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Abstract

In this study, we delve into an emerging optimiza-
tion challenge involving a black-box objective
function that can only be gauged via a ranking
oracle—a situation frequently encountered in real-
world scenarios, especially when the function is
evaluated by human judges. A prominent instance
of such a situation is Reinforcement Learning
with Human Feedback (RLHF), an approach re-
cently employed to enhance the performance of
Large Language Models (LLMs) using human
guidance (Ouyang et al., 2022; Liu et al., 2023;
OpenAI, 2022; Bai et al., 2022). We introduce
ZO-RankSGD, an innovative zeroth-order opti-
mization algorithm designed to tackle this opti-
mization problem, accompanied by theoretical
assurances. Our algorithm utilizes a novel rank-
based random estimator to determine the descent
direction and guarantees convergence to a station-
ary point. We demonstrate the effectiveness of
ZO-RankSGD in a novel application: improv-
ing the quality of images generated by a diffu-
sion generative model with human ranking feed-
back. Throughout experiments, we found that
ZO-RankSGD can significantly enhance the de-
tail of generated images with only a few rounds
of human feedback. Overall, our work advances
the field of zeroth-order optimization by address-
ing the problem of optimizing functions with only
ranking feedback, and offers a new and effective
approach for aligning Artificial Intelligence (AI)
with human intentions.
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1. Introduction
Ranking data is an omnipresent feature of the internet, ap-
pearing on a variety of platforms and applications, such as
search engines, social media feeds, online marketplaces, and
review sites. It plays a crucial role in how we navigate and
make sense of the vast amount of information available on-
line. Moreover, ranking information has a unique appeal to
humans, as it enables them to express their personal prefer-
ences in a straightforward and intuitive way (Ouyang et al.,
2022; Liu et al., 2023; OpenAI, 2022; Bai et al., 2022). The
significance of ranking data becomes even more apparent
when some objective functions are evaluated through human
beings, which is becoming increasingly common in various
applications. Assigning an exact score or rating can often
require a significant amount of cognitive burden or domain
knowledge, making it impractical for human evaluators to
provide precise feedback. In contrast, a ranking-based ap-
proach can be more natural and straightforward, allowing
human evaluators to express their preferences and judg-
ments with ease (Keeney & Raiffa, 1993). In this context,
our paper makes the first attempt to study an important opti-
mization problem where the objective function can only be
accessed via a ranking oracle.

Problem formulation. With an objective function
f : Rd → R, we focus on the optimization problem
minx∈Rd f(x), where f is a black-box function, and we
can only query it via a ranking oracle that can sort every
input based on the values of f . In this work, we focus
on a particular family of ranking oracles where only the
sorted indexes of top elements are returned. Such oracles
are acknowledged to be natural for human decision-making
(Keeney & Raiffa, 1993). We formally define this kind of
oracle as follows:

Definition 1 ((m, k)-ranking oracle). Given a function f :
Rd → R and m points x1, ..., xm to query, an (m, k) rank-
ing oracle O

(m,k)
f returns k smallest points sorted in their

order. For example, if O(m,k)
f (x1, ..., xm) = (i1, ..., ik),

then

f(xi1) ≤ f(xi2) ≤ ... ≤ f(xik) ≤ min
j /∈{i1,...,ik}

f(xj).

Applications. The optimization problem minx∈Rd f(x)
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with an (m, k)-ranking oracle is a common feature in many
real-world applications, especially when the objective func-
tion f is evaluated by human judges. One prominent ex-
ample of this type of problem is found in the growing field
of Reinforcement Learning with Human Feedback (RLHF)
(Ouyang et al., 2022; Liu et al., 2023; OpenAI, 2022; Bai
et al., 2022), where human evaluators are asked to rank the
outputs of large AI models according to their personal pref-
erences, with an aim to improve the generation quality of
these models. Inspired by these works, in Section 4, we
propose a similar application in which human feedback is
used to enhance the quality of images generated by Stable
Diffusion (Rombach et al., 2022), a text-to-image generative
model.

1.1. Related works
Zeroth-Order Optimization. Zeroth-order optimization
has been rigorously explored in the optimization literature
over several decades (Nelder & Mead, 1965; Frazier, 2018;
Golovin et al., 2019; Nesterov & Spokoiny, 2017). Despite
this, most existing works make a significant assumption that
the value of the objective function is directly accessible—an
assumption ill-suited for our context, where only ranking
data of the function value is available. Existing heuris-
tic algorithms like CMA-ES (Loshchilov & Hutter, 2016),
which exclusively rely on ranking information, often lack
theoretical guarantees and may underperform in real-world
scenarios. A notable exception is the recent study by (Cai
et al., 2022), which investigates a setting where a pairwise
comparison oracle of the objective function is available.
This comparison oracle is indeed a (2, 1)-ranking oracle,
making it a special case within our work’s scope. (Cai et al.,
2022) attempts to uncover the gradient of the objective func-
tion using the 1-bit compressive sensing method. However,
their methodology is confined to convex objective functions
and does not extend to non-convex ones. Our work, in
contrast, contemplates a more general (m, k)-ranking ora-
cle and focuses primarily on non-convex functions. Rather
than relying on compressive sensing techniques, our work
introduces a novel theoretical analysis capable of character-
izing the expected convergence behavior of our proposed
algorithm.

Reinforcement Learning with Human Feedback (RLHF).
The general approach in existing RLHF procedures involves
collecting human ranking data to train a reward model,
which is then used to finetune a pre-trained model with
policy gradients (Ouyang et al., 2022; Liu et al., 2023; Ope-
nAI, 2022; Bai et al., 2022). In this work, we explore an
alternative setting that fuses reinforcement learning with
ranking feedback, where ranking occurs online and is based
on the total reward of the entire episode. Our proposed
zeroth-order algorithm can be directly employed to optimize
the policy within this context. Additionally, our algorithm

can simultaneously collect data during the optimization pro-
cess, thereby providing an efficient mechanism for smaller
organizations to build models from scratch.

Contributions in this work. Our main contributions are
summarized as follows:

(1) First rank-based zeroth-order optimization algo-
rithm with theoretical guarantee. We present a
novel method for optimizing objective functions via
their ranking oracles. Our proposed algorithm ZO-
RankSGD is based on a new rank-based stochastic es-
timator for descent direction and is proven to converge
to a stationary point, with a rigorous analysis of how
various ranking oracles can impact the convergence
rate by employing a novel variance analysis.

(2) A new method for using human feedback to guide
AI models. ZO-RankSGD offers a fresh and effective
strategy for aligning human objectives with AI systems.
We demonstrate its utility by applying it to a novel task:
enhancing the quality of images generated by Stable
Diffusion with human ranking feedback. We anticipate
that our approach will stimulate further exploration of
such applications in the field of AI alignment.

Notations. For any x ∈ R, we define the sign operator as
Sign(x) = 1 if x ≥ 0 and −1 otherwise, and extend it to
vectors by applying it element-wise. For a d-dimensional
vector x, we denote the d-dimensional standard Gaussian
distribution by N (0, Id). The notation |S| refers to the
number of elements in the set S.

2. Finding descent direction from the ranking
information

Assumption 1. Throughout this paper, we consider f such
that: (1) f is twice continuously differentiable. (2) f is
L-smooth, meaning that ∥∇2f(x)∥ ≤ L. (3) f is lower
bounded by a value f∗, that is, f(x) ≥ f∗ for all x.

2.1. A comparison-based estimator for descent direction

In contrast to the prior work (Cai et al., 2022), which relies
on one-bit compressive sensing to recover the gradient, we
propose a simple yet effective estimator for descent direction
without requiring solving any compressive sensing problem.
Given an objective function f and a point x, we estimate
the descent direction of f using two independent Gaussian
random vectors ξ1 and ξ2 as follows:

ĝ(x) = Sf (x, ξ1, ξ2, µ)(ξ1 − ξ2), (1)

where µ > 0 is a constant, and Sf (x, ξ1, ξ2, µ) : Rd×Rd×
Rd × R+ → {1,−1} is defined as: Sf (x, ξ1, ξ2, µ)

def.
=

Sign ((f(x+ µξ1)− f(x+ µξ2))). We prove in Lemma
1, which is one of the most important technical tools in
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this work, that ĝ(x) is an effective estimator for descent
direction.

Lemma 1. For any x ∈ Rd, we have

⟨∇f(x),E[ĝ(x)]⟩ ≥ ∥∇f(x)∥ − CdµL, (2)

where Cd ≥ 0 is some constant that only depends on d.

Denote γ > 0 as the step size. With the L-smoothness of f
and Lemma 1, we can show that

E
ξ1,ξ2

[f(x− γĝ(x))]− f(x)

≤− γ ⟨∇f(x),E[ĝ(x)]⟩+ γ2L

2
E
[
∥ĝ(x)∥2

]
≤− γ∥∇f(x)∥+ γCdµL+ γ2Ld, (3)

where we note that E[∥ĝ(x)∥2] = E[∥ξ1 − ξ2∥2] = 2d.
Therefore, whenever ∥∇f(x)∥ ≠ 0, the value Eξ1,ξ2 [f(x−
γĝ(x))] would be strictly smaller than f(x) with sufficiently
small γ and µ. More importantly, unlike the comparison-
based gradient estimator proposed in (Cai et al., 2022), our
estimator (1) can be directly incorporated with ranking ora-
cles, as we will see in the next section.

Figure 1: The corresponding DAG for the ranking result
O

(5,3)
f (x1, x2, x3, x4, x5) = (1, 3, 2).

2.2. From ranking information to pairwise comparison

We first observe that ranking information can be translated
into pairwise comparisons. For instance, knowing that x1

is the best among x1, x2, x3 can be represented using two
pairwise comparisons: x1 is better than x2 and x1 is better
than x3. Therefore, we propose to represent the input and
output of (m, k)-ranking oracles as a directed acyclic graph
(DAG), G = (N , E), where the node set N = {1, . . . ,m}
and the directed edge set E = {(i, j) | f(xi) < f(xj)}. An
example of such a DAG is shown in Figure 1. Given access
to an (m, k)-ranking oracle O

(m,k)
f and a starting point

x, we query O
(m,k)
f with the inputs xi = x + µξi, ξi ∼

N (0, Id), for i = 1, . . . ,m. With the graph G constructed
from the ranking information of O(m,k)

f , we propose the
following rank-based gradient estimator:

g̃(x) =
1

|E|
∑

(i,j)∈E

xj − xi

µ
=

1

|E|
∑

(i,j)∈E

(ξj − ξi). (4)

Remark 1. Notice that (4) can be simply expressed as a
linearly weighted combination of ξ1, ..., ξm. We provide the
specific form in Appendix A.

We note that (1) is a special case of (4) with m = 2 and
k = 1, and it can be easily shown that E[g̃(x)] = E[ĝ(x)]
and E[∥g̃(x)∥2] ≤ E[∥ĝ(x)∥2], indicating that the benefit
of using ranking information over a single comparison is
a reduced variance of the gradient estimator. However, to
determine the extent of variance reduction, we must examine
the graph topology of G.

Graph topology of G. The construction of the DAG G
described above reveals that the graph topology of G is
uniquely determined by m and k. There are two important
statistics in this graph topology. The first one is the number
of edges |E|, which is related to the number of pairwise com-
parisons, extracted from the ranking result. In the precedent
work (Cai et al., 2022), the number of pairwise comparisons
can be used to determine the variance of the gradient estima-
tor. However, this is insufficient for our case, as the pairwise
comparisons in (4) are not independent.

Therefore, we require the second statistic of the DAG, which
is the number of neighboring edge pairs in E . We define a
neighboring edge pair as a pair of edges that share the same
node. For instance, in Figure 1, one neighboring edge pair is
(x1, x3) and (x1, x2). We denote this number as N(E) and
define it formally as N(E) def.

= |{((i, j), (i′, j)) ∈ Ē×Ē| i ̸=
i′}|, where Ē is the undirected copy of E , i.e, (i, j) ∈ Ē if
and if only (j, i) in E or (i, j) in E . As mentioned, the graph
topology of G is determined by m and k. Therefore, we can
analytically compute |E| and N(E) using m and k. We state
these calculations in the following lemma:

Lemma 2. Let G = (N , E) be the DAG constructed from
the ranking information of O(m,k)

f . Then, |E| = km− (k2+

k)/2, N(E) = m2k +mk2 − k3 + k2 − 4mk + 2k.

Variance analysis of (4) based on the graph topology. To
analyze the variance of the estimator (4), we introduce two
metrics M1(f, µ) and M2(f, µ) on the function f .

Definition 2.

M1(f, µ)
def.
= max

x

∥∥∥∥ E
ξ1,ξ2

[Sf (x, ξ1, ξ2, µ)(ξ1 − ξ2)]

∥∥∥∥2 (5)

M2(f, µ)
def.
= max

x
E

ξ1,ξ2,ξ3
[Sf (x, ξ1, ξ2, µ)Sf (x, ξ1,

ξ3, µ)⟨ξ1 − ξ2, ξ1 − ξ3⟩], (6)

where ξ1, ξ2 and ξ3 are three independent random vectors
drawn from N (0, Id).

We also provide some useful upper bounds on M1(f, µ) and
M2(f, µ) in Lemma 3, which help to understand the scale
of these two quantities.
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Lemma 3. For any function f and µ > 0, we have
M1(f, µ) ≤ 2d, M2(f, µ) ≤ 2d. Moreover, if f satis-
fies that ∇2f(x) = cId where c ∈ R is some constant, we
have M1(f, µ) ≤ 32/π.

With M1(f, µ) and M2(f, µ), we can bound the second
order moment of (4) as shown in Lemma 4.

Lemma 4. For any x ∈ Rd, we have

E[∥g̃(x)∥2] ≤ 2d

|E|
+

N(E)
|E|2

M2(f, µ) +M1(f, µ). (7)

Discussion on Lemma 4. With Lemma 2 and Lemma
3, we observe that the first variance term in (7), namely,
2d
|E| , is O( 1

km ), and thus vanishes as m → ∞. In

contrast, the second variance term N(E)
|E|2 M2(f, µ) does

not disappear as m grows, because limm→∞
N(E)
|E|2 =

limm→∞
m2k+mk2−k3+k2−4mk+2k

(km−(k2+k)/2)2
= 1

k , and thus only
vanishes when both k and m tend to infinity. However,
there is a non-diminishing term M1(f, µ) remaining in (7).
Fortunately, as shown in Lemma 3, M1(f, µ) is smaller
than 2d and can be bounded by a dimension-independent
constant for a certain family of quadratic functions.

Finally, it is worth noting that our approach for the variance
analysis can be directly extended to any ranking oracles
beyond the (m, k)-ranking oracle.

3. ZO-RankSGD: Zeroth-Order Rank-based
Stochastic Gradient Descent

With all of our findings in Sections 2, now we are ready
to introduce our proposed algorithm, ZO-RankSGD. The
pseudocode for ZO-RankSGD is outlined in Algorithm 1.

Algorithm 1 ZO-RankSGD
Require: Initial point x0, stepsize η, number of iterations T ,

smoothing parameter µ, (m, k)-ranking oracle O
(m,k)
f .

1: for t = 1 to T do
2: Sample m i.i.d. random vectors {ξ(t,1), · · · , ξ(t,m)} from

N(0, Id).
3: Query the (m, k)-ranking oracle O(m,k)

f with input {xt−1+

µξ(t,1), · · · , xt−1+µξ(t,m)}, and constuct the correspond-
ing DAG G = (N , E) as described in Section 2.2.

4: Compute the gradient estimator using:
gt =

1
|E|

∑
(i,j)∈E(ξ(t,j) − ξ(t,i))

5: xt = xt−1 − ηgt.
6: end for

3.1. Theoretical guarantee of ZO-RankSGD

Now we present the convergence result of Algorithm 1 in
the following Theorem 1.

Theorem 1. For any η > 0, µ > 0, T ∈ N, after running
Algorithm 1 for T iterations, we have:

E
[

min
t∈{1,...,T}

∥∇f(xt−1)∥
]
≤ f(x0)− f∗

ηT
+ CdµL

+
ηL

2

(
2d

|E|
+

N(E)
|E|2

M2(f, µ) +M1(f, µ)

)
, (8)

where Cd is some constant that only depends on d.
By taking η =

√
1
dT and µ =

√
d

C2
dT

in Theorem 1, we

have E
[
mint∈{1,...,T} ∥∇f(xt−1)∥

]
= O

(√
d
T

)
.

Effect of m and k on Algorithm 1. As we have dis-
cussed in Section 2.2, m and k affect the convergence speed
through the variance of the gradient estimator. Specifically,
in the upper bound of (8), we have 2d

|E| +
N(E)
|E|2 M2(f, µ) =

O
(

d
km + d

k

)
.

3.2. Line search via ranking oracle
In this section, we discuss two potential issues that may
arise when implementing Algorithm 1. Firstly, it can be
cumbersome to manually tune the step size η required for
each iteration. Secondly, it may be challenging for users
to know whether the objective function is decreasing in
each iteration as the function values are not accessible. In
order to address these challenges, we propose a simple
and effective line search method that leverages the (l, 1)-
ranking oracle to determine the optimal step size for each
iteration. The method involves querying the oracle with
a set of inputs {xt−1, xt−1 − ηγgt, ..., xt−1 − ηγl−1gt},
where γ ∈ (0, 1) represents a scaling factor that controls
the rate of step size reduction. By monitoring whether or
not xt is equal to xt−1, users can observe the progress
of Algorithm 1, while simultaneously selecting a suitable
step size to achieve the best results. It is worth noting
that this line search technique is not unique to Algorithm
1 and can be applied to any gradient-based optimization
algorithm, including those in (Nesterov & Spokoiny, 2017;
Cai et al., 2022). To reflect this, we present the proposed
line search method as Algorithm 2, under the assumption
that the gradient estimator gt has already been computed.

Algorithm 2 Line search strategy for gradient-based opti-
mization algorithms
Require: Initial point x0, stepsize η, number of iterations T ,

shrinking rate γ ∈ (0, 1), number of trials l.
1: for t = 1 to T do
2: Compute the gradient estimator gt.
3: xt = argminx∈Xt

f(x), where Xt = {xt−1, xt−1 −
ηγgt, ..., xt−1 − ηγl−1gt}.

4: end for

4. Experiments
4.1. Simple functions

In this section, we present experimental results demon-
strating the effectiveness of Algorithm 1 on two sim-
ple functions: (1) Quadratic function: f(x) =
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∥x∥22, x ∈ R100. (2) Rosenbrock function:
f(x) =

∑99
i=1

(
(1− xi)

2 + 100(xi+1 − x2
i )

2
)
, x =

[x1, ..., x100]
⊤ ∈ R100. To demonstrate the effectiveness of

our algorithm and verify our theoretical claims, we conduct
two experiments, and all figures are obtained by averaging
over 10 independent runs and are visualized in the form of
mean±std.

(a) Quadratic function (b) Rosenbrock function

Figure 2: Performance of different algorithms.

Comparing Algorithm 1 with existing algortihms. In
this first experiment, we compare Algorithm 1 with the fol-
lowing algorithms in the existing literature: (1) ZO-SGD
(Nesterov & Spokoiny, 2017): A zeroth-order optimiza-
tion algorithm for valuing oracle. (2) SCOBO (Cai et al.,
2022): A zeroth-order algorithm for pairwise comparing
oracle. (3) GLD-Fast (Golovin et al., 2019): A direct search
algorithm for top-1 oracle, namely, (m, 1)-ranking oracle.
(4) CMA-ES (Loshchilov & Hutter, 2016; Hansen et al.,
2019): A heuristic optimization algorithm for ranking ora-
cle. To ensure a meaningful comparison, we fix the number
of queries m = 15 at each iteration for all algorithms. For
gradient-based algorithms, ZO-SGD, SCOBO, and our ZO-
RankSGD, we use query points for gradient estimation and
5 points for the line search. In this experiment, we set
m = k for ZO-RankSGD, i.e. it can receive the full ranking
information. Moreover, we tune the hyperparameters such
as stepsize, smoothing parameter, and line search parame-
ter via grid search for each algorithm, and the details are
provided in Appendix D.1.

Our experiment results in Figure 2 on the two functions show
that the gradient-based algorithm can outperform the di-
rect search algorithm GLD-Fast and the heuristic algorithm
CMA-ES. Besides, Algorithm 1 can outperform SCOBO
because the ranking oracle contains more information than
the pairwise comparison oracle. Additionally, Algorithm 1
behaves similarly to ZO-SGD, indicating that the ranking
oracle can be almost as informative as the valuing oracle for
zeroth-order optimization.

Investigating the impact of m and k on Algorithm 1.
In this part, we aim to validate the findings presented in
Lemma 4 and Theorem 1 by running Algorithm 1 with
various values of m and k. To keep the setup simple, we set
the step size η to 50 and the smoothing parameter µ to 0.01

(a) Quadratic function (b) Rosenbrock function

Figure 3: Performance of ZO-RankSGD under different combina-
tions of m and k.

for Algorithm 1 with line search (where l = 5 and γ = 0.1).

Figure 3 illustrates the performance of ZO-RankSGD under
different combinations of m and k on the two functions,
which confirm our theoretical findings presented in Lemma
4. For example, we observe that (m = 10, k = 10) yields
better performance than (m = 100, k = 1), as predicted by
the second variance term in (7), which dominates and scales
as O(1/k).

Beyond this experiment, we also demonstrate the perfor-
mance of ZO-RankSGD on the policy optimization problem
for Mujoco environment in Appendix B.

4.2. Taming Diffusion Generative Model with Human
Feedback

In recent years, there has been a growing interest in diffusion
generative models, which have demonstrated remarkable
performance in generating high-quality images (Ho et al.,
2020; Song et al., 2020b; Dhariwal & Nichol, 2021). De-
spite these advancements, these models often struggle with
capturing intricate details, such as human fingers or key
elements in prompts, and sometimes fail to align with user
aesthetics. To address this issue, we draw inspiration from
recent successes in aligning Language Models with human
feedback (Ouyang et al., 2022; Liu et al., 2023; OpenAI,
2022; Bai et al., 2022), and propose to utilize human ranking
feedback to enhance the generated images. We noticed a
concurrent work (Lee et al., 2023) sharing a similar motiva-
tion with us. However, their method is still based on RLHF
and requires a considerable amount of pre-collected data for
fine-tuning the diffusion model. In contrast, our proposed
method does not require any pre-collected data and does not
need to finetune the diffusion model.

Experimental Setting. We focus on the task of text-to-
image generation, using the state-of-the-art Stable Diffusion
model (Rombach et al., 2022) to generate images based
on given text prompts. Our goal is to optimize the initial
latent embedding using human ranking feedback through
our proposed Algorithm 1, with an aim to produce images
that are more appealing to humans. This experimental set-
ting offers several advantages, including: (1) The latent
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Figure 4: Examples of optimizing latent embedding in diffusion generative model. Initial: The initial images selected through multiple
randomly generated latent embeddings serve as the initial points for the later optimization process. Human: The images obtained by
optimizing human preference. CLIP: The images obtained by optimizing the CLIP similarity score.

embedding is a low-dimensional vector and thus requires far
fewer rounds of human feedback compared to fine-tuning
the entire model. (2) It can also serve as a data-collecting
step before fine-tuning the model. It is also worth noting
that any continuous parameter in the diffusion model can be
optimized similarly using human feedback. However, in this
study, we focus solely on optimizing the latent embedding
as we found that it is the most crucial factor for generating
high-quality images.

Examples. We illustrate several optimization results in
Figure 4, where we ourselves provided the human rank-
ing feedback during these experiments. These instances
highlight the improvements in realism and detail that our
proposed Algorithm 1 can bring about through the use of
human ranking feedback. To illustrate, in the first example,
the image optimized with human guidance portrays human
fingers and eyes with enhanced accuracy. In the second
example, the optimized image adheres more closely to the
prompt instruction, successfully capturing the intended item
– orange juice. Taken together, these results demonstrate the
potential of our approach in refining the quality of generated
images using human feedback.

Human feedback vs. CLIP similarity score. To under-
score the unique advantage of human feedback, we hold
the ZO-RankSGD algorithm constant, and contrast images
that were optimized with human preference against those
optimized using the CLIP similarity score (Radford et al.,
2021). CLIP, a cutting-edge model that contrasts language
with images, calculates the similarity between given texts
and images. However, when comparing the third and fourth
columns in Figure 4, it is clear that since CLIP is trained

on noisy text-image pairs from the internet, the images opti-
mized using its similarity score can sometimes fall short of
the original ones. Moreover, these CLIP-optimized images
may not always resonate with human evaluators, further em-
phasizing the unique value of human feedback in refining
image generation.

For more examples like the ones in Figure 4, and the details
of the entire optimization process, we refer the readers to
Appendix D.2.

5. Conclusion
In this paper, we have rigorously studied a novel optimiza-
tion problem where only ranking oracles of the objective
function are available. For this problem, we have proposed
the first provable zeroth-order optimization algorithm, ZO-
RankSGD, which has consistently demonstrated its efficacy
across simulated and real-world applications. We also have
presented how different ranking oracles can impact opti-
mization performance, providing guidance on designing the
user interface for ranking feedback. Our algorithm has been
shown to be a practical and effective way to incorporate
human feedback, for example, it can be used to improve the
detail of images generated by Stable Diffusion with human
guidance.

Possible future directions to this work may include extend-
ing the algorithm to handle noisy and uncertain ranking
feedback, combining ZO-RankSGD with a model-based
approach like Bayesian Optimization (Frazier, 2018) to fur-
ther improve the query efficiency, and applying it to other
scenarios beyond human feedback.
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A. A simplified expression for (4)

Let G = (N , E) be the DAG constructed from the ranking information of O(m,k)
f , we denote the input degrees and output

degrees of xi ∈ N as degin(i) and degout(i) respectively. We first notice that

∑
(i,j)∈E

(ξj − ξi) =

m∑
i=1

(degin(i)− degout(i)) ξi. (9)

Denote wi = degin(i)− degout(i), if O(m,k)
f (x1, ..., xm) = (i1, ..., ik), then we can compute that

wij = degin(ij)− degout(ij) = j − 1− (m− j) = 2j −m− 1, j = 1, ..., k. (10)
wq = degin(q)− degout(q) = k − 0 = k, q /∈ {i1, ..., ik}. (11)

B. Reinforcement Learning with ranking oracles
Motivation. In this section, we illustrate how ZO-RankSGD can be seamlessly employed for policy optimization in
reinforcement learning, given only a ranking oracle of the episode reward. Such a setting especially captures the scenario
where human evaluators are asked to rank multiple episodes based on their expertise. Specifically, we adopt a similar
experimental setup as (Cai et al., 2022; Duan et al., 2016), where the goal is to learn a policy for simulated robot control with
several problems from the MuJoCo suite of benchmarks (Todorov et al., 2012). We compare ZO-RankSGD to the CMA-ES
algorithm, which is commonly used as a baseline in reinforcement learning (Bengs et al., 2021) that also solely relies on a
ranking oracle. Both algorithms are restricted to query the episode reward via a (5, 5)-ranking oracle. Additionally, we
draw a comparison between ZO-RankSGD and SCOBO; however, given the disparate nature of their query oracles, the
comparison is intricate. For a comprehensive discussion of this aspect, we refer the readers to Appendix B.1.

B.1. Comparing ZO-RankSGD with SCOBO in policy optimization

In this section, we delve into a detailed comparison between ZO-RankSGD and SCOBO. It is important to note that a direct
comparison is challenging, as they depend on fundamentally different query oracles. However, we propose an alternative
comparison approach from an information perspective. Specifically, given a budget of 5 query points per iteration, SCOBO
can make only 4 independent pairwise comparisons, while ZO-RankSGD can obtain information from 10 dependent pairwise
comparisons by querying a (5, 5)-ranking oracle.

From this standpoint, we anticipate that ZO-RankSGD would outshine SCOBO with m = 5 (which can only query
information of 5 points via 4 independent pairwise comparisons), but might fall short when compared to SCOBO with
m = 11 (which can query information of 11 points via 10 independent pairwise comparisons).

To test this hypothesis, we benchmark ZO-RankSGD, SCOBO (m = 5), and SCOBO (m = 11) on the same policy
optimization problem discussed in Section B. The results, shown in Figure 5, align precisely with our prediction, thus
validating our perspective.

(a) Reacher-v2 (b) Swimmer-v2 (c) HalfCheetah-v2

Figure 5: Perfomance of ZO-RankSGD and SCOBO on three MuJoCo environments
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Results. The experiment results are shown in Figure 6, where the x-axis is the number of queries to the ranking oracle, and
the y-axis is the ground-truth episode reward. In these experiments, we do not use line search for ZO-RankSGD, instead, we
let η = µ, and decay them exponentially after every rollout. As can be seen from Figure 6, our algorithm can outperform
CMA-ES by a significant margin on all three tasks, exhibiting a better ability to incorporate ranking information.

(a) Reacher-v2 (b) Swimmer-v2 (c) HalfCheetah-v2

Figure 6: Perfomance of ZO-RankSGD and CMA-ES on three MuJoCo environments

C. Proof
Proof of Lemma 1. In the following proof, we denote p(·) as the pdf function of N (0, Id) for arbitrary dimension d.

We first rewrite ⟨∇f(x), ĝ(x)⟩ as follows:

⟨∇f(x), ĝ(x)⟩ = ⟨∇f(x), Sf (x, ξ1, ξ2, µ)(ξ1 − ξ2)⟩ = Sf (x, ξ1, ξ2, µ) · ⟨∇f(x), ξ1 − ξ2⟩ . (12)

By the second-order Taylor expansion with Cauchy remainders, we notice that

f(x+ µξ1) = f(x) + µ⟨∇f(x), ξ1⟩+
µ2

2
ξ⊤1 ∇2f(x1)ξ1, (13)

f(x+ µξ2) = f(x) + µ⟨∇f(x), ξ2⟩+
µ2

2
ξ⊤2 ∇2f(x2)ξ2, (14)

where x1 and x2 are two points around x.

With (13) and (14) we can write Sf (x, ξ1, ξ2, µ) as follows:

Sf (x, ξ1, ξ2, µ) = Sign
(
⟨∇f(x), ξ1 − ξ2⟩+

µ

2
ξ⊤1 ∇2f(x1)ξ1 −

µ

2
ξ⊤2 ∇2f(x2)ξ2

)
. (15)

Now we start to bound the term

E [Sf (x, ξ1, ξ2, µ) · ⟨∇f(x), ξ1 − ξ2⟩] , (16)

where the expectation is taken over the random direction ξ1 and ξ2.

Before doing that, we first define two important regions:

R1 = {(ξ1, ξ2) | ⟨∇f(x), ξ1 − ξ2⟩ > 0}, (17)
R11 = {(ξ1, ξ2) | (ξ1, ξ2) ∈ R1, Sf (x, ξ1, ξ2, µ) ̸= Sign (⟨∇f(x), ξ1 − ξ2⟩)}. (18)

Notice that when (ξ1, ξ2) ∈ R1, Sf (x, ξ1, ξ2, µ) ̸= Sign (⟨∇f(x), ξ1 − ξ2⟩) is equivalent to

⟨∇f(x), ξ1 − ξ2⟩+
µ

2
ξ⊤1 ∇2f(x1)ξ1 −

µ

2
ξ⊤2 ∇2f(x2)ξ2 < 0.
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Also, from L-smoothness, we can know that

−µL

2

(
∥ξ1∥22 + ∥ξ2∥22

)
≤ µ

2
ξ⊤1 ∇2f(x1)ξ1 −

µ

2
ξ⊤2 ∇2f(x2)ξ2.

We denote the region

R̄11 = {(ξ1, ξ2) | (ξ1, ξ2) ∈ R1, ⟨∇f(x), ξ1 − ξ2⟩ −
µL

2

(
∥ξ1∥22 + ∥ξ2∥22

)
< 0}. (19)

It is easy to verify that R11 ⊆ R̄11. Let R12 = R1/R̄11, we can have the following inequality.

∫
R1

Sf (x, ξ1, ξ2, µ) ⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2 (20)

=

∫
R1/R11

Sf (x, ξ1, ξ2, µ) ⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2

+

∫
R11

Sf (x, ξ1, ξ2, µ) ⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2 (21)

=

∫
R1/R11

⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2

−
∫
R11

⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2 (22)

≥
∫
R1/R̄11

⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2

−
∫
R̄11

⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2 (23)

=2

∫
R12

⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2

−
∫
R1

⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2. (24)

Before we proceed to study the property of the integral in (24), let us first define an important function. Consider the
function h(v, r, d) : R× R+ × Z+ → R defined as follows:

h(v, r, d)
def.
=

√
2v

∫ 2
√

2v
r

0

xF2d−1

((
2
√
2v

r
− x

)
x

)
p(x)dx, (25)

where F2d−1(·) is the CDF of the χ2 distribution with 2d − 1 degrees of freedom. With this function, we can have the
following lemma that presents the close form of the integrals in (24).

Lemma 5. ∫
R1

⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2 =
1√
π
∥∇f(x)∥, (26)∫

R12

⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2 = h(∥∇f(x)∥ , µL, d). (27)

Also, we need an important lemma on h(v, r, d).

Lemma 6. For any d ∈ Z+, there exist a constant Cd > 0 such that for any v ≥ 0, r > 0,

h(v, r, d) ≥
(

1

2
√
π
+

1

4

)
v − 1

4
Cdr. (28)
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Combining (24), (26), (27) and (28), we have

∫
R1

Sf (x, ξ1, ξ2, µ) ⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2 ≥ 1

2
∥∇f(x)∥ − 1

2
CdµL. (29)

Similarly, if we define
R2 = {(ξ1, ξ2) | ⟨∇f(x), ξ1 − ξ2⟩ < 0},

we have

∫
R2

Sf (x, ξ1, ξ2, µ) ⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2 (30)

=

∫
R2

Sf (x, ξ2, ξ1, µ) ⟨∇f(x), ξ2 − ξ1⟩ p(ξ1)p(ξ2)dξ1dξ2 (31)

=

∫
R1

Sf (x, ξ1, ξ2, µ) ⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2, (32)

becasue the integral on R1 is symmetric to the integral on R2 by swapping ξ1 and ξ2. Since R2d/(R1 ∪ R2) has zero
measure, we have

E [Sf (x, ξ1, ξ2, µ) · ⟨∇f(x), ξ1 − ξ2⟩]

=2

∫
R1

⟨∇f(x), ξ2 − ξ1⟩ p(ξ1)p(ξ2)dξ1dξ2 (33)

≥∥∇f(x)∥ − CdµL. (34)

Proof of Lemma 2. Suppose that O(m,k)
f (x1, ..., xm) = (i1, ..., ik), we seperate N into two node set:

N1 = {i1, ..., ik} and N2 = {q ∈ {1, ...,m} | q /∈ {i1, ..., ik}}.

Firstly, since the subgraph of G on N1 is a complete graph, the number of edges in this subgraph is k(k − 1)/2. The
remaining edges in G connect the node in N2 to the node in N1, hence the number of them is k(m− k). Therefore,

|E| = k(k − 1)/2 + k(m− k) = km− (k2 + k)/2. (35)

Now we denote the set of neighbooring edge pairs as S = {((i, j), (i′, j)) ∈ Ē × Ē|i ̸= i′}. We can split S as the following
five set:

S1 = {((i, j), (i′, j)) ∈ Ē × Ē|i ̸= i′, i ∈ N1, i
′ ∈ N1, j ∈ N1}, (36)

S2 = {((i, j), (i′, j)) ∈ Ē × Ē|i ̸= i′, i ∈ N1, i
′ ∈ N1, j ∈ N2}, (37)

S3 = {((i, j), (i′, j)) ∈ Ē × Ē|i ̸= i′, i ∈ N1, i
′ ∈ N2, j ∈ N1}, (38)

S4 = {((i, j), (i′, j)) ∈ Ē × Ē|i ̸= i′, i ∈ N2, i
′ ∈ N1, j ∈ N1}, (39)

S5 = {((i, j), (i′, j)) ∈ Ē × Ē|i ̸= i′, i ∈ N2, i
′ ∈ N2, j ∈ N1}. (40)

For the first set S1, we can compute that

|S1| = 6

(
k

3

)
= k(k − 1)(k − 2), (41)
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because every edge pair composes of three nodes, and every three nodes can form 6 edge pairs.

For the second set S2, we have

|S2| = 2(m− k)

(
k

2

)
= (m− k)k(k − 1), (42)

because |N2| = m− k and |{(i, i′) ∈ N1 ×N1 | i ̸= i′}| = 2
(
k
2

)
.

Similarly, for the set S3 and S4, we can obtain

|S3| = |S4| = 2(m− k)

(
k

2

)
= (m− k)k(k − 1). (43)

Finally, for the set S5, we can compute that

|S5| = 2k

(
m− k

2

)
= k(m− k)(m− k − 1), (44)

because |N1| = k and |{(i, i′) ∈ N2 ×N2 | i ̸= i′}| = 2
(
m−k
2

)
.

In all, we have

|S| = |S1|+ |S2|+ |S3|+ |S4|+ |S5| (45)
= k(k − 1)(k − 2) + 3(m− k)k(k − 1) + k(m− k)(m− k − 1) (46)

= m2k +mk2 − k3 + k2 − 4mk + 2k. (47)

Proof of Lemma 3. We first prove that M1(f, µ) ≤ 2d. From convexity of ∥ · ∥2 and Jensen’s inequality, we have∥∥∥∥ E
ξ1,ξ2

[Sf (x, ξ1, ξ2, µ)(ξ1 − ξ2)]

∥∥∥∥2 ≤ E
ξ1,ξ2

∥[Sf (x, ξ1, ξ2, µ)(ξ1 − ξ2)]∥2 = 2d. (48)

Then we prove M2(f, µ) ≤ 2d. From the Cauchy-Schwarz inequality, we have

E
ξ1,ξ2,ξ3

[Sf (x, ξ1, ξ2, µ)Sf (x, ξ1, ξ3, µ)⟨ξ1 − ξ2, ξ1 − ξ3⟩] (49)

≤
√

E
ξ1,ξ2

[
∥ξ1 − ξ2∥2

]
E

ξ1,ξ3

[
∥ξ1 − ξ3∥2

]
= 2d. (50)

Now we study the mean vector Eξ1,ξ2 [Sf (x, ξ1, ξ2, µ)(ξ1 − ξ2)] under the condition ∇2f(x) = cId. We first write it as a
sum of three vectors.

Eξ1,ξ2 [Sf (x, ξ1, ξ2, µ)(ξ1 − ξ2)] =

∫
f(x+µξ1)>f(x+µξ2)

(ξ1 − ξ2)p(ξ1)p(ξ2)dξ1dξ2 (51)

+

∫
f(x+µξ1)=f(x+µξ2)

(ξ1 − ξ2)p(ξ1)p(ξ2)dξ1dξ2 (52)

+

∫
f(x+µξ1)<f(x+µξ2)

(ξ2 − ξ1)p(ξ1)p(ξ2)dξ1dξ2. (53)

For the three vectors, we have∫
f(x+µξ1)=f(x+µξ2)

(ξ1 − ξ2)p(ξ1)p(ξ2)dξ1dξ2 (54)

=

∫
f(x+µξ1)=f(x+µξ2)

ξ1p(ξ1)p(ξ2)dξ1dξ2 −
∫
f(x+µξ1)=f(x+µξ2)

ξ2p(ξ1)p(ξ2)dξ1dξ2 (55)

=0, (56)
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and ∫
f(x+µξ1)>f(x+µξ2)

(ξ1 − ξ2)p(ξ1)p(ξ2)dξ1dξ2 (57)

=

∫
f(x+µξ2)>f(x+µξ1)

(ξ2 − ξ1)p(ξ1)p(ξ2)dξ1dξ2 (58)

=

∫
f(x+µξ1)<f(x+µξ2)

(ξ2 − ξ1)p(ξ1)p(ξ2)dξ1dξ2. (59)

Therefore, we can write Eξ1,ξ2 [Sf (x, ξ1, ξ2, µ)(ξ1 − ξ2)] as

Eξ1,ξ2 [Sf (x, ξ1, ξ2, µ)(ξ1 − ξ2)] = 2

∫
f(x+µξ1)>f(x+µξ2)

(ξ1 − ξ2)p(ξ1)p(ξ2)dξ1dξ2. (60)

Now we study the integrals
∫
f(x+µξ1)>f(x+µξ2)

ξ1p(ξ1)p(ξ2)dξ1dξ2 and
∫
f(x+µξ1)>f(x+µξ2)

ξ2p(ξ1)p(ξ2)dξ1dξ2. We can
compute that

∫
f(x+µξ1)>f(x+µξ2)

ξ1p(ξ1)p(ξ2)dξ1dξ2 (61)

=

∫
Rd

(∫
f(x+µξ1)>f(x+µξ2)

p(ξ2)dξ2

)
ξ1p(ξ1)dξ1, (62)

and, ∫
f(x+µξ1)>f(x+µξ2)

ξ2p(ξ1)p(ξ2)dξ1dξ2 (63)

=

∫
Rd

(∫
f(x+µξ1)>f(x+µξ2)

p(ξ1)dξ1

)
ξ2p(ξ2)dξ2 (64)

=

∫
Rd

(∫
f(x+µξ2)>f(x+µξ1)

p(ξ2)dξ2

)
ξ1p(ξ1)dξ1 (65)

The condition ∇2f(x) = cId implies that f is a quadratic function. We denote M(·) as the Lebesgue measure on Rd.
Notice that M({ξ2 | f(x+µξ2) = f(x+µξ1)}) = 0 because it is known that the zero point set of any polynomial function
has zero Lebesgue measure. Therefore, we have∫

f(x+µξ1)>f(x+µξ2)

p(ξ2)dξ2 +

∫
f(x+µξ2)>f(x+µξ1)

p(ξ2)dξ2 (66)

=1−
∫
f(x+µξ2)=f(x+µξ1)

p(ξ2)dξ2 = 1. (67)

Hence we have ∫
f(x+µξ1)>f(x+µξ2)

(ξ1 − ξ2)p(ξ1)p(ξ2)dξ1dξ2 (68)

=2

∫
Rd

(∫
f(x+µξ1)>f(x+µξ2)

p(ξ2)dξ2

)
ξ1p(ξ1)dξ1 −

∫
Rd

ξ1p(ξ1)dξ1 (69)

=2

∫
Rd

(∫
f(x+µξ1)>f(x+µξ2)

p(ξ2)dξ2

)
ξ1p(ξ1)dξ1. (70)
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Since ∇2f(x) = cId, we have

f(x+ µξ1) = f(x) + µ∇f(x)T ξ1 +
1

2
µ2∥ξ1∥2.

Without loss of generality, we assume ∥∇f(x)∥ ≠ 0 and denote ξ′1 = 2⟨∇f(x),ξ1⟩
∥∇f(x)∥2 ∇f(x)− ξ1. It is easy to verify that ξ′1

also follows N (0, Id), ∥ξ′1∥ = ∥ξ1∥ and f(x+ µξ1) = f(x+ µξ′1). Therefore, we have

∫
Rd

(∫
f(x+µξ1)>f(x+µξ2)

p(ξ2)dξ2

)
ξ1p(ξ1)dξ1 (71)

=

∫
Rd

(∫
f(x+µξ1)>f(x+µξ2)

p(ξ2)dξ2

)
ξ′1p(ξ

′
1)dξ

′
1 (72)

=
1

2

∫
Rd

(∫
f(x+µξ1)>f(x+µξ2)

p(ξ2)dξ2

)
(ξ1 + ξ′) p(ξ1)dξ1. (73)

=

(∫
Rd

(∫
f(x+µξ1)>f(x+µξ2)

p(ξ2)dξ2

)
⟨∇f(x), ξ1⟩
∥∇f(x)∥

p(ξ1)dξ1

)
∇f(x)

∥∇f(x)∥
. (74)

Furthermore,∣∣∣∣∣
∫
Rd

(∫
f(x+µξ1)>f(x+µξ2)

p(ξ2)dξ2

)
⟨∇f(x), ξ1⟩
∥∇f(x)∥

p(ξ1)dξ1

∣∣∣∣∣ ≤
∫
Rd

|⟨∇f(x), ξ1⟩|
∥∇f(x)∥

p(ξ1)dξ1 =

√
2

π
. (75)

Finally, we have ∥∥∥∥ E
ξ1,ξ2

[Sf (x, ξ1, ξ2, µ)(ξ1 − ξ2)]

∥∥∥∥2 (76)

=

∥∥∥∥∥4
(∫

Rd

(∫
f(x+µξ1)>f(x+µξ2)

p(ξ2)dξ2

)
⟨∇f(x), ξ1⟩
∥∇f(x)∥

p(ξ1)dξ1

)
∇f(x)

∥∇f(x)∥

∥∥∥∥∥
2

(77)

≤32

π
. (78)

Proof of Lemma 4. We first compute that

E
[
∥g̃(x)∥22

]
=

1

|E|2
E


∥∥∥∥∥∥
∑

(i,j)∈E

(ξj − ξi)

∥∥∥∥∥∥
2

2

 . (79)

For ease of writing, we denote B(i,j) = ξj − ξi = Sf (x, ξi, ξj , µ)(ξi − ξj) and Ē as the undirected version of E .

E


∥∥∥∥∥∥
∑

(i,j)∈E

B(i,j)

∥∥∥∥∥∥
2

2

 (80)

=E


∑

(i,j)∈E

∥∥B(i,j)

∥∥2
2
+

∑
(i,j)∈Ē
(i′,j)∈Ē
i̸=i′

〈
B(i,j), B(i′,j)

〉
+

∑
(i,j)∈Ē
(i′,j′)∈Ē
i ̸=i′,j ̸=j′

〈
B(i,j), B(i′,j′)

〉
.

 (81)
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With the two metrics M1(f, µ), M2(f, µ), we can bound the four terms in (81) as follows:

E
[∥∥B(i,j)

∥∥2
2

]
= E

[
∥ξj − ξi∥22

]
= 2d, (82)

E
[〈
B(i,j), B(i′,j)

〉]
= E

[〈
B(i,j), B(i,j′)

〉]
≤ M2(f, µ), (83)

E
[〈
B(i,j), B(i′,j′)

〉]
=
∥∥E [B(i,j)

]∥∥2
2
≤ M1(f, µ). (84)

Taking (82), (83) and (84) into (81), we obtain

E


∥∥∥∥∥∥
∑

(i,j)∈E

B(i,j)

∥∥∥∥∥∥
2

2

 (85)

≤
∑

(i,j)∈E

2d+
∑

(i,j)∈Ē
(i′,j)∈Ē
i ̸=i′

M2(f, µ) +
∑

(i,j)∈Ē
(i′,j′)∈Ē
i ̸=i′,j ̸=j′

M1(f, µ) (86)

= 2|E|d+N(E)M2(f, µ) + (|E|2 −N(E)− |E|)M1(f, µ). (87)

Combing (87) with (79), we obtain

E
[
∥g̃(x)∥22

]
≤ 2d

|E|
+

N(E)
|E|2

M2(f, µ) +
|E|2 −N(E)− |E|

|E|2
M1(f, µ) (88)

≤ 2d

|E|
+

N(E)
|E|2

M2(f, µ) +M1(f, µ). (89)

Proof of Theorem 1. Consider the t-th iteration, from L-smoothness we know that

f(xt)− f(xt−1) ≤ −η⟨∇f(xt−1), gt⟩+
η2L

2
∥gt∥22. (90)

Using Lemma 1 and Lemma 4, we have

E[f(xt)− f(xt−1)] ≤ −η⟨∇f(xt−1), E[gt]⟩+
η2L

2
E
[
∥gt∥22

]
(91)

≤ −η∥∇f(xt−1)∥+ CdηµL+
η2L

2

(
2d

|E|
+

N(E)
|E|2

M2(f, µ) +M1(f, µ)

)
, (92)

where the expectation is taken over the random direction ξ(t,1), · · · , ξ(t,m).

Rearrange the inequality to obtain

∥∇f(xt−1)∥ ≤ E[f(xt−1)− f(xt)]

η
+ CdµL+

ηL

2

(
2d

|E|
+

N(E)
|E|2

M2(f, µ) +M1(f, µ)

)
. (93)

Summing up over T iterations and dividing both sides by T , we finally obtain

E

[
1

T

T∑
t=1

∥∇f(xt−1)∥

]
≤ E[f(x0)− f(xT )]

ηT
+ CdµL+

ηL

2

(
2d

|E|
+

N(E)
|E|2

M2(f, µ) +M1(f, µ)

)
(94)

≤ f(x0)− f∗

ηT
+ CdµL+

ηL

2

(
2d

|E|
+

N(E)
|E|2

M2(f, µ) +M1(f, µ)

)
. (95)
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The proof is completed by noting that

E
[

min
t∈{1,...,T}

∥∇f(xt−1)∥
]
≤ E

[
1

T

T∑
t=1

∥∇f(xt−1)∥

]
.

Proof of Lemma 5. Without loss of generality, we assume ∥∇f(x)∥ ≠ 0. We first prove that∫
R1

⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2 =
1√
π
∥∇f(x)∥.

Now we denote

x =
⟨∇f(x), ξ1 − ξ2⟩√

2∥∇f(x)∥
.

Notice that x follows the distribution N (0, 1). Therefore, we have∫
R1

⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2 (96)

=
√
2∥∇f(x)∥

∫
x>0

xp(x)dx =
1√
π
∥∇f(x)∥, (97)

where we use a well-known fact that
∫
x>0

xp(x)dx = 1√
2π

.

Then we will prove ∫
R12

⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2 = h(∥∇f(x)∥ , µL, d).

Notice that

R12 = {(ξ1, ξ2) | (ξ1, ξ2) ∈ R1, ⟨∇f(x), ξ1 − ξ2⟩ −
µL

2

(
∥ξ1∥22 + ∥ξ2∥22

)
≥ 0}.

We can see that R12 is a ball in R2d:

R12 =

{
(ξ1, ξ2) |

∥∥∥∥ξ1 − 1

µL
∇f(x)

∥∥∥∥2
2

+

∥∥∥∥ξ2 + 1

µL
∇f(x)

∥∥∥∥2
2

<
2∥∇f(x)∥22

µ2L2

}
. (98)

Now we denote ζ = [−ξ⊤1 , ξ⊤2 ]⊤ ∈ R2d, ϕ = [∇f(x)⊤,∇f(x)⊤]⊤ ∈ R2d. Notice that ζ still follows an isotropic
multivariate Gaussian distribution, we can simplify the integral in LHS of (27) as:∫

Sζ(ϕ)

⟨ϕ, ζ⟩ p(ζ)dζ (99)

where Sζ(ϕ) =

{
ζ |
∥∥∥ζ − 1

µLϕ
∥∥∥2
2
<

∥ϕ∥2
2

µ2L2

}
.

We argue that for any rotation matrix R ∈ R2d×2d, i.e., det(R) = 1 and R⊤ = R−1. We have∫
Sζ(ϕ)

⟨ϕ, ζ⟩ p(ζ)dζ =

∫
Sζ(Rϕ)

⟨Rϕ, ζ⟩ p(ζ)dζ. (100)

To see that, we can rotate ζ by R. Denote ζ ′ = R⊤ζ, we first have
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Sζ(Rϕ) =

{
ζ |
∥∥∥∥ζ − 1

µL
Rϕ

∥∥∥∥2
2

<
∥ϕ∥22
µ2L2

}
=

{
Rζ ′ |

∥∥∥∥ζ ′ − 1

µL
ϕ

∥∥∥∥2
2

<
∥ϕ∥22
µ2L2

}
= {Rζ ′|ζ ′ ∈ Sζ′(ϕ)} (101)

∫
Sζ(Rϕ)

⟨Rϕ, ζ⟩ p(ζ)dζ =

∫
{Rζ′|ζ′∈Sζ′ (ϕ)}

⟨Rϕ,Rζ ′⟩ p(Rζ ′)dRζ ′ =

∫
Sζ′ (ϕ)

⟨ϕ, ζ ′⟩ p(ζ ′)dζ ′, (102)

where we use the property of p(·): p(Rζ ′) = p(ζ ′).

Now we denote ϕ′ = [∥ϕ∥, 0, ..., 0]⊤ ∈ R2d, it is easy to see that ϕ′ is a rotated version of ϕ, i.e., there exists a rotation
matrix R′ such that ϕ′ = R′ϕ. Denote ζ = [ζ1, ..., ζ2d]

⊤, and ζ/1 = [ζ2, ..., ζ2d]
⊤. We have∫

Sζ(ϕ)

⟨ϕ, ζ⟩ p(ζ)dζ (103)

=

∫
Sζ(ϕ′)

⟨ϕ′, ζ⟩ p(ζ)dζ (104)

=∥ϕ∥
∫
(ζ1− ∥ϕ∥

µL )
2
+ζ2

2+...+ζ2
2d≤

∥ϕ∥2
µ2L2

ζ1p(ζ)dζ (105)

=∥ϕ∥
∫ 2∥ϕ∥

µL

0

ζ1

(∫
ζ2
2+...+ζ2

2d≤
∥ϕ∥2
µ2L2 −(ζ1− ∥ϕ∥

µL )
2
p(ζ/1)dζ/1

)
p(ζ1)dζ1. (106)

Notice that ζ2, ..., ζ2d are i.i.d and following standard Gaussian distribution, and hence ζ22 + ...+ ζ22d follows the Chi-square
distribution with 2d− 1 degrees of freedom. Therefore,

∫
Sζ(ϕ)

⟨ϕ, ζ⟩ p(ζ)dζ (107)

=∥ϕ∥
∫ 2∥ϕ∥

µL

0

ζ1F2d−1

(
∥ϕ∥2

µ2L2
−
(
ζ1 −

∥ϕ∥
µL

)2
)
p(ζ1)dζ1 (108)

=∥ϕ∥
∫ 2∥ϕ∥

µL

0

ζ1F2d−1

((
2∥ϕ∥
µL

− ζ1

)
ζ1

)
p(ζ1)dζ1 (109)

=
√
2 ∥∇f(x)∥

∫ 2
√

2∥∇f(x)∥
µL

0

ζ1F2d−1

((
2
√
2 ∥∇f(x)∥
µL

− ζ1

)
ζ1

)
p(ζ1)dζ1 (110)

=h(∥∇f(x)∥ , µL, d). (111)

Proof of Lemma 6. We define the fucntion q(u, d) : R+ × Z+ → R+ as follows:

q(u, d) =

∫ 2
√
2u

0

xF2d−1

((
2
√
2u− x

)
x
)
p(x)dx. (112)

Notice that h(v, r, d) =
√
2vq(v/r, d).

We first need to prove an important property of the function q(u, d):

lim
u→∞

q(u, d) =
1√
2π

.
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Consider an arbitrary ϵ > 0. Since
∫ +∞
0

xp(x)dx = 1√
2π

, there exists N2 > N1 > 0 and such that

0 <

∫ N1

0

xp(x)dx ≤ ϵ

3
, (113)

0 <

∫ ∞

N2

xp(x)dx ≤ ϵ

3
. (114)

On the other hands, for every u > N2√
2

, since
(
2
√
2u− x

)
x is monotonically increasing on [N1, N2], we have∫ N2

N1

xF2d−1

((
2
√
2u− x

)
x
)
p(x)dx > F2d−1

((
2
√
2u−N1

)
N1

)∫ N2

N1

xp(x)dx. (115)

Notice that
lim
u→∞

F2d−1

((
2
√
2u−N1

)
N1

)
= 1,

there must exist a number N3 such that if u > N3, then

F2d−1

((
2
√
2u−N1

)
N1

)
> 1−

√
2πϵ. (116)

Putting together (115) and (116), because 0 ≤ F2d−1

((
2
√
2u− x

)
x
)
≤ 1, if u > max{N2√

2
, N3}, we can obtain

0 <

∫ +∞

0

xp(x)dx−
∫ 2

√
2u

0

xF2d−1

((
2
√
2u− x

)
x
)
p(x)dx (117)

≤ 2ϵ

3
+

∫ N2

N1

xp(x)dx−
∫ N2

N1

xF2d−1

((
2
√
2u− x

)
x
)
p(x)dx (118)

≤ 2ϵ

3
+

∫ N2

N1

xp(x)dx− F2d−1

((
2
√
2u−N1

)
N1

)∫ N2

N1

xp(x)dx (119)

≤ 2ϵ

3
+

∫ N2

N1

xp(x)dx−
(
1−

√
2πϵ
)∫ N2

N1

xp(x)dx (120)

=
2ϵ

3
+

ϵ

3

∫ N2

N1

xp(x)dx <
2ϵ

3
+
√
2πϵ

1√
2π

= ϵ. (121)

Taking ϵ → 0, hence we know that

lim
u→∞

q(u, d) =

∫ +∞

0

xp(x)dx =
1√
2π

.

Since limu→∞ q(u, d) = 1√
2π

, there exists a constant Cd such that whenever
(

1
2
√
π
+ 1

4

)
u > 1

4Cd, we have

q(u, d) ≥ 1√
2π

−
(

1

2
√
2π

− 1

4
√
2

)
=

1

2
√
2π

+
1

4
√
2
. (122)

Therefore, whenever
(

1
2
√
π
+ 1

4

)
v > 1

4Cdr, we have

h(v, r, d) =
√
2vq(v/r, d) ≥

(
1

2
√
π
+

1

4

)
v ≥

(
1

2
√
π
+

1

4

)
v − 1

4
Cdr. (123)

On the other hand, when
(

1
2
√
π
+ 1

4

)
v ≤ 1

4Cdr, we have

h(v, r, d) =
√
2vq(v/r, d) ≥ 0 ≥

(
1

2
√
π
+

1

4

)
v − 1

4
Cdr. (124)
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D. Experiment details
D.1. Hyperparameter choices for the experiments in Section 4.1

Figure 7 and 8 show the performance of tested algorithms in Figure 2 under different hyperparameter settings. For gradient-
based algorithms, ZO-SGD, SCOBO, and ZO-RankSGD, we tune the stepsize and set γ = 0.1 for the line search. We need
to remark that when implementing the SCOBO (Cai et al., 2022), we remove the sparsity constraint because we found
that it will lead to degraded performance for non-sparse problems like the ones we tested. For GLD-Fast, we tune for the
diameter of search sparse, denoted as µ. For CMA-ES, we tune for the initial variance, also denoted as µ in the figures. To
run the experiment in Figure 2, we select the optimal choices of hyperparameters based on Figure 7 and 8 for each algorithm,
respectively.

(a) ZO-SGD (b) SCOBO (c) ZO-RankSGD

(d) GLD-Fast (e) CMA-ES

Figure 7: Hyperparameter tuning on Quadratic function.

D.2. Details for the experiment in Section 4.2

Modified ZO-RankSGD algorithm for optimizing latent embeddings of Stable Diffusion. To enhance the efficiency of
Algorithm 1, we make a modification to preserve the best image obtained during the optimization process. Specifically, in
the original algorithm, the best point among all queried images is not saved, which can lead to inefficiencies. Therefore, we
modify the algorithm to store the best point in the gradient estimation step as x∗∗ and add it to the later line search step. This
modification can be viewed as a combination of ZO-RankSGD and Direct Search (Powell, 1998). Another useful feature of
Algorithm 3 is that if the best point is not updated in the line search step, the algorithm returns to the gradient estimation
step to form a more accurate gradient estimator. The modified algorithm is presented in Algorithm 3. At every iteration in
Algorithm 3, we evaluate the latent embeddings by passing them to the DPM-solver with Stable Diffusion and then ask
human or CLIP model to rank the generated images.
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(a) ZO-SGD (b) SCOBO (c) ZO-RankSGD

(d) GLD-Fast (e) CMA-ES

Figure 8: Hyperparameter tuning on Rosenbrock function.

Algorithm 3 Modified ZO-RankSGD algorithm for optimizing latent embeddings of Stable Diffusion.
Require: Objective function f (Evaluated by human or CLIP model), initial point x0, number of queries m, stepsize η, smoothing

parameter µ, shrinking rate γ ∈ (0, 1), number of trials l.
1: Initialize the best point x∗ = x0.
2: Initialize the gradient memory ḡ with all-zero vectors.
3: Set τ = 0.
4: while not terminated by user do
5: Sample m i.i.d. direction {ξ1, · · · , ξm} from N(0, I).
6: Query O

(m,k)
f with input X1 = {x∗ + µξ1, · · · , x∗ + µξm} for some k ≤ m. Denote I1 as the output.

7: Set x∗∗ to be the point in X1 with minimal objective value.
8: Compuate the gradient ĝ using the ranking information I1 as in Algorithm 1.
9: ḡ = (τ ḡ + ĝ)/(τ + 1)

10: τ = τ + 1
11: Query O

(m,1)
f with input X2 = {x∗, x∗∗, x∗ − ηḡ, x∗ − ηγḡ, ..., x∗ − ηγm−2ḡ}. Denote I2 as the output.

12: if 1 ∈ I2, i.e., x∗ has the minimal objective value then
13: Go back to line 5.
14: else
15: Set x∗ to be the point in X2 with minimal objective value.
16: Initialize the gradient memory ḡ with all-zero vectors.
17: Set τ = 0.
18: end if
19: end while

The User Interface for Algorithm 3. Figure 9 presents the corresponding user interface (UI) designed for collecting human
feedback in Algorithm 3, where 6 images are presented to the users at each round. When the user receives the instruction
"Please rank the following image from best to worst," it indicates that the algorithm is in the gradient estimation step. In
this case, users are required to rank k best images, where k can be any number they choose. Then, the user receives the
instruction "Please input the ID of the best image," indicating that the algorithm has moved to the line search step, and users
only need to choose the best image from the presented images. This interface enables easy and intuitive communication
between the user and the algorithm, facilitating the optimization process.
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Round 1: Please rank the following image from best to worst -> 4 2 1 5 3 6 

 
Round 2: Please input the ID of best image -> 1 

 
Round 3: Please rank the following image from best to worst -> 2 6 1 3 5 4 

 
Round 4: Please input the ID of best image -> 2 

 
  
 
Round 13: Please rank the following image from best to worst -> 6 3 1 5 

 
Round 14: Please input the ID of best image -> 6 

 
Round 15: Exit 
 

…
…

 

Figure 9: The User Interface of Algorithm 3.
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In this experiment, we use some popular text prompts from the internet1. More examples like the ones in Figure 4 are
presented in Figure 10.

Other details. For all the examples in Figure 4 and Figure 10, we set the number of rounds for human feedback between
10 and 20, which was determined based on our experience with the optimization process. For the images obtained from the
CLIP similarity score, we fixed the number of querying rounds to 50. Both the optimization from human feedback and CLIP
similarity score used the same parameters for Algorithm 3: η = 1, µ = 0.1, and γ = 0.5.

1https://mpost.io/best-100-stable-diffusion-prompts-the-most-beautiful-ai-text-to-image-prompts
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Figure 10: More examples.
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