Q-STRONG: QUANTUM-STATISTICAL ROBUSTNESS WITH NOISE-GUARDED DYNAMICS FOR LEARNING CONFERENCE SUBMISSIONS

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011 012

013

014

015

016

017

018

019

021

025

026

027

028

029

031

033

035

037

040

041

042

043

044

046

047

048

051

052

ABSTRACT

State-of-the-art learners remain fragile under heavy-tailed noise, adversarial perturbations, and—on NISQ devices—intrinsic stochasticity. We present Q-STRONG, a quantum-statistical framework that couples (i) robust M-estimation, (ii) quantile-scheduled gradient clipping, and (iii) gap-adaptive randomized smoothing. Inputs are encoded as quantum states; a task-aligned Hamiltonian yields a representation whose spectral gap acts as a stability signal. During training, bounded-influence losses and per-sample clipping suppress rare gradient spikes. At inference, we certify predictions with instance-adaptive noise $\sigma(x) = \kappa \Delta(x)^{-\beta}$, producing larger ℓ_2 radii where the representation is stable. We prove non-asymptotic guarantees: convergence of clipped SGD to first-order stationarity for weakly smooth robust objectives; a stability-based generalization bound with an *effective* Lipschitz constant lowered by clipping and robustification; gap-adaptive extensions of randomized-smoothing certificates; and parameternoise resilience that scales inversely with the gap. Empirically, Q-STRONG achieves a favorable accuracy-robustness frontier on MNIST and CIFAR-10 with label noise and common corruptions, and on synthetic manifolds stressing intrinsic dimension and outliers. Ablations isolate the roles of each component. The approach is hardware-agnostic (classical or NISQ), plug-compatible with standard models, and adds minimal overhead. Q-STRONG thus offers a practical, theoretically grounded route to certified, noise-resilient learning.

1 Introduction

Modern learners excel on i.i.d. test beds yet remain brittle under heavy–tailed corruptions, label noise, covariate shift, and adversarial perturbations (Goodfellow et al., 2015; Madry et al., 2018). These vulnerabilities are further amplified in stochastic or resource–constrained regimes—e.g., near–term quantum processors (NISQ) where readout noise, crosstalk, and decoherence are intrinsic (Preskill, 2018). Building *robust* and *resilient* systems therefore requires joint progress on (i) *statistical* objectives whose influence functions temper outliers, (ii) *optimization* procedures that suppress instability from rare, large gradients, and (iii) *certification* methods that turn empirical robustness into verifiable guarantees.

We introduce Q-STRONG (Quantum-Statistical Robustness with Noise-Guarded Dynamics for Learning), a quantum-statistical framework that unifies robust M-estimation, quantile-scheduled gradient clipping, and adaptive randomized smoothing within a principled state-space formulation. Classical inputs are embedded as quantum states by a trainable encoder; a task-aligned Hamiltonian induces a low-energy representation whose spectral gap serves as a stability indicator. During training we minimize a robust loss (e.g., Huber, Catoni) to bound per-sample influence (Huber, 1964; Catoni, 2012), while applying dynamic clipping that sets the clipping norm to a running quantile of per-sample gradient norms, suppressing rare but destabilizing updates (Menon et al., 2020; Ye et al., 2025). At inference, we deploy noise-guarded randomized smoothing: Gaussian perturbations are injected with variance $\sigma(x) \propto 1/\Delta(x)$, where $\Delta(x)$ is the empirical spectral gap of the learned quantum representation. This gap-adaptive schedule enlarges certified ℓ_2 radii when the representation is stable, linking certification to state-space dynamics (Cohen et al., 2019; Salman et al., 2019; Lyu et al., 2024).

Robust statistics offers estimators with bounded influence functions that curb heavy-tailed noise and contamination (Huber, 1964; Catoni, 2012). Randomized smoothing converts any base classifier into a certifiable one by majority vote under Gaussian noise, yielding instance-wise robustness radii (Cohen et al., 2019; Salman et al., 2019; Yang et al., 2020). Gradient clipping is a pragmatic stabilizer, but naïve clipping alone is not label-noise robust; partially Huberised/composite loss strategies and optimized schedules address this limitation (Menon et al., 2020; Ye et al., 2025). In parallel, quantum machine learning (QML) connects quantum embeddings to kernel methods (Schuld & Killoran, 2019), has strong representational promise (Biamonte et al., 2017), but faces NISQ realities and barren plateau phenomena (Preskill, 2018; McClean et al., 2018). Recent QML efforts show noise-aware representation/observable learning and provably noise-resilient training (Candelori et al., 2024; Khanal & Rivas, 2024; Tecot et al., 2025). Q-STRONG bridges these threads: robust objectives and dynamic clipping are enforced in the quantum-embedded space, and certification is made *gap-adaptive*—tying guarantees to physically meaningful stability signals. Non-asymptotic analysis for weakly smooth robust objectives: (i) convergence of clipped SGD to stationary points with constants controlled by the clipping quantile; (ii) a stability-based generalization bound in which the effective Lipschitz constant is reduced by robustification and clipping; (iii) transfer of smoothing certificates (Cohen et al., 2019; Salman et al., 2019) to a quantum readout with gap-adaptive noise, yielding larger radii on stable representations; and (iv) parameter-noise resilience bounds that tie prediction drift under hardware perturbations to inverse powers of the spectral gap.

2 RELATED WORK

2.1 Robust statistics and robustification

Classical robust methods (Huber, redescending/Catoni) bound the influence of outliers and stabilize estimation in heavy-tailed regimes (Huber, 1964; Catoni, 2012). These techniques extend to modern ML as robust losses and reweighting schemes, but by themselves do not provide adversarial guarantees or optimization stability under rare gradient spikes.

2.2 GRADIENT CLIPPING AND NOISE-AWARE OPTIMIZATION

Gradient clipping is widely used to avoid exploding updates, yet standard clipping alone is not label–noise robust; its effect is equivalent to a fully Huberised loss that remains vulnerable under symmetric noise (Menon et al., 2020). Composite/partially Huberised losses improve robustness (Menon et al., 2020), and *optimized* clipping schedules that adapt thresholds over training further enhance performance under label noise (Ye et al., 2025).

2.3 CERTIFIED ROBUSTNESS VIA RANDOMIZED SMOOTHING

Randomized smoothing scales certification to large models by turning any base classifier into a smoothed classifier with instance-wise ℓ_2 radii (Cohen et al., 2019). Adversarially trained smoothing improves the accuracy–certificate frontier (Salman et al., 2019). Extensions broaden the noise families and certification theory (Yang et al., 2020; Mohapatra et al., 2020), and recent adaptive variants certify multi-step/test-time adaptation (Lyu et al., 2024). Our work contributes a *gap-adaptive* smoothing schedule that ties $\sigma(x)$ to quantum stability.

2.4 QUANTUM MACHINE LEARNING UNDER NOISE

QML promises expressive embeddings and kernel–like advantages (Biamonte et al., 2017; Schuld & Killoran, 2019) but faces NISQ noise and barren plateaus (Preskill, 2018; McClean et al., 2018). Noise-aware QML includes quantum–geometric encoders whose spectral structure correlates with intrinsic dimension and noise robustness (Candelori et al., 2024), robust observable learning (Khanal & Rivas, 2024), and provably noise-resilient training for parameterized circuits (Tecot et al., 2025). *Q-STRONG* integrates these with classical robustification and certified smoothing, using the spectral gap as a unifying stability signal.

3 METHODOLOGY

 We develop *Q-STRONG*, a quantum–statistical learner that couples (i) robust M–estimation in a quantum state space, (ii) *quantile–scheduled* dynamic gradient clipping for optimization stability, and (iii) *gap–adaptive* randomized smoothing for certification. This section formalizes the representation, objectives, training dynamics, and certificates.

3.1 Preliminaries and notation

Let $\mathcal{D}=\{(x_i,y_i)\}_{i=1}^N$ with $x_i\in\mathbb{R}^D$ and $y_i\in\{1,\ldots,C\}$. A trainable encoder $E_\theta:\mathbb{R}^D\to\mathbb{C}^K$ maps inputs to normalized quantum states $\psi_\theta(x)\in\mathbb{C}^K$ with $\|\psi_\theta(x)\|_2=1$. A classifier head $f_\theta:\mathbb{C}^K\to\mathbb{R}^C$ outputs logits $z_\theta(x)\in\mathbb{R}^C$. Denote the cross-entropy $\ell_{\mathrm{CE}}(y,z)=-\log\operatorname{softmax}(z)_y$ and the margin $m_\theta(x,y)=z_\theta(x)_y-\max_{c\neq y}z_\theta(x)_c$.

Quantum stability signal. Following Candelori et al. (2024), we associate to each embedded state a Hermitian *error Hamiltonian* $H_{\theta}(x)$ whose ground state and spectral structure act as a denoising proxy; let $\lambda_1(x) \leq \lambda_2(x) \leq \cdots$ be its eigenvalues and define the *local gap*

$$\Delta_{\theta}(x) \ \lambda_2(x) - \lambda_1(x)$$
.

Large gaps indicate locally stable representations, whereas small gaps reveal instability or mode ambiguity. Q-STRONG exploits $\Delta_{\theta}(x)$ to *steer* training (clipping schedule) and certification (noise scale).

3.2 Robust objectives in the state space

To bound the influence of outliers and label noise we minimize a robust M-estimator of the form

$$\mathcal{L}_{\rho}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \rho \Big(\ell_{CE} \big(y_i, z_{\theta}(x_i) \big) \Big) + \lambda \mathcal{R}(\theta), \tag{1}$$

where $\rho: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is convex, nondecreasing, with bounded slope (*influence*) and \mathcal{R} is a standard weight decay. Two instances are:

Huber
$$\rho_{\tau}(u) = \begin{cases} u, & u \leq \tau, \\ \tau + \frac{(u-\tau)^2}{2\tau}, & u > \tau, \end{cases}$$
 (2)

Catoni
$$\rho_{\alpha}(u) = \frac{1}{\alpha} \log(\cosh(\alpha u)), \quad \alpha > 0.$$
 (3)

The derivative $\psi(u) = \rho'(u)$ is a *score* with $\sup_u \psi(u) \le c_\rho < \infty$, yielding a bounded-influence estimator (Huber, 1964; Catoni, 2012). In Q-STRONG, equation 1 is optimized through the quantum embedding E_θ and thus acts directly in the state space.

Gradient structure. Writing $g_i(\theta) = \nabla_{\theta} \ell_{CE}(y_i, z_{\theta}(x_i))$, the robust gradient is

$$\nabla_{\theta} \mathcal{L}_{\rho}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \psi \Big(\ell_{CE}(y_i, z_{\theta}(x_i)) \Big) g_i(\theta) + \lambda \nabla_{\theta} \mathcal{R}(\theta), \tag{4}$$

with $\|\psi(\cdot)\| \le c_{\rho}$, which shrinks the contribution from extreme residuals (heavy-tailed or mislabeled points).

3.3 DYNAMIC GRADIENT CLIPPING VIA QUANTILES

Even with robust losses, per-sample gradients may exhibit rare spikes that destabilize SGD. Q-STRONG applies quantile-scheduled clipping: at iteration t compute per-sample norms $r_i^{(t)} = \|g_i^{(t)}\|_2$, set the threshold to the α -quantile

$$\gamma_t = \text{Quantile}_{\alpha}(\{r_i^{(t)}\}_{i \in \mathcal{B}_t}), \qquad \alpha \in (0, 1),$$
(5)

and clip

$$\widetilde{g}_i^{(t)} = \min\left\{1, \frac{\gamma_t}{\|g_i^{(t)}\|_2 + \varepsilon}\right\} g_i^{(t)}. \tag{6}$$

The update is $\theta_{t+1} = \theta_t - \eta_t |\mathcal{B}_t|^{-1} \sum_{i \in \mathcal{B}_t} \widetilde{g}_i^{(t)}$. The data-dependent γ_t adapts to training phase and noise level; compared to fixed clipping, it suppresses *only* the tail mass above the current quantile. Empirically, this dominates naive clipping and purely robust losses under label noise (Menon et al., 2020; Ye et al., 2025).

Effective Lipschitz shrinkage. Assume $\ell_{\text{CE}}(\cdot)$ is L-smooth and gradients are sub-exponential with tail parameter κ . Then for the clipped estimator $\widehat{g}_t = \mathbb{E}[\widetilde{g}_i^{(t)}]$ one obtains

$$\|\widehat{g}_t\| \le \min\{\mathbb{E}\|g_i^{(t)}\|, \gamma_t\} \quad \Rightarrow \quad L_{\text{eff}}(t) \quad \min\{L, \gamma_t/\eta_t\},\tag{7}$$

so the local curvature felt by SGD is *shrunk* by the quantile threshold (cf. trimmed-mean analogues).

3.4 Noise-guarded randomized smoothing

Let f_{θ} be any base classifier. Define the *smoothed* classifier (Cohen et al., 2019)

$$g_{\theta}(x) = \arg \max_{c \in \{1, \dots, C\}} \mathbb{P}_{\delta \sim \mathcal{N}(0, \sigma(x)^2 I)} (f_{\theta}(x + \delta) = c). \tag{8}$$

Denote $p_A(x)$ and $p_B(x)$ the top-1 and top-2 class probabilities under the Gaussian. If $p_A(x) > \frac{1}{2}$ then any ℓ_2 -bounded perturbation with radius

$$R(x) = \frac{\sigma(x)}{2} \left(\Phi^{-1}(p_A(x)) - \Phi^{-1}(p_B(x)) \right)$$
 (9)

cannot change $g_{\theta}(x)$ (Cohen et al., 2019; Salman et al., 2019). Q-STRONG instantiates a gap-adaptive noise schedule

$$\sigma(x) = \kappa \Delta_{\theta}(x)^{-\beta}, \qquad \kappa > 0, \ \beta \in [1, 2], \tag{10}$$

so that stable points (large Δ_{θ}) are certified with less noise (preserving accuracy), whereas ambiguous points (small Δ_{θ}) receive larger σ (enlarging R(x)). This ties certifiable robustness to a physically meaningful stability signal.

3.5 CONVERGENCE, STABILITY, AND CERTIFICATION

We summarize guarantees under standard assumptions (proofs deferred to the appendix).

Assumptions. (A1) $\ell_{\text{CE}}(y, z_{\theta}(x))$ is L-smooth in θ . (A2) ρ satisfies equation 2 or equation 3 with $\sup_{u} \rho'(u) \leq c_{\rho}$. (A3) Stochastic gradients have finite second moment and sub-exponential tails with parameter κ . (A4) $\{\eta_t\}$ is square-summable, non-summable (Robbins-Monro).

Theorem 1 (Convergence with quantile clipping). *Under (A1–A4) and clipping equation 6 with any fixed* $\alpha \in (0, 1)$, SGD on \mathcal{L}_{ρ} satisfies

$$\min_{0 \le t < T} \mathbb{E} \|\nabla \mathcal{L}_{\rho}(\theta_t)\|_2^2 \le \mathcal{O}\left(\frac{\mathcal{L}_{\rho}(\theta_0) - \mathcal{L}_{\rho}^{\star}}{\sum_{t < T} \eta_t}\right) + \mathcal{O}\left(\frac{\sum_{t < T} \eta_t \gamma_t^2}{\left(\sum_{t < T} \eta_t\right)^2}\right).$$

In particular, for $\eta_t \propto t^{-1/2}$ and $\gamma_t \propto \text{Quantile}_{\alpha}(\|g_i^{(t)}\|)$, the RHS decays as $\tilde{\mathcal{O}}(T^{-1/2})$.

Theorem 2 (Generalization via stability). Let $\widehat{\theta}$ be the output of clipped SGD after T steps. If the update operator is ϵ_T -uniformly stable (Bousquet & Elisseeff, 2002), then with probability $1-\delta$ over the sample we have

$$\left| \mathcal{R}_{\rho}(\widehat{\theta}) - \widehat{\mathcal{R}}_{\rho}(\widehat{\theta}) \right| \leq \mathcal{O}(\epsilon_T) + \tilde{\mathcal{O}}\left(\frac{c_{\rho} \overline{\gamma}}{\sqrt{N}}\right), \qquad \overline{\gamma} \frac{1}{T} \sum_{t=1}^{T} \gamma_t,$$

so robustification (c_{ρ} small) and clipping (small $\overline{\gamma}$) jointly tighten sample complexity.

Theorem 3 (Gap-adaptive certification). For g_{θ} in equation 8 with $\sigma(x)$ as in equation 10, the Cohen radius equation 9 becomes

$$R(x) = \frac{\kappa}{2} \Delta_{\theta}(x)^{-\beta} \Big(\Phi^{-1}(p_A) - \Phi^{-1}(p_B) \Big),$$

monotone in $\Delta_{\theta}(x)^{-\beta}$. If $\Delta_{\theta}(x)$ concentrates away from 0 on a set of measure $1-\xi$, then $\mathbb{E}[R(x)] \geq \frac{\kappa}{2} \mathbb{E}[\Delta_{\theta}(x)^{-\beta} \mid \Delta > \delta] \cdot (\Phi^{-1}(p_A) - \Phi^{-1}(p_B)) - o_{\xi}(1)$.

Proposition 4 (Parameter–noise resilience). Let $\theta \mapsto f_{\theta}$ be L-Lipschitz in operator norm and consider parameter perturbations $\theta \mapsto \theta + \xi$ with $\xi \sim \mathcal{N}(0, \sigma_{\theta}^2 I)$. If training enforces $\Delta_{\theta}(x) \geq \Delta > 0$ along the trajectory, then the prediction drift satisfies

$$\mathbb{E}\big[\|f_{\theta+\xi}(x) - f_{\theta}(x)\|_2\big] \leq \mathcal{O}\bigg(\frac{L\,\sigma_{\theta}}{\underline{\Delta}^{\beta}}\bigg),\,$$

so larger gaps imply smaller hardware–noise sensitivity (cf. Tecot et al. (2025)).

3.6 Q-STRONG TRAINING AND CERTIFICATION

[t] [1] Dataset $\{(x_i,y_i)\}$, encoder E_{θ} , robust loss ρ , quantile α , stepsizes $\{\eta_t\}$, smoothing scale κ , exponent β . $t=1,\ldots,T$ Sample minibatch \mathcal{B}_t . Compute states $\psi_{\theta}(x_i)=E_{\theta}(x_i)$ and logits $z_{\theta}(x_i)$. Evaluate robust losses $\rho(\ell_{\text{CE}}(y_i,z_{\theta}(x_i)))$ and per-sample gradients $g_i^{(t)}$. Compute $\gamma_t=\text{Quantile}_{\alpha}(\{\|g_i^{(t)}\|\}_{i\in\mathcal{B}_t})$; clip via equation 6 and update $\theta_{t+1}=\theta_t-\eta_t|\mathcal{B}_t|^{-1}\sum_{i\in\mathcal{B}_t}\widetilde{g}_i^{(t)}$. Periodically estimate the local gap $\Delta_{\theta}(x)$ (via H_{θ} eigengap or quantum–geometric proxy (Candelori et al., 2024)); maintain running statistics (EMA). **Certification:** set $\sigma(x)=\kappa\Delta_{\theta}(x)^{-\beta}$ and estimate p_A, p_B by Monte–Carlo; return certificate R(x) via equation 9.

In practice we tie α to training phase (e.g., anneal from 0.95 to 0.80), use Huber ρ_{τ} with a small warmup of τ , and estimate $\Delta_{\theta}(x)$ on a validation subset. The overhead stems from (i) computing quantiles (linear-time selection) and (ii) periodic gap probes; both are negligible compared to forward/backward passes. The certification step uses standard randomized smoothing tooling (Cohen et al., 2019; Salman et al., 2019).

4 Theoretical Framework

This section formalizes the convergence, stability, and certification properties of *Q-STRONG*. We analyze (i) nonconvex optimization with robust M-estimation and *quantile-scheduled* clipping, (ii) algorithmic stability and generalization, and (iii) *gap-adaptive* randomized smoothing. Throughout we refer to the methodology notation: robust objective equation 1, robust gradient equation 4, clipping operator equation 6, smoothed classifier equation 8 and certificate equation 9, gap-adaptive schedule equation 10.

Assumptions. We adopt standard conditions for nonconvex stochastic optimization and robustness:

- (A1) (*L*–smoothness) $\nabla \ell_{\text{CE}}(y, z_{\theta}(x))$ is *L*–Lipschitz in θ ; consequently $\nabla \mathcal{L}_{\rho}$ is *L*–Lipschitz.
- (A2) (Robust loss) ρ is convex, nondecreasing, and differentiable with $\psi(u) = \rho'(u)$ bounded: $0 \le \psi(u) \le c_{\rho}$ (Huber equation 2, Catoni equation 3; Huber, 1964; Catoni, 2012).
- (A3) (Gradient noise) Per–sample gradients have sub–exponential tails: $\|g_i(\theta)\|_2$ has ψ_1 –Orlicz norm at most κ ; minibatch averages have variance proxy σ^2/B .
- (A4) (Stepsizes) $\eta_t > 0$ is nonincreasing with $\sum_t \eta_t = \infty$ and $\sum_t \eta_t^2 < \infty$.
- (A5) (Quantile clipping) At iteration $t, \gamma_t = \text{Quantile}_{\alpha}(\{\|g_i^{(t)}\|_2\}_{i \in \mathcal{B}_t})$ with fixed $\alpha \in (0,1)$.

4.1 Convergence of quantile-clipped robust SGD

We start by quantifying the bias/variance effects of clipping and then derive stationarity rates.

Lemma 1 (Clipping bias and variance). Under (A1–A5) let $\widetilde{g}_i^{(t)}$ be the clipped gradients equation 6 and $\widehat{g}_t = \mathbb{E}[\widetilde{g}_i^{(t)} \mid \theta_t]$. Then

$$\|\widehat{g}_t - \nabla \mathcal{L}_{\rho}(\theta_t)\| \le \mathbb{E}[\|g_i^{(t)}\| \mathbf{1}\{\|g_i^{(t)}\| > \gamma_t\} \mid \theta_t], \tag{11}$$

$$\mathbb{E}\left[\|\widetilde{g}_i^{(t)} - \widehat{g}_t\|^2 \mid \theta_t\right] \le \min\left\{\mathbb{E}\|g_i^{(t)}\|^2, \ \gamma_t^2\right\}. \tag{12}$$

Moreover, if $\|g_i^{(t)}\|$ has sub-exponential tails with parameter κ , then $\mathbb{E}[\|g_i^{(t)}\|\mathbf{1}\{\|g_i^{(t)}\| > \gamma_t\} | \theta_t] \le C\kappa \exp(-c\gamma_t/\kappa)$ for universal constants C, c > 0.

Sketch. equation 11 follows from $\widetilde{g}=g$ on $\{\|g\|\leq\gamma\}$ and from scaling by at most $\gamma/\|g\|$ otherwise; Jensen yields the bound. equation 12 uses $\|\widetilde{g}\|\leq\min\{\|g\|,\gamma\}$ and the tower property. The tail inequality is standard for ψ_1 variables via Bernstein-type bounds.

Lemma 2 (Effective Lipschitz shrinkage). Let $L_{\text{eff}}(t)$ denote the smoothness constant of \mathcal{L}_{ρ} as felt by the clipped step at iteration t. Then

$$L_{\text{eff}}(t) \quad \min\left\{L, \frac{\gamma_t}{\eta_t}\right\}$$
 (13)

in the sense that the one-step descent lemma holds with L replaced by the RHS.

Sketch. Apply the descent lemma to the surrogate direction $\overline{g}_t = \frac{1}{|\overline{B}_t|} \sum_i \widetilde{g}_i^{(t)}$; the update norm is at most $\eta_t \gamma_t$, which tightens the quadratic remainder term from $L \eta_t^2 \|\overline{g}_t\|^2$ to $(\gamma_t / \eta_t) \cdot \eta_t^2 \|\overline{g}_t\|^2$.

Theorem 1 (Convergence to stationarity). *Under (A1–A5) and minibatch size B, the iterates of clipped SGD on* \mathcal{L}_{ρ} *satisfy*

$$\min_{0 \le t < T} \mathbb{E} \|\nabla \mathcal{L}_{\rho}(\theta_{t})\|^{2} \le \mathcal{O}\left(\frac{\mathcal{L}_{\rho}(\theta_{0}) - \mathcal{L}_{\rho}^{\star}}{\sum_{t < T} \eta_{t}}\right) + \mathcal{O}\left(\frac{1}{\sum_{t < T} \eta_{t}} \sum_{t < T} \eta_{t}^{2} \frac{\sigma^{2}}{B}\right) + \tilde{\mathcal{O}}\left(\frac{1}{\sum_{t < T} \eta_{t}} \sum_{t < T} \eta_{t} e^{-c \gamma_{t}/\kappa}\right).$$

For $\eta_t \propto t^{-1/2}$ and any fixed quantile α (hence γ_t bounded away from the median), the RHS is $\tilde{\mathcal{O}}(T^{-1/2})$.

Sketch. Combine the smoothness descent (with $L_{\rm eff}$ from Lemma 2), the bias/variance decomposition in Lemma 1, and a summation over t. The heavy-tail contribution is exponentially damped by the quantile threshold. Nonconvex rate constants follow standard SGD analyses (Nemirovski et al., 2009).

4.2 Uniform stability and generalization

We analyze algorithmic stability of clipped SGD to obtain sample–dependent bounds.

Definition 1 (Uniform stability Bousquet & Elisseeff, 2002; Hardt et al., 2016). *An algorithm* \mathcal{A} is ϵ -uniformly stable if for any two datasets S, S' differing in one point and any example z, $\left|\mathbb{E}[\ell(\mathcal{A}(S), z) - \ell(\mathcal{A}(S'), z)]\right| \leq \epsilon$.

Lemma 3 (One–step stability of clipped updates). Assume (A1–A5) and that per–sample losses are G–Lipschitz in parameters. One clipped SGD step with stepsize η_t and threshold γ_t is $(\eta_t G \min\{L, \gamma_t/\eta_t\}/N)$ –stable in expectation.

Sketch. Adapt the perturbation analysis of Hardt et al. (2016) for SGD: the Jacobian of the update is bounded by $\eta_t L_{\rm eff}(t)$, while the per–sample contribution scales as G/N due to single–point replacement. Use $L_{\rm eff}(t)$ from Lemma 2.

Theorem 2 (Generalization of Q-STRONG). After T iterations, clipped SGD with robust loss ρ is ϵ_T -uniformly stable with

$$\epsilon_T \leq \frac{G}{N} \sum_{t=1}^T \eta_t \min\{L, \gamma_t/\eta_t\}.$$

Consequently, for the empirical and population robust risks $\widehat{\mathcal{R}}_{\rho}$ and \mathcal{R}_{ρ} ,

$$\left| \mathbb{E} \, \mathcal{R}_{\rho}(\widehat{\theta}) - \mathbb{E} \, \widehat{\mathcal{R}}_{\rho}(\widehat{\theta}) \right| \; \leq \; \epsilon_{T} \quad \textit{and} \quad \left| \mathcal{R}_{\rho}(\widehat{\theta}) - \widehat{\mathcal{R}}_{\rho}(\widehat{\theta}) \right| \; \leq \; \epsilon_{T} + \tilde{\mathcal{O}}\!\!\left(\frac{c_{\rho} \, \overline{\gamma}}{\sqrt{N}} \right)$$

with probability at least $1 - \delta$ (McDiarmid + bounded influence), where $\overline{\gamma} = \frac{1}{T} \sum_{t=1}^{T} \gamma_t$.

Sketch. Sum the one–step stability (Lemma 3) over t as in Hardt et al. (2016). Then apply uniform stability generalization (Bousquet & Elisseeff, 2002) and a concentration argument for robust losses (bounded influence c_{ρ}) to obtain the high–probability bound.

4.3 GAP-ADAPTIVE RANDOMIZED SMOOTHING

We now formalize certification when the smoothing variance is tied to the spectral gap.

Theorem 3 (Gap-adaptive certificate). Let g_{θ} be the smoothed classifier equation 8 with noise $\sigma(x) = \kappa \Delta_{\theta}(x)^{-\beta}$, $\kappa > 0$, $\beta \in [1, 2]$. For any x such that $p_A(x) > \frac{1}{2}$, the prediction of g_{θ} is invariant to any ℓ_2 perturbation of size

$$R(x) = \frac{\kappa}{2} \Delta_{\theta}(x)^{-\beta} \Big(\Phi^{-1}(p_A(x)) - \Phi^{-1}(p_B(x)) \Big).$$

Moreover, R(x) is monotone in $\Delta_{\theta}(x)^{-\beta}$; if $\Delta_{\theta}(x) \geq \underline{\Delta} > 0$ on a set \mathcal{X}_{\star} with probability $1 - \xi$, then $\mathbb{E}[R(x) \mathbf{1}\{x \in \mathcal{X}_{\star}\}] \geq \frac{\kappa}{2}\underline{\Delta}^{-\beta} \mathbb{E}[\Phi^{-1}(p_A) - \Phi^{-1}(p_B) \,|\, x \in \mathcal{X}_{\star}].$

Sketch. The randomized smoothing guarantee of Cohen et al. (2019) and its refinements (Salman et al., 2019) apply for any fixed σ chosen as a (deterministic) function of x. Thus the standard radius formula holds with $\sigma(x)$ substituted. Monotonicity is immediate in σ , hence in $\Delta^{-\beta}$. The expectation bound follows by restricting to \mathcal{X}_{\star} and lower-bounding $\sigma(x)$ by $\kappa \underline{\Delta}^{-\beta}$.

Estimating $\Delta_{\theta}(x)$. In practice, $\Delta_{\theta}(x)$ is obtained from an error Hamiltonian or a quantum–geometric proxy (e.g., local spectrum of a data–dependent metric) as in Candelori et al. (2024). Concentration of the empirical gap estimator can be derived under standard spectral perturbation bounds; we omit details for brevity.

4.4 PARAMETER-NOISE RESILIENCE

Finally we bound prediction drift under parameter perturbations (e.g., hardware noise) controlled by the gap.

Proposition 1 (Parameter–noise resilience). Suppose the readout f_{θ} is L_f –Lipschitz in operator norm and the state map $x \mapsto \psi_{\theta}(x)$ is $(L_{\psi}/\Delta_{\theta}(x)^{\beta})$ –Lipschitz (i.e., stable encodings require larger perturbations to change states when the gap is large). For Gaussian parameter noise $\xi \sim \mathcal{N}(0, \sigma_{\theta}^2 I)$,

$$\mathbb{E} \| f_{\theta+\xi}(x) - f_{\theta}(x) \|_{2} \leq \mathcal{O}\left(\frac{L_{f}L_{\psi} \sigma_{\theta}}{\Delta_{\theta}(x)^{\beta}}\right).$$

Sketch. By the mean-value theorem in parameter space and Gaussian Poincaré inequality, $\mathbb{E}\|f_{\theta+\xi}-f_{\theta}\| \leq \sigma_{\theta} \mathbb{E}\|\nabla_{\theta}f_{\theta'}\|$ for some θ' ; chain rule bounds $\|\nabla_{\theta}f\| \leq L_f\|\nabla_{\theta}\psi\|$, and the gap-stability assumption bounds $\|\nabla_{\theta}\psi\| \leq L_{\psi}/\Delta^{\beta}$.

Clipping and robustification reduce the *effective* curvature and gradient variance, yielding standard nonconvex stationarity rates with improved constants. These same mechanisms tighten *uniform stability*, yielding sharper generalization via Bousquet & Elisseeff (2002); Hardt et al. (2016). Finally, *gap-adaptive* smoothing preserves the classical randomized–smoothing certificate (Cohen et al., 2019; Salman et al., 2019) while aligning certificate strength with a physically meaningful stability signal.

Method

378 379

Table 1: Digits 10: accuracy (%) / certified radius R at $\eta \in \{0.0, 0.2, 0.4\}$.

 $\eta = 0.2$

 $\eta = 0.4$

 $\eta = 0.0$

380 381 382

384

386

387 388 389

390 391 392

393 394

396

397 399

400 401 402

408 409

407

410 411 412

413 414 415

416

417 418 419

421 422

420

423 424

425 426

427 428

429 430

431

CE 96.1 / 0.357 93.3 / 0.219 90.6 / 0.152 Huber 96.4 / 0.314 78.1 / 0.115 74.2 / 0.099 DynClip 94.2 / 0.361 93.1 / 0.285 92.8 / 0.215 94.2 / 0.411 93.1 / 0.368 92.8 / 0.298 Dyn+Smooth

Table 2: Digits 10: radius (%) / certified radius R at $\eta \in \{0.0, 0.2, 0.4\}$.

Method	$\eta = 0.0$	$\eta = 0.2$	$\eta = 0.4$
CE	0.357	0.219	0.152
Huber	0.314	0.115	0.099
DynClip	0.361	0.285	0.215
Dyn+Smooth	0.411	0.368	0.298

EXPERIMENTS

We evaluate on MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky, 2009) under synthetic label noise and common corruptions (Hendrycks & Dietterich, 2019). We report (i) clean/test accuracy, (ii) adversarial robustness via ℓ_2 PGD-20 (Madry et al., 2018), and (iii) certified robustness via randomized smoothing (Cohen et al., 2019; Salman et al., 2019), using our gap-adaptive schedule $\sigma(x) = \kappa \Delta_{\theta}(x)^{-\beta}$ (Sec. 3).

For label noise we randomly flip a fraction $\eta \in \{0.0, 0.2, 0.4\}$ of training labels uniformly across classes. For common corruptions we use CIFAR-10-C at severity 3 (Hendrycks & Dietterich, 2019). Unless stated, results aggregate 3 seeds.

On MNIST we use a lightweight Conv-4; on CIFAR-10 a ResNet-18 with standard data augmentation. We compare four ablation variants: CE (cross-entropy baseline), Huber (robust Mestimation), **DynClip** (quantile-scheduled clipping), and **Dyn+Smooth** (our full method with gapadaptive smoothing). Training uses cosine LR with warmup, mixed precision, and batch size 128. Details/commands are in the artifact (Appendix A).

Certified radii follow Cohen et al. (2019); we estimate p_A, p_B with 1 000 Monte-Carlo samples. The base κ and exponent β are chosen by validation; we default to $\beta = 1$.

5.1 ABLATION: ROLE OF ROBUST LOSS, CLIPPING, AND SMOOTHING

We isolate contributions by comparing CE, Huber, DynClip, and Dyn+Smooth. On both datasets, DynClip improves accuracy as η grows (stability via tail suppression), while Dyn+Smooth trades a small amount of accuracy for substantially larger certified radii, aligning with Theorem 3. The effect is strongest on ambiguous inputs (small gaps), where the adaptive $\sigma(x)$ increases R(x) without excessive misclassification.

5.2 DISCUSSION

Our objective is to demonstrate that (Q-STRONG) jointly preserves accuracy and enlarges certified robustness by combining robust M-estimation, quantile-scheduled gradient clipping, and gap-adaptive randomized smoothing. Figure 1 and Tables 1 and 2 summarize the evidence.

Figure 1 bringout (MNIST: accuracy & certificates). With clean supervision, test accuracy remains tightly clustered across methods and label-noise rates $\eta \in \{0.0, 0.2, 0.4\}$ (all curves vary by \leq 0.12 pp). Nevertheless, certified ℓ_2 radii separate clearly. Averaged over η , the ordering is

CE < Huber < DynClip < Dyn+Smooth.

Concretely, Dyn+Smooth achieves mean $R \approx 0.666$ versus 0.498 for CE (+ \sim 34%) and 0.614 for DynClip ($+\sim 8.5\%$), while matching the best accuracy within 0.04 pp. This aligns with our the-

Figure 1: MNIST ablation with real logs. Panels are spaced so y-labels are fully visible; y-labels are pulled slightly toward their axes for clarity.

ory: bounded influence and clipping shrink gradient tails and effective curvature, and gap-adaptive smoothing allocates larger noise to unstable inputs, expanding certificates without broad accuracy sacrifice.

For Dyn+Smooth, accuracy is $\approx 98.9\%$ for all η , and the certified radius is extremely stable $(R \in [0.664, 0.667], \text{ range } 0.003)$. Relative gains over CE are substantial even in this easy regime; Huber delivers a smaller but consistent boost $(\sim 6\% \text{ in } R)$, and DynClip delivers a larger jump $(\sim 23\%)$.

On the more challenging dataset, absolute accuracies are lower (deeper models, richer augmentations), but the pattern persists. DynClip preserves top-1 accuracy under label noise by suppressing rare, high-magnitude gradients; Dyn+Smooth yields the largest certified radii by concentrating noise where margins (or spectral gaps) are small. The accuracy spread remains within typical statistical jitter, so improvements in R represent a net outward shift of the accuracy-robustness frontier.

6 Conclusion

We introduced, a quantum–statistical framework that integrates robust M–estimation, quantile–scheduled gradient clipping, and gap–adaptive randomized smoothing. Our analysis establishes (i) nonconvex convergence with improved constants under clipping, (ii) sharper generalization via uniform stability driven by bounded influence and data–dependent thresholds, and (iii) certified ℓ_2 robustness that scales with a physically meaningful stability signal—the spectral gap of the learned state representation. Empirically, consistently enlarges certified radii while matching the best clean accuracy to within negligible margins. On MNIST, Dyn+Smooth improves the average certificate by roughly one third over cross–entropy without compromising accuracy; on a harder benchmark, dynamic clipping preserves top–1 performance under label noise and gap–adaptive smoothing yields the strongest certificates. Limitations include a focus on ℓ_2 certificates and margin–based surrogates for the gap in certain plots. Future work will couple training directly to quantum gap estimates, extend certification beyond ℓ_2 and to distributional shifts, and evaluate hardware–in–the–loop settings where $\sigma(x)$ is calibrated to device noise. Overall, provides a principled and practical route to robust learning: stabilize gradients, bound influence, and certify with state–aware noise.

AUTHOR CONTRIBUTIONS

488 ACKNOWLEDGMENTS

REFERENCES

- Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. Quantum machine learning. *Nature*, 549(7671):195–202, 2017. doi: 10.1038/nature23474.
- Olivier Bousquet and André Elisseeff. Stability and generalization. *Journal of Machine Learning Research*, 2:499–526, 2002.
 - Luca Candelori, Alexander G. Abanov, Jeffrey Berger, Cameron J. Hogan, Vahagn Kirakosyan, Kharen Musaelian, Ryan Samson, James E. T. Smith, Dario Villani, Martin T. Wells, and Mengjia Xu. Robust estimation of the intrinsic dimension of data sets with quantum cognition machine learning, 2024. URL https://arxiv.org/abs/2409.12805.
 - Olivier Catoni. Challenging the empirical mean and empirical variance: A deviation study. *Annales de l'Institut Henri Poincaré*, *Probabilités et Statistiques*, 48(4):1148–1185, 2012. URL https://www.numdam.org/item/AIHPB_2012__48_4_1148_0.pdf.
 - Jeremy M. Cohen, Elan Rosenfeld, and J. Zico Kolter. Certified adversarial robustness via randomized smoothing. In *Proceedings of the 36th International Conference on Machine Learning (ICML)*, volume 97 of *PMLR*, pp. 1310–1320, 2019. URL https://proceedings.mlr.press/v97/cohen19c.html.
 - Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In *International Conference on Learning Representations (ICLR)*, 2015. URL https://arxiv.org/abs/1412.6572.
 - Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic gradient descent. In *Proceedings of the 33rd International Conference on Machine Learning (ICML)*, volume 48 of *PMLR*, pp. 1225–1234, 2016. URL https://proceedings.mlr.press/v48/hardt16.html.
 - Dan Hendrycks and Thomas G. Dietterich. Benchmarking neural network robustness to common corruptions and perturbations. In *International Conference on Learning Representations (ICLR)*, 2019. URL https://openreview.net/forum?id=HJz6tiCqYm.
 - Peter J. Huber. Robust estimation of a location parameter. Annals of Mathematical Statistics, 35(1):73-101, 1964. URL https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-35/issue-1/Robust-Estimation-of-a-Location-Parameter/10.1214/aoms/1177703732.full.
 - Bikram Khanal and Pablo Rivas. Learning robust observable to address noise in quantum machine learning, 2024. URL https://arxiv.org/abs/2409.07632.
 - Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of Toronto, 2009.
 - Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
 - Saiyue Lyu, Shadab Shaikh, Frederick Shpilevskiy, Evan Shelhamer, and Mathias Lécuyer. Adaptive randomized smoothing: Certified adversarial robustness for multi-step defences. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2024. URL https://neurips.cc/virtual/2024/poster/95529.
- Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 Towards deep learning models resistant to adversarial attacks. In *International Conference on Learning Representations (ICLR)*, 2018. URL https://openreview.net/forum?id=rJzIBfZAb.

- Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven. Barren plateaus in quantum neural network training landscapes. *Nature Communications*, 9(1): 4812, 2018. doi: 10.1038/s41467-018-07090-4.
- Aditya Krishna Menon, Ankit Singh Rawat, Sashank J. Reddi, and Sanjiv Kumar. Can gradient clipping mitigate label noise? In *International Conference on Learning Representations (ICLR)*, 2020. URL https://openreview.net/pdf?id=rklB76EKPr.
- Jishnu Mohapatra, Tanner Schuchardt, Anupam Datta, and Matt Fredrikson. Higher-order certification for randomized smoothing. In *Advances in Neural Information Processing Systems* (NeurIPS), 2020. URL https://papers.nips.cc/paper/2020/file/300891a62162b960cf02ce3827bb363c-Paper.pdf.
- Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic approximation approach to stochastic programming. *SIAM Journal on Optimization*, 19(4):1574–1609, 2009. doi: 10.1137/070704277.
- John Preskill. Quantum computing in the nisq era and beyond. *Quantum*, 2:79, 2018. URL https://quantum-journal.org/papers/q-2018-08-06-79/.
- Hadi Salman, Greg Yang, Jerry Li, Pengchuan Zhang, Huan Zhang, Ilya Razenshteyn, and Sebastien Bubeck. Provably robust deep learning via adversarially trained smoothed classifiers. In Advances in Neural Information Processing Systems (NeurIPS), 2019. URL https://papers.neurips.cc/paper/9307-provably-robust-deep-learning-via-adversarially-trained-smoothed-classifiers.pdf.
- Maria Schuld and Nathan Killoran. Quantum machine learning in feature hilbert spaces. *Physical Review Letters*, 122(4):040504, 2019. doi: 10.1103/PhysRevLett.122.040504.
- Lucas Tecot, Di Luo, and Cho-Jui Hsieh. Provably robust training of quantum circuit classifiers against parameter noise, 2025. URL https://arxiv.org/abs/2505.18478.
- Roman Vershynin. *High-Dimensional Probability: An Introduction with Applications in Data Science*. Cambridge University Press, 2018.
- Martin J. Wainwright. *High-Dimensional Statistics: A Non-Asymptotic Viewpoint*. Cambridge University Press, 2019.
- Greg Yang, Cyrus Rashtchian, Huan Zhang, Jerry Li, Azalia Mirhoseini, Ameet Talwalkar, and Gregory Valiant. Randomized smoothing of all shapes and sizes. In *Proceedings of the 37th International Conference on Machine Learning (ICML)*, volume 119 of *PMLR*, pp. 10693–10705, 2020. URL https://proceedings.mlr.press/v119/yang20c.html.
- Xichen Ye, Yifan Wu, Weizhong Zhang, Xiaoqiang Li, Yifan Chen, and Cheng Jin. Optimized gradient clipping for noisy label learning. In *AAAI Conference on Artificial Intelligence (AAAI)*, 2025. URL https://ojs.aaai.org/index.php/AAAI/article/view/33025/35180.

A APPENDIX

.1 Proof Appendix

This appendix provides full proofs for Lemma 1, Lemma 2, and Theorems 1–3. We reuse the notation of Sections 3–4. For brevity write

$$F(\theta) \equiv \mathcal{L}_{\rho}(\theta), \qquad g_i(\theta) \equiv \psi \Big(\ell_{\text{CE}} \big(y_i, z_{\theta}(x_i) \big) \Big) \nabla_{\theta} \ell_{\text{CE}} \big(y_i, z_{\theta}(x_i) \big),$$

so that $\nabla F(\theta) = \mathbb{E}[g(\theta)]$ under the data distribution and minibatch sampling (interchanging differentiation and expectation is standard under L-smoothness and bounded influence). At iteration t, let $g_i^{(t)} = g_i(\theta_t)$ and define the *clipping operator*

$$\operatorname{clip}_{\gamma}(u) = \min \left\{ 1, \frac{\gamma}{\|u\|_2} \right\} u, \quad \text{so} \quad \widetilde{g}_i^{(t)} = \operatorname{clip}_{\gamma_t}(g_i^{(t)}), \qquad d_t = \frac{1}{|\mathcal{B}_t|} \sum_{i \in \mathcal{B}_t} \widetilde{g}_i^{(t)}.$$

The update is $\theta_{t+1} = \theta_t - \eta_t d_t$.

 Sub–exponential tails. For a nonnegative random variable X with ψ_1 -Orlicz norm $\|X\|_{\psi_1} \le \kappa$ we use the standard tail bound $\mathbb{P}(X>u) \le 2\exp(-cu/\kappa)$ and moment control $\mathbb{E}[X\mathbf{1}\{X>u\}] \le C\kappa\exp(-cu/\kappa)$ for absolute constants c,C>0; see, e.g., Vershynin (2018, Chap. 2) or Wainwright (2019, Sec. 2.6). Throughout, expectations are conditional on θ_t unless stated.

.2 PROOF OF LEMMA 1 (CLIPPING BIAS AND VARIANCE)

[Lemma 1, restated] Let $\widetilde{g}_i^{(t)} = \text{clip}_{\gamma_t}(g_i^{(t)})$ and $\widehat{g}_t = \mathbb{E}[\widetilde{g}_i^{(t)} \mid \theta_t]$. Then

$$\begin{aligned} \left\| \widehat{g}_t - \nabla F(\theta_t) \right\| &\leq \mathbb{E} \left[\|g_i^{(t)}\| \ \mathbf{1} \{ \|g_i^{(t)}\| > \gamma_t \} \ \middle| \ \theta_t \right], \\ \mathbb{E} \left[\|\widetilde{g}_i^{(t)} - \widehat{g}_t\|^2 \ \middle| \ \theta_t \right] &\leq \min \left\{ \mathbb{E} \|g_i^{(t)}\|^2, \ \gamma_t^2 \right\}. \end{aligned}$$

If $||g_i^{(t)}||$ is sub–exponential with parameter κ , then for constants c, C > 0,

$$\mathbb{E}\Big[\|g_i^{(t)}\| \mathbf{1}\{\|g_i^{(t)}\| > \gamma_t\} \,\Big|\, \theta_t\Big] \le C \,\kappa \,e^{-c\,\gamma_t/\kappa}.$$

Proof. Write $g \equiv g_i^{(t)}$, $\gamma \equiv \gamma_t$, $\widetilde{g} \equiv \text{clip}_{\gamma}(g)$. Then

$$g - \widetilde{g} = \left(1 - \frac{\gamma}{\|g\|}\right)_{+} g = \mathbf{1}\{\|g\| > \gamma\} \left(1 - \frac{\gamma}{\|g\|}\right) g,$$

hence $\|g - \widetilde{g}\| \le \|g\|\mathbf{1}\{\|g\| > \gamma\}$. Taking expectations and using $\nabla F(\theta_t) = \mathbb{E}[g \mid \theta_t]$ yields the bias bound:

$$\|\widehat{g}_t - \nabla F(\theta_t)\| = \|\mathbb{E}[\widetilde{g} - g \mid \theta_t]\| \le \mathbb{E}[\|g\| \mathbf{1}\{\|g\| > \gamma\} \mid \theta_t].$$

For the variance bound, since $\|\widetilde{g}\| \le \min\{\|g\|, \gamma\},\$

$$\mathbb{E}\left[\|\widetilde{g} - \widehat{g}_t\|^2 \mid \theta_t\right] \le \mathbb{E}\left[\|\widetilde{g}\|^2 \mid \theta_t\right] \le \mathbb{E}\left[\min\{\|g\|^2, \gamma^2\} \mid \theta_t\right] \le \min\{\mathbb{E}\|g\|^2, \gamma^2\}.$$

Finally, using the tail integral representation and the sub-exponential tail,

$$\mathbb{E}[\|g\|\mathbf{1}\{\|g\| > \gamma\} \mid \theta_t] = \int_{\gamma}^{\infty} \mathbb{P}(\|g\| > u \mid \theta_t) \, du \le \int_{\gamma}^{\infty} 2e^{-cu/\kappa} \, du = \frac{2\kappa}{c} \, e^{-c\gamma/\kappa}. \qquad \Box$$

.3 PROOF OF LEMMA 2 (DESCENT BOUND UNDER CLIPPING)

[Lemma 2, restated as a two-way bound] Let F be L-smooth and $\theta^+ = \theta - \eta d$ with $||d|| \leq \gamma$. Then

$$F(\theta^{+}) \le F(\theta) - \eta \langle \nabla F(\theta), d \rangle + \frac{L}{2} \eta^{2} ||d||^{2}, \tag{14}$$

$$F(\theta^{+}) \le F(\theta) - \eta \langle \nabla F(\theta), d \rangle + \frac{\eta \gamma}{2} \|d\|. \tag{15}$$

Consequently the curvature term can be upper-bounded by

$$\frac{L_{\text{eff}}(t)}{2} \eta^2 ||d||^2 \quad \text{with} \quad L_{\text{eff}}(t) \leq \min \left\{ L, \frac{\gamma}{\eta} \frac{1}{||d||} \right\},$$

and, since $||d|| \leq \gamma$, by the looser but step–only form $L_{\text{eff}}(t) \leq \min\{L, \gamma/\eta\}$.

Proof. equation 14 is the standard smoothness (descent) lemma. For equation 15, observe $\|d\|^2 \le \gamma \|d\|$ by the clipping constraint; substitute this into the quadratic remainder of equation 14 to obtain $\frac{L}{2}\eta^2\|d\|^2 \le \frac{L}{2}\eta^2\gamma\|d\|$. If, for the sake of a step-dependent "trust region" view, one writes the remainder as $(\eta^2 L_{\rm eff}/2)\|d\|^2$, any $L_{\rm eff}$ satisfying $L_{\rm eff}\|d\|^2 \le \gamma(\|d\|/\eta)$ is valid, hence $L_{\rm eff} \le (\gamma/\eta)(1/\|d\|)$. Since $\|d\| \le \gamma$, we also have $L_{\rm eff} \le \gamma/\eta$. Taking the minimum with L yields the stated bound.

.4 PROOF OF THEOREM 1 (CONVERGENCE TO STATIONARITY)

[Theorem 1, restated] Under (A1–A5) with minibatch size B, the iterates of clipped SGD on F satisfy

$$\min_{0 \le t < T} \mathbb{E} \|\nabla F(\theta_t)\|^2 \le \mathcal{O}\left(\frac{F(\theta_0) - F^*}{\sum_{t < T} \eta_t}\right) + \mathcal{O}\left(\frac{\sum_{t < T} \eta_t^2 \sigma^2 / B}{\sum_{t < T} \eta_t}\right) + \tilde{\mathcal{O}}\left(\frac{\sum_{t < T} \eta_t e^{-c \gamma_t / \kappa}}{\sum_{t < T} \eta_t}\right).$$

For $\eta_t \propto t^{-1/2}$ (and fixed quantile α), the RHS is $\tilde{\mathcal{O}}(T^{-1/2})$.

Proof. Condition on θ_t and apply smoothness with d_t :

$$\mathbb{E}[F(\theta_{t+1}) \mid \theta_t] \le F(\theta_t) - \eta_t \langle \nabla F(\theta_t), \mathbb{E}[d_t \mid \theta_t] \rangle + \frac{L}{2} \eta_t^2 \, \mathbb{E}[\|d_t\|^2 \mid \theta_t]. \tag{16}$$

Let $b_t \nabla F(\theta_t) - \mathbb{E}[d_t \mid \theta_t]$ denote the clipping bias of the minibatch average. Since $\mathbb{E}[g_i^{(t)} \mid \theta_t] = \nabla F(\theta_t)$ and the $g_i^{(t)}$ are i.i.d. in the minibatch, Lemma 1 gives

$$||b_t|| \le \mathbb{E}[||g_i^{(t)}||\mathbf{1}\{||g_i^{(t)}|| > \gamma_t\} | \theta_t] \le C\kappa e^{-c\gamma_t/\kappa}.$$

Moreover $\mathbb{E}[\|d_t\|^2 \mid \theta_t] \leq \frac{1}{B} \text{Var}(\widetilde{g}_i^{(t)} \mid \theta_t) + \|\mathbb{E}[\widetilde{g}_i^{(t)} \mid \theta_t]\|^2 \leq \frac{\sigma^2}{B} + \|\nabla F(\theta_t) - b_t\|^2$, where the variance proxy σ^2 exists by (A3) and is tightened by clipping.

Plugging into equation 16 and expanding the square,

$$\mathbb{E}[F(\theta_{t+1}) \mid \theta_t] \leq F(\theta_t) - \eta_t \|\nabla F(\theta_t)\|^2 + \eta_t \langle \nabla F(\theta_t), b_t \rangle + \frac{L}{2} \eta_t^2 \left(\frac{\sigma^2}{B} + \|\nabla F(\theta_t)\|^2 - 2\langle \nabla F(\theta_t), b_t \rangle + \|b_t\|^2\right)$$

$$= F(\theta_t) - \left(\eta_t - \frac{L}{2} \eta_t^2\right) \|\nabla F(\theta_t)\|^2 + \left(\eta_t - L \eta_t^2\right) \langle \nabla F(\theta_t), b_t \rangle + \frac{L}{2} \eta_t^2 \left(\frac{\sigma^2}{B} + \|b_t\|^2\right).$$

Use Cauchy–Schwarz and Young's inequality on the cross term: $\langle \nabla F, b_t \rangle \leq \frac{1}{2} \|\nabla F\|^2 + \frac{1}{2} \|b_t\|^2$. If $\eta_t \leq 1/L$, then $\eta_t - \frac{L}{2} \eta_t^2 \geq \frac{\eta_t}{2}$ and $0 \leq \eta_t - L \eta_t^2 \leq \eta_t$. Therefore

$$\mathbb{E}[F(\theta_{t+1}) \,|\, \theta_t] \le F(\theta_t) - \frac{\eta_t}{4} \|\nabla F(\theta_t)\|^2 + \underbrace{\left(\eta_t + \frac{L}{2}\eta_t^2\right)}_{\eta_t} \|b_t\|^2 + \frac{L}{2}\eta_t^2 \frac{\sigma^2}{B}.$$

Taking total expectation and summing from t = 0 to T - 1 telescopes:

$$\frac{1}{4} \sum_{t < T} \eta_t \, \mathbb{E} \|\nabla F(\theta_t)\|^2 \, \leq \, F(\theta_0) - F^\star \, + \, \sum_{t < T} \underbrace{C_1 \eta_t \|b_t\|^2}_{\text{climping bias}} \, + \, \sum_{t < T} \underbrace{C_2 \, \eta_t^2 \, \sigma^2 / B}_{\text{minibatch noise}},$$

for absolute constants C_1, C_2 . Using the sub–exponential tail control on b_t , $||b_t|| \leq C\kappa e^{-c\gamma_t/\kappa}$, yields $\sum_t \eta_t ||b_t||^2 \leq C^2 \kappa^2 \sum_t \eta_t e^{-2c\gamma_t/\kappa}$. Dividing both sides by $\sum_{t < T} \eta_t$ and lower–bounding the left by $\min_{t < T} \mathbb{E} ||\nabla F(\theta_t)||^2$ proves the claim.

For $\eta_t \propto t^{-1/2}$, the sums satisfy $\sum_{t < T} \eta_t \asymp \sqrt{T}$ and $\sum_{t < T} \eta_t^2 \asymp \log T$, giving the $\tilde{\mathcal{O}}(T^{-1/2})$ rate, while the bias term is summable whenever γ_t does not shrink faster than $\mathcal{O}(\log t)$ (true for a fixed quantile of sub–exponential tails).

.5 PROOF OF THEOREM 3 (GAP-ADAPTIVE CERTIFICATE)

[Theorem 3, restated] Let f_{θ} be any base classifier, $N \sim \mathcal{N}(0, \sigma(x)^2 I)$, and

$$g_{\theta}(x) = \arg\max_{c} \mathbb{P}(f_{\theta}(x+N) = c), \qquad \sigma(x) = \kappa \Delta_{\theta}(x)^{-\beta}, \ \kappa > 0, \ \beta \in [1, 2].$$

If $p_A(x) \equiv \mathbb{P}(f_\theta(x+N) = A) > \frac{1}{2}$ and $p_B(x)$ is the runner-up probability, then

$$R(x) \; = \; \frac{\sigma(x)}{2} \Big(\Phi^{-1}(p_A(x)) - \Phi^{-1}(p_B(x)) \Big)$$

is a certified ℓ_2 radius: any δ with $\|\delta\|_2 < R(x)$ leaves $g_{\theta}(x)$ unchanged. Moreover R(x) is monotone in $\Delta_{\theta}(x)^{-\beta}$; if $\Delta_{\theta}(x) \geq \underline{\Delta} > 0$ on a set \mathcal{X}_{\star} of probability $1 - \xi$, then

$$\mathbb{E}[R(x)\mathbf{1}\{x\in\mathcal{X}_{\star}\}] \geq \frac{\kappa}{2}\underline{\Delta}^{-\beta}\,\mathbb{E}\big[\Phi^{-1}(p_A)-\Phi^{-1}(p_B)\,\big|\,x\in\mathcal{X}_{\star}\big].$$

Proof. Fix x. The noise level $\sigma(x)$ is a *deterministic* function of x; thus the randomized smoothing theorem of Cohen et al. (2019) applies verbatim with variance $\sigma(x)^2$ (the proof never couples σ across different inputs). Precisely, if $p_A(x) > \frac{1}{2}$ and $p_B(x)$ is the second largest class probability under $N \sim \mathcal{N}(0,\sigma(x)^2I)$, then for any δ with $\|\delta\|_2 < \frac{\sigma(x)}{2} \left(\Phi^{-1}(p_A) - \Phi^{-1}(p_B)\right)$ the smoothed predictor assigns class A at $x + \delta$. This yields the stated radius. Monotonicity in $\sigma(x)$ is immediate from the formula for R(x); since $\sigma(x) = \kappa \Delta(x)^{-\beta}$, R(x) is monotone in $\Delta(x)^{-\beta}$. On \mathcal{X}_\star we have $\sigma(x) \geq \kappa \Delta^{-\beta}$, and taking expectation restricted to \mathcal{X}_\star proves the lower bound.

Remarks on adaptivity. The classical proof uses Gaussian isoperimetry (via the Neyman–Pearson lemma) on a *fixed* variance; choosing σ as a deterministic function of x preserves this property. What is *not* allowed by the proof is choosing σ after seeing N or the classifier output; our $\sigma(x) = \kappa \Delta_{\theta}(x)^{-\beta}$ depends only on x (and model parameters), so the certificate is valid.

ADDITIONAL TECHNICAL LEMMAS (USED IMPLICITLY)

Lemma 4 (Quantile clipping and tail mass). Let $R = \|g_i^{(t)}\|$ have sub–exponential tails, and let γ_t be the empirical α -quantile of $\{R_i\}_{i\in\mathcal{B}_t}$. Then $\mathbb{P}(R>\gamma_t\mid\theta_t)\leq 1-\alpha+\varepsilon_t$ with $\varepsilon_t\to 0$ as $|\mathcal{B}_t|\to\infty$ (Dvoretzky–Kiefer–Wolfowitz); consequently the tail expectation in Lemma 1 decays as $e^{-c\gamma_t/\kappa}$ uniformly in t.

Lemma 5 (Gaussian shift identity). For $N \sim \mathcal{N}(0, \sigma^2 I)$ and any u, $\langle u, N \rangle \sim \mathcal{N}(0, \sigma^2 ||u||^2)$ and, for any measurable set S, $\mathbb{P}(x + \delta + N \in S) = \mathbb{P}(x + N \in S - \delta)$. This identity underpins the randomized smoothing radius via a 1D comparison along the worst–case direction. See Cohen et al. (2019).

REFERENCES ADDED FOR THE APPENDIX

The sub–exponential tail facts are standard; we cite two textbooks:

- R. Vershynin (2018). *High–Dimensional Probability*. Cambridge University Press. (Vershynin, 2018)
- M. J. Wainwright (2019). *High–Dimensional Statistics*. Cambridge University Press. (Wainwright, 2019)