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ABSTRACT

We tackle a challenging blind image denoising problem, in which only single
distinct noisy images are available for training a denoiser, and no information about
noise is known, except for it being zero-mean, additive, and independent of the
clean image. In such a setting, which often occurs in practice, it is not possible
to train a denoiser with the standard discriminative training or with the recently
developed Noise2Noise (N2N) training; the former requires the underlying clean
image for the given noisy image, and the latter requires two independently realized
noisy image pair for a clean image. To that end, we propose GAN2GAN (Generated-
Artificial-Noise to Generated-Artificial-Noise) method that first learns a generative
model that can 1) simulate the noise in the given noisy images and 2) generate a
rough, noisy estimates of the clean images, then 3) iteratively trains a denoiser
with subsequently synthesized noisy image pairs (as in N2N), obtained from the
generative model. In results, we show the denoiser trained with our GAN2GAN
achieves an impressive denoising performance on both synthetic and real-world
datasets for the blind denoising setting; it almost approaches the performance
of the standard discriminatively-trained or N2N-trained models that have more
information than ours, and it significantly outperforms the recent baseline for the
same setting, e.g., Noise2Void, and a more conventional yet strong one, BM3D. The
official code of our method is available at https://github.com/csm9493/GAN2GAN.

1 INTRODUCTION

Image denoising is one of the oldest problems in image processing and low-level computer vision,
yet it still attracts lots of attention due to the fundamental nature of the problem. A vast number of
algorithms have been proposed over the past several decades, and recently, the CNN-based methods,
e.g., Cha & Moon (2019); Zhang et al. (2017); Tai et al. (2017); Liu et al. (2018), became the
throne-holders in terms of the PSNR performance. The main approach of the most CNN-based
denoisers is to apply the discriminative learning framework with (clean, noisy) image pairs and known
noise distribution assumption. While being effective, such framework also possesses a couple of
limitations that become critical in practice; the assumed noise distribution may be mismatched to the
actual noise in the data or obtaining the noise-free clean target images is not always possible or very
expensive, e.g., medical imaging (CT or MRI) or astrophotographs.

Several attempts have been made to resolve above issues. For the noise uncertainty, the so-called blind
training have been proposed. Namely, a denoiser can be trained with a composite training set that
contains images corrupted with multiple, pre-defined noise levels or distributions, and such blindly
trained denoisers, e.g., DnCNN-B in Zhang et al. (2017), were shown to alleviate the mismatch
scenarios to some extent. However, the second limitation, i.e., the requirement of clean images for
building the training set, still remains. As an attempt to address this second limitation, Lehtinen et al.
(2018) recently proposed the Noise2Noise (N2N) method. It has been shown that a denoiser, which
has a negligible performance loss, can be trained without the clean target images, as long as two
independent noisy image realizations for the same underlying clean image are available. Despite its
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effectiveness, the requirement of the two independently realized noisy image pair for a single clean
image, which may hardly be available in practice, is a critical limiting factor for N2N.

In this paper, we consider a setting in which neither of above approach is applicable, namely, the
pure unsupervised blind denoising setting where only single distinct noisy images are available for
training. Namely, nothing is known about the noise other than it being zero-mean, additive, and
independent of the clean image, and neither the clean target images for blind training nor the noisy
image pairs for N2N training is available. While some recent work, e.g., Krull et al. (2019); Batson
& Royer (2019); Laine et al. (2019), took the self-supervised learning (SSL) approach for the same
setting, we take a generative learning approach. The crux of our method is to first learn a Wasserstein
GAN (Arjovsky et al., 2017)-based generative model that can 1) learn and simulate the noise in the
given noisy images and 2) generate rough, initially denoised images. Using such generative model,
we then synthesize noisy image pairs by corrupting each of the initially denoised images with the
simulated noise twice and use them to train a CNN denoiser as in the N2N training (i.e., Noisy N2N).
We further show that iterative N2N training with refined denoised images can significantly improve
the final denoising performance. We dubbed our method as GAN2GAN (Generated-Artifical-Noise
to Generated-Artificial-Noise) and show that the denoiser trained with our method can achieve
(sometimes, even outperform) the performance of the standard supervised-trained or N2N-trained
blind denoisers for the white Gaussian noise case. Furthermore, for mixture/correlated noise or
real-world noise in microscopy/CT images, for which the exact distributions are hard to know a
priori, we show our denoiser significantly outperforms those standard blind denoisers, which are
mismatch-trained with white Gaussian noise, as well as other baselines that operate in the same
condition as ours: the SSL baseline, N2V (Krull et al., 2019), and a more conventional BM3D (Dabov
et al., 2007).

2 RELATED WORK

Several works have been proposed to overcome the limitation of the vanilla supervised learning
based denoising. As mentioned above, Noise2Self (N2S) (Batson & Royer, 2019) and Noise2Void
(N2V) (Krull et al., 2019) recently applied self-supervised learning (SSL) approach to train a denoiser
only with single noisy images. Their settings exactly coincide with ours, but we show later that our
GAN2GAN significantly outperforms them. More recently, Laine et al. (2019) improved N2V by
incorporating specific noise likelihood models with Bayesian framework, however, their method
required to know the exact noise model and could not be applied to more general, unknown noise
settings. Similarly, Soltanayev & Chun (2018) proposed SURE (Stein’s Unbiased Risk Estimator)-
based denoiser that can also be trained with single noisy images, but it worked only with the Gaussian
noise. Their work was extended in Zhussip et al. (2019), but it required noisy image pairs as in
N2N as well as the Gaussian noise constraint. Chen et al. (2018) devised GCBD method to learn
and generate noise in the given noisy images using W-GAN Arjovsky et al. (2017) and utilized the
unpaired clean images to build a supervised training set. Our GAN2GAN is related to Chen et al.
(2018), but we significantly improve their noise learning step and do not use the clean data at all.
Table 1 summarizes and compares the settings among the above mentioned recent baselines. We
clearly see that only our GAN2GAN and N2V do not utilize any “sidekicks” that other methods use.

Table 1: Summary of different settings among the recent baselines.
Alg.\ Requirements Clean image Noisy “pairs” Noise model

N2N [Lehtinen et al. (2018)] 7 3 7
HQ SSL [Laine et al. (2019)] 7 7 3

SURE [Soltanayev & Chun (2018)] 7 7 3
Ext. SURE [Zhussip et al. (2019)] 7 3 3

GCBD [Chen et al. (2018)] 3 7 7

N2V [Krull et al. (2019)] 7 7 7
GAN2GAN (Ours) 7 7 7

Additionally, there are recently published papers on blind image denoising but these also have a
difference with ours. Anwar & Barnes (2019); Zhang et al. (2018) suggest effective CNN architectures
for denoising, however, they only consider the setting in which clean images are necessary for training.
Zamir et al. (2020) considers the denoising of specific camera settings, and it also requires clean
sRGB images as well as the knowledge of the noise level. Thus, it cannot be applied to the complete
blind setting as ours, in which no information on the specific noise distribution or clean images is
available.
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More classical denoising methods are capable of denoising solely based on the single noisy im-
ages by applying various principles, e.g., filtering-based Buades et al. (2005); Dabov et al. (2007),
optimization-based Elad & Aharon (2006); Mairal et al. (2009), Wavelet-based Donoho & Johnstone
(1995), and effective prior-based Zoran & Weiss (2011). Those methods typically are, however,
computationally intensive during the inference time and cannot be trained from a separate set of noisy
images, which limits their denoising performance. Another line of recent work worth mentioning is
the deep learning-based priors or regularizers, e.g., Ulyanov et al. (2018); Yeh et al. (2018); Lunz
et al. (2018), but their PSNRs still fell short of the supervised trained CNN-based denoisers.

3 MOTIVATION

In order to develop the core intuition for motivating our method, we first consider a simple, single-
letter Gaussian noise setting. Let Z = X +N be the noisy observation of X ∼ N (0, σ2

X), corrupted
by the N ∼ N (0, σ2

N ). It is well known that the minimum MSE (MMSE) estimator of X given Z is

f∗MMSE(Z) = E(X|Z) = σ2
X

σ2
X+σ2

N
Z. We now identify the optimality of N2N in this setting.

N2N Assume that we have two i.i.d. copies of the noise N : N1 and N2. Then, let Z1 = X +N1

and Z2 = X +N2 be the two independent noisy observation pairs of X . The N2N in this setting
corresponds to obtaining the MMSE estimator of Z2 given Z1,

fN2N(Z1) , argmin
f

E(Z2 − f(Z1))
2 = E(Z2|Z1) = E(X +N2|Z1)

(a)
= E(X|Z1) =

σ2
X

σ2
X + σ2

N

Z1, (1)

in which (a) follows fromN2 being independent ofZ1. Note (1) has the exact same form as f∗MMSE(Z),
hence, estimating X with fN2N(Z) also achieves the MMSE, in line with (Lehtinen et al., 2018).

“Noisy” N2N Now, consider the case in which we again have the two i.i.d. N1 and N2, but the
noisy observations are of a noisy version of X . Namely, let X ′ = X +N0, in which N0 ∼ N (0, σ2

0),
and denote Z ′1 = X ′ +N1 and Z ′2 = X ′ +N2 as the noisy observation pairs. Then, we can define a
“Noisy” N2N estimator as the MMSE estimator of Z ′2 given Z ′1,

fNoisy N2N(Z
′
1, y) , argmin

f
E(Z ′2 − f(Z ′1))2 = E(X ′|Z ′1) =

σ2
X(1 + y)

σ2
X(1 + y) + σ2

N

Z ′1, (2)

in which we denote y , σ2
0/σ

2
X and assume that 0 ≤ y < 1. Note clearly (2) coincides with (1)

when y = σ2
0 = 0. Following N2N, (2) is essentially estimating X ′ based on Z ′ = X ′ + N . An

interesting subtle question is what happens when we use the mapping fNoisy N2N(Z, y) for estimating
X given Z = X +N , not X ′ given Z ′. Our theorem below, of which proof is in the Supplementary
Material (S.M.), shows that for a sufficiently large σ2

0 , fNoisy N2N(Z, y) gives a better estimate of X
than X ′.

Theorem 1 Consider the single-letter Gaussian setting and fNoisy N2N(Z, y) obtained in (2). Also,
assume 0 < y < 1. Then, there exists some y0 s.t. ∀y ∈ (y0, 1), E(X − fNoisy N2N(Z, y))

2 < σ2
0 .
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Figure 1: Iterative Noisy N2N.

Theorem 1 provides a simple, but useful, intuition that mo-
tivates our method; if simulating the noise in the images is
possible, we may carry out the N2N training iteratively, pro-
vided that a rough noisy estimate of the clean image is initially
available. Namely, we can first simulate the noise to generate
noisy observation pairs of the initial noisy estimate, then do
the Noisy N2N training with them to obtain a denoiser that
may result in a better estimate of the clean image when applied
to the actual noisy image subject to denoising (as in Theorem
1). Then, we can refine the estimates by iterating the Noisy
N2N training with the generated noisy observation pairs of the
previous step’s estimate of the clean image, until convergence.

To check whether above intuition is valid, we carry out a fea-
sibility experiment. Figure 1 shows the denoising results on
BSD68 (Roth & Black, 2009) for Gaussian noise with σ = 25. The blue line is the PSNR of the N2N
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model trained with noisy observation pairs of the clean images in the BSD training set, serving as
an upper bound. The orange line, in contrast, is the PSNR of the Noisy N2N1 model that is trained
with the noisy observation pairs of the noisy estimates for the clean images, which were set to be
another Gaussian noise-corrupted training images. The standard deviations (σ0) of the Gaussian for
generating the noisy estimates are given in the horizontal axis, and the corresponding PSNRs of the
estimates are given in the parentheses. Although Noisy N2N1 clearly lies much lower than the N2N
upper bound, we note its PSNR is still higher than that of the initial noisy estimates, which is in
line with Theorem 1. Now, if we iterate the Noisy N2N with the previous step’s denoised images
(i.e., Noisy-N2N2/Noisy-N2N3 for second/third iterations, respectively), we observe that the PSNR
significantly improves and approaches the ordinary N2N for most of the initial σ0 values. Thus, we
observe the intuition from Theorem 1 generalizes well to the image denoising case in an ideal setting,
where the noise can be perfectly simulated, and the initial noisy estimates are Gaussian corrupted
versions. The remaining question is whether we can also obtain similar results for the blind image
denoising setting. We show our generative model-based approach in details in the next section.

4 MAIN METHOD: THREE COMPONENTS OF GAN2GAN

To concretely describe our method, we first set the notations. We assume the noisy image Z is
generated by Z = x+N, in which x denotes the underlying clean image and N denotes the zero-
mean, additive noise that is independent of x. For training a denoiser, we do not assume either the
distribution or the covariance of N is known. Moreover, we assume only a database of n distinct
noisy images, D = {Z(i)}ni=1, is available for learning a denoiser. A CNN-based denoiser is denoted
as X̂φ(Z) with φ being the model parameter, and we use the standard quality metrics, PSNR/SSIM,
for evaluation. Our method consists of three parts; 1) smooth noisy patch extraction, 2) training a
generative model, and 3) iterative GAN2GAN training of X̂φ(Z), each of which we elaborate below.

4.1 SMOOTH NOISY PATCH EXTRACTION

The first step is to extract the noisy image patches from D that correspond to smooth, homogeneous
areas. Our extraction method is similar to that of the GCBD proposed in (Chen et al., 2018), but we
make a critical improvement. The GCBD determines a patch p (of pre-determined size) is smooth if it
satisfies the following for all of its smaller sub-patches, qj , with some hyperparameters µ, γ ∈ (0, 1):

|E(qj)− E(p)| ≤ µE(p), |V(qj)− V(p)| ≤ γV(p), (3)

in which E(·) and V(·) are the empirical mean and variance of the pixel values.
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Figure 2: Comparison of smooth noisy patch extraction rules.

While (3) works for extracting smooth patches to some extent, as we show in Figure 2(b), it does not
rule out choosing patches with high-frequency repeating patterns, which are far from being smooth.
Thus, we instead use the 2D discrete wavelet transform (DWT) for a new extraction rule; namely, we
determine p is smooth if its four sub-band decompositions obtained by DWT, {Wk(p)}4k=1, satisfy

1

4

4∑
k=1

∣∣∣σ̂(Wk(p))− E[σ̂W (p)]
∣∣∣ ≤ λE[σ̂W (p)], (4)

in which σ̂(·) is the empirical standard deviation of the wavelet coefficients, E[σ̂W (p)] ,
1
4

∑4
k=1 σ̂(Wk(p)), and λ ∈ (0, 1) is a hyperparameter. This rule is much simpler than (3), which

4



Noisy image DB

Smooth noisy 
patch extraction

Random cropping

(a) Getting D & N

: Conv + BN + ReLU

: Conv + BN + LeakyReLU

: DeConv + BN + ReLU

(b) The model architecture with three generators and two critics.

Figure 3: Overall structure of the W-GAN based generative model.

has to be evaluated for all the sub-patches, {qj}. Once N patches are extracted from D using (4), we
subtract each patch with its mean pixel value, and obtain a set of “noise” patches, N = {n(j)}Nj=1.
Such subtraction is valid since all the pixel values should be close to their mean in a smooth patch,
and the noise is assumed to be zero-mean, additive.

Figure 2 compares the rules (3) and (4) by showing the quality of the “noise” patches extracted from
1,000 Gaussian-corrupted images . The two plots in Figure 2(a) show the normalized histograms of
the empirical standard deviations, σ̂, of the extracted patches when true σ = {25, 50}, respectively.
We clearly observe that while the σ̂’s for (4) are mostly concentrated on true σ, those of (3) have
much higher variation. In addition, Figure 2(b) visualizes the randomly sampled patches of which
σ̂’s were above the 90-th percentile among the extracted patches for each rule (when σ = 25).
Again, it is obvious that (3) also may result in selecting the patches with high-frequency patterns,
whereas (4) is much more effective for extracting accurate noise patches. Later, we show (in Figure
5) that such improved quality of the noise patches by our (4) plays an essential role; namely, our
pure unsupervised learning based denoiser using (4) even outperforms the clean target image based
denoiser in (Chen et al., 2018) using (3).

4.2 TRAINING A W-GAN BASED GENERATIVE MODEL

Equipped withD = {Z(i)}ni=1 and the extracted noise patchesN = {n(j)}Nj=1, we train a generative
model, which can learn and simulate the noise as well as generate initial noisy estimates of the clean
images, hence, realize the Noisy N2N training explained in Section 3. As shown in Figure 3, our
model has three generators, {gθ1 , gθ2 , gθ3}, and two critics, {fw1

, fw2
}, in which the subscripts

stand for the model parameters. The loss functions associated with the components of our model are:

Ln(θ1,w1) , En
[
fw1

(n)]− Er[fw1
(gθ1(r))

]
(5)

LZ(θ1,θ2,w2) , EZ

[
fw2(Z)

]
− EZ,r

[
fw2(gθ2(Z) + gθ1(r))

]
(6)

Lcyc(θ2,θ3) , EZ

[
‖z − gθ3(gθ2(Z))‖1

]
. (7)

The loss (5) is a standard W-GAN (Arjovsky et al., 2017) loss for training the first generator-critic pair,
(gθ1 , fw1), of which gθ1 learns to generate the independent realization of the noise mimicking the
patches inN = {n(j)}Nj=1, taking the random vector r ∼ N (0, I) as input. The second loss (6) links
the two generators, gθ1 and gθ2 , with the second critic, fw2

. The second generator gθ2 is intended to
generate the estimate of the underlying clean patch for Z, i.e., coarsely denoise Z, and the critic fw2

determines how close the distribution of the generated noisy image, gθ2(Z) + gθ1(r), is to the that
of Z1. Our intuition is, if gθ1 can realistically simulate the noise, then enforcing gθ2(Z) + gθ1(r) to
mimick Z would result in learning a reasonable initial denoiser gθ2 . One important detail regarding
gθ2 is its final activation must be the sigmoid function for stable training. The third loss (7), which

1We assume gθ2 implicitly has the cropping step for Z such that the dimension of gθ2(Z) and gθ1(r) match.
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resembles the cycle loss in (Zhu et al., 2017), imposes the encoder-decoder structure between gθ2
and gθ3 , hence, helps gθ2 to compress the most redundant part of Z, i.e., the noise, and carry out
the initial denoising. Once the losses are defined, training the generators and critics are done in an
alternating manner, as in the training of W-GAN (Arjovsky et al., 2017), to approximately solve

min
θ1,θ2,θ3

max
w1,w2

[
αLn(θ1,w1)+ βLZ(θ1,θ2,w2) + γLcyc(θ2,θ3)

]
, (8)

in which (α, β, γ) are hyperparameters to control the trade-offs between the loss functions. The
pseudo algorithm for training a generative model is given in Algorithm 1. There are a couple of
subtle points for training with the overall objective (8), and we describe the full details on model
architectures and hyperparameters in the S.M.

Algorithm 1 Training a generative model, all experiments in this paper used the defaults values,
ncritic = 5, nepoch = 30, m = 64, αg = 4e−4, αcritic = 5e−5, α = 5, β = 1, γ = 10

1: Require D, λ
2: N ← NoisePatchExtraction(D, λ)
3: for epGAN ← 1, nepoch do
4: Sample {n(i)}mi=1 ∼ N , {r(i)}mi=1 ∼ N(0, I), {Z(i)}mi=1 ∼ D
5: for epcritic ← 1, ncritic do
6: gw1 ← ∇w1 [Ln(θ1, w1)], gw2 ← ∇w2 [LZ(θ1, θ2, w2)]
7: w1 ← Clip(w1 + αcritic ·Adam(w1, gw1),−c, c)
8: w2 ← Clip(w2 + αcritic ·Adam(w2, gw2),−c, c)
9: end for

10: gθ1 , gθ2 , gθ3 ← ∇θ1,θ2,θ3 [ αLn(θ1, w1) + βLZ(θ1, θ2, w2) + γLcyc(θ2, θ3) ]
11: θ1 ← θ1−αg ·Adam(θ1, gθ1) , θ2 ← θ2−αg ·Adam(θ2, gθ2) , θ3 ← θ3−αg ·Adam(θ3, gθ3)
12: end for
13: return θ1, θ2

4.3 ITERATIVE GAN2GAN TRAINING OF A DENOISER

With our generative model, we then carry out the iterative Noisy N2N training as described in Section
3, with the generated noisy images. Namely, given each Z(i) ∈ D, we generate the pair

(Ẑ
(i)
11 , Ẑ

(i)
12 ) , (gθ2(Z

(i)) + gθ1(r
(i)
11 ), gθ2(Z

(i)) + gθ1(r
(i)
12 )), (9)

in which r(i)11 , r
(i)
12 ∈ R128 are i.i.d. ∼ N (0, I). In contrast to the ideal case in Section 3, each

generated image in (9) is a noise-corrupted version of gθ2(Z
(i)), in which the corruption is done by

the simulated noise gθ1(r). Denoting the set of such pairs as D̂1 = {(Ẑ(i)
11 , Ẑ

(i)
12 )}ni=1, a denoiser

X̂φ(Z) is trained by minimizing LG2G(φ, D̂1) , 1
n

∑n
i=1(Ẑ

(i)
11 − X̂φ(Ẑ

(i)
12 ))

2. In LG2G(·), we only
use the generated noisy images and do not use the actual observed Z(i), hence, we dubbed our training
as GAN2GAN (G2G) training. Now, denoting the learned denoiser as G2G1 (with parameter φ1),
we can iterate the G2G training. For the j-th iteration (with j ≥ 2), we generate(

Ẑ
(i)
j1 , Ẑ

(i)
j2

)
,
(
X̂φj−1(Z

(i)) + gθ1(r
(i)
j1 ), X̂φj−1(Z

(i)) + gθ1(r
(i)
j2 )
)
, (10)

for each Z(i) and denote the resulting set of the pairs as D̂j . Note in (10), we update the noisy
estimate of the clean image with the output of G2Gj−1. Then, the new denoiser G2Gj is obtained
by computing φj , argminφ LG2G(φ, D̂j), where the minimization is done via warm-starting from
φj−1. In our experiments, we show the sequence, G2Gj≥1, successively refines the denoising quality
and significantly improves the initial noisy estimate, similarly as in Figure 1. Moreover, we identify
the benefit of the iterative G2G training becomes greater when noise is more sophisticated; i.e.,
for synthetic noise, the performance of G2Gj≥1 converges after 1∼3 iterations, whereas for the
real-world microscopy noise, the performance keeps increasing until larger number of iterations.

5 EXPERIMENTAL RESULTS

5.1 DATA AND EXPERIMENTAL SETTINGS

Data & training details In synthetic noise experiments, we always used the noisy training images
from BSD400 (Martin et al., 2001). For evaluation, we used the standard BSD68 (Roth & Black,
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2009) as a test set. For real-noise experiment, we experimented on two data sets: the WF set in the
microscopy image datasets in (Zhang et al., 2019) and the reconstructed CT dataset. For both datasets,
we trained/tested on each (Avg = n) and each dose level, respectively, which corresponds to different
noise levels. For the generative model training, the patch size used for D and N was 96× 96, and
n and N were set to 20, 000 (BSD) and 40, 000 (microscopy), respectively. For the iterative G2G
training, the patch size for D was 120× 120 and n = 20, 500, and in every mini-batch, we generated
new noisy pairs with gθ1 as in the noise augmentation of (Zhang et al., 2017). The architecture of
G2Gj was set to 17-layer DnCNN in (Zhang et al., 2017). We put full details on training, model
architectures and hyperparameters as well as the software platforms in the S.M.
Baselines The baselines were BM3D (Dabov et al., 2007), DnCNN-B (Zhang et al., 2018), N2N
(Lehtinen et al., 2018), and N2V (Krull et al., 2019). We reproduced and trained DnCNN-B, N2N
and N2V using the publicly available source codes on the exactly same training data as our iterative
G2G training. For DnCNN-B and N2N, which use either clean targets or two independent noisy
image copies, we used 20-layers DnCNN model with composite additive white Gaussian noise with
σ ∈ [0, 55]. N2V considers the same setting as ours and uses the exact same architecture as G2Gj ;
more details on N2V are also given in the S.M. We could not compare with the scheme in (Laine
et al., 2019), since their code cannot run beyond white Gaussian noise case in our experiments and
they had an unfair advantage: they newly generate noisy images by corrupting given clean images for
every mini-batch whereas we assume the given noisy images are fixed once for all. It is known that
such noise augmentation significantly can increase the performance, and their code could not run
in our setting in which the noisy images are fixed once given. As an upper bound, we implemented
N2C(Eq.(4)), denoting a 17-layer DnCNN trained with clean target images in BSD400 and their
noisy counterpart, which is corrupted by our gθ1 learned with (4).

5.2 DENOISING RESULTS ON SYNTHETIC NOISE

White Gaussian noise Table 2 shows the results on BSD68 corrupted by white Gaussian noise with
different σ’s. Several variations of our G2G, gθ2 and the G2G iterates, G2Gj≥1, are shown for two
different training data versions for learning the generative model. Firstly, we clearly observe the

Table 2: Results on BSD68/Gaussian. Boldface denotes algorithms that only use single noisy images.
Red and blue denotes the highest and second highest result among those algorithms, respectively.

PSNR/SSIM Baselines G2G variation Upper Bound
BM3D DnCNN-B N2N N2V gθ2 G2G1 G2G2 G2G3 N2C(Eq.(4))

σ = 15 31.07/0.8717 31.44/0.8836 31.20/0.8745 29.48/0.8199 25.94/0.7519 30.98/0.8552 32.51/0.8827 31.45/0.8825 31.64/0.8870
σ = 25 28.56/0.8013 28.92/0.8137 28.74/0.8041 26.97/0.7083 24.16/0.6630 28.23/0.7669 28.82/0.8056 28.96/0.8080 29.11/0.8189
σ = 30 27.78/0.7727 28.06/0.7812 27.91/0.7720 26.38/0.6657 23.43/0.5967 27.58/0.7413 27.99/0.7783 28.03/0.7759 28.28/0.7890
σ = 50 25.60/0.6866 25.78/0.6721 25.71/0.6712 24.30/0.5765 20.58/0.4482 25.08/0.6215 25.55/0.6639 25.78/0.6749 26.03/0.6951

iterative G2G training is very effective; namely, it significantly improves the initial noisy estimate gθ2 ,
particularly when the quality of the initial estimate is not good enough. This result confirms the result
of Figure 1 indeed carries over to the blind denoising setting with our method. Secondly, we note
G2G1 already considerably outperforms N2V, which is trained with the exact same model architecture
and dataset. Finally, the performance of G2G3 is very strong; it outperforms BM3D, which knows
true σ, and even sometimes outperforms the blindly trained DnCNN-B and N2N, which is trained
with the same BSD400 dataset, but with more information. This somewhat counter-intuitive result is
possible since our G2Gj accurately learns the correct noise level in the image, while DnCNN-B and
N2N are trained with the composite noise levels, σ ∈ [0, 55].

Mixture and correlated noise Table 3 shows the results on mixture and correlated noise beyond
white Gaussian. Note our G2Gj does not assume any distributional or correlation structure of the
noise, hence, it can still run as long as the assumption on the noise holds. In the table, the G2G results

Table 3: Results on BSD68/Mixture & Correlated noise. The boldface and colored texts are as before.
PSNR/SSIM Baselines G2G variation Upper bound

BM3D DnCNN-B N2N N2V gθ2 G2G1 G2G2 G2G3 N2C(Eq.(4))

Mixture
noise

Case A s = 15 41.44/0.9822 39.62/0.9749 40.59/0.9860 33.53/0.9368 31.85/0.9522 42.35/0.9876 42.56/0.9888 42.49/0.9885 42.92/0.9843
s = 25 37.97/0.9647 37.23/0.9616 37.39/0.9737 31.62/0.9057 32.73/0.9478 39.13/0.9761 39.64/0.9800 39.72/0.9807 40.42/0.9843

Case B s = 30 30.12/0.8549 30.58/0.8655 30.36/0.8559 28.10/0.7543 27.55/0.7728 29.05/0.8199 30.32/0.8456 30.49/0.8538 30.78/0.8685
s = 50 29.27/0.8190 30.20/0.8547 30.20/0.8547 28.22/0.7755 27.36/0.7712 29.78/0.8345 30.04/0.8392 30.00/0.8417 30.39/0.8574

Correlated
noise

σ = 15 29.84/0.8504 30.84/0.9011 30.69/0.9223 28.80/0.8367 28.13/0.8370 30.73/0.8889 31.09/0.8949 31.26/0.8954 31.60/0.9075
σ = 25 26.69/0.7544 27.39/0.8257 27.32/0.8594 26.11/0.7348 25.68/0.7607 27.80/0.8130 28.01/0.8271 28.00/0.8447 28.42/0.8376

are for (BSD) as specified above. Moreover, DnCNN-B and N2N are still blindly trained with the
mismatched white Gaussian noise. For mixture noise, we tested with two cases. Case A corresponds
to the same setting as given in (Chen et al., 2018), i.e., 70% ∼ N (0, 0.12), 20% ∼ N (0, 1), and
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10% ∼ Unif[−s, s] which means the random variable that is uniformly distributed between [−s, s]
with s = 15, 25. For case B, we tested with larger variances, i.e., 70% Gaussian N(0, 152), 20%
Gaussian N(0, 252), and 10% Uniform [−s, s] with s = 30, 50. For correlated noise, we generated
the following noise for each `-th pixel,

N` = ηM` + (1− η)
( 1√
|NB`|

∑
m∈NB`

Mm

)
, ` = 1, 2, . . .

in which {M`} are white Gaussian N (0, σ2), NB` is the k × k neighborhood patch except for the
pixel `, and η is a mixture parameter. We set η = 1/

√
2 such that the marginal distribution of N`

is also N (0, σ2) and set k = 16. Note in this case, N` has a spatial correlation, and we tested with
σ = 15, 25. From the table, we first note that DnCNN-B and N2N suffer from serious performance
degradation for both mixture and correlated noises due to noise mismatch, and the conventional
BM3D outperforms them for some cases (e.g., Case A for mixture noise). However, we note our
G2G2 can still denoise very well after just two iterations and outperforms all the baselines for all
noise types. Note N2V seriously suffers and is not comparable to ours. Finally, N2C(Eq.(4)) is a
sound upper bound for all noise types, confirming the correctness of the extraction rule (4).

5.3 DENOISING RESULTS ON REAL NOISE

We also test our method on the real-world noise. While some popular real noise is known to have
source-dependent characteristics, there are also cases in which the noise is source-independent and
pixel-wise correlated, which satisfies the assumption of our method. We tested on two such datasets,
the Wide-Focal (WF) set in the microscopy image dataset (Zhang et al., 2019) and a Reconstructed
CT dataset. A more detailed description and analysis on these two datasets are in S.M. The WF
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(c) Visualization

Figure 4: Results on real microscopy image denoising on WF and medical image denoising.

and Reconstructed CT data has 5 sets (Avg = 1, 2, 4, 8, 16) and 4 sets (Dose=25, 50, 75, 100) with
different noise levels, respectively. We did not exploit the fact that the images are multiple noisy
measurements of a clean image, which enables employing N2N, but treated them as noisy images
of distinct clean images. Figure 4(a) and 4(b) shows the PSNR of all methods for each dataset,
respectively, averaged over all sets. The baselines were DnCNN-B, BM3D and N2V. We note BM3D
estimated noise σ using the method in Chen et al. (2015). We iterated until G2G3 and N2C(Eq.(4))
was an upper bound for each set. We clearly observe that the performance of G2Gj significantly
improves (over gθ2) as the iteration continues. In results, G2G3 becomes significantly better than
DnCNN-B and N2V as well as BM3D, still one of the strongest baselines for real-world noise
denoising when no clean target images are available, for both datasets. We report more detailed
experimental results (including SSIM) on both datasets in S.M. Moreover, the inference time for
BM3D is about 4.5∼5.0 seconds per image since a noise estimation has to be done for each image
separately, whereas that for G2Gj is only 4 ms (on GPU), which is another significant advantage of
our method. Figure 4(c) shows the visualizations on the WF, and we give more examples in the S.M.

5.4 ABLATION STUDY

Noise patch extraction Here, we evaluate the effect of the noisy patch extraction rules (3) and
(4) in the final denoising performance. Figure 5 compares the PSNR of N2C(GCBD Eq.(3)), a
re-implementation of (Chen et al., 2018), N2C(Ours Eq.(4)) and the best G2G, for each dataset.

8



Gaussian
= 15

Gaussian
= 25

Gaussian
= 30

Gaussian
= 50

Mixture
s = 15

Mixture
s = 25

Mixture
s = 30

Mixture
s = 50

Correlated
= 15

Correlated
= 25

Real
Microscopy

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

PS
NR

 (d
B)

N2C(Ours Eq.(4))
G2G
N2C(GCBD Eq.(3))

Figure 5: Effect of noise patch extraction rule.

We note neither source code nor training data
of (Chen et al., 2018) is publicly available, and
the PSNR in (Chen et al., 2018) could not be
reproduced (with the exact same η and γ as in
(Chen et al., 2018)). From the figure, we clearly
observe the significant gap between N2C(Our
Eq.(4)) and N2C(GCBD Eq.(3)), particularly
when the noise is not white Gaussian. More-
over, our pure unsupervised G2G with (4) even
outperforms N2C(GCBD Eq.(3)) that utilizes
the clean target images, confirming the quality
difference shown in Figure 2(b) significantly affects learning noise and a denoiser.

Generative model and iterative G2G training Figure 6(a) shows the PSNRs of gθ2 on
BSD68/Gaussian(σ = 25) trained with three variations; “No LZ” for no fw2 , “No Lcyc” for no
(7) and gθ3 , and “No sigmoid” for no sigmoid activation at the output layer of gθ2 . We confirm that
our proposed architecture achieves the highest PSNR for gθ2 , the sigmoid activation and fw2 are
essential, and the cylce loss (7) is also important. Achieving a decent PSNR for gθ2 is beneficial for
saving the number of G2G iterations and achieving high final PSNR. More detailed analyses on the
generative model architecture are in the S.M. Figure 6(b) and 6(c) show the effect of the quality of
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Figure 6: Ablation studies. (b) and (c) compare the performances between starting from gθ2 and Z.

the initial estimate for the iterative G2G training. From Figure 1, one may ask whether gθ2 is indeed
necessary, since even when σ0 ≈ σ, the iterating the Noisy N2N can mostly achieve the upper bound.
Hence, for samples of synthetic and real microscopy data, we evaluate how G2Gj performs when
the iteration simply starts with Z. Figure 6(b) shows a somewhat surprising result that for synthetic
noises, starting from Z achieves essentially the same performance as starting from gθ2 with a couple
more G2G iterations. However, for real microscopy noise case in Figure 6(c), WF(Avg= 1) in which
starting from Z achieves far lower performance than starting from gθ2 , justifying our generative
model for attaining the initial noisy estimate.

6 CONCLUDING REMARK

Motivated by a novel observation on Noisy N2N, we proposed a novel GAN2GAN method, which
can tackle the challenging blind image denoising problem solely with single noisy images. Our
method showed impressive denoising performance that even sometimes outperform the methods with
more information as well as VST+BM3D for real noise denoising. As a future work, we plan to
extend our framework to more explicitly handle the source-dependent real-world noise.
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