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Abstract

Bayesian methods provide an elegant framework
for estimating parameter posteriors and quan-
tification of uncertainty associated with proba-
bilistic models. However, they often suffer from
slow inference times. To address this challenge,
Bayesian Pseudo-Coresets (BPC) have emerged
as a promising solution. BPC methods aim to cre-
ate a small synthetic dataset, known as pseudo-
coresets, that approximates the posterior infer-
ence achieved with the original dataset. This ap-
proximation is achieved by optimizing a diver-
gence measure between the true posterior and
the pseudo-coreset posterior. Various divergence
measures have been proposed for constructing
pseudo-coresets, with forward Kullback-Leibler
(KL) divergence being the most successful. How-
ever, using forward KL divergence necessitates
sampling from the pseudo-coreset posterior, often
accomplished through approximate Gaussian vari-
ational distributions. Alternatively, one could em-
ploy Markov Chain Monte Carlo (MCMC) meth-
ods for sampling, but this becomes challenging
in high-dimensional parameter spaces due to slow
mixing. In this study, we introduce a novel ap-
proach for constructing pseudo-coresets by utiliz-
ing contrastive divergence. Importantly, optimizing
contrastive divergence eliminates the need for ap-
proximations in the pseudo-coreset construction
process. Furthermore, it enables the use of finite-
step MCMC methods, alleviating the requirement
for extensive mixing to reach a stationary distri-
bution. To validate our method’s effectiveness,
we conduct extensive experiments on multiple
datasets, demonstrating its superiority over exist-
ing BPC techniques. Our implementation is avail-
able at https://github.com/backpropagator/BPC-
CD

1 INTRODUCTION

In recent years, contemporary deep learning models have
demonstrated exceptional effectiveness in a wide array of
applications, spanning computer vision, natural language
processing, and speech analysis [Krizhevsky et al., 2017b,
Devlin et al., 2018, Amodei et al., 2016, He et al., 2016a,
Dosovitskiy et al., 2020, Radford et al., 2021]. Conven-
tional deep learning methods rely on one-time training of
models providing point estimates [Szegedy et al., 2013].
These point estimates are prone to overfitting and often
provide overconfident or under-confident outputs [Gaw-
likowski et al., 2023, Kabir et al., 2018]. This prohibits
the use of deep learning models in critical applications such
as medical, finance, etc [Ker et al., 2017, Cavalcante et al.,
2016]. Bayesian methods furnish a systematic framework
for parameter estimation and quantification of associated
uncertainty. Bayesian inference entails sampling from pa-
rameter posterior distributions using Markov Chain Monte
Carlo (MCMC) techniques [Robert et al., 1999, Robert and
Casella, 2011]. However, conducting inference based on
parameter posterior conditioned on the entire dataset is com-
putationally demanding, particularly as the dataset size, de-
noted by N , increases. The computational complexity of
MCMC methods scales with N as Θ(NS), where S denotes
the number of samples [Campbell and Broderick, 2018].
This complexity becomes prohibitively high for large N .
To mitigate this, one often resorts to using a random sub-
set of M ≪ N data points for likelihood computation at
each iteration [Bardenet et al., 2017, Korattikara et al., 2014,
Maclaurin and Adams, 2014, Welling and Teh, 2011, Ahn
et al., 2012, Bierkens et al., 2019, Pollock et al., 2020].
However, such approximations introduce errors and lead
to slow mixing of Markov chains [Johndrow et al., 2020,
Nagapetyan et al., 2017, Betancourt, 2015].

Bayesian coresets [Huggins et al., 2016] were introduced
to solve the aforementioned problem. Particularly, Huggins
et al. [2016] proposed to select a subset of original dataset
(also called a coreset) that uniformly approximates the log-
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likelihood of the original dataset. These coresets are signif-
icantly smaller in size than the original dataset, leading to
vastly improved sampling efficiency. Further, Campbell and
Beronov [2019] proposed to identify the coreset by mini-
mizing Kullback-Leibler (KL) divergence between full data
posterior and coreset posterior. However, most of such meth-
ods do not scale with data dimension [Manousakas et al.,
2020]. Particularly, the KL-divergence between the (opti-
mal) coreset posterior and true posterior increases with data
dimension. Meaning that for large data dimension, even
with the optimal coresets, the KL-divergence is far from
optima (zero), implying that the true posterior is not ap-
proximated correctly. However, recently few methods have
tried to overcome the scalability issue by using lightweight
coresets [Bachem et al., 2018].

The Bayesian Pseudo-Coreset (BPC) [Manousakas et al.,
2020] approach, as a distinct category of methods, has been
proposed to synthesise a smaller dataset from the original
one, as opposed to selecting a subset, which is the case with
coreset methods. The fundamental idea of BPC involves
solving an optimization problem over the data space, leading
to creation of a ‘pseudo’ dataset that appropriately approx-
imates the true posterior. The said optimization problem
pertains to minimization of a divergence metric between the
true posterior and pseudo-coreset posterior. Such a frame-
work removes the constraint for the pseudo-coresets to be a
subset of the original dataset. This additional degree of free-
dom aids in better optimization of the divergence measure.
Further, in addition to better approximation of true posterior,
pseudo-coreset also come with privacy benefits. Specifically,
since pseudo-coresets are not part of original dataset, one
can outsource these pseudo-coreset without revealing the
original dataset for an user to run inference. Manousakas
et al. [2020] also provided theoretical guarantees showing
pseudo-coresets are differentially private.

Recently, Kim et al. [2022a] analyzed the BPC construc-
tion under different divergence measures such as reverse-
KL and Wasserstein divergence. Their analysis revealed
that BPC methods under different divergence measures
are equivalent to their non-bayesian counterparts. These
non-bayesian frameworks are often referred to as ‘Dataset
Condensation’ or ‘Dataset Distillation’ [Zhao et al., 2021,
Zhao and Bilen, 2023, Cazenavette et al., 2022, Wang et al.,
2022, Nguyen et al., 2021]. In particular, Kim et al. [2022a]
showed that minimization of reverse-KL is equivalent to
gradient matching [Zhao et al., 2021] and minimization of
wasserstein measure is equivalent to matching training tra-
jectory [Cazenavette et al., 2022]. They also proposed to use
forward-KL for better pseudo-coreset construction due to its
ability to capture the support of the distribution, contrasting
with reverse-KL, which tends to focus on the distribution’s
modes. However, computing the gradient of forward-KL
requires sampling from the intractable pseudo-coreset pos-
terior. While this can be achieved using MCMC methods,

the extensive mixing time of MCMC in high-dimensional
parameter spaces renders this approach impractical. As a
remedy, Gaussian variational approximation around SGD
solutions was employed to simplify and expedite the sam-
pling process. However, the quality of such approximation
is unknown and remains a matter of concern. Here, we note
that the definition of contrastive divergence as presented in
Kim et al. [2022a] does not align with the original defini-
tion in Hinton [2002]. Specifically, while Kim et al. [2022a]
uses forward-KL divergence to arrive at an objective re-
ferred to as the contrastive divergence (Section 3.3 of Kim
et al. [2022a]), the original definition (in Hinton [2002]) in-
volves difference between two forward-KL divergences. In
this work, we resort to the original definition of contrastive
divergence as noted in Hinton [2002].

In our current work, we propose a novel approach: using
contrastive divergence instead of forward-KL divergence
for pseudo-coreset learning. This has two advantages: (1) It
eliminates the need for approximating the pseudo-coreset
posterior, enabling the straightforward use of MCMC meth-
ods, (2) The Markov chain used in this approach does
not require extensive mixing to reach a stationary distri-
bution; only a finite number of steps is needed. These ad-
vantages effectively address the challenges associated with
using forward-KL divergence. Furthermore, our rigorous
experiments demonstrate that our proposed method signifi-
cantly outperforms previous state-of-the-art BPC methods,
thereby confirming that the pseudo-coreset posterior using
contrastive divergence better approximates the true posterior.
Our contributions can be summarized as follows:

• We propose a new framework for the construction of
Bayesian Pseudo-Coreset using contrastive divergence.

• The proposed method avoids any approximation of
pseudo-coreset posterior and facilitates the use of finite
step MCMC methods during learning phase.

• Extensive experimentation reveals that our method sur-
passes state-of-the-art BPC methods by substantial mar-
gins, affirming the better approximation of the true
posterior using contrastive divergence.

2 RELATED WORK

2.1 BAYESIAN INFERENCE AND OPTIMIZATION

The objective of Bayesian methods is the model the parame-
ter posterior distribution of a probabilistic model. However,
apart from some simple models, the exact posterior distri-
butions are generally intractable [Campbell and Broderick,
2019]. In such scenarios, one often relies on inference tech-
niques like MCMC methods [Robert et al., 1999, Robert
and Casella, 2011] and Variational Inference (VI) [Jordan
et al., 1998, Wainwright et al., 2008]. Historically, these
inference techniques require model-specific tuning based



on the path-length parameters, step size [Neal et al., 2011a],
and the choice of the variational families [Jaakkola and Jor-
dan, 1997, Jordan et al., 1999]. Recent methods [Ranganath
et al., 2014, Kucukelbir et al., 2017, Hoffman et al., 2014]
have circumvented these issues by introducing a black box
approach that requires only basic specifications about the
model. For instance, the traditional variational inference
methods [Jaakkola and Jordan, 1997, Jordan et al., 1999]
relied on closed form gradients of the model [Ranganath
et al., 2014] and an approximate distribution for the poste-
rior of the data. Ranganath et al. [2014], Baydin et al. [2018],
Kucukelbir et al. [2017] addressed these issues by employ-
ing standard transformation over a multivariate Gaussian
distribution and used automatic differentiation techniques
to calculate the associated gradients. Similarly, for MCMC
methods like Hamiltonian Monte Carlo (HMC) [Neal et al.,
2011a] traditional practices involved manually tuning of
parameters like step size and path length to achieve accu-
rate posterior estimation. Hoffman et al. [2014] addressed
this challenge by automatically estimating both of these
parameters.

In many modern applications, these methods are required
to scale with the size of the datasets. The standard MCMC
algorithms are computationally expensive for large datasets,
and the sampling process scales linearly with the data size.
Recent works [Bardenet et al., 2017, Korattikara et al., 2014,
Maclaurin and Adams, 2014, Welling and Teh, 2011, Ahn
et al., 2012, Bierkens et al., 2019, Pollock et al., 2020],
have tried to mitigate the computational cost associated
with inference models by considering only a random subset
of data points during MCMC iterations. One of the initial
studies in this direction has been conducted by Welling and
Teh [2011] where the authors proposed to use stochastic
gradient langevin dynamics (SGLD). This iterative learn-
ing algorithm utilizes mini-batches of dataset for Bayesian
inference. However, unlike other MCMC methods, their ap-
proach often leads to a slow mixing rate. Ahn et al. [2012]
addressed this issue by sampling from the Gaussian approxi-
mation of posterior for a high mixing rate and mimicking the
behavior of SGLD using a pre-conditioner matrix for a slow
mixing rate. However, Korattikara et al. [2014], Bardenet
et al. [2014] have shown that such a sampling approach of-
ten leads to a stationary distribution that can have bounded
errors under strong conditions of rapid mixing [Maclau-
rin and Adams, 2014]. In contrast, they proposed a new
accept/reject strategy to select a subset of the dataset for
Bayesian inference. On a similar line, Maclaurin and Adams
[2014] proposed to use a collection of Bernoulli latent vari-
ables to select a subset of the dataset for likelihood estima-
tion. Bierkens et al. [2019], Pollock et al. [2020] have further
proposed to use a zig-zag process and quasi-stationary distri-
bution along with the subsampling approaches for bayesian
inference.

2.2 BAYESIAN CORESETS

Bayesian coresets [Huggins et al., 2016, Campbell and Brod-
erick, 2018, Campbell and Beronov, 2019, Campbell and
Broderick, 2019, Zhang et al., 2021, Naik et al., 2022, Chen
et al., 2022] present an alternative strategy to address afore-
mentioned challenges by selecting a small weighted subset
of the original dataset which can closely approximate the
posterior of the full dataset [Zhang et al., 2021, Huggins
et al., 2016]. The idea was introduced in Huggins et al.
[2016], where a weighted subset of original data was se-
lected to approximate the log-likelihood of the entire dataset
up to some multiplicative error over the parameter space.
However, the subset produced by such a technique under-
estimates the posterior distribution and can result in large
approximation errors for some models regardless of the
coreset size. Campbell and Broderick [2018] addressed this
issue using greedy iterative geodesic ascent (GIGA), that
optimally scales the log-likelihood of the coreset to better ap-
proximate the entire log-likelihood of the dataset. It further
provided a uniform bounded error for all the models. To fur-
ther enhance the scalability, Campbell and Broderick [2019]
tackled the model and data-specific assumptions made in
prior work regarding coreset construction. They constructed
Bayesian coreset by solving a sparse vector sum based ap-
proximation using frank-wolfe [Frank et al., 1956] based
solvers. Recent works [Zhang et al., 2021, Naik et al., 2022,
Chen et al., 2022] have focused on improving the speed of
coreset construction using accelerated optimization meth-
ods, quasi-newton refinement, and sparse-hamiltonian flows.
However, since the KL divergence between the posteriors of
the optimal coreset and the original dataset increases with
the data dimensionality [Manousakas et al., 2020], these
methods do not easily scale up in high-dimensions.

2.3 BAYESIAN PSEUDO-CORESET

Manousakas et al. [2020] proposed to use a collection of
synthetic data to scale the Bayesian inference to high di-
mensional datasets. Particularly, they frame the problem as
divergence minimization between the posteriors associated
with the synthetic and the original dataset. The synthetic
set generated through this technique is called ‘Bayesian
Pseudo-Coreset’ (BPC). Compared to Bayesian coresets,
these methods scale more efficiently with data dimensions
and yield a more accurate posterior approximation.

Manousakas et al. [2020] formalized the given problem by
minimizing the reverse-KL divergence between the posterior
of original data and the posterior of synthetic data. On simi-
lar lines, Kim et al. [2022a] demonstrated that other diver-
gence metrics, such as Wasserstein distance and forward-KL
divergence, can be used to generate pseudo-coreset. In con-
trast to reverse-KL, which primarily focuses on the modes
of the distributions, forward-KL provides a mechanism to



better capture the support of the posterior distribution. To
efficiently calculate the forward-KL divergence Kim et al.
[2022a] used a Gaussian variational approximation of the
posterior distribution. However, the quality of such an ap-
proximation and its impact on the overall performance of
the pseudo-coreset is unknown. Further, computing the gra-
dient of forward-KL requires sampling from an intractable
posterior of pseudo-coreset using MCMC methods, which
is not straightforward in practice.

2.4 CORESETS AND DATASET CONDENSATION

While Bayesian coreset focuses on selecting data points to
facilitate Bayesian inference, coreset selection strategies
have been proposed for other algorithms like geometric
approximation [Agarwal et al., 2005], mixture models [Feld-
man et al., 2011], K-means clustering [Feldman and Lang-
berg, 2011, Feldman et al., 2020, Bachem et al., 2016]
and DP means [Bachem et al., 2015]. Similarly, for deep
learning models, Mirzasoleiman et al. [2020], Killamsetty
et al. [2021a,b] have introduced subset selection techniques
that leverage gradient matching and meta-learning algo-
rithms. Recent works [Welling, 2009, Castro et al., 2018, Re-
buffi et al., 2017, Belouadah and Popescu, 2020, Sener and
Savarese, 2017, Farahani and Hekmatfar, 2009], have further
proposed strategies to choose a representative and diverse
set of samples from the original dataset. These methods
aim to create a generic subset by removing redundant data
points. Herding-based coreset methods [Welling, 2009, Cas-
tro et al., 2018, Rebuffi et al., 2017, Belouadah and Popescu,
2020] select such samples by minimizing the distance be-
tween the feature centroids of the coreset, and the original
dataset. While K-center-based coreset techniques [Sener
and Savarese, 2017, Farahani and Hekmatfar, 2009, Guo
et al., 2022] pick the most diverse and representative sam-
ples by optimizing a submodular function [Farahani and
Hekmatfar, 2009]. Contrary to K-center and herding-based
coreset selection methods, forgetting-based coreset [Toneva
et al., 2018] removes the easily forgettable samples from
the training dataset.

Rather than selecting a subset of data points from the train-
ing set, dataset condensation methods aim to generate a
synthetic set that emulates the characteristics of the original
dataset. For example, in gradient based dataset condensa-
tion techniques [Zhao et al., 2021, Yu et al., 2023, Lee
et al., 2022, Jiang et al., 2022] the synthetic samples are
generated by aligning the gradients of a model trained us-
ing original and synthetic datasets. Similarly, meta-learning
based methods [Wang et al., 2018, Deng and Russakovsky,
2022, Nguyen et al., 2021, Loo et al., 2022, Zhou et al.,
2022] generate these synthetic samples by matching the
validation performance of a model trained using the entire
dataset with the performance of a model trained using the
synthetic set. Cazenavette et al. [2022], Li et al. [2022], Du

et al. [2023] propose generating the synthetic dataset using
long-horizon trajectories, ensuring that the models learn
similar trajectories during optimization. While distribution
matching methods [Zhao and Bilen, 2023, Wang et al., 2022,
Zhao and Bilen, 2022, Zhao et al., 2023] generate a con-
densed synthetic set with a similar feature distribution as
the original dataset. Recent works [Liu et al., 2023, Zhang
et al., 2023, Cazenavette et al., 2023] have further focused
on improving the performance and computational complex-
ity of existing dataset condensation techniques by using
representative samples from the training set, model aug-
mentation techniques, and generative model for learning the
synthetic set. While dataset condensation and BPC might
seem to do the same, they are fundamentally different from
each other. One can look at Bayesian Pseudo-Coresets as
bayesian counterparts of dataset condensation methods. We
provide detailed account of differences between dataset con-
densation methods and BPC methods in Appendix.

3 PROPOSED METHODOLOGY

3.1 BAYESIAN PSEUDO-CORESETS

Consider a dataset (x,y) = {(xi, yi)}ni=1 consisting of n
data points. Now consider a synthetic (learnable) dataset
(x̃, ỹ) = {x̃i, ỹi}mi=1 such that y and ỹ share the same label
space and m≪ n. Let, θ ∈ Θ be the parameter of a discrim-
inative / classification model. Then the parameter posteriors
corresponding to original and synthetic data, π(θ|x) and
π(θ|x̃) are given by

πx ≜ π(θ|x) = π0(θ)

Z(x)
exp

(
n∑

i=1

log π(yi|xi, θ)

)
(1)

πx̃ ≜ π(θ|x̃) = π0(θ)

Z(x̃)
exp

(
m∑
i=1

log π(ỹi|x̃i, θ)

)
(2)

=
π0(θ)

Z(x̃)
exp (−E(x̃, θ)) (3)

where,

Z(x) =

∫
Θ

π0(θ) exp

(
n∑

i=1

log π(yi|xi, θ)

)
dθ (4)

Z(x̃) =

∫
Θ

π0(θ) exp (−E(x̃, θ))dθ (5)

are appropriate normalizing constants. Here, π0(θ) is the

prior distribution and E(x̃, θ) = −
m∑
i=1

log π(ỹi|x̃i, θ) is the

sum of negative log-likelihoods which can be treated as a
generic potential or energy function. Since n is often very
large, the posterior estimation using πx is computationally
expensive and infeasible. However, an appropriate approxi-
mation such as πx̃ where m≪ n, allows one to overcome



this hurdle. In particular, this approximation is carried out
by solving the following optimization problem:

x̃∗ = argmin
x̃

D (πx, πx̃) (6)

where, D(·, ·) is a divergence measure between two distri-
butions. Recently, Kim et al. [2022a] showed the results for
above optimization problem under different divergence met-
rics. Specifically, they analyzed the results with reverse-KL
and wasserstein divergence; consequently drawing equiv-
alence with dataset condensation methods like gradient
matching [Zhao et al., 2021] and MTT [Cazenavette et al.,
2022]. Further, they propose an alternative solution by using
forward-KL divergence as it encourages a model to cover
the entire target distribution in contrast to reverse-KL which
encourages mode capturing models. The gradient of the
forward-KL divergence, as derived in Kim et al. [2022a], is
expressed as follows:

∇x̃DKL (πx||πx̃) = Eπx̃
[−∇x̃E(x̃, θ)] +∇x̃Eπx [E(x̃, θ)]

(7)

This gradient computation necessitates the calculation of
expectations with respect to the probability distributions πx

and πx̃. However, the presence of intractable partition func-
tions (Z(x) and Z(x̃)) poses challenges in efficiently sam-
pling from these posterior distributions. One can resort to
MCMC methods such as langevin dynamics or hamiltonian
monte-carlo for sampling, however, due to large dimension
of Θ-space, the mixing-time of these methods is very large
and in-efficient in practice. To overcome this issue, Kim
et al. [2022a] employs gaussian variational approximations
for these posteriors, rendering the sampling process compu-
tationally feasible. Specifically, gaussian distributions are
used, centered around parameters obtained from Stochastic
Gradient Descent (SGD) trajectories of x and x̃ (cf. [Kim
et al., 2022a] for details).

In practice, since m (number of samples in pseudo-coreset)
is generally very small, the SGD trajectories of x̃ might
overfit, leading to erroneous approximations. Hence, it can
be seen that there is a clear trade-off between ‘posterior
approximation quality’ and ‘computational efficiency’ in
the previous methods (cf. Table 7 for quantitative numbers).
Therefore, it is preferable to bypass such approximations
and sample directly from the exact posteriors. In this work,
we propose to work with contrastive divergence [Hinton,
2002] instead of forward-KL to construct the pseudo-coreset.
Specifically, using contrastive divergence leads to a loss ob-
jective where πx̃ can be used as it is without any approxima-
tion. The key idea behind this is that instead of minimizing
forward-KL, contrastive divergence minimizes difference
between two forward-KL terms, that results in cancella-
tion of expectation w.r.t πx̃ allowing us to circumvent this
approximation. We describe this in detail in next section.

3.2 CONTRASTIVE DIVERGENCE FOR BPC

As mentioned earlier, we propose to work with contrastive
divergence instead of forward-KL for construction of
pseudo-coresets. The concept of contrastive divergence was
initially introduced by seminal work in Hinton [2002].The
central premise behind contrastive divergence hinges on a
straightforward insight: whereas minimizing forward KL di-
vergence necessitates a term that involves sampling from πx̃,
minimizing the difference between two forward KL diver-
gences leads to the nullification of this term. More explicitly,
the contrastive divergence is defined as:

LCD = DKL(πx||πx̃)−DKL(Π
k
Eπx||πx̃) (8)

where, Πk
E(·) is an MCMC transition kernel for πx̃ and

Πk
Eπx represents k sequential MCMC transitions starting

from πx. Here, we use transition kernel in the context of
Markov process. Particularly, a one-step transition kernel is
a map that takes a state as input and generates the next state
after one step. Similarly, a k-step transition kernel takes
a state as input and generates the state after k-steps. This
is akin to the role of transition matrix in markov chains
with finite states. In context of the proposed method, the
k-step transition kernel takes a state sampled from πx, and
generates a state after k-steps. Additionally, we note that
Eq. 8 is minimized to zero only if πx = πx̃. This is a well
known result noted in Hinton [2002] (cf Page 4 of Hinton
[2002]).

For brevity, let us denote π̄x as Πk
Eπx. As shown in Hinton

[2002], the gradient of the above objective is approximately
given by 1:

∇x̃LCD = Eπx [∇x̃E(x̃, θ)]− Eπ̄x [∇x̃E(x̃, θ)] (9)

It is worth noting that the gradient estimation in the above
equation does not necessitate sampling from πx̃. Instead, it
calls for sampling from πx and π̄x. In this context, we can
employ a variational posterior to approximate πx and use
MCMC sampling techniques (e.g. langevin dynamics [Bo-
hdal et al., 2020]) starting from πx to sample from π̄x. No-
tably, unlike in Eq. 7, the MCMC sampling utilized here
only needs to run for finite k steps, alleviating the require-
ment for substantial Markov chain mixing.

In particular, we use gaussian variational posterior (qx) to
approximate πx. Then, a k-step MCMC starting from qx

1Please note that the signs in this expression are opposite to
those presented in Kim et al. [2022a], primarily due to differences
in the treatment of the energy function. In Kim et al. [2022a], the
energy function (referenced as Eq. 2 in their paper) is considered
positive, whereas in our work, we adopt a convention where the
energy function (as represented in Eq. 3 of our paper) is negative.
This choice is made for convenience, aligning with the conven-
tion in physics literature where lower energy states are typically
considered stable.



should be used as a variational substitute for π̄x:

qx(θ) = N (θ; θx,Σx), q̄x(θ) = Πk
E qx(θ) (10)

where, θx is the MAP solution computed for x. Here, one
can note that making an approximation for πx is enough
unlike previous methods where additional approximations
for πx̃ is also required. Hence, the final gradient estimate is
obtained as

∇x̃LCD ≈ Eqx [∇x̃E(x̃, θ)]− Eq̄x [∇x̃E(x̃, θ)] (11)

≈ ∇x̃
1

N

N∑
j=1

[
E
(
x̃, θx +Σ1/2

x ε(j)x

)
− E

(
x̃,sg

(
θ̄(j)
))]

(12)

where, sg(·) denotes stop-gradient operator, ε(j)x ∼ N (0, I)
and θ̄(j) is obtained via running k-step MCMC starting from(
θx +Σ

1/2
x ε

(j)
x

)
.

Here, we note that one can theoretically learn Σx by treating
it as a learnable parameter. However, this would require
gradient of determinant of the covariance matrix. Given
the high dimensional parameter space, this operation would
lead to computational inefficiencies. Hence, we treat it as a
hyperparameter and keep it fixed.

Further, for computational efficiency, we assess the parame-
ter posterior with x using expert trajectories similar to Kim
et al. [2022a]. In essence, expert trajectories represent se-
quences of parameters obtained while training a model on
the dataset (x, y). Each of these sequences is termed as ‘pa-
rameter trajectory,’ and the collection of these trajectories,
acquired through various training instances, is known as ‘ex-
pert trajectories.’ This eliminates the need to compute MAP
solutions for x (θx) at each training step. During training,
we randomly pick a parameter from these trajectories to
calculate the objective function.

4 EXPERIMENTS AND RESULTS

4.1 EVALUATION DETAILS

We evaluate our method both quantitatively and qualita-
tively on several BPC-benchmark datasets with different
compression ratios, i.e., the number of images generated per
class (ipc). In particular, we perform our experiments on
six different datasets, namely, CIFAR10 [Krizhevsky and
Hinton, 2009], SVHN [Sermanet et al., 2012], MNIST [Le-
Cun et al., 1998], FashionMNIST [Xiao et al., 2017], CI-
FAR100 [Krizhevsky and Hinton, 2009] and Tiny Imagenet
(T-Imagenet) [Le and Yang, 2015]. All the experiments per-
form multi-class classification tasks with ipc=1, 10, and
50 which is in line with previous baselines.We employ
Langevin dynamics [Neal et al., 2011b, Teh et al., 2003]
during training as well as inference and report accuracy

(Acc) and negative log-likelihood (NLL) with respect to the
ground truth labels. For our primary experiments, we use
a CNN architecture (ConvNet) exactly as described in the
previous works [Kim et al., 2022b, Manousakas et al., 2020,
Cazenavette et al., 2023] (cf. Appendix for details) for a fair
comparison.

Further, we assess the robustness of the BPC methods on
out-of-distribution dataset and against adversarial attacks in
Section 4.4. We also examine the cross-architecture perfor-
mance of the proposed method in Section 4.5. Next, since
bayesian methods are often sensitive to the number of pa-
rameters being sampled from the posterior, we observe the
effect of number of parameters on the proposed method and
compare it with previous BPC baselines in Section 4.6. Fur-
ther, we provide an ablation study of the proposed method
against different hyperparameters in Section 4.7. Lastly, we
provide a quantitative comparison of quality of posterior
parameter samples in Section 4.8. We refer the reader to
Appendix for details regarding these experiments.

4.2 BASELINES AND COMPARISONS

We consider the state-of-the-art BPC methods using reverse-
KL (BPC-rKL), forward-KL (BPC-fKL), and Wasserstein
distance (BPC-W) [Kim et al., 2022a, Manousakas et al.,
2020] for comparison. Further comparison with other core-
set methods and dataset condensation is provided in the
Appendix. All the baselines are implemented using the offi-
cial codebase provided by respective methods if available,
otherwise, we directly take the reported numbers. In cases,
neither the codebase nor the numbers are reported, we ex-
clude them from our tables.

4.3 RESULTS AND COMPARISON

Table 1 presents the results of the comparative analysis be-
tween our approach and other BPC baselines. We observe
that the proposed method significantly outperforms all the
BPC baselines by large margins. For instance, we observe
an improvement of 11.3%, 6.54%, and 21.01% in accuracy
for CIFAR10 with ipc values of 1, 10, and 50, respectively.
Additionally, there is a decrease of 0.1 and 0.01 points in
negative log-likelihood for ipc values of 1 and 10, respec-
tively, in comparison to the best-performing BPC baseline.
Similarly, on SVHN, we notice an improvement in accu-
racy and negative log-likelihood. Specifically, we observe
gains of 18.72%, 6.83% in accuracy and reduction of 0.06,
0.03 point in negative log-likelihood for ipc 1, 10 respec-
tively, compared to the BPC counterparts. A similar trend
can be seen for MNIST and FMNIST as well 2. We attribute

2We observe that the proposed method has smaller variance
compared to other methods. Upon analysis, we attribute this be-
havior to the rapid decrease in the gradient of the energy function
((∇θE(θ, x̃)) with respect to parameters in langevin dynamics.



Table 1: Comparison of the proposed method with BPC baselines. The results are noted in the form of (mean ± std. dev)
where we have obtained test accuracy over five independent runs on the pseudo-coreset. The best performer across all
methods is denoted in bold (x± s).

ipc Ratio(%) BPC-rKL(sghmc) BPC-W (sghmc) BPC-fKL (hmc) BPC-fKL (sghmc) Ours
Acc(↑) NLL(↓) Acc(↑) NLL(↓) Acc(↑) NLL(↓) Acc(↑) NLL(↓) Acc(↑) NLL(↓)

1 0.017 74.80± 1.17 1.90± 0.01 83.59± 1.49 1.91± 0.02 90.46± 1.50 1.54± 0.03 82.98± 2.20 1.87± 0.03 93.42± 0.09 1.53± 0.01

10 0.17 95.27± 0.17 1.53± 0.01 91.72± 0.55 1.52± 0.01 89.80± 0.82 1.52± 0.01 92.05± 0.42 1.51± 0.02 97.71± 0.24 1.57± 0.02MNIST
50 0.83 94.18± 0.26 1.36± 0.02 93.72± 0.55 1.48± 0.02 95.58± 1.63 1.37± 0.02 93.63± 1.80 1.36± 0.02 98.91± 0.22 1.36± 0.01

1 0.017 70.53± 1.09 2.47± 0.02 72.39± 0.87 2.10± 0.01 78.24± 1.02 1.95± 0.04 72.51± 2.53 2.30± 0.02 77.29± 0.50 1.90± 0.03

10 0.17 78.81± 0.17 1.64± 0.01 83.69± 0.51 1.64± 0.03 82.06± 0.44 1.53± 0.02 83.29± 0.55 1.54± 0.03 88.40± 0.21 1.56± 0.01FMNIST
50 0.83 76.97± 0.59 1.48± 0.02 74.41± 0.48 1.52± 0.03 82.40± 0.35 1.32± 0.02 74.82± 0.52 1.47± 0.02 89.47± 0.06 1.30± 0.02

1 0.014 18.34± 1.79 3.01± 0.02 33.52± 1.15 2.89± 0.01 48.02± 5.62 2.44± 0.03 21.48± 6.58 2.57± 0.02 66.74± 0.09 2.38± 0.04

10 0.14 60.68± 5.07 2.00± 0.01 74.75± 1.27 1.95± 0.02 65.64± 2.92 2.13± 0.01 75.49± 0.84 1.84± 0.01 82.32± 0.56 1.81± 0.01SVHN
50 0.7 78.27± 0.62 1.89± 0.01 79.49± 0.54 1.90± 0.01 79.60± 0.53 1.86± 0.01 77.08± 1.80 1.72± 0.01 88.41± 0.12 1.88± 0.02

1 0.02 21.62± 0.83 2.57± 0.01 29.34± 1.21 2.14± 0.03 35.57± 0.95 1.97± 0.03 29.30± 1.10 2.10± 0.03 46.87± 0.20 1.87± 0.02

10 0.2 37.89± 1.54 2.13± 0.02 48.90± 1.72 1.73± 0.02 43.07± 1.06 1.89± 0.02 49.85± 1.37 1.73± 0.01 56.39± 0.70 1.72± 0.03Cifar10
50 1 37.54± 1.32 1.93± 0.03 46.17± 0.67 1.62± 0.02 50.92± 1.49 1.70± 0.03 42.30± 2.87 1.54± 0.01 71.93± 0.17 1.57± 0.03

1 0.2 3.56± 0.04 4.69± 0.02 12.19± 0.22 4.20± 0.01 7.57± 0.54 4.25± 0.04 12.07± 0.16 4.27± 0.02 23.97± 0.11 4.01± 0.02Cifar100
10 2 - - - - - 28.42± 0.24 3.14± 0.02

1 0.2 - - - - - 8.39± 0.07 4.72± 0.01T-ImageNet
10 2 - - - - - 17.82± 0.39 3.64± 0.05

(a) Images generated with ipc=1
for MNIST

(b) Images generated with
ipc=10 for MNIST

(c) Images generated with ipc=1
for FMNIST

(d) Images generated with
ipc=10 for FMNIST

(e) Images generated with ipc=1
for SVHN

(f) Images generated with ipc=10
for SVHN

(g) Images generated with ipc=1
for CIFAR10

(h) Images generated with
ipc=10 for CIFAR10

Figure 1: Visualizations of pseudo-coreset generated from our method with one image per class (top) and ten images per
class (bottom) for MNIST, FMNIST, SVHN and CIFAR10. It can be seen that the class labels are identifiable to a large
extent.

this boost in performance to the flexible formulation of the
proposed method.

We present the qualitative visualizations for MNIST, FM-
NIST, SVHN, and CIFAR10 datasets with 1 image per class
and 10 image per class in Fig. 1. It can be seen that the
constructed pseudo-coreset is identifiable but inherits some
artifacts due to the constraints on the dataset size. As the
number of images per class increases, the model can induce
more variations across all the classes and thus produce a
diverse pseudo-coreset. Additional qualitative visualizations

This indicates that the sampled parameter stays near the initial
parameter value from the expert trajectory, which is based on con-
fident predictions derived from SGD trajectories trained on the full
dataset. Therefore, the reduced variance observed is likely a result
of this confidence.

for pseudo-coreset generated with 50 images per class on
CIFAR100 and T-ImageNet dataset are presented in the
Appendix.

4.4 RESULTS ON OUT OF DISTRIBUTION (OOD)
DATASET

We present the results of the proposed method on out-of-
distribution (OOD) dataset in Table 2. We use CIFAR10-
C [Hendrycks and Dietterich, 2019] dataset for this exper-
iment. In particular, we sample the parameters from the
pseudo-coreset posterior obtained using clean CIFAR10
(ipc=10) and perform inference on the corrupted CIFAR10-
C, which consists of CIFAR10 images afflicted with differ-
ent types of corruption including Gaussian Blur, Gaussian



Noise, etc. It is evident from Table 2 that our method demon-
strates robustness to various types of corruption and exhibits
superior performance compared to other baselines. Notably,
for corruptions like Gaussian Blur, our method achieves
a 1.63% increase in accuracy and a 0.17-point reduction
in negative log-likelihood compared to the best-performing
BPC baseline. Likewise, for JPEG Compression, Zoom Blur,
and Defocus Blur, our method yields an improvement of
0.07%, 2.08%, and 0.43% in accuracy, along with a reduc-
tion of 0.14, 0.05, and 0.06 points in negative log-likelihood,
respectively. The robustness of the proposed method to dif-
ferent forms of corruption highlights its ability to provide
a better approximation of underlying posterior distribution
when compared to other baselines.
We further test all the BPC methods against ℓ∞ adversarial
attack [Croce et al., 2021]. We report the clean accuracy
and robust accuracy respectively for each method. Our ob-
servations could be found in Table 3. We see that under ℓ∞
attack, the performance of all BPC methods drop signifi-
cantly. This is perhaps due to the fact that these methods
don’t explicitly take robustness into account while construct-
ing pseudo-coresets. However, we observe even under per-
formance drop, our method gives best robust accuracy as
compared to other BPC methods.

4.5 RESULTS ON CROSS-ARCHITECTURE
EXPERIMENTS

Here, we present the cross-architecture results pertaining
to various BPC methods. In these experiments, we con-
struct the pseudo-coreset using the said ConvNet model,
while during inference, we use different architectures such
as ResNet [He et al., 2016b], VGG-Net [Simonyan and
Zisserman, 2014] and AlexNet [Krizhevsky et al., 2017a]
for evaluation. We perform these experiments for CIFAR10
(ipc = 10). The results of the cross-architecture experiments
are presented in Table 4. It can be seen that previous BPC
methods fail to generalize across different network architec-
tures, whereas our method demonstrates the ability to adapt
to various architectures. For instance, the performance of
BPC-fKL and BPC-rKL drop by 34.19% and 24.42% re-
spectively on ResNet, resulting in random predictions with
an accuracy of almost 10%, whereas our method observes a
drop of only 14.74% while giving an accuracy of 41.65%.

4.6 EFFECT OF DIFFERENT NUMBER OF
PARAMETERS

Lastly, we analyze the performance of BPC methods
across differently parameterized networks. Specifically,
we generate pseudo-coresets for CIFAR10 (ipc=10) by
employing ConvNets with different parameter configura-
tions. These configurations encompass ConvNets with dif-
ferent depth and width. We also conduct a comparative
analysis with other deep learning architectures, including

AlexNet [Krizhevsky et al., 2017a], VGG11 [Simonyan and
Zisserman, 2014], and ResNet [He et al., 2016b]. Bayesian
inference techniques generally encounter scalability issues
when dealing with large parametric networks [Jospin et al.,
2022]. This experiment is conducted to ascertain the impact
of both large and small architectures on the performance of
pseudo-coresets.

The results for different parameterized architectures are
presented in Table 5. Here, CN-DxWy denotes a ConvNet
architecture with a depth of ‘x’ and width of ‘y’. It is evident
from the results that the performance of all BPC methods
declines as the number of parameters in the architectures
increases. However, our model exhibits relatively better
performance in comparison to other methods. Specifically,
while our method demonstrates a 7.72% decrease in perfor-
mance for the ResNet architecture, other BPC baselines such
as BPC-fKL, BPC-W, and BPC-rKL experience declines of
approximately 14.75%, 16.06%, and 12.91%, respectively.
This observation underscores the greater tolerance of our
method to large parametric models when compared to other
baselines. We again highlight that the performance gain
achieved by our proposed method can be attributed to the
current formulation, which can generate better approxima-
tion to the true posterior.

4.7 ABLATION STUDY

Next, we provide an empirical analysis of the effect of differ-
ent hyperparameters on the proposed method. Particularly,
we observe that there are two key hyperparameters that af-
fect the performance of the proposed method: the covariance
matrix Σx (see Eq. 10) and the number of MCMC steps k
(see Eq. 8). Hence, we ablate our method against these two
important hyperparameters and report the results in Table 6.

Further, we verify our claim that the proposed method pro-
vides a good trade-off between performance and compu-
tational cost. Particularly, as seen in Eq. 7, one can resort
to MCMC methods to evaluate the second term of the said
expression, however, since this can be computationally ex-
pensive in the high-dimensional parameter space, we resort
to using contrastive-divergence that allows one to use finite
step MCMC steps making the proposed method compu-
tationally less expensive. To verify this, we compare our
method against pseudo-coresets obtained using Eq. 7 along-
with MCMC methods. Particularly, we employ HMC [Chen
et al., 2014] and Kronecker-Factorised Laplace (KFL) [Rit-
ter et al., 2018] for this purpose. Our observations are noted
in Table 7.We compare GPU Memory usage, Iteration time
and Accuracy for each of these method against ours. We
see that both HMC and KFL consume more memory and
time compared to our method. However, HMC provides
marginally better result and KFL gives slightly worse result
compared to our method. This verifies our claim.



Table 2: Comparison of the proposed method with BPC baselines for the performance on out-of-distribution data. The
classifier model is trained on pseudo-coresets generated using CIFAR10. However, the model is evaluated on CIFAR10-C
dataset with different types of corruption.

Corruption BPC-rKL (sghmc) BPC-W (sghmc) BPC-fKL (hmc) BPC-fKL (sghmc) Ours
Acc(↑) NLL(↓) Acc(↑) NLL(↓) Acc(↑) NLL(↓) Acc(↑) NLL(↓) Acc(↑) NLL(↓)

Gaussian Blur 31.02± 2.65 2.13± 0.77 35.66± 1.21 2.04± 0.12 34.76± 1.86 1.89± 0.04 39.73± 2.72 1.94± 0.05 41.36± 0.72 1.73± 0.83
Gaussian Noise 25.49± 1.89 2.28± 0.08 33.21± 0.89 2.11± 0.03 36.70± 1.01 1.86± 0.02 35.71± 2.29 2.00± 0.05 38.01± 1.26 1.82± 0.11
JPEG Compression 30.40± 0.90 2.13± 0.02 26.33± 1.34 2.26± 0.04 36.20± 1.92 1.85± 0.03 37.26± 2.87 1.95± 0.06 37.33± 0.19 1.71± 0.03
Snow 26.85± 1.71 2.20± 0.07 37.50± 3.50 1.93± 0.08 33.99± 1.91 1.91± 0.03 35.68± 2.71 2.00± 0.07 37.84± 0.64 1.91± 0.05
Impulsive Noise 28.39± 1.48 2.15± 0.06 36.71± 1.93 1.96± 0.05 33.81± 1.58 1.94± 0.02 38.26± 2.34 1.92± 0.05 37.98± 2.15 1.89± 0.07
Zoom Blur 31.74± 1.24 2.09± 0.04 36.22± 2.08 1.99± 0.05 31.30± 3.64 1.98± 0.08 35.05± 2.90 2.04± 0.07 38.30± 0.77 1.93± 0.13
Pixelate 28.98± 2.26 2.19± 0.07 27.98± 1.77 2.20± 0.05 35.59± 1.94 1.88± 0.03 39.14± 3.15 1.93± 0.06 38.97± 1.51 1.92± 0.07
Speckle Noise 29.88± 0.59 2.09± 0.02 33.33± 2.18 2.05± 0.05 34.37± 2.02 1.90± 3.57 40.54± 1.93 1.89± 0.04 42.66± 0.83 1.95± 0.03
Defocus Blur 27.57± 1.31 2.20± 0.05 33.80± 4.21 2.09± 0.11 33.60± 2.93 1.93± 0.06 36.72± 3.68 1.99± 0.08 37.15± 1.03 1.87± 0.04
Motion Blur 17.38± 2.51 2.73± 0.14 35.22± 3.35 2.01± 0.08 34.33± 1.89 1.92± 0.04 35.24± 3.30 2.01± 0.05 37.06± 0.49 1.92± 0.04

Table 3: Comparison of the proposed method with BPC baselines for the performance against ℓ∞ attack on CIFAR10 with
10 ipc.

BPC-rkl BPC-W BPC-fkl Ours
Clean Acc Robust Acc Clean Acc Robust Acc Clean Acc Robust Acc Clean Acc Robust Acc

37.89± 1.54 13.54± 1.21 48.90± 1.72 15.62± 0.92 49.85± 1.37 19.30± 1.39 56.39± 0.70 22.81± 1.28

Table 4: Cross-architecture generalization analysis of
BPC methods.

ConvNet ResNet VGG AlexNet

Ours 56.39± 0.70 41.65± 1.03 47.51± 0.89 30.58± 1.43

BPC-fKL(hmc) 44.34± 1.11 10.15± 0.21 10.43± 0.33 12.21± 0.18

BPC-rKL(sghmc) 34.48± 0.48 10.06± 0.08 10.26± 0.35 11.02± 0.12

Table 5: Performance comparison of the proposed method and other
BPC baselines for different parameterized architectures.

Methods CN-D3W128 CN-D3W256 CN-D5W128 AlexNet VGG11 ResNet
320,010 1,229,834 596,490 1,872,202 9,231,114 11,173,962

Ours 56.39± 0.70 55.93± 1.30 56.01± 0.69 52.88± 1.39 49.26± 2.33 48.67± 0.52
BPC-rKL (sghmc) 37.89± 1.54 35.82± 1.88 35.92± 1.88 32.60± 1.45 27.66± 0.73 24.98± 1.53
BPC-W (sghmc) 48.90± 1.72 43.71± 1.42 46.01± 0.92 39.01± 0.51 35.11± 1.82 32.84± 1.38
BPC-fKL (hmc) 49.85± 1.37 45.87± 0.78 47.92± 1.27 41.22± 1.62 37.05± 1.24 35.10± 2.03

Table 6: Ablation study of the proposed method against
different hyperparameters on CIFAR10 with 10 ipc.

Ablation on Σx

Σ
1/2
x = 0.01I Σ

1/2
x = 0.001I Σ

1/2
x = 0.0001I

Acc NLL Acc NLL Acc NLL

50.18± 0.50 1.94± 0.05 56.39± 0.70 1.72± 0.03 54.18± 0.23 1.86± 0.02

Ablation on k (or L in Algorithm 1)

k = 10 k = 50 k = 100
Acc NLL Acc NLL Acc NLL

43.77± 0.98 1.78± 0.02 51.27± 1.01 1.78± 0.02 56.39± 0.70 1.72± 0.03

Table 7: Efficiency and Accuracy comparison of the pro-
posed method against pseudo-coresets obtained via direct
MCMC estimation of second term of Eq. 7 on CIFAR10
with 10 ipc.

HMC [Chen et al., 2014] KFL [Ritter et al., 2018] Ours
GPU (GB) Time (s) Acc GPU (GB) Time (s) Acc GPU (GB) Time (s) Acc

52.67 13.82 57.09 61.05 20.17 53.98 38.28 0.75 56.39

4.8 COMPARISON OF POSTERIOR QUALITY

Lastly, we provide a quantitative comparison for the quality
of posteriors obtained using our method and other baselines
to substantiate our claims. Note that the true parameter poste-
riors are intractable and are generally unknown for complex
deep networks. Hence, it is difficult to make comparisons
against such gold standard posterior for complex networks.

Table 8: Comparison of ECE (↓) and Brier Score (↓) for the
proposed method against other baselines

BPC-rkl BPC-W BPC-fkl Ours
ECE Brier Score ECE Brier Score ECE Brier Score ECE Brier Score

0.1183± 0.0038 0.7988± 0.0038 0.1457± 0.0110 0.8030± 0.0049 0.1538± 0.0049 0.7231± 0.0049 0.1092± 0.0052 0.6755± 0.0042

However, to provide a comprehensive understanding of the
quality of our obtained posteriors, we report the Expected
Calibration Error (ECE) [Naeini et al., 2015] and Brier
score [Brier, 1950]. These metrics, akin to those presented
in Table 6 of Kim et al. [2022a], serve as well-established
benchmarks for evaluating posterior quality. These results
are listed in Table 8. We see that the proposed method per-
forms the best amongst all the baselines, further ensuring
that the proposed method is effective in the qualitative sense
as well.

5 CONCLUSION

In this work, we propose a novel approach to generate
pseudo-coreset using contrastive divergence. Our approach
addresses the need to approximate the posterior of pseudo-
coreset and uses a finite number of steps in MCMC meth-
ods to sample the parameters from the underlying posterior
distribution. Subsequently, these parameters are used to
construct pseudo-coreset via contrastive divergence. The



empirical evidence presented in our study illustrates that
our proposed method surpasses previous BPC baselines by
substantial margins across multiple datasets.

Limitations and Future Work: While our approach effec-
tively removes variational assumptions associated with the
pseudo-coreset posterior and utilizes MCMC methods for
parameter sampling, our study still relies on certain assump-
tions about the posterior of the original dataset. Since there
remains a significant performance gap between the pseudo-
coreset and the original dataset, a potential avenue for future
research could be to relax these assumptions to enhance the
performance of BPC methods.

Broader Impact: BPC methods have positive applications in
democratization and privacy-related concerns by reducing
the dependence on the original dataset. We don’t believe
that our method has any associated negative societal impact.
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A TRAINING DETAILS AND HYPER PARAMETERS

In this section, we provide the implementation details of the proposed method. Our implementation can be found
https://github.com/backpropagator/BPC-CD. During the training process, we randomly initialize the synthetic dataset
using samples from the original training set. The overall cardinality of these synthetic sets is determined by the number of
images considered for every class (ipc). For our experiments, we have considered ipc values of 1, 10 and 50. Furthermore,
similar to previous works Kim et al. [2022a], Cazenavette et al. [2022], we have used Differentiable Siamese Augmentation
(DSA) [Zhao and Bilen, 2021] strategies to enhance the performance of our model. DSA strategies include random crop,
random flip, random brightness, random scale, and rotation. At any instant, we apply one of these augmentations to
train our network. These augmentation techniques ensure that the model does not overfit on the given synthetic set and
generates optimal parameters. DSA is applied to the synthetic set while running langevin dynamics and calculating the
contrastive-divergence-based loss function.

We have also conducted additional experiments to evaluate the effectiveness of our method and other BPC baselines in
the absence of DSA. The findings of the experiment are reported in Table 9. The results clearly indicate that the DSA has
a positive impact on the performance of all BPC methods, which align with the observation made by Cui et al. [2022].
Nevertheless, even without the DSA-based augmentation strategy, our method outperforms other BPC baselines for 1 ipc.

As for the network used to calculate the energy, we take inspiration from previous works [Kim et al., 2022a, Wang et al.,
2018, Lee et al., 2022, Cazenavette et al., 2022] and use a ConvNet architecture [Gidaris and Komodakis, 2018]. This
architecture consists of multiple blocks of convolutional layer with filter dimension of 3× 3 and channel size of 128. The
network uses instance normalization, maxpool layer with stride 2, and RELU activation. In our experiments, we have used
an architecture with three such blocks of convolution layers.

Next, we create a buffer of trajectories to sample parameters from the posterior of the original dataset. For this, we generate
100 different trajectories, each with 50 epochs trained using SGD optimizer with a batch size of 256 on the original training
set. These parameters are used to obtain the gaussian variational approximation to estimate the loss function. Further, we use
diagonal covariance matrix with diagonal entry of 0.001 for the re-parameterization trick used in gaussian approximation.

The pseudocode of the implementation is presented in Algorithm 1. The hyperparameters used are as follows: P = 2000,
λ = 0.01, n = 50, L = 100, Σ1/2

x = 0.001I . These hyper-parameters are fixed across all the datasets. Further, we
observe that there γ that can be fine-tuned for marginal improvements in performance. Specifically, γ is varied between
{1, 10, 100, 1000}. Note that, we use same set of parameter to sample parameters during inference. All the experiments are
conducted on a single NVIDIA RTX A6000 GPUs with 48GB memory.

Table 9: Comparison of the proposed method against other BPC baselines without using DSA on CIFAR10 dataset.

BPC-rkl (sghmc) BPC-W (sghmc) BPC-fkl (hmc) BPC-fkl (sghmc) Ours
ipc =1 ipc = 10 ipc =1 ipc = 10 ipc =1 ipc = 10 ipc =1 ipc = 10 ipc =1 ipc = 10

19.70± 1.06 36.41± 0.75 27.66± 0.8 39.61± 1.12 32.61± 1.50 38.12± 1.19 28.25± 0.92 41.85± 1.47 34.94± 0.72 41.02± 0.66

https://github.com/backpropagator/BPC-CD


Algorithm 1 Proposed Algorithm
Input : Set of SGD trajectories obtained from original dataset (τ), Number of langevin steps (L) needed to sample
parameter from πx̃, Langevin step size (λ), Step size to modify pseudo-coreset (γ), Number of epochs (P)

1: Initialize pseudo-coreset (x̃) using samples from original dataset x.
2: for step in [1... P] : do
3: Sample τi ∼ τ
4: Sample θ+k ∼ τi where θ+k are parameters associated with kth epoch for ith trajectory.
5: Let θ+ = θ+k +Σ

1/2
x εx, ε ∼ N (0, I)

6: Let θ−0 = θ+

7: for t in [0 .... L] : do
8: Calculate energy associated with x̃ and parameter θ−t i.e. E(θ−t , x̃))
9: θ−t+1 = θ−t − λ(∇θE(θ−t , x̃)) + η, η ∼ N (0, I)

10: Let θ− = θ−L
11: Calculate L = E((θ+, x̃))− E((θ−, x̃))
12: x̃← x̃− γ∇x̃L

B EXPERIMENTAL SETUP

B.1 BASELINE SETUP

We primarily present the results for different BPC frameworks. The experiment of Table 1 in the main manuscript uses the
original hyperparameters mentioned in the respective papers. In cases where hyperparameters were not explicitly specified,
we employed the default hyperparameters of CIFAR10. We have presented the results for BPC methods with only 1 and 10
ipc for the CIFAR100 and T-ImageNet datasets. We could not report the result for other scenarios due to the computational
limitations. These methods demand a significant amount of GPU memory, which we currently lack, making it impractical to
compute the desired results.

B.2 GPU AND TIME CONSUMPTION

We assess the computational efficiency of our method relative to other baselines by comparing the GPU memory consumption
and the training time required to generate the pseudo-coresets for a single iteration. The findings of our results are presented
in Fig. 2, where the iteration time is calculated by taking the average of the total time for 100 different iterations.

As illustrated in Fig. 2, our method requires relatively less time compared to other BPC methods for low ipc values and
outperforms BPC-W for higher ipc values. Additionally, in our examination of GPU memory usage, we observe that BPC-W
shows linear scaling in GPU memory consumption as the number of images per class increases. In contrast, our method
maintains consistent memory usage across all ipc values. In our experiment, we found that our method utilizes only 37GB
of memory, even for higher images per class. It’s worth noting that other BPC baselines such as BPC-fKL and BPC-rKL
are more memory-efficient than our method and deliver consistent performance across all the ipc values. We attribute
this observation to the fact that BPC-fkl and BPC-rkl avoid MCMC sampling during training by making use of relevant
approximations. Whereas, our method makes use of gradient-based MCMC sampling (langevin dynamics) for estimation
of the objective function. For this reason, the GPU consumption of the proposed method is relatively higher than that of
BPC-fkl and BPC-rkl.

Further, for a pseudo-coreset of size m, we run langevin-dynamics for k steps which leads to a complexity of O(km).
Compared to inference on entire dataset of size n, the same would have a complexity of O(kn). Since m ≪ n, pseudo-
coresets are much more efficient for inference compared to full data. Since the pseudo-coreset size (m) is fixed during
inference and only final value of each iteration is required in the consequent iteration of langevin dynamics, the memory
complexity is just O(m). Again since m≪ n, pseudo-coresets are efficient in term of memory as well compared to full
data inference.



(a) (b)

Figure 2: Computing GPU memory costs along with training time for different image per class.

C COMPARISON WITH CORESET METHODS

We have conducted a comparative analysis of our method with other coreset techniques such as Herding [Chen et al., 2012],
K-Center [Sener and Savarese, 2017], and Forgetting [Toneva et al., 2018]. The outcomes of our experiments are listed in
Table 10. The result clearly shows that our method outperforms other coreset techniques on all the dataset.

Table 10: Comparison of the proposed method with coreset baselines. The results are noted in form of (mean ± std. dev)
where we have obtained test accuracy over five independent runs on the pseudo-coreset. The best performer across all
methods is denoted in bold (x± s). For ease of comparison, we color the second best performer with blue color.

ipc Ratio(%) Herding K-Center Forgetting Ours
1 0.017 89.2± 1.6 89.3± 1.5 35.5± 5.6 93.42± 0.09

10 0.17 93.7± 0.3 84.4± 1.7 68.1± 3.3 97.71± 0.24MNIST
50 0.83 94.8± 0.2 97.4± 0.3 88.2± 1.2 98.91± 0.22

1 0.017 67.0± 1.9 66.9± 1.8 42.0± 5.5 77.29± 0.50

10 0.17 71.1± 0.7 54.7± 1.5 53.9± 2.0 88.40± 0.21FMNIST
50 0.83 71.9± 0.8 68.3± 0.8 55.0± 1.1 89.47± 0.06

1 0.014 20.9± 1.3 21.0± 1.5 12.1± 1.7 66.74± 0.09

10 0.14 50.5± 3.3 14.0± 1.3 16.8± 1.2 82.32± 0.56SVHN
50 0.7 72.6± 0.8 20.1± 1.4 27.2± 1.5 88.41± 0.12

1 0.02 21.5± 1.2 21.5± 1.3 13.5± 1.2 46.87± 0.20

10 0.2 31.6± 0.7 14.7± 0.9 23.3± 1.0 56.39± 0.70Cifar10
50 1 23.3± 1.0 27.0± 1.4 23.3± 1.1 71.93± 0.17

1 0.2 8.4± 0.3 8.3± 0.3 4.5± 0.2 23.97± 0.11Cifar100
10 2 17.3± 0.3 7.1± 0.2 15.1± 0.3 28.42± 0.24

1 0.2 2.8± 0.2 3.03± 0.1 1.6± 0.1 8.39± 0.07T-ImageNet
10 2 6.3± 0.2 11.38± 0.1 5.1± 0.2 17.82± 0.39

D COMPARISON WITH DATASET CONDENSATION TECHNIQUES

We also compare our method with other data condensation (DC) techniques like Distillation (DD) [Wang et al., 2018],
Flexible Dataset Distillation (LD) [Bohdal et al., 2020], Gradient Matching (DC) [Zhao et al., 2021], Differentiable Siamese
Augmentation (DSA) [Zhao and Bilen, 2021], Distribution Matching (DM) [Zhao and Bilen, 2023], Neural Ridge Regression
(KIP) [Nguyen et al., 2021], Condensed data to align features (CAFE) [Wang et al., 2022] and Matching Training Trajectories
(MTT) [Cazenavette et al., 2022].

There are few fundamental differences between dataset condensation methods and BPC methods. We first enumerate these



Table 11: Efficiency comparison of the proposed method with several dataset condensation methods on CIFAR10.

ipc GM DSA MTT Ours
GPU Memory (GB) Time (s) GPU Memory (GB) Time (s) GPU Memory (GB) Time (s) GPU Memory (GB) Time (s)

1 38.88 0.4 43.09 0.3 44.82 1.2 37.10 0.71
10 42.78 11.4 46.06 7.5 50.98 12.7 38.28 0.75
50 46.39 32.9 53.20 24.4 68.10 26.8 38.44 1.26

Table 12: Comparison of the proposed method with dataset-condensation baselines. The results are noted in form of (mean
± std. dev) where we have obtained test accuracy over five independent runs on the pseudo-coreset. The best performer
across all methods is denoted in bold (x± s). For ease of comparison, we color the second best performer with blue color.

Img/cls Ratio% DD LD GM DSA DM CAFE CAFE+DSA KIP MTT Ours
1 0.017 - 60.60± 2.86 92.01± 0.25 87.60± 0.07 88.89± 0.57 93.10± 0.30 90.80± 0.50 85.46± 0.04 89.85± 0.01 93.42± 0.09

10 0.17 79.71± 8.3 87.05± 0.50 97.58± 0.10 97.39± 0.06 96.58± 0.11 97.20± 0.20 97.50± 0.10 97.15± 0.11 97.70± 0.02 97.71± 0.24MNIST
50 0.83 - 93.30± 0.30 98.81± 0.03 98.97± 0.04 98.22± 0.05 98.60± 0.20 98.90± 0.20 98.36± 0.08 98.6± 0.01 98.91± 0.22

1 0.017 - - 70.83± 0.01 70.45± 0.57 71.92± 0.70 77.10± 0.90 73.70± 0.70 - 77.14± 0.01 77.29± 0.50

10 0.17 - - 81.93± 0.07 84.70± 0.11 83.25± 0.09 83.00± 0.40 83.00± 0.30 - 88.76± 0.01 88.40± 0.21FMNIST
50 0.83 - - 83.26± 0.17 88.55± 0.56 87.65± 0.03 84.80± 0.40 88.20± 0.30 - 89.33± 0.15 89.47± 0.06

1 0.014 - - 30.49± 0.57 31.18± 0.43 19.25± 1.39 42.60± 3.30 42.90± 3.01 - 57.55± 0.02 66.74± 0.09

10 0.14 - - 75.10± 0.40 78.39± 0.3 71.42± 1.01 75.90± 0.60 77.90± 0.60 - 72.56± 0.01 82.32± 0.56SVHN
50 0.7 - - 81.70± 0.14 82.50± 0.34 82.41± 0.52 81.30± 0.30 82.30± 0.40 - 83.73± 0.33 88.41± 0.12

1 0.02 - 25.38± 0.2 28.10± 0.56 29.01± 0.64 26.40± 0.42 30.30± 1.10 31.60± 0.80 40.50± 0.40 46.08± 0.80 46.87± 0.2

10 0.2 39.14± 2.30 37.50± 0.60 44.14± 0.60 51.85± 0.43 48.66± 0.03 46.30± 0.60 50.90± 0.50 53.10± 0.50 64.27± 0.80 56.39± 0.70CIFAR10
50 1 - 41.70± 0.50 53.73± 0.44 60.77± 0.45 62.70± 0.07 55.50± 0.60 63.30± 0.40 58.60± 0.40 71.26± 0.50 71.93± 0.17

1 0.2 - 11.50± 0.40 12.65± 0.32 13.88± 0.29 11.35± 0.18 12.04± 0.01 12.90± 0.30 14.01± 0.30 23.62± 0.63 23.97± 0.11CIFAR100
10 2 - - 25.28± 0.29 32.34± 0.40 29.38± 0.26 29.04± 0.01 27.80± 0.30 31.50± 0.20 36.96± 0.15 28.42± 0.24

1 0.2 - - 5.27± 0.01 5.67± 0.01 3.82± 0.01 - - - 8.27± 0.01 8.39± 0.07T-ImageNet
10 2 - - 12.83± 0.01 16.43± 0.02 13.51± 0.01 - - - 20.11± 0.02 17.82± 0.39

differences here for clarity:

1. Objective function: One of the key differences between Dataset Condensation (DC) and BPC is the underlying
formulation and the loss objective. Dataset condensation methods mostly rely on heurist objective function to ‘match
the performance’ of synthetic data and original data; where the measure of performance matching varies for different
methods. For e.g., GM [Zhao et al., 2021] relies on matching the gradient direction of a model trained on synthetic
data with a model trained on the original data; similarly, MTT [Cazenavette et al., 2022] relies on matching SGD
trajectories of the synthetic data and original data. Hence, these methods don’t have a principled way of coming up
with loss objective. However, BPC methods on the other hand follow a single principle for loss objective - a divergence
measure between true posterior and pseudo-coreset posterior, which is much more principled. Different BPC method
opt for different divergence measure, in context of our work, we choose to work with contrastive divergence for the
reasons outlined in the paper.

2. Bayesian v/s Non-Bayesian: Another fundamental difference between the two domains is that BPC methods are purely
bayesian, particularly, they treat parameters of the network as random variable and work on matching the distribution
of this random variable via divergence minimization. On the other hand, DC methods are non-bayesian and work with
point estimates of models.

3. Optimization Strategy: Finally, the pivotal difference between BPC methods and DC methods, that makes the
former more efficient is the optimization strategy employed. Since DC methods rely on ‘performance matching’, it is
inadvertent to train a model on synthetic and original data, then match the performance using appropriate metric. To
learn the synthetic data in this case, one has to backpropagate the gradients through the model training steps as well.
This would require computation of second-order derivatives. This is what we refer to as bi-level optimization. However,
in case of BPC methods like ours, there is no such need of higher order derivatives. This is because we don’t use
bi-level optimization for BPC construction. This difference in optimization strategy makes BPC much more efficient in
practice. The quantitative results to illustrate this claim can be found in Table 11, where we compare the GPU memory
consumed and time taken for every iteration by different methods. It can be seen that dataset condensation consume
significant memory and time.

The performance comparison results are shown in Table 12. We find that the performance of our method is better than almost
all the DC baselines, whereas MTT stands out to be a close second in most of the cases. This shows that our method, although
falling under the category of Bayesian pseudo-coreset, achieves a performance that is comparable to that of heuristic DC
methods. It is to be noted that the DC methods are not the direct competitors of our method. However, we have shown that



Figure 3: Visualizations of pseudo-coresets for CIFAR100 with 1 ipc.

our method, although a BPC, surpasses (or comes very close to) the SoTA DC methods such as MTT [Cazenavette et al.,
2022].

E VISUALIZATIONS FOR CIFAR100 AND TINY-IMAGENET

In this section, we present the visualizations for pseudo-coresets of large datasets like CIFAR100 and Tiny-Imagenet datasets.
We present generated synthetic images for both 1 and 10 images per class. We provide the visualization for 1 image per
class on both datasets in Fig. 3 and Fig. 4, respectively. Fig. 5a and Fig. 5b include visualization for CIFAR100 datasets with
10 ipc wherein each image is divided based on the number of classes. Similarly, we split the image into 50 classes for the
Tiny-ImageNet dataset for 10 ipc in Fig. 6 and Fig. 7.



Figure 4: Visualizations of pseudo-coresets for Tiny ImageNet with 1 ipc.



(a) Classes 0-50 (b) Classes 50-100

Figure 5: Visualizations for pseudo-coresets for CIFAR100 with 10 ipc



(a) Classes 0-50 (b) Classes 50-100

Figure 6: Visualizations of psuedo-coresets for Tiny ImageNet with 10 ipc



(a) Classes 100-150 (b) Classes 150-200

Figure 7: Visualizations of pseudo-coresets for Tiny ImageNet with 10 ipc
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