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ABSTRACT

State-of-the-art learners remain fragile under heavy-tailed noise, adversarial per-
turbations and decoherence. We propose Q-STRONG, a quantum–statistical
framework for certified robust learning that uses the spectral structure of a learned
state representation as a stability signal. Inputs are embedded into a normalized
quantum state space, and a task-aligned Hamiltonian induces a low-energy rep-
resentation whose spectral gap ∆θ(x) quantifies local stability. This gap steers
both training and certification: during optimization, robust losses and quantile-
based clipping reduce gradient tail effects; at inference, a gap-adaptive random-
ized smoothing scheme chooses the noise level σ(x) = κ∆θ(x)

−β , yielding larger
certified ℓ2 radii exactly where the representation is stable. We provide non-
asymptotic guarantees for quantile-clipped robust SGD, stability-based general-
ization bounds with improved effective smoothness, and gap-adaptive extensions
of randomized-smoothing certificates tied to ∆θ(x). Empirically, Q-STRONG at-
tains a favorable accuracy–robustness frontier on MNIST and CIFAR-10 under
label noise and common corruptions, and on synthetic manifolds that stress in-
trinsic dimension and outliers, while adding modest overhead and thus offers a
practical, theoretically grounded route to certified, noise-resilient learning.

1 INTRODUCTION

Recent progress in deep learning has highlighted a persistent challenge: despite excelling on clean
benchmarks, modern models remain highly sensitive to small perturbations or structural noise in
the input distribution and remain brittle under heavy–tailed corruptions, label noise, covariate shift,
and adversarial perturbations (Goodfellow et al., 2015; Madry et al., 2018). , mislabeled examples,
and gradient-instability during training can severely distort the learned representation. Meanwhile,
methods for certified robustness—such as randomized smoothing—provide formal guarantees but
operate agnostically to the internal geometry of the model and often yield conservative bounds.
At the same time, quantum-inspired representations have shown that spectral properties of state
embeddings, such as local energy gaps, correlate strongly with the intrinsic stability of features and
their resistance to perturbations. These observations motivate the need for a unified framework that
leverages stability information from the representation itself while still remaining compatible with
classical hardware and learning pipelines.

These vulnerabilities are further amplified in stochastic or resource–constrained regimes—e.g.,
near–term quantum processors (NISQ) where readout noise, crosstalk, and decoherence are intrinsic
(Preskill, 2018). Building robust and resilient systems therefore requires joint progress on (i) statis-
tical objectives whose influence functions temper outliers, (ii) optimization procedures that suppress
instability from rare, large gradients, and (iii) certification methods that turn empirical robustness
into verifiable guarantees. On emerging noisy intermediate-scale quantum (NISQ) hardware, an
additional layer of stochasticity arises from gate errors, decoherence, and readout noise (Preskill,
2018) , further stressing robustness and reliability. Designing learners that remain accurate, stable
to training noise, and certifiably robust at test time is therefore a central challenge.

We introduce Q-STRONG (Quantum–Statistical Robustness with Noise–Guarded Dynamics for
Learning), a quantum–statistical framework that unifies robust M–estimation, quantile–scheduled
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gradient clipping, and adaptive randomized smoothing within a principled state–space formulation.
Classical inputs are embedded as quantum states by a trainable encoder; a task–aligned Hamiltonian
induces a low–energy representation whose spectral gap serves as a stability indicator. During train-
ing we minimize a robust loss (e.g., Huber, Catoni) to bound per–sample influence (Huber, 1964;
Catoni, 2012), while applying dynamic clipping that sets the clipping norm to a running quantile of
per–sample gradient norms, suppressing rare but destabilizing updates (Menon et al., 2020; Ye et al.,
2025). At inference, we deploy noise–guarded randomized smoothing: Gaussian perturbations are
injected with variance σ(x) ∝ 1/∆(x), where ∆(x) is the empirical spectral gap of the learned
quantum representation. This gap–adaptive schedule enlarges certified ℓ2 radii when the representa-
tion is stable, linking certification to state–space dynamics (Cohen et al., 2019; Salman et al., 2019;
Lyu et al., 2024).

Robust statistics offers estimators with bounded influence functions that curb heavy–tailed noise
and contamination (Huber, 1964; Catoni, 2012). Randomized smoothing converts any base classi-
fier into a certifiable one by majority vote under Gaussian noise, yielding instance–wise robustness
radii (Cohen et al., 2019; Salman et al., 2019; Yang et al., 2020). Gradient clipping is a prag-
matic stabilizer, but naı̈ve clipping alone is not label–noise robust; partially Huberised/composite
loss strategies and optimized schedules address this limitation (Menon et al., 2020; Ye et al., 2025).
In parallel, quantum machine learning (QML) connects quantum embeddings to kernel methods
(Schuld & Killoran, 2019), has strong representational promise (Biamonte et al., 2017), but faces
NISQ realities and barren plateau phenomena (Preskill, 2018; McClean et al., 2018). Recent QML
efforts show noise–aware representation/observable learning and provably noise–resilient training
(Candelori et al., 2024; Khanal & Rivas, 2024; Tecot et al., 2025). Q-STRONG bridges these
threads: robust objectives and dynamic clipping are enforced in the quantum–embedded space,
and certification is made gap–adaptive—tying guarantees to physically meaningful stability signals.
Non–asymptotic analysis for weakly smooth robust objectives: (i) convergence of clipped SGD to
stationary points with constants controlled by the clipping quantile; (ii) a stability–based general-
ization bound in which the effective Lipschitz constant is reduced by robustification and clipping;
(iii) transfer of smoothing certificates (Cohen et al., 2019; Salman et al., 2019) to a quantum readout
with gap–adaptive noise, yielding larger radii on stable representations; and (iv) parameter–noise
resilience bounds that tie prediction drift under hardware perturbations to inverse powers of the
spectral gap.

2 RELATED WORK

2.1 ROBUST STATISTICS AND ROBUSTIFICATION

Classical robust methods (Huber, redescending/Catoni) bound the influence of outliers and stabi-
lize estimation in heavy–tailed regimes (Huber, 1964; Catoni, 2012). These techniques extend to
modern ML as robust losses and reweighting schemes, but by themselves do not provide adversarial
guarantees or optimization stability under rare gradient spikes.

2.2 GRADIENT CLIPPING AND NOISE-AWARE OPTIMIZATION

Gradient clipping is widely used to avoid exploding updates, yet standard clipping alone is not
label–noise robust; its effect is equivalent to a fully Huberised loss that remains vulnerable under
symmetric noise (Menon et al., 2020). Composite/partially Huberised losses improve robustness
(Menon et al., 2020), and optimized clipping schedules that adapt thresholds over training further
enhance performance under label noise (Ye et al., 2025).

2.3 CERTIFIED ROBUSTNESS VIA RANDOMIZED SMOOTHING

Randomized smoothing scales certification to large models by turning any base classifier into a
smoothed classifier with instance-wise ℓ2 radii (Cohen et al., 2019). Adversarially trained smooth-
ing improves the accuracy–certificate frontier (Salman et al., 2019). Extensions broaden the noise
families and certification theory (Yang et al., 2020; Mohapatra et al., 2020), and recent adaptive vari-
ants certify multi-step/test-time adaptation (Lyu et al., 2024). Our work contributes a gap–adaptive
smoothing schedule that ties σ(x) to quantum stability.
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2.4 QUANTUM MACHINE LEARNING UNDER NOISE

QML promises expressive embeddings and kernel–like advantages (Biamonte et al., 2017; Schuld
& Killoran, 2019) but faces NISQ noise and barren plateaus (Preskill, 2018; McClean et al., 2018).
Noise-aware QML includes quantum–geometric encoders whose spectral structure correlates with
intrinsic dimension and noise robustness (Candelori et al., 2024), robust observable learning (Khanal
& Rivas, 2024), and provably noise-resilient training for parameterized circuits (Tecot et al., 2025).
Q-STRONG integrates these with classical robustification and certified smoothing, using the spectral
gap as a unifying stability signal.

3 METHODOLOGY

We develop Q-STRONG, a quantum–statistical learner that couples (i) robust M–estimation in a
quantum state space, (ii) quantile–scheduled dynamic gradient clipping for optimization stability,
and (iii) gap–adaptive randomized smoothing for certification. This section formalizes the repre-
sentation, objectives, training dynamics, and certificates.

3.1 PRELIMINARIES AND NOTATION

Let D = {(xi, yi)}Ni=1 with xi ∈ RD and yi ∈ {1, . . . , C}. A trainable encoder Eθ : RD → CK
maps inputs to normalized quantum states ψθ(x) ∈ CK with ∥ψθ(x)∥2 = 1. A classifier head fθ :
CK → RC outputs logits zθ(x) ∈ RC . Denote the cross-entropy ℓCE(y, z) = − log softmax(z)y
and the margin mθ(x, y) = zθ(x)y −maxc̸=y zθ(x)c.

Quantum stability signal. Following Candelori et al. (2024), we associate to each embedded state
a Hermitian error Hamiltonian Hθ(x) whose ground state and spectral structure act as a denoising
proxy; let λ1(x) ≤ λ2(x) ≤ · · · be its eigenvalues and define the local gap

∆θ(x) = λ2(x)− λ1(x) .

Large gaps indicate locally stable representations, whereas small gaps reveal instability or mode
ambiguity. Q-STRONG exploits ∆θ(x) to steer training (clipping schedule) and certification (noise
scale).

3.2 ROBUST OBJECTIVES IN THE STATE SPACE

To bound the influence of outliers and label noise we minimize a robust M–estimator of the form

Lρ(θ) =
1

N

N∑
i=1

ρ
(
ℓCE

(
yi, zθ(xi)

))
+ λR(θ), (1)

where ρ : R≥0→R≥0 is convex, nondecreasing, with bounded slope (influence) and R is a standard
weight decay. Two instances are:

Huber ρτ (u) =

u, u ≤ τ,

τ +
(u− τ)2

2τ
, u > τ,

(2)

Catoni ρα(u) =
1

α
log
(
cosh(αu)

)
, α > 0. (3)

The derivative ψ(u) = ρ′(u) is a score with supu ψ(u) ≤ cρ < ∞, yielding a bounded-influence
estimator (Huber, 1964; Catoni, 2012). In Q-STRONG, equation 1 is optimized through the quantum
embedding Eθ and thus acts directly in the state space.

Gradient structure. Writing gi(θ) = ∇θℓCE(yi, zθ(xi)), the robust gradient is

∇θLρ(θ) =
1

N

N∑
i=1

ψ
(
ℓCE(yi, zθ(xi))

)
gi(θ) + λ∇θR(θ), (4)

with ∥ψ(·)∥ ≤ cρ, which shrinks the contribution from extreme residuals (heavy-tailed or mislabeled
points).

3
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3.3 DYNAMIC GRADIENT CLIPPING VIA QUANTILES

Even with robust losses, per-sample gradients may exhibit rare spikes that destabilize SGD. Q-
STRONG applies quantile–scheduled clipping: at iteration t compute per-sample norms r(t)i =

∥g(t)i ∥2, set the threshold to the α–quantile

γt = Quantileα
(
{r(t)i }i∈Bt

)
, α ∈ (0, 1), (5)

and clip
g̃
(t)
i = min

{
1,

γt

∥g(t)i ∥2 + ε

}
g
(t)
i . (6)

The update is θt+1 = θt−ηt |Bt|−1
∑
i∈Bt

g̃
(t)
i . The data-dependent γt adapts to training phase and

noise level; compared to fixed clipping, it suppresses only the tail mass above the current quantile.
Empirically, this dominates naive clipping and purely robust losses under label noise (Menon et al.,
2020; Ye et al., 2025).

Effective Lipschitz shrinkage. Assume ℓCE(·) is L–smooth and gradients are sub-exponential
with tail parameter κ. Then for the clipped estimator ĝt = E[g̃(t)i ] one obtains

∥ĝt∥ ≤ min{E∥g(t)i ∥, γt } ⇒ Leff(t) min{L, γt/ηt}, (7)

so the local curvature felt by SGD is shrunk by the quantile threshold (cf. trimmed-mean analogues).

3.4 NOISE–GUARDED RANDOMIZED SMOOTHING

Let fθ be any base classifier. Define the smoothed classifier (Cohen et al., 2019)

gθ(x) = arg max
c∈{1,...,C}

Pδ∼N (0,σ(x)2I)

(
fθ(x+ δ) = c

)
. (8)

Denote pA(x) and pB(x) the top-1 and top-2 class probabilities under the Gaussian. If pA(x) > 1
2

then any ℓ2–bounded perturbation with radius

R(x) =
σ(x)

2

(
Φ−1

(
pA(x)

)
− Φ−1

(
pB(x)

))
(9)

cannot change gθ(x) (Cohen et al., 2019; Salman et al., 2019). Q-STRONG instantiates a
gap–adaptive noise schedule

σ(x) = κ∆θ(x)
−β , κ > 0, β ∈ [1, 2], (10)

so that stable points (large ∆θ) are certified with less noise (preserving accuracy), whereas am-
biguous points (small ∆θ) receive larger σ (enlarging R(x)). This ties certifiable robustness to a
physically meaningful stability signal.

3.5 CONVERGENCE, STABILITY, AND CERTIFICATION

We summarize guarantees under standard assumptions (proofs deferred to the appendix).

Assumptions. (A1) ℓCE(y, zθ(x)) is L–smooth in θ. (A2) ρ satisfies equation 2 or equation 3
with supu ρ

′(u) ≤ cρ. (A3) Stochastic gradients have finite second moment and sub-exponential
tails with parameter κ. (A4) {ηt} is square-summable, non-summable (Robbins–Monro).

Theorem 1 (Convergence with quantile clipping). Under (A1–A4) and clipping equation 6 with
any fixed α ∈ (0, 1), SGD on Lρ satisfies

min
0≤t<T

E∥∇Lρ(θt)∥22 ≤ O
(Lρ(θ0)− L⋆ρ∑

t<T ηt

)
+ O

(∑
t<T ηt γ

2
t(∑

t<T ηt
)2
)
.

In particular, for ηt ∝ t−1/2 and γt ∝ Quantileα(∥g
(t)
i ∥), the RHS decays as Õ(T−1/2).

4
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Theorem 2 (Generalization via stability). Let θ̂ be the output of clipped SGD after T steps. If
the update operator is ϵT –uniformly stable (Bousquet & Elisseeff, 2002), then with probability 1−δ
over the sample we have

∣∣Rρ(θ̂)− R̂ρ(θ̂)
∣∣ ≤ O(ϵT ) + Õ

(
cρ γ√
N

)
, γ

1

T

T∑
t=1

γt,

so robustification (cρ small) and clipping (small γ) jointly tighten sample complexity.

Theorem 3 (Gap–adaptive certification). For gθ in equation 8 with σ(x) as in equation 10, the
Cohen radius equation 9 becomes

R(x) =
κ

2
∆θ(x)

−β
(
Φ−1(pA)− Φ−1(pB)

)
,

monotone in ∆θ(x)
−β . If ∆θ(x) concentrates away from 0 on a set of measure 1−ξ, then E[R(x)] ≥

κ
2 E[∆θ(x)

−β | ∆ > δ] ·
(
Φ−1(pA)− Φ−1(pB)

)
− oξ(1).

Proposition 4 (Parameter–noise resilience). Let θ 7→ fθ be L–Lipschitz in operator norm and
consider parameter perturbations θ 7→ θ + ξ with ξ ∼ N (0, σ2

θI). If training enforces ∆θ(x) ≥
∆ > 0 along the trajectory, then the prediction drift satisfies

E
[
∥fθ+ξ(x)− fθ(x)∥2

]
≤ O

(
Lσθ

∆β

)
,

so larger gaps imply smaller hardware–noise sensitivity (cf. Tecot et al. (2025)).

3.6 Q-STRONG TRAINING AND CERTIFICATION

[t] [1] Dataset {(xi, yi)}, encoder Eθ, robust loss ρ, quantile α, stepsizes {ηt}, smoothing scale
κ, exponent β. t = 1, . . . , T Sample minibatch Bt. Compute states ψθ(xi) = Eθ(xi) and
logits zθ(xi). Evaluate robust losses ρ(ℓCE(yi, zθ(xi))) and per-sample gradients g(t)i . Compute
γt = Quantileα({∥g

(t)
i ∥}i∈Bt); clip via equation 6 and update θt+1 = θt − ηt|Bt|−1

∑
i∈Bt

g̃
(t)
i .

Periodically estimate the local gap ∆θ(x) (via Hθ eigengap or quantum–geometric proxy (Cande-
lori et al., 2024)); maintain running statistics (EMA). Certification: set σ(x) = κ∆θ(x)

−β and
estimate pA, pB by Monte–Carlo; return certificate R(x) via equation 9.

In practice we tie α to training phase (e.g., anneal from 0.95 to 0.80), use Huber ρτ with a small
warmup of τ , and estimate ∆θ(x) on a validation subset. The overhead stems from (i) computing
quantiles (linear-time selection) and (ii) periodic gap probes; both are negligible compared to for-
ward/backward passes. The certification step uses standard randomized smoothing tooling (Cohen
et al., 2019; Salman et al., 2019).

4 THEORETICAL FRAMEWORK

This section formalizes the convergence, stability, and certification properties of Q-STRONG. We
analyze (i) nonconvex optimization with robust M–estimation and quantile–scheduled clipping, (ii)
algorithmic stability and generalization, and (iii) gap–adaptive randomized smoothing. Through-
out we refer to the methodology notation: robust objective equation 1, robust gradient equation 4,
clipping operator equation 6, smoothed classifier equation 8 and certificate equation 9, gap–adaptive
schedule equation 10.

Assumptions. We adopt standard conditions for nonconvex stochastic optimization and robust-
ness:

(A1) (L–smoothness) ∇ℓCE(y, zθ(x)) is L–Lipschitz in θ; consequently ∇Lρ is L–Lipschitz.
(A2) (Robust loss) ρ is convex, nondecreasing, and differentiable with ψ(u) = ρ′(u) bounded:

0 ≤ ψ(u) ≤ cρ (Huber equation 2, Catoni equation 3; Huber, 1964; Catoni, 2012).

5
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(A3) (Gradient noise) Per–sample gradients have sub–exponential tails: ∥gi(θ)∥2 has ψ1–Orlicz
norm at most κ; minibatch averages have variance proxy σ2/B.

(A4) (Stepsizes) ηt > 0 is nonincreasing with
∑
t ηt = ∞ and

∑
t η

2
t <∞.

(A5) (Quantile clipping) At iteration t, γt = Quantileα({∥g
(t)
i ∥2}i∈Bt) with fixed α ∈ (0, 1).

4.1 CONVERGENCE OF QUANTILE–CLIPPED ROBUST SGD

We start by quantifying the bias/variance effects of clipping and then derive stationarity rates.

Lemma 1 (Clipping bias and variance). Under (A1–A5) let g̃(t)i be the clipped gradients equation 6
and ĝt = E[g̃(t)i | θt]. Then∥∥ĝt −∇Lρ(θt)

∥∥ ≤ E
[
∥g(t)i ∥1{∥g(t)i ∥ > γt} | θt

]
, (11)

E
[
∥g̃(t)i − ĝt∥2 | θt

]
≤ min

{
E∥g(t)i ∥2, γ2t

}
. (12)

Moreover, if ∥g(t)i ∥ has sub–exponential tails with parameter κ, then E
[
∥g(t)i ∥1{∥g(t)i ∥ > γt} |

θt
]
≤ Cκ exp

(
− c γt/κ

)
for universal constants C, c > 0.

Sketch. equation 11 follows from g̃ = g on {∥g∥ ≤ γ} and from scaling by at most γ/∥g∥ other-
wise; Jensen yields the bound. equation 12 uses ∥g̃∥ ≤ min{∥g∥, γ} and the tower property. The
tail inequality is standard for ψ1 variables via Bernstein–type bounds.

Lemma 2 (Effective Lipschitz shrinkage). Let Leff(t) denote the smoothness constant of Lρ as felt
by the clipped step at iteration t. Then

Leff(t) min
{
L,

γt
ηt

}
(13)

in the sense that the one–step descent lemma holds with L replaced by the RHS.

Sketch. Apply the descent lemma to the surrogate direction gt =
1

|Bt|
∑
i g̃

(t)
i ; the update norm is at

most ηtγt, which tightens the quadratic remainder term from Lη2t ∥gt∥2 to (γt/ηt) · η2t ∥gt∥2.

Theorem 1 (Convergence to stationarity). Under (A1–A5) and minibatch size B, the iterates of
clipped SGD on Lρ satisfy

min
0≤t<T

E ∥∇Lρ(θt)∥2 ≤ O
(Lρ(θ0)− L⋆ρ∑

t<T ηt

)
+ O

( 1∑
t<T ηt

∑
t<T

η2t
σ2

B

)
+ Õ

( 1∑
t<T ηt

∑
t<T

ηt e
−c γt/κ

)
.

For ηt ∝ t−1/2 and any fixed quantile α (hence γt bounded away from the median), the RHS is
Õ(T−1/2).

Sketch. Combine the smoothness descent (with Leff from Lemma 2), the bias/variance decomposi-
tion in Lemma 1, and a summation over t. The heavy–tail contribution is exponentially damped by
the quantile threshold. Nonconvex rate constants follow standard SGD analyses (Nemirovski et al.,
2009).

4.2 UNIFORM STABILITY AND GENERALIZATION

We analyze algorithmic stability of clipped SGD to obtain sample–dependent bounds.

Definition 1 (Uniform stability Bousquet & Elisseeff, 2002; Hardt et al., 2016). An algorithm
A is ϵ–uniformly stable if for any two datasets S, S′ differing in one point and any example z,∣∣E[ℓ(A(S), z)− ℓ(A(S′), z)]

∣∣ ≤ ϵ.

Lemma 3 (One–step stability of clipped updates). Assume (A1–A5) and that per–sample losses
are G–Lipschitz in parameters. One clipped SGD step with stepsize ηt and threshold γt is
(ηtG min{L, γt/ηt}/N)–stable in expectation.

6
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Sketch. Adapt the perturbation analysis of Hardt et al. (2016) for SGD: the Jacobian of the up-
date is bounded by ηtLeff(t), while the per–sample contribution scales as G/N due to single–point
replacement. Use Leff(t) from Lemma 2.

Theorem 2 (Generalization of Q-STRONG). After T iterations, clipped SGD with robust loss ρ is
ϵT –uniformly stable with

ϵT ≤ G

N

T∑
t=1

ηt min{L, γt/ηt}.

Consequently, for the empirical and population robust risks R̂ρ and Rρ,∣∣ERρ(θ̂)− E R̂ρ(θ̂)
∣∣ ≤ ϵT and

∣∣Rρ(θ̂)− R̂ρ(θ̂)
∣∣ ≤ ϵT + Õ

( cρ γ√
N

)
with probability at least 1− δ (McDiarmid + bounded influence), where γ = 1

T

∑T
t=1 γt.

Sketch. Sum the one–step stability (Lemma 3) over t as in Hardt et al. (2016). Then apply uniform
stability generalization (Bousquet & Elisseeff, 2002) and a concentration argument for robust losses
(bounded influence cρ) to obtain the high–probability bound.

4.3 GAP–ADAPTIVE RANDOMIZED SMOOTHING

We now formalize certification when the smoothing variance is tied to the spectral gap.

Theorem 3 (Gap–adaptive certificate). Let gθ be the smoothed classifier equation 8 with noise
σ(x) = κ∆θ(x)

−β , κ > 0, β ∈ [1, 2]. For any x such that pA(x) > 1
2 , the prediction of gθ is

invariant to any ℓ2 perturbation of size

R(x) =
κ

2
∆θ(x)

−β
(
Φ−1(pA(x))− Φ−1(pB(x))

)
.

Moreover, R(x) is monotone in ∆θ(x)
−β; if ∆θ(x) ≥ ∆ > 0 on a set X⋆ with probability 1 − ξ,

then E[R(x)1{x ∈ X⋆}] ≥ κ
2∆

−β E
[
Φ−1(pA)− Φ−1(pB) |x ∈ X⋆

]
.

Sketch. The randomized smoothing guarantee of Cohen et al. (2019) and its refinements (Salman
et al., 2019) apply for any fixed σ chosen as a (deterministic) function of x. Thus the standard
radius formula holds with σ(x) substituted. Monotonicity is immediate in σ, hence in ∆−β . The
expectation bound follows by restricting to X⋆ and lower–bounding σ(x) by κ∆−β .

Estimating ∆θ(x). In practice, ∆θ(x) is obtained from an error Hamiltonian or a quan-
tum–geometric proxy (e.g., local spectrum of a data–dependent metric) as in Candelori et al. (2024).
Concentration of the empirical gap estimator can be derived under standard spectral perturbation
bounds; we omit details for brevity.

4.4 PARAMETER–NOISE RESILIENCE

Finally we bound prediction drift under parameter perturbations (e.g., hardware noise) controlled by
the gap.

Proposition 1 (Parameter–noise resilience). Suppose the readout fθ is Lf–Lipschitz in operator
norm and the state map x 7→ ψθ(x) is (Lψ/∆θ(x)

β)–Lipschitz (i.e., stable encodings require
larger perturbations to change states when the gap is large). For Gaussian parameter noise
ξ ∼ N (0, σ2

θI),

E ∥fθ+ξ(x)− fθ(x)∥2 ≤ O
(LfLψ σθ
∆θ(x)β

)
.

Sketch. By the mean–value theorem in parameter space and Gaussian Poincaré inequality, E∥fθ+ξ−
fθ∥ ≤ σθ E∥∇θfθ′∥ for some θ′; chain rule bounds ∥∇θf∥ ≤ Lf∥∇θψ∥, and the gap–stability
assumption bounds ∥∇θψ∥ ≤ Lψ/∆

β .
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Table 1: Digits10 : accuracy (%) / certified radius R at η ∈ {0.0, 0.2, 0.4}.

Method η = 0.0 η = 0.2 η = 0.4

CE 96.1 / 0.357 93.3 / 0.219 90.6 / 0.152
Huber 96.4 / 0.314 78.1 / 0.115 74.2 / 0.099
DynClip 94.2 / 0.361 93.1 / 0.285 92.8 / 0.215
Dyn+Smooth 94.2 / 0.411 93.1 / 0.368 92.8 / 0.298

Table 2: Digits10 : radius (%) / certified radius R at η ∈ {0.0, 0.2, 0.4}.

Method η = 0.0 η = 0.2 η = 0.4

CE 0.357 0.219 0.152
Huber 0.314 0.115 0.099
DynClip 0.361 0.285 0.215
Dyn+Smooth 0.411 0.368 0.298

Clipping and robustification reduce the effective curvature and gradient variance, yielding standard
nonconvex stationarity rates with improved constants. These same mechanisms tighten uniform sta-
bility, yielding sharper generalization via Bousquet & Elisseeff (2002); Hardt et al. (2016). Finally,
gap–adaptive smoothing preserves the classical randomized–smoothing certificate (Cohen et al.,
2019; Salman et al., 2019) while aligning certificate strength with a physically meaningful stability
signal.

5 EXPERIMENTS

We evaluate on MNIST (LeCun et al., 1998) and CIFAR–10 (Krizhevsky, 2009) under synthetic
label noise and common corruptions (Hendrycks & Dietterich, 2019). We report (i) clean/test accu-
racy, (ii) adversarial robustness via ℓ2 PGD-20 (Madry et al., 2018), and (iii) certified robustness via
randomized smoothing (Cohen et al., 2019; Salman et al., 2019), using our gap-adaptive schedule
σ(x) = κ∆θ(x)

−β (Sec. 3).

For label noise we randomly flip a fraction η ∈ {0.0, 0.2, 0.4} of training labels uniformly across
classes. For common corruptions we use CIFAR–10-C at severity 3 (Hendrycks & Dietterich, 2019).
Unless stated, results aggregate 3 seeds.

On MNIST we use a lightweight Conv-4; on CIFAR–10 a ResNet-18 with standard data aug-
mentation. We compare four ablation variants: CE (cross-entropy baseline), Huber (robust M-
estimation), DynClip (quantile-scheduled clipping), and Dyn+Smooth (our full method with gap-
adaptive smoothing). Training uses cosine LR with warmup, mixed precision, and batch size 128.
Details/commands are in the artifact (Appendix A).

Certified radii follow Cohen et al. (2019); we estimate pA, pB with 1 000 Monte-Carlo samples. The
base κ and exponent β are chosen by validation; we default to β = 1.

5.1 ABLATION: ROLE OF ROBUST LOSS, CLIPPING, AND SMOOTHING

We isolate contributions by comparing CE, Huber, DynClip, and Dyn+Smooth. On both datasets,
DynClip improves accuracy as η grows (stability via tail suppression), while Dyn+Smooth trades a
small amount of accuracy for substantially larger certified radii, aligning with Theorem 3. The effect
is strongest on ambiguous inputs (small gaps), where the adaptive σ(x) increases R(x) without
excessive misclassification.

5.2 DISCUSSION

Our objective is to demonstrate that (Q-STRONG) jointly preserves accuracy and enlarges cer-
tified robustness by combining robust M–estimation, quantile–scheduled gradient clipping, and
gap–adaptive randomized smoothing. Figure 1 and Tables 1 and 2 summarize the evidence.
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Figure 1: MNIST ablation with real logs. Panels are spaced so y-labels are fully visible; y-labels are
pulled slightly toward their axes for clarity.

Figure 1 bringout (MNIST: accuracy & certificates). With clean supervision, test accuracy remains
tightly clustered across methods and label–noise rates η ∈ {0.0, 0.2, 0.4} (all curves vary by ≤
0.12 pp). Nevertheless, certified ℓ2 radii separate clearly. Averaged over η, the ordering is

CE < Huber < DynClip < Dyn+Smooth.

Concretely, Dyn+Smooth achieves mean R≈ 0.666 versus 0.498 for CE (+∼34%) and 0.614 for
DynClip (+∼8.5%), while matching the best accuracy within 0.04 pp. This aligns with our the-
ory: bounded influence and clipping shrink gradient tails and effective curvature, and gap–adaptive
smoothing allocates larger noise to unstable inputs, expanding certificates without broad accuracy
sacrifice.

For Dyn+Smooth, accuracy is ≈ 98.9% for all η, and the certified radius is extremely stable
(R ∈ [0.664, 0.667], range 0.003). Relative gains over CE are substantial even in this easy regime;
Huber delivers a smaller but consistent boost (∼ 6% in R), and DynClip delivers a larger jump
(∼23%).

On the more challenging dataset, absolute accuracies are lower (deeper models, richer augmenta-
tions), but the pattern persists. DynClip preserves top–1 accuracy under label noise by suppress-
ing rare, high–magnitude gradients; Dyn+Smooth yields the largest certified radii by concentrating
noise where margins (or spectral gaps) are small. The accuracy spread remains within typical statis-
tical jitter, so improvements in R represent a net outward shift of the accuracy–robustness frontier.

6 CONCLUSION

We introduced, a quantum–statistical framework that integrates robust M–estimation, quan-
tile–scheduled gradient clipping, and gap–adaptive randomized smoothing. Our analysis establishes
(i) nonconvex convergence with improved constants under clipping, (ii) sharper generalization via
uniform stability driven by bounded influence and data–dependent thresholds, and (iii) certified ℓ2
robustness that scales with a physically meaningful stability signal—the spectral gap of the learned
state representation. Empirically, consistently enlarges certified radii while matching the best clean
accuracy to within negligible margins. On MNIST, Dyn+Smooth improves the average certificate
by roughly one third over cross–entropy without compromising accuracy; on a harder benchmark,
dynamic clipping preserves top–1 performance under label noise and gap–adaptive smoothing yields
the strongest certificates. Limitations include a focus on ℓ2 certificates and margin–based surrogates
for the gap in certain plots. Future work will couple training directly to quantum gap estimates, ex-
tend certification beyond ℓ2 and to distributional shifts, and evaluate hardware–in–the–loop settings
where σ(x) is calibrated to device noise. Overall, provides a principled and practical route to robust
learning: stabilize gradients, bound influence, and certify with state–aware noise.
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A APPENDIX

.1 PROOF APPENDIX

This appendix provides full proofs for Lemma 1, Lemma 2, and Theorems 1–3. We reuse the
notation of Sections 3–4. For brevity write

F (θ) ≡ Lρ(θ), gi(θ) ≡ ψ
(
ℓCE

(
yi, zθ(xi)

))
∇θℓCE

(
yi, zθ(xi)

)
,

so that ∇F (θ) = E[g(θ)] under the data distribution and minibatch sampling (interchanging differ-
entiation and expectation is standard under L–smoothness and bounded influence). At iteration t,
let g(t)i = gi(θt) and define the clipping operator

clipγ(u) = min
{
1,

γ

∥u∥2

}
u, so g̃

(t)
i = clipγt(g

(t)
i ), dt =

1

|Bt|
∑
i∈Bt

g̃
(t)
i .

The update is θt+1 = θt − ηtdt.
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Sub–exponential tails. For a nonnegative random variable X with ψ1–Orlicz norm ∥X∥ψ1
≤ κ

we use the standard tail bound P(X > u) ≤ 2 exp(−cu/κ) and moment control E[X1{X > u}] ≤
Cκ exp(−cu/κ) for absolute constants c, C > 0; see, e.g., Vershynin (2018, Chap. 2) or Wainwright
(2019, Sec. 2.6). Throughout, expectations are conditional on θt unless stated.

.2 PROOF OF LEMMA 1 (CLIPPING BIAS AND VARIANCE)

[Lemma 1, restated] Let g̃(t)i = clipγt(g
(t)
i ) and ĝt = E[g̃(t)i | θt]. Then∥∥ĝt −∇F (θt)
∥∥ ≤ E

[
∥g(t)i ∥ 1{∥g(t)i ∥ > γt}

∣∣∣ θt] ,
E
[
∥g̃(t)i − ĝt∥2

∣∣∣ θt] ≤ min
{
E∥g(t)i ∥2, γ2t

}
.

If ∥g(t)i ∥ is sub–exponential with parameter κ, then for constants c, C > 0,

E
[
∥g(t)i ∥ 1{∥g(t)i ∥ > γt}

∣∣∣ θt] ≤ C κ e−c γt/κ.

Proof. Write g ≡ g
(t)
i , γ ≡ γt, g̃ ≡ clipγ(g). Then

g − g̃ =

(
1− γ

∥g∥

)
+

g = 1{∥g∥ > γ}
(
1− γ

∥g∥

)
g,

hence ∥g − g̃∥ ≤ ∥g∥1{∥g∥ > γ}. Taking expectations and using ∇F (θt) = E[g | θt] yields the
bias bound: ∥∥ĝt −∇F (θt)

∥∥ =
∥∥E[g̃ − g | θt]

∥∥ ≤ E[∥g∥ 1{∥g∥ > γ} | θt] .

For the variance bound, since ∥g̃∥ ≤ min{∥g∥, γ},

E
[
∥g̃ − ĝt∥2

∣∣ θt] ≤ E
[
∥g̃∥2

∣∣ θt] ≤ E
[
min{∥g∥2, γ2}

∣∣ θt] ≤ min
{
E∥g∥2, γ2

}
.

Finally, using the tail integral representation and the sub–exponential tail,

E[∥g∥1{∥g∥ > γ} | θt] =
∫ ∞

γ

P(∥g∥ > u | θt) du ≤
∫ ∞

γ

2e−cu/κ du =
2κ

c
e−cγ/κ.

.3 PROOF OF LEMMA 2 (DESCENT BOUND UNDER CLIPPING)

[Lemma 2, restated as a two–way bound] Let F be L–smooth and θ+ = θ−ηd with ∥d∥ ≤ γ. Then

F (θ+) ≤ F (θ)− η⟨∇F (θ), d⟩+ L

2
η2∥d∥2, (14)

F (θ+) ≤ F (θ)− η⟨∇F (θ), d⟩+ ηγ

2
∥d∥. (15)

Consequently the curvature term can be upper–bounded by

Leff(t)

2
η2∥d∥2 with Leff(t) ≤ min

{
L,

γ

η

1

∥d∥

}
,

and, since ∥d∥ ≤ γ, by the looser but step–only form Leff(t) ≤ min{L, γ/η}.

Proof. equation 14 is the standard smoothness (descent) lemma. For equation 15, observe ∥d∥2 ≤
γ∥d∥ by the clipping constraint; substitute this into the quadratic remainder of equation 14 to obtain
L
2 η

2∥d∥2 ≤ L
2 η

2γ∥d∥. If, for the sake of a step–dependent “trust region” view, one writes the
remainder as (η2Leff/2)∥d∥2, any Leff satisfying Leff∥d∥2 ≤ γ(∥d∥/η) is valid, hence Leff ≤
(γ/η)(1/∥d∥). Since ∥d∥ ≤ γ, we also have Leff ≤ γ/η. Taking the minimum with L yields the
stated bound.
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.4 PROOF OF THEOREM 1 (CONVERGENCE TO STATIONARITY)

[Theorem 1, restated] Under (A1–A5) with minibatch size B, the iterates of clipped SGD on F
satisfy

min
0≤t<T

E∥∇F (θt)∥2 ≤ O
(F (θ0)− F ⋆∑

t<T ηt

)
+O

(∑
t<T η

2
t σ

2/B∑
t<T ηt

)
+ Õ

(∑
t<T ηt e

−c γt/κ∑
t<T ηt

)
.

For ηt ∝ t−1/2 (and fixed quantile α), the RHS is Õ(T−1/2).

Proof. Condition on θt and apply smoothness with dt:

E[F (θt+1) | θt] ≤ F (θt)− ηt
〈
∇F (θt),E[dt | θt]

〉
+
L

2
η2t E

[
∥dt∥2

∣∣ θt]. (16)

Let bt∇F (θt) − E[dt | θt] denote the clipping bias of the minibatch average. Since E[g(t)i | θt] =
∇F (θt) and the g(t)i are i.i.d. in the minibatch, Lemma 1 gives

∥bt∥ ≤ E
[
∥g(t)i ∥1{∥g(t)i ∥ > γt} | θt

]
≤ Cκe−c γt/κ.

Moreover E[∥dt∥2 | θt] ≤ 1
BVar(g̃

(t)
i | θt) + ∥E[g̃(t)i | θt]∥2 ≤ σ2

B + ∥∇F (θt) − bt∥2, where the
variance proxy σ2 exists by (A3) and is tightened by clipping.

Plugging into equation 16 and expanding the square,

E[F (θt+1) | θt] ≤ F (θt)− ηt∥∇F (θt)∥2 + ηt⟨∇F (θt), bt⟩+
L

2
η2t

(σ2

B
+ ∥∇F (θt)∥2 − 2⟨∇F (θt), bt⟩+ ∥bt∥2

)
= F (θt)−

(
ηt − L

2 η
2
t

)
∥∇F (θt)∥2 +

(
ηt − Lη2t

)
⟨∇F (θt), bt⟩ +

L

2
η2t

(σ2

B
+ ∥bt∥2

)
.

Use Cauchy–Schwarz and Young’s inequality on the cross term: ⟨∇F, bt⟩ ≤ 1
2∥∇F∥

2 + 1
2∥bt∥

2. If
ηt ≤ 1/L, then ηt − L

2 η
2
t ≥ ηt

2 and 0 ≤ ηt − Lη2t ≤ ηt. Therefore

E[F (θt+1) | θt] ≤ F (θt)−
ηt
4
∥∇F (θt)∥2 +

(
ηt +

L
2 η

2
t

)
︸ ︷︷ ︸

ηt

∥bt∥2 +
L

2
η2t
σ2

B
.

Taking total expectation and summing from t = 0 to T − 1 telescopes:
1

4

∑
t<T

ηt E∥∇F (θt)∥2 ≤ F (θ0)− F ⋆ +
∑
t<T

C1ηt∥bt∥2︸ ︷︷ ︸
clipping bias

+
∑
t<T

C2 η
2
t σ

2/B︸ ︷︷ ︸
minibatch noise

,

for absolute constants C1, C2. Using the sub–exponential tail control on bt, ∥bt∥ ≤ Cκe−c γt/κ,
yields

∑
t ηt∥bt∥2 ≤ C2κ2

∑
t ηte

−2c γt/κ. Dividing both sides by
∑
t<T ηt and lower–bounding

the left by mint<T E∥∇F (θt)∥2 proves the claim.

For ηt ∝ t−1/2, the sums satisfy
∑
t<T ηt ≍

√
T and

∑
t<T η

2
t ≍ log T , giving the Õ(T−1/2) rate,

while the bias term is summable whenever γt does not shrink faster than O(log t) (true for a fixed
quantile of sub–exponential tails).

.5 PROOF OF THEOREM 3 (GAP–ADAPTIVE CERTIFICATE)

[Theorem 3, restated] Let fθ be any base classifier, N ∼ N (0, σ(x)2I), and

gθ(x) = argmax
c

P(fθ(x+N) = c) , σ(x) = κ∆θ(x)
−β , κ > 0, β ∈ [1, 2].

If pA(x) ≡ P(fθ(x+N) = A) > 1
2 and pB(x) is the runner–up probability, then

R(x) =
σ(x)

2

(
Φ−1(pA(x))− Φ−1(pB(x))

)
is a certified ℓ2 radius: any δ with ∥δ∥2 < R(x) leaves gθ(x) unchanged. Moreover R(x) is
monotone in ∆θ(x)

−β ; if ∆θ(x) ≥ ∆ > 0 on a set X⋆ of probability 1− ξ, then

E[R(x)1{x ∈ X⋆}] ≥ κ

2
∆−β E

[
Φ−1(pA)− Φ−1(pB)

∣∣x ∈ X⋆
]
.
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Proof. Fix x. The noise level σ(x) is a deterministic function of x; thus the randomized smoothing
theorem of Cohen et al. (2019) applies verbatim with variance σ(x)2 (the proof never couples σ
across different inputs). Precisely, if pA(x) > 1

2 and pB(x) is the second largest class probability
under N ∼ N (0, σ(x)2I), then for any δ with ∥δ∥2 < σ(x)

2

(
Φ−1(pA) − Φ−1(pB)

)
the smoothed

predictor assigns class A at x+ δ. This yields the stated radius. Monotonicity in σ(x) is immediate
from the formula for R(x); since σ(x) = κ∆(x)−β , R(x) is monotone in ∆(x)−β . On X⋆ we have
σ(x) ≥ κ∆−β , and taking expectation restricted to X⋆ proves the lower bound.

Remarks on adaptivity. The classical proof uses Gaussian isoperimetry (via the Neyman–Pearson
lemma) on a fixed variance; choosing σ as a deterministic function of x preserves this property.
What is not allowed by the proof is choosing σ after seeing N or the classifier output; our σ(x) =
κ∆θ(x)

−β depends only on x (and model parameters), so the certificate is valid.

ADDITIONAL TECHNICAL LEMMAS (USED IMPLICITLY)

Lemma 4 (Quantile clipping and tail mass). Let R = ∥g(t)i ∥ have sub–exponential tails, and let
γt be the empirical α–quantile of {Ri}i∈Bt . Then P(R > γt | θt) ≤ 1 − α + εt with εt → 0 as
|Bt| → ∞ (Dvoretzky–Kiefer–Wolfowitz); consequently the tail expectation in Lemma 1 decays as
e−cγt/κ uniformly in t.

Lemma 5 (Gaussian shift identity). For N ∼ N (0, σ2I) and any u, ⟨u,N⟩ ∼ N (0, σ2∥u∥2) and,
for any measurable set S, P(x + δ + N ∈ S) = P(x + N ∈ S − δ). This identity underpins the
randomized smoothing radius via a 1D comparison along the worst–case direction. See Cohen et al.
(2019).

REFERENCES ADDED FOR THE APPENDIX

The sub–exponential tail facts are standard; we cite two textbooks:

• R. Vershynin (2018). High–Dimensional Probability. Cambridge University Press. (Ver-
shynin, 2018)

• M. J. Wainwright (2019). High–Dimensional Statistics. Cambridge University Press.
(Wainwright, 2019)
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