shot classification task,
our method outperforms the current best by more than 5%, which is quite significant.

Table 1: The results of general few-shot classification trained on Mini-ImageNet with 95% confi-
dence intervals.

Methods Backbone Mini-ImageNet
1-shot 5-shot

ProtoNet (Snell et al., 2017) ResNet-12 62.39± 0.21% 80.53± 0.14%
MetaOpNet (Lee et al., 2019) ResNet-12 62.64± 0.61% 78.63± 0.46%

Robust 20-distill (Dvornik et al., 2019) ResNet-18 63.06± 0.61% 80.63± 0.42%
SimpleShot (Wang et al., 2019) ResNet-18 62.85± 0.20% 80.02± 0.14%

CAN (Hou et al., 2019) ResNet-12 63.85± 0.48% 79.44± 0.34%
EGNN (Kim et al., 2019) ResNet-12 − 76.37%

Meta-Baseline (Chen et al., 2020) ResNet-12 63.17± 0.23% 79.26± 0.17%
GNN+FT (Tseng et al., 2020) ResNet-10 66.32± 0.80% 81.98± 0.55%

FEAT (Ye et al., 2020) ResNet-12 66.78± 0.20% 82.05± 0.14%
DeepEMD (Zhang et al., 2020) ResNet-12 65.91± 0.82% 82.41± 0.56%
Neg-Cosine (Liu et al., 2020a) ResNet-12 63.85± 0.81% 81.57± 0.56%

EBM (Liu et al., 2020e) ResNet-12 64.09± 0.37% 80.29± 0.25%
RFS-distill (Tian et al., 2020) ResNet-12 64.82± 0.60% 82.14± 0.43%
DPGN (Yang et al., 2020a) ResNet-12 67.77± 0.32% 84.60± 0.43%

FRN (Wertheimer et al., 2021) ResNet-12 66.45± 0.19% 82.83± 0.13%
IER-Distill (Rizve et al., 2021) ResNet-12 67.28± 0.80% 84.78± 0.52%

Zhang et al. (Zhang et al., 2021a) ResNet-12 73.13± 0.85% 82.06± 0.54%
COSOC (Luo et al., 2021) ResNet-12 69.28± 0.49% 85.16± 0.42%

Our SPDN Method ResNet-10 78.55± 0.74% 91.10± 0.39%
Performance Gain +5.42% +5.94%

Second, we evaluate our method on intra-domain fine-grained image classification tasks on the CUB
dataset. In this case, the FSL needs to learn subtle features to distinguish objects from close cate-
gories. Table 2 summarizes the performance results on 5-way 1-shot and 5-way 5-shot classification
tasks. We can see that, for the one-shot classification task, our method outperforms the current best
method, FRN (Wertheimer et al., 2021) by 6.72%. For the 5-shot classification task, our method
improves the classification accuracy by 2.80%.

Table 2: The results of fine-grained few-shot classification models trained on CUB.
Model Backbone 1-shot 5-shot

ProtoNet (Snell et al., 2017) ResNet-18 72.99± 0.88% 86.64± 0.51%
Neg-Cosine (Liu et al., 2020a) ResNet-18 72.66± 0.85% 89.40± 0.43%

Centroid-A (Afrasiyabi et al., 2020) ResNet-18 74.22± 1.09% 88.65± 0.55%
BD-CSPN (Liu et al., 2020c) ResNet-18 78.89% 88.70%

LaplacianShot (Ziko et al., 2020) ResNet-18 80.96% 88.68%
TFH (Lazarou et al., 2021) ResNet-18 75.83% 88.17%

ProtoNet (Snell et al., 2017) ResNet-12 78.60± 0.62% 89.73± 0.12%
DSN (Simon et al., 2020) ResNet-12 79.96± 0.21% 91.41± 0.34%

CTX (Doersch et al., 2020) ResNet-12 79.34± 0.21% 91.42± 0.11%
FRN (Wertheimer et al., 2021) ResNet-12 83.55± 0.19% 92.92± 0.10%

Our SPDN Method ResNet-12 90.27± 0.48% 95.72± 0.41%
Performance Gain +6.72% +2.80%

4.3.2 CROSS-DOMAIN FSL RESULTS.
The cross-domain few-shot learning is more challenging. Following existing methods, we train the
model on the Mini-ImageNet object domain and test the trained model on other domains, includ-
ing the CUB, Cars, Places and Plantae datasets. Table 3 summarizes the results for 5-way 1-shot
classification (top) and 5-way 5-shot classification (bottom). We can see that our SPDN method has
dramatically improved the classification accuracy on these cross-domain FSL tasks. For example,
on the Cars dataset, our method outperforms the current best TPN+ATA (Wang & Deng, 2021) by
4.15%. On the Plantae dataset, the performance gain is 5.59%, which is quite significant. For the
5-way 5-shot classification task, the performance gains on these datasets are also very significant,
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between 0.37-8.68%. This demonstrates that our SPDN method is able to learn the inherent vi-
sual relationship between the support and query samples and can generalize very well onto unseen
classes in new object domains.

Table 3: Comparison of different methods on cross-domain few-shot classification, the model is
trained on Mini-ImageNet and test on multiple datasets.

5-way 1-shot CUB Cars Places Plantae
GNN+FT (Tseng et al., 2020) 47.47± 0.75% 31.61± 0.53% 55.77± 0.79% 35.95± 0.58%
GNN+ATA (Wang & Deng, 2021) 46.23± 0.50% 37.15± 0.40% 54.18± 0.50% 37.38± 0.40%
LRP-GNN (Sun et al., 2021) 48.29± 0.51% 32.78± 0.39% 54.83± 0.56% 37.49± 0.43%
TPN+ATA (Wang & Deng, 2021) 51.89± 0.50% 38.07± 0.40% 57.26± 0.50% 40.75± 0.40%
Our SPDN Method 57.90± 0.76% 42.22± 0.65% 68.73± 0.84% 46.34± 0.64%
Performance Gain +6.01% +4.15% +11.47% +5.59%

5-way 5-shot CUB Cars Places Plantae
GNN+FT (Tseng et al., 2020) 66.98± 0.68% 44.90± 0.64% 73.94± 0.67% 53.85± 0.62%
GNN+ATA (Wang & Deng, 2021) 69.83± 0.50% 54.28± 0.40% 76.64± 0.40% 58.08± 0.40%
LRP-GNN (Sun et al., 2021) 64.44± 0.48% 46.20± 0.46% 74.45± 0.47% 54.46± 0.46%
TPN+ATA (Wang & Deng, 2021) 70.14± 0.40% 55.23± 0.40% 73.87± 0.40% 59.02± 0.40%
Our SPDN Method 77.72± 0.65% 55.60± 0.69% 85.32± 0.51% 64.46± 0.62%
Performance Gain +7.58% +0.37% +8.68% +5.44%

4.4 ABLATION STUDIES

In this section, we conduct ablation studies to further understand the proposed SPDN method and
analyze the contributions of major algorithm components.

From algorithm design perspective, our SPDN method has two major components: self-supervised
learning (SSL) of the prime and dual networks, and the self-supervised optimization (SSO) of the
predicted query labels. We adopt the single GNN-based model (Tseng et al., 2020) as the baseline
of our method and the SSL and SSO algorithm components are added onto this baseline method. To
understand the performance of these two algorithm components, in the following experiment, we
train the SPDN method using training samples from the Mini-ImageNet. We conduct intra-domain
few-shot image classification on the Mini-ImageNet and cross-domain few-shot image classification
on the CUB, Cars, Places, and Plantae datasets. Table 4 summarizes the results for 5-way 1-shot
and 5-way 5-shot image classification. The second column shows the intra-domain few-shot image
classification results on the Mini-ImageNet. The rest columns show the results for the cross-domain
classification results. We can see that the self-supervised prime-dual network training is able to
improve the classification accuracy by up to 1.8%. The performance gain achieved by the self-
supervised optimization of the predicted query labels is much more significant, ranging from 7-10%.
This dramatic performance gain is a surprise to us. In the following, we will provide additional
ablation studies to further understand this SSO algorithm module. Compared to the SSO module,
the performance improvement by the first SSL module is relatively small. This is because the major
new contribution of the SSL module is the self-supervised loss which aims to further improve the
learning on the baseline GNN. However, it has successfully trained a dual network, which plays a
very important role in the second SSO module. It is used to search and optimize the predicted labels
of the query samples, resulting in major performance gain. We discuss the specific optimization
results of our self-supervised optimization (SSO) module through an experiment in Appendix A.3.

Table 4: Contributions of algorithm components, self-supervised learning of prime-dual networks
and self-supervised optimization of predicted query labels.

5-way 1-shot Mini-ImageNet CUB Cars Places Plantae
Baseline 66.41± 0.72% 46.97± 0.68% 31.58± 0.62% 55.84± 0.77% 36.09± 0.53%
+SSL 67.93± 0.65% 46.99± 0.72% 33.39± 0.58% 58.06± 0.67% 36.73± 0.70%
+SSL+SSO 78.55± 0.74% 57.90± 0.76% 42.22± 0.65% 68.73± 0.84% 46.34± 0.64%

5-way 5-shot Mini-ImageNet CUB Cars Places Plantae
Baseline 82.66± 0.67% 66.85± 0.58% 43.53± 0.66% 74.53± 0.61% 52.83± 0.64%
+SSL 83.21± 0.52% 67.71± 0.71% 45.17± 0.56% 75.63± 0.62% 54.67± 0.66%
+SSL+SSO 91.10± 0.39% 77.72± 0.65% 55.60± 0.69% 85.32± 0.51% 64.46± 0.62%

In the following experiments, we attempt to further understand the behavior and performance of the
SSO algorithm module. First, we conduct an experiment to understand the search and optimization
process of SSO. Suppose L(Q) is the true label of the query samples. Let

L̃(Q) = L(Q) + λ ·∆L, (15)

8



Under review as a conference paper at ICLR 2022

(a) (b)
Figure 5: (a) The self-supervised label error of support samples as a function of the disturbance
coefficient λ on the predicted query labels. (b) The self-supervised label error decreases with the
number of search positions.

be a label vector within the neighborhood of L(Q). Here, ∆L is a pre-generated random vector and
λ is a disturbance coefficient to control the amount of variation. With the label vector L̃(Q) and
the query samples, we can predict the labels of the support vector using the dual network. Then,
we can compute the prediction error El(S) as in (12). Figure 5(a) shows the label prediction error
El(S) as a function of λ. This experiment was performed on 5-way 1-shot image classification on
the CUB dataset. We can see that the minimum error is achieved at λ = 0. This implies the ground-
truth labels of the query samples have the minimum self-supervised label error El(S). This is a
very important property of our SSO method. It suggests that, when the predicted query labels are
not correct, and the ground-truth labels are within its neighborhood, we can use the SSO method to
search for these ground-truth labels using the minimum self-supervised support label error criteria.

During our self-supervised optimization of the predicted query labels, we choose a small neighbor-
hood Ω within the neighborhood of the predicted query labels L̂(Q) with a maximum distance ∆.
This ∆controls the number of search positions in the label space. If we search more positions or
candidate query labels, we can obtain smaller self-supervised label errors of the support samples
El(S). Figure 5(b) plots the value of El(S) as a function of the number of search positions. This
experiment was performed on 5-way 1-shot image classification on the CUB dataset. We can see
that the error drops significantly with the number of searched positions. We recognize that, for each
search position, we need to run the dual network once. This does introduce extra computational
complexity. But, the amount of performance gain is very appealing. In our experiments, we lim-
ited the number of search positions to the 5, i.e., the nearest 5 label vectors (integer vectors) to the
predicted query label.

5 CONCLUSION

In this work, we have successfully developed a novel prime-dual network structure for few-shot
learning which explores the commutative relationship between the support set and the query set. The
prime network performs the forward label prediction from the support set to the query set, while the
dual network performs the reverse label prediction from the query set to the support set. This forward
and reserve prediction process with commutative support and query sets forms a label prediction
loop and establishes a self-supervision constraint between the ground-truth labels and their predicted
values. We have established a self-supervised support error metric and used the learned dual network
to optimize the predicted query labels during the testing stage. Our extensive experimental results
on both intra-domain and cross-domain few-shot image classificaiton have demonstrated that the
proposed self-supervised prime-dual network learning and optimization have significantly improved
the performance of few-shot learning, especially for cross-domain few-shot learning tasks. We
have also conducted detailed ablation studies to provide in-depth understanding of the significant
performance gain achieved by the self-supervised optimization process. The self-supervised prime-
dual network design is general and can be naturally incorporated into other prediction and learning
methods.
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A APPENDIX

In this appendix, we provide more details of experimental settings and additional results to further
understand the performance of our proposed method.

A.1 DATASET

In our experiments, the following 5 datasets are used for performance evaluations and comparisons.

(1) Mini-ImageNet has randomly selected 100 categories from the ImageNet (Deng et al., 2009)
and each category has 600 samples of size 84 × 84. The 100 categories are divided into a training
set with 64 categories, a validation set with 16 categories, and a testing set with 20 categories. (2)
CUB is a fine-grained dataset with 200 bird species mainly living in North America (Wah et al.,
2011). We randomly split the dataset into 100, 50, 50 classes for training, validation and testing,
respectively. (3) Cars contains 16,185 images of 207 fine-grained car types, which consist of 10
BMW models and 197 other car types (Krause et al., 2013). We randomly selected 196 categories
include 98 training, 49 validation and 49 testing for the experiment. (4) Places is a dataset of scene
images (Zhou et al., 2017), containing 73,000 training images from 365 scene categories, which are
divided into 183 categories for training, 91 for validation and 91 for testing. (5) Plantae is a sub-set
of the iNat2017 dataset (Van Horn et al., 2018), which contains 200 types of plants and a total of
47,242 images. We split them into 100 classes for training, 50 for validation, and 50 for testing.

The Mini-ImageNet is the most popular benchmark for few-shot classification. It is usually used
as a baseline dataset for model training. The CUB dataset is more frequently used for few-shot
fine-grained classification tasks. The Cars, Places and Plantae datasets are used for model testing in
cross-domain few-shot classification tasks.

A.2 THE VISUALIZATION OF FEATURE IN SELF-SUPERVISED LEARNING.

The proposed SPDN method incorporates the self-supervised constraint into the training process,
aiming to improve the quality of learned features and the generalization capability of the few-shot
learning. Figure. 6 shows the tSNE visualization of the learned features of 100 samples from the
mini-ImageNet dataset for each class in a 5-way 5-shot setting. We can see that, with the self-
supervised learning, the features of each class are more concentrated into clusters.

Figure 6: The tSNE visualization of feature with or without Self-supervised Learning.

A.3 SELF-SUPERVISED OPTIMIZATION (SSO) MODULES

The proposed self-supervised optimization (SSO) modules aim to correct the predicted query labels.
In the following experiment, we are trying to understand how many incorrect label prediction of the
query labels have been successfully corrected by the SSO module. Table 5 shows the results from
the 5-way 1-shot on the CUB dataset. We keep track of 75 randomly selected query samples. If
we predict the query labels only using the prime network without using the SSO (before SSO), the
number of query samples with incorrect labels is 57, and the number of correct ones is 18, which
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is very low. After we apply the SSO, the number of query samples with incorrect labels is reduced
to 45, the number of correct ones increases to 30. We can examine this correction process in more
detail. The SSO module has corrected the labels for 15 samples, as shown in the third row (Incorrect
→ Correct Label) of the table. However, it has also mis-corrected the labels for 3 samples, as shown
in the last row (Correct → Incorrect Label) of the table. In our experiments, we have observed
that the SSO module is able to correct the labels for much more query samples than those mis-
corrected one. This implies that the dual network and the self-supervision constraint are working
very well for few-shot learning. This explains the significant performance achieved by the proposed
self-supervised prime-dual network method.

Table 5: The predicted query labels before and after the SSO.
Before SSO 57 18
After SSO 45 30
Incorrect→ Correct Label 15
Incorrect→ Incorrect Label 42
Correct→ Correct Label 15
Correct→ Incorrect Label 3

A.4 EXTENSION TO N -SHOT IMAGE CLASSIFICATION

In the main paper, we have used the 5-way 1-shot image classification as an example to present
our method of self-supervised prime-dual network (SPDN) and optimization for few-shot image
classification. This method can be naturally extended to genericK-wayN -shot image classification.
Figure 7 illustrates an example of extension to 5-way 5-shot. In this case, each class, in both training
and test stages, has 5 support samples and one query sample. In the prime network, we use these
5 support samples to predict the label of the query sample. To ensure that the dual network shares
the same network structure as the prime network, for the reverse prediction, we randomly select one
sample (denoted by s0) from the support set and switch it with the query sample q0. During the
training and inference of the dual network, this updated support set is used to predict the label of
s0, which is then compared to its ground-truth label to compute the self-supervised loss. This loss
is used for joint prime-dual network training, as well as the self-supervised optimization of the label
prediction for the query sample q0.

Figure 7: Illustration of extension to 5-shot classification.

A.5 FURTHER UNDERSTANDING OF THE SELF-SUPERVISED OPTIMIZATION OF QUERY
LABEL PREDICTION

In our proposed SPDN method, the self-supervised optimization of the query label prediction plays
an important role and improves the performance significantly. In this section, we provide more
experimental results to demonstrate and further under the performance of this algorithm module.
Figure 8 shows 6 examples of 5-way 1-shot image classification. Initially, the predicted label for
these query samples are incorrect. Then, we perform self-supervised search of the query labels
within the neighborhood of the predicted label. We use this predicted labels as input to the dual
network to predict the labels of the support samples. The label prediction error of the support
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samples is used as the optimization objective. In Figure 8, under each query sample, we show the
decreasing of the optimization objective (support label error) with the number of searched candidate
query labels. These results show that it is sufficient to search 5-8 candidate query label vectors.

It should be noted that the self-supervised optimization query label prediction can correct the incor-
rect label prediction, adjusting incorrect label prediction into correct ones. Certainly, it will make
mistake or mis-correct the query label prediction, adjusting correct label predictions into incorrect
ones. However, the probability of the mis-correction is much lower. For example, Table 6 shows
percentages of correct adjustment and incorrect adjustment by the optimization module on the Cars
dataset. Specifically, the percentage of correct adjustment from incorrect query labels into correct
ones is 21.6%. In the meantime, the percentage of incorrect adjustment is 5.7%. This result in a per-
formance improvement of 15.8% in the overall few-shot image classification, from 32.8% to 48.6%,
which is quite significant.

Table 6: The predicted query labels before and after the SSO.
Incorrect Correct

Before SSO 67.2% 32.8%
After SSO 51.3% 48.6%
Incorrect→ Correct Label 21.6%
Incorrect→ Incorrect Label 45.6%
Correct→ Correct Label 27.1%
Correct→ Incorrect Label 5.7%

A.6 FURTHER DISCUSSION OF THE PROPOSED METHOD

The key idea and motivation behind our dual network design is as follows: one central challenge in
network prediction is that we have no ways to check if the prediction is accurate or not, since we do
not have the ground truth. To address this issue, we develop the prime-dual network structure, where
the successfully learned dual network is used as a verification module to verify if the prediction
results are good enough or not. It maps the prediction results back to the current known data.
We establish the self-supervised loss defined on the current known data, use it as the objective
function to perform local search and refinement of the prediction results. This process is unique and
contributes significantly to the overall performance. The prime network is the baseline GNN+FT
network using support samples to predict query samples. The dual network is another GNN+FT
network (in opposite direction) using query samples to predict support samples. These two networks
form a prediction loop and a self-supervised loss is then derived. We implement this new idea on
the the GNN+FT few-shot learning method to demonstrate its performance. The proposed idea is
generic and can be applied to other methods, even in other prediction and learning problems, which
will be studied in our future work. Our proposed idea is new. However, it does introduce additional
complexity. According to our estimation, it will add about 40-60% extra complexity on top of the
existing baseline since a majority of computation, such as feature extraction, does not need to re-
computed during the search process. In our future work, we plan to develop schemes to reduce the
complexity of the self-supervised optimization, for example by merging multiple search steps into
one execution cycle.
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Figure 8: The decreasing of label error for self-supervised optimization of label prediction of query
samples from the Cars dataset.
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