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Abstract
In this paper, we study non-asymptotic deviation bounds of the least squares estimator for Gaussian
AR(n) processes. By relying on martingale concentration inequalities and a tail-bound for χ2

distributed variables, we provide a concentration bound for the sample covariance matrix of the
process output. With this, we present a problem-dependent finite-time bound on the deviation
probability of any fixed linear combination of the estimated parameters of the AR(n) process. We
discuss extensions and limitations of our approach.
Keywords: Autoregressive Processes, Non-Asymptotic Estimation, Least Squares, Finite Sample
Analysis.

1. Introduction

Autoregressive (AR) processes are ubiquitous in engineering sciences, as they are applied in econo-
metrics, time series analysis (Box et al., 2015), system identification (Ljung, 1999), signal process-
ing (Kay, 1993), machine learning and control.

Given sampled data, the identification of the parameters of an AR process is usually done by or-
dinary least squares, which is known to have asymptotically optimal statistical performance (Mann
and Wald, 1943; Durbin, 1960) and is related to Maximum Likelihood in a Gaussian framework.
Despite its success in practical applications, most analyses of the least squares method are asymp-
totic. Finite-time analyses of this method are still rare in the literature, despite being important for
computing the number of samples needed for achieving a specified accuracy, deriving finite-time
confidence sets, and designing robust control schemes. Non-asymptotic performance bounds have
been historically difficult to derive since most of the classical statistical methods are better suited
for asymptotic results.

In recent years, new statistical tools from the theory of self-normalizing processes (De la Peña
et al., 2008) and high dimensional probability (Wainwright, 2019) have shown to be useful for ana-
lyzing a wide range of regression models. These tools have impulsed research on finite-time prop-
erties of the least squares estimator, with unifying efforts from the system identification, control and
machine learning communities. Among topics of interest, we can find sample complexity bounds
(Jedra and Proutiere, 2019), 1 − δ probability bounds on parameter errors (Sarkar and Rakhlin,
2019), and confidence bounds (Lattimore and Szepesvári, 2020, Chap. 20).

Even though autoregression is a key aspect in dynamical systems and regression models, finite-
time properties of AR(n) processes have not yet been studied deeply. AR(n) processes are of partic-
ular interest, as they build the foundations for studying general regression models such as ARX and
ARMAX models, which are widely used in linear system identification (Ljung, 1999). Autoregres-
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sive processes are also essential for two-stage ARMA estimation algorithms (Stoica and Moses,
2005), and for speech production models (Makhoul, 1975). For a greater understanding on how
least squares performs on different autoregressive processes for finite-sample data, here we perform
a non-asymptotic analysis of the least squares estimator of the coefficients of these processes. In
summary, the main results of this paper are:

• via martingale concentration inequalities and bounds on χ2-distribution tails, we derive a
finite-time problem-dependent concentration bound for the sample data covariance matrix of
an n-th order autoregressive process;

• using the previous result, we provide a bound on the deviation of any fixed linear combination
of the parameters of an AR(n) process around its true value, such that larger deviations occur
only with probability at most δ.

The rest of this paper is organized as follows. Our work is put into context in Section 2, and we
define our notation in Section 3. In Section 4 the problem is explicitly formulated, and a preliminary
result is given. We state and prove our concentration inequalities for the sample covariance matrix
and deviation bound of the parameters of an AR(n) process in Section 5.1 Section 6 provides the
proof for a key result used in the previous section, and a discussion of the results is presented in
Section 7.

2. Relation to prior work

In a time-series context, Bercu et al. (1997) and Bercu (2001) studied large deviation rates of the
least squares estimator in an AR(1) process. These contributions provide problem independent
bounds, and do not generalize to AR(n) processes. A problem dependent finite-time deviation
and variance bound was provided by González and Rojas (2020) for stable and unstable AR(1)
processes. Unfortunately, the tools used in that work cannot be extended to a multivariate setting.
Asymptotic properties of AR(n) models were obtained by Lai and Wei (1983).

In a broader context, one of the first non-asymptotic results in system identification was pre-
sented in Campi and Weyer (2002), where a uniform bound for the difference between empirical
and theoretical identification costs was obtained. More recently, among works that have analyzed
finite-time identification for stochastic processes are Jedra and Proutiere (2020); Sarkar and Rakhlin
(2019); Simchowitz et al. (2018); Faradonbeh et al. (2018) and Zheng and Cheng (2018). These
contributions consider state-space formulations with first order vector autoregressive models that,
contrary to the description of an AR(n) process in state-space, normally assume that the noise pro-
cess perturbs all states instead of only one. In particular, the performance bounds in Simchowitz
et al. (2018) consider the estimation of the full transition matrix instead of the parameters of interest
for AR(n) modeling. By leveraging the direct relationship between the coefficients of interest and
the transition matrix of the underlying state-space in controller form, bounds for AR(n) processes
could possibly be obtained by finding the (finite-time) optimal projection of the A matrix whose er-
ror in operator norm is bounded in Simchowitz et al. (2018), such that the resulting matrix is exactly
the one provided by the LS estimate of the underlying AR(n) process. After this, a concentration
inequality that bounds the error over Â(T ) and the transition matrix in controller form of the AR(n)

1. Supplementary material regarding proofs of Lemmas 3 and 4, and auxiliary results, is available in the preprint version
of this paper (González and Rojas, 2019).
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process would be needed. Although plausible, the results we seek do not seem direct from (Sim-
chowitz et al., 2018). Instead, our analysis resembles that of (Sarkar and Rakhlin, 2019, Theorem 1)
in the derivation of a matrix concentration bound, and similarly to the works cited above, a Gramian
matrix associated with the real process dictates the learning rate.

3. Notation

Given a matrix A ∈ Rn×n, ρ(A) denotes its spectral radius. If x is a vector and A is a fixed positive
definite matrix, then ‖x‖2 and ‖x‖∞ denote the 2 and ∞-norm of x, while ‖x‖A is the weighted
2-norm (i.e., ‖x‖A :=

√
x>Ax). If B is an event, Bc denotes its complement, and P(B) refers to

its probability of occurrence. E{y} denotes the expected value of the random variable y.

4. Problem formulation and preliminary result

Consider the following AR(n) process described by

yt = Y >t−1θ
0 + et, (1)

where Y >t−1 := [yt−1 yt−2 . . . yt−n], et is a Gaussian white noise of variance σ2, and the pa-
rameter vector is θ0 := [θ1 θ2 . . . θn]

> ∈ Rn. Furthermore, assume that {yt} is a stationary
process, and that θ0 is such that the AR(n) process is asymptotically stationary, which implies that
p(x) = xn − θ1x

n−1 − · · · − θn−1x − θn is a Schur polynomial. In this work, we are interested
in how w>θ̂N concentrates around its true value w>θ0, where w ∈ Rn with ‖w‖2 = 1 is fixed and
θ̂N is the least squares estimator of θ0 given the data {yt}Nt=1. By allowing w to be chosen freely,
we study deviation probabilities for single parameters, or linear combinations of them. Note that
this probability depends on the true parameters, an thus it gives information about how easily the
parameters can be identified through ordinary least squares for a particular system. In other words,
our interest is in interpretability; in particular, we are concerned on how the least squares estimator
performs under different AR processes.

Unfortunately, an explicit expression of the deviation probability (or equivalently, the confidence
region) of interest is elusive in the literature. Therefore, it is of our interest to find an upper bound
of it instead. If we define Y := [Yn . . . YN−1]

> and E := [en+1 . . . eN ]
>, we can write

w>(θ̂N − θ0) as w>(Y >Y )−1Y >E, and hence we pursue a bound of the form

P(|w>(Y >Y )−1Y >E| > ε) ≤ δ, (2)

where ε can be expressed as a function of δ,N , and the true parameters. Note that the stochastic
quantity w>(θ̂N − θ0) is a self-normalized process. That is, it is unit free and therefore not affected
by scale changes (De la Peña et al., 2008). These processes are now ubiquitous in the machine learn-
ing community, as they arise naturally in, e.g., finite-time analysis of linear systems (Simchowitz
et al., 2018) and stochastic bandit problems (Krishnamurthy et al., 2018).

To derive a bound like (2), we make use of a martingale tail inequality introduced in Abbasi-
Yadkori et al. (2011), which is valid for sub-Gaussian stochastic processes.

Proposition 1 (Abbasi-Yadkori et al. (2011)) Let {Ft}∞t=0 be a filtration. Let {ηt}∞t=1 be a real-
valued stochastic process such that ηt is Ft-measurable and ηt is conditionally R-sub-Gaussian for
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some R > 0, i.e.

∀λ ∈ R E[eληt |Ft−1] ≤ exp

(
λ2R2

2

)
.

Let {Xt}∞t=1 be an Rd-valued stochastic process such that Xt is Ft−1-measurable. Assume that V
is a d× d positive definite matrix. For any t ≥ 1, define

V t = V +

t∑
s=1

XsX
>
s , St =

t∑
s=1

ηsXs. (3)

Then, for any δ > 0, with probability at least 1− δ, for all t ≥ 1,

‖St‖2
V t
−1 ≤ 2R2 log

(
det(V t)

1/2 det(V )−1/2

δ

)
.

Although the result of Proposition 1 is also a deviation bound similar to (2), it relies on the fact that
the matrix V is positive definite, which is valid only for regularized least squares problems. Despite
this, in V t we recognize the sample covariance matrix

∑t
s=1XsX

>
s , which plays an important

role in our main result. The key idea behind the proposed approach is to first obtain a finite-sample
probability bound on the matrix Y >Y =

∑N−1
s=n YsY

>
s , and use this result together with Proposition

1 to derive the novel deviation bound.

5. Main results

In this section, we present our finite-time bounds for AR processes. Firstly, in Theorem 2 we derive
a 1−δ concentration bound for the sample covariance matrix Y >Y , and then use this result to obtain
a deviation bound for the least squares estimator for general AR(n) processes, which is presented
in Theorem 6. For the following, we express the AR(n) process in a state-space formulation

xt+1 =

[
θ0> 0
In 0n×1

]
xt +

[
1

0n×1

]
et+1, Yt =

[
In 0n×1

]
xt, (4)

where we denote from now on the transition matrix and input vector in (4) as A and B respectively.

Theorem 2 Consider the AR(n) process described in (1), and Y = [Yn . . . YN−1]
>. Given

ε > 0, define the following quantities:

V : = σ2
∞∑
i=0

AiBB>(A>)i, (5)

Vdn : = (N − n)
[
In 0

](
V − εσ2

∞∑
i=0

Ai(A>)i

)[
In
0

]
,

Vup : = (N − n)
[
In 0

](
V + εσ2

∞∑
i=0

Ai(A>)i

)[
In
0

]
,

δ(ε,N) : = 2

{
√
2 exp

(
−(N − n)σ2ε

24nE{y2
1}

)
+ exp

[
−N − n

2

(
1 +

ε

3
−
√
1 +

2ε

3

)]

+ exp

[
− (N − n)ε
72(‖θ‖2 + 1)2β̃

]
+ exp(−ε

√
N)

}
, (6)

4



A FINITE-SAMPLE DEVIATION BOUND FOR STABLE AUTOREGRESSIVE PROCESSES

where
MΦ : = max

ω
|ejωn − θ1e

jω(n−1) − · · · − θn|−2, (7)

β̃ : =
(n+ 1)N

N − n

[
E{y2

1}
εσ2

+
2MΦ(1 + ε−1/2)

N1/4

]
. (8)

Then, for all ε > 0 such that Vdn � 0, we have
P(Vdn � Y >Y � Vup) ≥ 1− δ(ε,N). (9)

Proof The AR(n) process can be rewritten as in (4), where xt is equal to
[
Y >t yt−n

]>. Note that
the eigenvalues of A are precisely the poles of the autoregressive process, with an extra eigenvalue
at 0. We are interested in bounding

Y >Y =
[
In 0

]N−1∑
i=n

xix
>
i

[
In
0

]
.

The approach consists in first determining a concentration bound for
∑N−1

i=n xix
>
i , and then relating

it to a concentration bound for Y >Y . In this spirit, we write

xi+1x
>
i+1 = Axix

>
i A
> +Axiei+1B

> +Bei+1x
>
i A
> + e2

i+1BB
>, (10)

and denote VN as (N −n)−1
∑N−1

i=n xix
>
i . If we sum over i = n−1, . . . , N −2 in (10), we obtain

VN =AVNA
>+

1

N − n

[
A(xn−1x

>
n−1−xN−1x>N−1)A>+

N−2∑
i=n−1

(
ei+1AxiB

>+ei+1Bx
>
i A
>+ e2i+1BB

>)]
︸ ︷︷ ︸

EN

.

Since the AR(n) process is asymptotically stationary, the Lyapunov equation above has as solution
VN =

∑∞
i=0A

iEN (A
>)i. By construction, VN tends to V (defined in (5)) with probability 1 as N

tends to infinity (see, e.g. (Söderström, 2002, p. 64)). Thus, our goal is to obtain a finite-sample
concentration bound that relates VN with V . For this, we bound

∑N−2
i=n−1 e

2
i by its variance, and

bound the other terms of EN by a small matrix quantity εI , for all N > N(ε). Lemmas 3, 4 and 5
are needed for this purpose, which bound the probability of the following events:

E1 :=
{
ρ
[
A(xn−1x

>
n−1 − xN−1x

>
N−1)A

>
]
≤ εσ2(N − n)/3

}
,

E2 :=
{
ρ
[∑N−2

i=n−1 e
2
i+1BB

> −BB>
]
≤ εσ2(N − n)/3

}
,

E3 :=
{
ρ
[∑N−2

i=n−1

(
ei+1AxiB

> + ei+1Bx
>
i A
>)] ≤ εσ2(N − n)/3

}
.

Lemma 3 Consider the process described in (4), where {ei} is a Gaussian zero-mean i.i.d. of
variance σ2, and {xt} is a stationary random process. Then,

P (E1) ≥ 1− 2
√
2 exp

(
−(N − n)σ2ε

24nE{y2
1}

)
.

Lemma 4 Let {ei} be a Gaussian zero-mean i.i.d. sequence of variance σ2. Then,

P (E2) ≥ 1− 2 exp

[
−N − n

2

(
1 +

ε

3
−
√
1 +

2ε

3

)]
.
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Lemma 5 Consider the same assumptions as in Lemma 3. For any ε > 0, we have

P (E3) ≥ 1− 2 exp

[
− (N − n)ε
72(‖θ0‖2 + 1)2β̃

]
− 2 exp(−ε

√
N),

where MΦ and β̃ are defined in (7) and (8) respectively.

Due to space constraints, we provide proof of Lemma 5 only2, which can be found in Section
6. With these three lemmas, and by the subadditivity of the spectral radius of Hermitian matrices
(Bernstein, 2009, Fact 5.12.2), we have

E1 ∩ E2 ∩ E3 =⇒ ρ(EN − σ2BB>) ≤ σ2ε =⇒ σ2(BB> − εI) � EN � σ2(BB> + εI),

which occurs with probability not less than 1− δ(ε,N). This also implies (9).

Theorem 2 delivers a finite-sample bound on the sample covariance matrix. Naturally, this
matrix will deviate from its expected value by a small amount for large sample sizes. Note that this
bound depends on a fixed value ε, which can be chosen arbitrarily small. As most self-normalized
process bounds, δ(ε,N) does not depend on the variance of the process noise.

With this result, we are ready to state the desired deviation bound in Theorem 6.

Theorem 6 Consider the AR(n) process described in (1), where θ0 is assumed to yield an asymp-
totically stationary process, {et} is an i.i.d. Gaussian random process with variance σ2, and {yt}
is stationary. Then,

P

|w>(θ̂N − θ0)| > 2σ‖w>V −1/2
dn ‖2

√√√√log

(
det(VupV

−1
dn + In)1/2

δ(ε,N)

) ≤ 2δ(ε,N), (11)

where Vdn, Vup and δ(ε,N) are as described in Theorem 2.

Proof We will follow the main ideas in (Sarkar and Rakhlin, 2019, Theorem 1). We start by writing
an upper bound using the Cauchy-Schwartz inequality

|w>(θ̂N − θ0)| = |w>(Y >Y )−1Y >E| ≤ ‖w>(Y >Y )−1/2‖2‖(Y >Y )−1/2Y >E‖2.

In Theorem 2 we have found deterministic matrices Vdn, Vup and a scalar δ(ε,N) such that, for the
event Epm := {Vdn � Y >Y � Vup}, we have P(Epm) ≥ 1− δ(ε,N). The next step is to bound the
self-normalized norm. This can be done by first defining the event

Esn :=

‖Y >E‖(Y >Y+Vdn)−1 ≤

√
2σ2 log

(
det(Y >Y + Vdn)1/2 det(Vdn)−1/2

δ(ε,N)

) .

It follows from Proposition 1 that P(Esn) ≥ 1−δ(ε,N). Also, under Epm we have that Y >Y +Vdn �
2Y >Y , which implies (Y >Y +Vdn)

−1 � 1
2(Y

>Y )−1. So, considering the set Epm ∩Esn, we obtain

Epm ∩ Esn =⇒ Epm ∩

‖(Y >Y )−1/2Y >E‖2 ≤ 2σ

√√√√log

(
det(VupV

−1
dn + In)1/2

δ(ε,N)

) .

2. Proofs of Lemmas 3 and 4 can be found in the preprint version of this paper (González and Rojas, 2019).
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Furthermore, observe that P(Epm ∩ Esn) ≥ 1− 2δ(ε,N). So, if Epm ∩ Esn holds, then

|w>(Y >Y )−1Y >E| ≤ 2σ‖w>V −1/2
dn ‖2

√√√√log

(
det(VupV

−1
dn + In)1/2

δ(ε,N)

)
, (12)

which means that the probability of the event in (12) is at least 1 − 2δ(ε,N). By considering the
complement event, we obtain the probability bound (11).

Theorem 6 provides a finite-sample confidence bound on the deviation of the weighted parame-
ter vector w>θ̂N with respect to its asymptotic value w>θ0. This result delivers probability bounds
on the deviation each parameter θi individually, as well as any linear combination of them. Note
that ε can be considered a tightness variable, as by setting ε small, more samples are required to
guarantee a desired confidence level, but the probability bound will be tighter.

To end this analysis, we derive the decay rate of our probability bound in Corollary 7.

Corollary 7 If ε is picked as λn −N−1/2, where λn is the smallest eigenvalue of(
σ2

[
In
0

]> ∞∑
i=0

Ai(A>)i
[
In
0

])−1/2 [
In
0

]>
V

[
In
0

](
σ2

[
In
0

]> ∞∑
i=0

Ai(A>)i
[
In
0

])−>/2
,

then δ ∼ Ce−λn
√
N for large N and the deviation in (11) is asymptotically a constant in N . This

shows that the rate of decay of the probability bound is at least exponential in
√
N .

6. Proof of Lemma 5

Here we present a sketch of the proof of Lemma 5, in which we use a martingale concentration
inequality from Simchowitz et al. (2018) and exploit the Gaussianity of {et} by applying a concen-
tration inequality for χ2 random variables found in Laurent and Massart (2000).
Proof of Lemma 5 For any vector q :=

[
q1 q̃>

]> ∈ Rn+1 of unit 2-norm, we have

q>

(
1

N − n

N−1∑
i=n

ei(Axi−1B
> +Bx>i−1A

>)

)
q =

2q1

N − n
(q1θ

0> + q̃>)
N−1∑
i=n

eiYi−1. (13)

Since (13) is symmetric around zero, it is sufficient to bound its upper tail. Next, we denote the vec-
tor z := 2q1(q1θ

0+q̃). By using Lemma 4.2 of Simchowitz et al. (2018), withZt = 1√
N−n〈z, Yt−1〉,

Wt = et, and β = εβ̃(N − n)σ2 max‖q‖2=1 ‖2q1θ
0> + q̃>‖22, we obtain the inequality

P

[{
N−1∑
i=n

〈z, Yi−1〉ei
N − n

≥ σ2ε

3

}
∩

{
N−1∑
i=n

‖Yi−1‖22
σ2(N − n)

≤ εβ̃

}]
≤ exp

− (N − n)ε
72β̃ max

‖q‖2=1
‖q1(q1θ0 + q̃)‖22

 .

Using the well-known inequality P(A ∩ B) ≥ P(A)− P(Bc), and the fact that
∑N−1

i=n ‖Yi−1‖22 ≤
(n+ 1)

∑N−2
i=−1 y

2
i , we obtain

P

(
N−1∑
i=n

〈z, Yi−1〉ei
N − n

≥ σ2ε

3

)
≤ exp

− (N − n)ε
72 max
‖q‖2=1

‖q1(q1θ0 + q̃)‖22β̃

+P

(
n+ 1

σ2(N − n)

N−2∑
i=−1

y2i > εβ̃

)
.
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To tackle the last probability, we note that
[
y−1 · · · yN−2

]> ∼ N (0, RN ), where RN is a sym-
metric Toeplitz covariance matrix of eigenvalues {λi}Ni=1. Hence, Z =

∑N−2
i=−1 y

2
i is a generalized

χ2 random variable, whose distribution is equal to the distribution of v>RNv, where v ∼ N (0, IN ).
By the singular value decomposition RN = UNDNU

>
N where DN = diag{λi} and UN is a unitary

matrix, and the rotation invariance of v (Vershynin, 2018, Chap. 3), we see that

P

(
N−2∑
i=−1

y2
i − E

{
N−2∑
i=−1

y2
i

}
> t

)
= P

(
N∑
i=1

λi(ṽ
2
i − 1) > t

)
,

where ṽ ∼ N (0, IN ). Then, by (Laurent and Massart, 2000, Lemma 1),

P

(
N−2∑
i=−1

y2
i − E

{
N−2∑
i=−1

y2
i

}
> 2‖λ‖2

√
t+ 2‖λ‖∞t

)
≤ exp(−t). (14)

It is known (see, e.g. (Gray, 2006, Section 4.2)) that the maximum eigenvalue of RN is bounded by
σMΦ, where MΦ is defined as in (7). By letting t = ε

√
N in (14), and upper bounding ‖λ‖2 and

‖λ‖∞ by
√
NMΦ and MΦ respectively, we deduce that

P

 n+ 1

σ2(N − n)

N−2∑
i=−1

y2
i >

(n+ 1)N

N − n

[
E{y2

1}
σ2

+
2MΦ(ε+

√
ε)

N1/4

]
︸ ︷︷ ︸

εβ̃

 ≤ exp(−ε
√
N).

Finally, note that max‖q‖2=1 ‖q1(q1θ
0 + q̃)‖22 ≤ (‖θ0‖2 + 1)2. With this, and considering the

complement event, we reach the bound in Lemma 5.

7. Discussion and conclusions

In this paper, we have provided finite-sample guarantees for the least squares estimates of the co-
efficients of general AR(n) processes. For this, a concentration bound for the sample covariance
matrix was derived. In this bound, the Gramian matrix

∑∞
i=0A

i(A>)i in Vdn and Vup shows that
faster processes need less samples to guarantee concentration of the covariance matrix, which is a
natural result. Regarding Theorem 6, we find that the fixed vector w impacts the confidence bound
through the inverse of Vdn, which resembles the results obtained in (Lattimore and Szepesvári, 2020,
Eq. 20.2) for least squares estimates of linear bandit algorithms with deterministic actions. The
log det term is also unsurprising, as it also appears in finite-sample analysis of LTI systems (see,
e.g. (Sarkar and Rakhlin, 2019, Eq. 12)). The deterministic matrices Vdn and Vup in (11) capture
the correct behavior of the confidence bound, since it is large when the uncertainty on the sample
covariance matrix is also large. Also, note that the proof of Theorem 6 heavily relies on bounding
the probability of the normal matrix Y >Y , but it is easily decoupled from Theorem 2. That is, if
tighter bounds for Epm can be found, then Theorem 6 can be directly improved. Future work con-
cerns proving finite-time variance bounds for the estimated parameters, extending the analysis for
ARX models under sub-Gaussian noise, and deriving sharp lower bounds for AR(n) processes.

Acknowledgments

This work was supported by the Swedish Research Council under contract number 2016-06079
(NewLEADS).

8



A FINITE-SAMPLE DEVIATION BOUND FOR STABLE AUTOREGRESSIVE PROCESSES

References
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