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ABSTRACT

State-of-the-art learners remain fragile under heavy-tailed noise, adversarial
perturbations, and—on NISQ devices—intrinsic stochasticity. We present Q-
STRONG, a quantum-—statistical framework that couples (i) robust M—estimation,
(i) quantile—scheduled gradient clipping, and (iii) gap—adaptive randomized
smoothing. Inputs are encoded as quantum states; a task-aligned Hamiltonian
yields a representation whose spectral gap acts as a stability signal. During
training, bounded-influence losses and per-sample clipping suppress rare gra-
dient spikes. At inference, we certify predictions with instance-adaptive noise
o(x) = k A(z) P, producing larger ¢ radii where the representation is stable.

We prove non-asymptotic guarantees: convergence of clipped SGD to first-order
stationarity for weakly smooth robust objectives; a stability-based generalization
bound with an effective Lipschitz constant lowered by clipping and robustification;
gap-adaptive extensions of randomized-smoothing certificates; and parameter-
noise resilience that scales inversely with the gap. Empirically, Q-STRONG
achieves a favorable accuracy—robustness frontier on MNIST and CIFAR-10 with
label noise and common corruptions, and on synthetic manifolds stressing intrin-
sic dimension and outliers. Ablations isolate the roles of each component. The
approach is hardware-agnostic (classical or NISQ), plug-compatible with standard
models, and adds minimal overhead. Q-STRONG thus offers a practical, theoret-
ically grounded route to certified, noise-resilient learning.

1 INTRODUCTION

Modern learners excel on i.i.d. test beds yet remain brittle under heavy—tailed corruptions, label
noise, covariate shift, and adversarial perturbations (Goodfellow et al., [2015; [Madry et al.l [2018).
These vulnerabilities are further amplified in stochastic or resource—constrained regimes—e.g.,
near—term quantum processors (NISQ) where readout noise, crosstalk, and decoherence are intrinsic
(Preskill, 2018)). Building robust and resilient systems therefore requires joint progress on (i) statis-
tical objectives whose influence functions temper outliers, (ii) optimization procedures that suppress
instability from rare, large gradients, and (iii) certification methods that turn empirical robustness
into verifiable guarantees.

We introduce Q-STRONG (Quantum—Statistical Robustness with Noise—Guarded Dynamics for
Learning), a quantum-statistical framework that unifies robust M—estimation, quantile—scheduled
gradient clipping, and adaptive randomized smoothing within a principled state—space formulation.
Classical inputs are embedded as quantum states by a trainable encoder; a task—aligned Hamiltonian
induces a low—energy representation whose spectral gap serves as a stability indicator. During train-
ing we minimize a robust loss (e.g., Huber, Catoni) to bound per—sample influence (Huber, [1964;
Catoni, [2012)), while applying dynamic clipping that sets the clipping norm to a running quantile of
per—sample gradient norms, suppressing rare but destabilizing updates (Menon et al.,[2020; Ye et al.,
2025). At inference, we deploy noise—guarded randomized smoothing: Gaussian perturbations are
injected with variance o(x) o« 1/A(x), where A(x) is the empirical spectral gap of the learned
quantum representation. This gap—adaptive schedule enlarges certified /5 radii when the representa-
tion is stable, linking certification to state—space dynamics (Cohen et al.| 2019; Salman et al.}2019;
Lyu et al., 2024)).
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Robust statistics offers estimators with bounded influence functions that curb heavy-tailed noise
and contamination (Huber, |1964; |Catoni, 2012). Randomized smoothing converts any base classi-
fier into a certifiable one by majority vote under Gaussian noise, yielding instance—wise robustness
radii (Cohen et al.| 2019; [Salman et al.| 2019} [Yang et al., 2020). Gradient clipping is a prag-
matic stabilizer, but naive clipping alone is not label-noise robust; partially Huberised/composite
loss strategies and optimized schedules address this limitation (Menon et al., |2020; |Ye et al., [2025)).
In parallel, quantum machine learning (QML) connects quantum embeddings to kernel methods
(Schuld & Killoran, [2019)), has strong representational promise (Biamonte et al., [2017)), but faces
NISQ realities and barren plateau phenomena (Preskill, 2018; McClean et al.l 2018). Recent QML
efforts show noise—aware representation/observable learning and provably noise-resilient training
(Candelor1 et al.l 2024; |Khanal & Rivas| 2024; [Tecot et al., 2025). Q-STRONG bridges these
threads: robust objectives and dynamic clipping are enforced in the quantum—embedded space,
and certification is made gap—adaptive—tying guarantees to physically meaningful stability signals.
Non-asymptotic analysis for weakly smooth robust objectives: (i) convergence of clipped SGD to
stationary points with constants controlled by the clipping quantile; (ii) a stability—based general-
ization bound in which the effective Lipschitz constant is reduced by robustification and clipping;
(iii) transfer of smoothing certificates (Cohen et al.,[2019;[Salman et al.,|2019) to a quantum readout
with gap—adaptive noise, yielding larger radii on stable representations; and (iv) parameter—noise
resilience bounds that tie prediction drift under hardware perturbations to inverse powers of the
spectral gap.

2 RELATED WORK

2.1 ROBUST STATISTICS AND ROBUSTIFICATION

Classical robust methods (Huber, redescending/Catoni) bound the influence of outliers and stabi-
lize estimation in heavy—tailed regimes (Huber, |1964; (Catoni, 2012). These techniques extend to
modern ML as robust losses and reweighting schemes, but by themselves do not provide adversarial
guarantees or optimization stability under rare gradient spikes.

2.2  GRADIENT CLIPPING AND NOISE-AWARE OPTIMIZATION

Gradient clipping is widely used to avoid exploding updates, yet standard clipping alone is not
label-noise robust; its effect is equivalent to a fully Huberised loss that remains vulnerable under
symmetric noise (Menon et al.l 2020). Composite/partially Huberised losses improve robustness
(Menon et al.l [2020), and optimized clipping schedules that adapt thresholds over training further
enhance performance under label noise (Ye et al., 2025)).

2.3  CERTIFIED ROBUSTNESS VIA RANDOMIZED SMOOTHING

Randomized smoothing scales certification to large models by turning any base classifier into a
smoothed classifier with instance-wise /5 radii (Cohen et al., [2019). Adversarially trained smooth-
ing improves the accuracy—certificate frontier (Salman et al., [2019). Extensions broaden the noise
families and certification theory (Yang et al.| 2020; Mohapatra et al.,2020)), and recent adaptive vari-
ants certify multi-step/test-time adaptation (Lyu et al.,|2024). Our work contributes a gap—adaptive
smoothing schedule that ties o(x) to quantum stability.

2.4 QUANTUM MACHINE LEARNING UNDER NOISE

QML promises expressive embeddings and kernel-like advantages (Biamonte et al., | 2017; |Schuld
& Killoran, 2019)) but faces NISQ noise and barren plateaus (Preskilll, 2018} [McClean et al., [2018).
Noise-aware QML includes quantum—geometric encoders whose spectral structure correlates with
intrinsic dimension and noise robustness (Candelori et al.,[2024), robust observable learning (Khanal
& Rivas| 2024])), and provably noise-resilient training for parameterized circuits (Tecot et al., [2025).
Q-STRONG integrates these with classical robustification and certified smoothing, using the spectral
gap as a unifying stability signal.
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3 METHODOLOGY

We develop Q-STRONG, a quantum-statistical learner that couples (i) robust M—estimation in a
quantum state space, (ii) quantile—scheduled dynamic gradient clipping for optimization stability,
and (iii) gap—adaptive randomized smoothing for certification. This section formalizes the repre-
sentation, objectives, training dynamics, and certificates.

3.1 PRELIMINARIES AND NOTATION

Let D = {(w;,9;)}Y, withz; € RP and y; € {1,...,C}. A trainable encoder E, : RP — CK
maps inputs to normalized quantum states 1y () € CK with ||tg(z)|2 = 1. A classifier head fj :
CE — R outputs logits zg(z) € RC. Denote the cross-entropy {cg(y, z) = — log softmax(z),
and the margin mg(x,y) = 2¢(2)y — MaXczy 20(T)c.

Quantum stability signal. Following|Candelor1 et al.|(2024])), we associate to each embedded state
a Hermitian error Hamiltonian Hy(z) whose ground state and spectral structure act as a denoising
proxy; let A\ (z) < Ao(z) < --- beits eigenvalues and define the local gap

Ap(z) Aa(z) — A1 (2).

Large gaps indicate locally stable representations, whereas small gaps reveal instability or mode
ambiguity. Q-STRONG exploits Ay (x) to steer training (clipping schedule) and certification (noise
scale).

3.2 ROBUST OBJECTIVES IN THE STATE SPACE

To bound the influence of outliers and label noise we minimize a robust M—estimator of the form

1 N

£,(0) = = " Atee(vis z0(2))) + AR(O), (1)
=1

where p : R>g— R> is convex, nondecreasing, with bounded slope (influence) and R is a standard
weight decay. Two instances are:

u, u<T,
Huber p, (u) = (u—7)? 2
T+ —]——, u>T,
2T
1
Catoni p,(u) = S log( cosh(au)), o > 0. 3)

The derivative ¢(u) = p’(u) is a score with sup, ¥ (u) < ¢, < oo, yielding a bounded-influence
estimator (Huber,|1964;|Catoni, 2012)). In Q-STRONG, equationﬂ]is optimized through the quantum
embedding Fy and thus acts directly in the state space.

Gradient structure. Writing g;(0) = Volcg(yi, z0(x;)), the robust gradient is

N
VoL, (0) = 5 S o(tenluis (1)) 0:(0) + XTGR(0), )

with [|9(-)]| < ¢,, which shrinks the contribution from extreme residuals (heavy-tailed or mislabeled
points).

3.3 DYNAMIC GRADIENT CLIPPING VIA QUANTILES

Even with robust losses, per-sample gradients may exhibit rare spikes that destabilize SGD. Q-
()

%

STRONG applies quantile—scheduled clipping: at iteration ¢ compute per-sample norms r
I ggt) |l2, set the threshold to the a—quantile

v = Quantile, ({r"}ics,),  a€(0,1), (5)



Under review as a conference paper at ICLR 2026

and clip

7 = min{l, %}g?? (6)
llg; "ll2 +¢

The update is 0,41 = 0, — 1y [Be| ™1 >0 ,c B, 52@. The data-dependent ; adapts to training phase and
noise level; compared to fixed clipping, it suppresses only the tail mass above the current quantile.
Empirically, this dominates naive clipping and purely robust losses under label noise (Menon et al.,
2020; Ye et al.| [2025).

Effective Lipschitz shrinkage. Assume /cg(-) is L-smooth and gradients are sub-exponential
with tail parameter x. Then for the clipped estimator g; = ]E[@@] one obtains

1G]l < min{Ellg"(l, %} = Lew(t) min{L, v /m}, (7)

so the local curvature felt by SGD is shrunk by the quantile threshold (cf. trimmed-mean analogues).

3.4 NOISE-GUARDED RANDOMIZED SMOOTHING

Let fy be any base classifier. Define the smoothed classifier (Cohen et al.,[2019)
= Ps.. oz ) =c). 8
go(x) = arg (:E{Inl,z.i.}.(,c} 5N (0,0(x)20)(fo(z + 6) = ¢) ®)

Denote p4 () and pp () the top-1 and top-2 class probabilities under the Gaussian. If pa(z) >
then any /o—bounded perturbation with radius

gl _ _
R(z) = %(fb 1(p,4(x)) - @ 1(p,3(a:))) 9)
cannot change gg(z) (Cohen et all [2019; [Salman et al. 2019). Q-STRONG instantiates a
gap—adaptive noise schedule
o(z) = kg(x)™ ", K£>0,8€1,2], (10)

so that stable points (large Ag) are certified with less noise (preserving accuracy), whereas am-
biguous points (small Ay) receive larger o (enlarging R(x)). This ties certifiable robustness to a
physically meaningful stability signal.

3.5 CONVERGENCE, STABILITY, AND CERTIFICATION

We summarize guarantees under standard assumptions (proofs deferred to the appendix).

Assumptions. (Al) lcr(y, zo(x)) is L-smooth in 0. (A2) p satisfies equation [2| or equation
with sup,, p'(u) < ¢,. (A3) Stochastic gradients have finite second moment and sub-exponential
tails with parameter . (A4) {n;} is square-summable, non-summable (Robbins—Monro).

Theorem 1 (Convergence with quantile clipping). Under (A1-A4) and clipping equation[6|with
any fixed o € (0,1), SGD on L, satisfies

L,(0y) — L* 2
min E[VL,(6,)]3 < o(”) 4 of Zecrmii )
0<t<T Zt<T ) (Zt<T nt)

), the RHS decays as O(T~1/2).

In particular, for n, o< t—/2 and ~, Quantilea(Hggt)

Theorem 2 (Generalization via stability). Let 9 be the output of clipped SGD after T steps. If
the update operator is ep—uniformly stable (Bousquet & Elisseeff, 2002)), then with probability 1 — ¢
over the sample we have

~ ~ ~ (7 1 T
|R,(8) ~R,(0)| < Oler) + O(m>’ L3

so robustification (c, small) and clipping (small %) jointly tighten sample complexity.
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Theorem 3 (Gap-adaptive certification). For gy in equation[S|\with o(z) as in equation[I0} the
Cohen radius equation[9 becomes

R(@) = 5 80(@) (27 (pa) — 27 (05)),

monotone in Ng(x) 8. If Ag(x) concentrates away from 0 on a set of measure 1—¢&, then E[R(x)] >
5E[Ag(2)~7 | A> 0] (271 (pa) — ®7'(pB)) — 0c(1).

Proposition 4 (Parameter—noise resilience). Let 0 — fy be L-Lipschitz in operator norm and
consider parameter perturbations 0 — 0 + & with & ~ N'(0,031). If training enforces Ag(z) >
A > 0 along the trajectory, then the prediction drift satisfies

E[| fosc(z) — fol@)ls] < O(LA”;) ,

so larger gaps imply smaller hardware—noise sensitivity (cf. lecot et al.|(2025)).

3.6 Q-STRONG TRAINING AND CERTIFICATION

[t] [1] Dataset {(x;,y;)}, encoder Ey, robust loss p, quantile «, stepsizes {7;}, smoothing scale
K, exponent . t = 1,...,T Sample minibatch B;. Compute states ¥y(x;) = FEp(x;) and
(t

i

), Compute

v = Quantilea({Hggt) 1}ies,); clip via equation@and update 0; 1 = 0; — n¢|Be| 7! Zie& Egt).

Periodically estimate the local gap Ag(x) (via Hy eigengap or quantum—geometric proxy (Cande-
lori et all [2024)); maintain running statistics (EMA). Certification: set o(z) = x Ag(x)~” and
estimate p4, pp by Monte—Carlo; return certificate R(x) via equation@

logits zg(x;). Evaluate robust losses p({cr(yi, zo(z;))) and per-sample gradients g

In practice we tie « to training phase (e.g., anneal from 0.95 to 0.80), use Huber p, with a small
warmup of 7, and estimate Agy(x) on a validation subset. The overhead stems from (i) computing
quantiles (linear-time selection) and (ii) periodic gap probes; both are negligible compared to for-
ward/backward passes. The certification step uses standard randomized smoothing tooling (Cohen
et al.L [2019; [Salman et al., 2019)).

4 THEORETICAL FRAMEWORK

This section formalizes the convergence, stability, and certification properties of Q-STRONG. We
analyze (i) nonconvex optimization with robust M—estimation and guantile—scheduled clipping, (ii)
algorithmic stability and generalization, and (iii) gap—adaptive randomized smoothing. Through-
out we refer to the methodology notation: robust objective equation |1} robust gradient equation
clipping operator equation[6} smoothed classifier equation[§]and certificate equation[9} gap—adaptive
schedule equation [T0}

Assumptions. We adopt standard conditions for nonconvex stochastic optimization and robust-
ness:

(A1) (L-smoothness) Vlcg(y, z¢(x)) is L-Lipschitz in 0; consequently VL, is L-Lipschitz.

(A2) (Robust loss) p is convex, nondecreasing, and differentiable with ¢(u) = p’(u) bounded:
0 < 9(u) < ¢, (Huber equation Catoni equation Huber, |1964; |Catonil [2012).

(A3) (Gradient noise) Per—sample gradients have sub—exponential tails: ||g;(0)]|2 has 1;—Orlicz
norm at most #; minibatch averages have variance proxy o2/ B.

(A4) (Stepsizes) n, > 0 is nonincreasing with Y, 7, = oo and >, n? < oc.
(AS) (Quantile clipping) At iteration t, v; = Quantile,, ({||¢\"||2}se,) with fixed a € (0,1).

4.1 CONVERGENCE OF QUANTILE—CLIPPED ROBUST SGD

We start by quantifying the bias/variance effects of clipping and then derive stationarity rates.
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Lemma 1 (Clipping bias and variance). Under (AI-A5) let §£t) be the clipped gradients equation@
and g, = E[g( ) | 6;). Then

15: = VL0 < E[llo” 1 1{1lg1 > e} | 4], (1)
E[5" — 5l | 6] < min {E[g"|%, 2. (12)

Moreover, if Hgi(t)H has sub—exponential tails with parameter &, then E[ng(t)H 1{||g£t)|| > vt
Ht] < Ck exp( — c%/n) for universal constants C, c > 0.

Sketch. equation[11]follows from g = g on {||g|| < ~} and from scaling by at most ~/||g|| other-
wise; Jensen yields the bound. equation[12]uses ||g|| < min{]|g||,7} and the tower property. The
tail inequality is standard for ¢, variables via Bernstein—type bounds. O

Lemma 2 (Effective Lipschitz shrinkage). Let L (t) denote the smoothness constant of L, as felt
by the clipped step at iteration t. Then

Leg (1) min{L7 &} (13)
Ur
in the sense that the one—step descent lemma holds with L replaced by the RHS.

Sketch. Apply the descent lemma to the surrogate direction g, = @ > 51@; the update norm is at
1 to (ve/ne) - millg, )12 O

Theorem 1 (Convergence to stationarity). Under (AI-A5) and minibatch size B, the iterates of
clipped SGD on L, satisfy

s o elto) £
i BISE 1 < ol 28 ot G) £ ot 5w ).

t<T t<T

most 7;y;, which tightens the quadratic remainder term from Ln?||g,

For n; oc t—1/2

o(T=1/2).

and any fixed quantile o (hence v bounded away from the median), the RHS is

Sketch. Combine the smoothness descent (with L.g from Lemma @]) the bias/variance decomposi-
tion in Lemma[I] and a summation over ¢. The heavy—tail contribution is exponentially damped by
the quantile threshold. Nonconvex rate constants follow standard SGD analyses (Nemirovski et al.}
2009). O

4.2  UNIFORM STABILITY AND GENERALIZATION

We analyze algorithmic stability of clipped SGD to obtain sample—dependent bounds.

Definition 1 (Uniform stability Bousquet & Elisseeff, [2002; Hardt et al.l 2016). An algorithm
A is e—uniformly stable if for any two datasets S,S’ differing in one point and any example z,
|]E[€(A(S),z) — é(A(S’),z)H <e

Lemma 3 (One-step stability of clipped updates). Assume (AI-AS) and that per—sample losses
are G-Lipschitz in parameters. One clipped SGD step with stepsize 1; and threshold ~y; is
(n:G min{L,~:/n:}/N)—stable in expectation.

Sketch. Adapt the perturbation analysis of Hardt et al.| (2016)) for SGD: the Jacobian of the up-
date is bounded by 7; Lo (t), while the per—sample contribution scales as G/N due to single—point
replacement. Use Leg (t) from Lemma 2] O

Theorem 2 (Generalization of Q-STRONG). After T iterations, clipped SGD with robust loss p is
er—uniformly stable with
aZ
N Z ne min{L, ¢ /n:}.
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Consequently, for the empirical and population robust risks ﬁp and R,

[ER,(6) —ER,(6)| < er and [R,(0) —R,(0)| < EH@(%>

with probability at least 1 — 6 (McDiarmid + bounded influence), where 7y = % ZtT:1 Y.

Sketch. Sum the one—step stability (Lemma [3)) over ¢ as in|[Hardt et al.| (2016). Then apply uniform
stability generalization (Bousquet & Elisseeff,2002)) and a concentration argument for robust losses
(bounded influence c,) to obtain the high—probability bound. O

4.3 GAP-ADAPTIVE RANDOMIZED SMOOTHING

We now formalize certification when the smoothing variance is tied to the spectral gap.

Theorem 3 (Gap—adaptive certificate). Let go be the smoothed classifier equation |8| with noise
o(z) = kAg(x)~P, k> 0, B € [1,2]. Forany x such that pa(z) > %, the prediction of gg is
invariant to any £o perturbation of size

R() = 5 8o(2) (27 (pa(@) - 27 (p5(2))).

Moreover, R(x) is monotone in Ng(z)™%; if Ag(z) > A > 0 on a set X, with probability 1 — &,
then E[R(z) 1{z € X,}] > A PE[® ' (pa) — & (pp) |2 € X.].

Sketch. The randomized smoothing guarantee of |[Cohen et al.| (2019) and its refinements (Salman
et al., [2019) apply for any fixed o chosen as a (deterministic) function of x. Thus the standard
radius formula holds with o(x) substituted. Monotonicity is immediate in o, hence in A~?. The

expectation bound follows by restricting to X, and lower—bounding o (x) by k A -, O

Estimating Ag(z). In practice, Ag(x) is obtained from an error Hamiltonian or a quan-
tum—geometric proxy (e.g., local spectrum of a data—dependent metric) as in|Candelori et al.|(2024).
Concentration of the empirical gap estimator can be derived under standard spectral perturbation
bounds; we omit details for brevity.

4.4 PARAMETER-NOISE RESILIENCE

Finally we bound prediction drift under parameter perturbations (e.g., hardware noise) controlled by
the gap.

Proposition 1 (Parameter—noise resilience). Suppose the readout fq is L¢—Lipschitz in operator
norm and the state map x© — () is (Ly/Ng(x)?)~Lipschitz (i.e., stable encodings require
larger perturbations to change states when the gap is large). For Gaussian parameter noise
§n~ N (Ov 03 I ):

Elfosc(o) = (@)l < O( ).

Sketch. By the mean—value theorem in parameter space and Gaussian Poincaré inequality, E|| fo4.¢ —
foll < 0¢E||Vafo| for some §'; chain rule bounds ||Vyf|| < L¢||Vet|, and the gap—stability
assumption bounds || V|| < Ly /AP. O

Clipping and robustification reduce the effective curvature and gradient variance, yielding standard
nonconvex stationarity rates with improved constants. These same mechanisms tighten uniform sta-
bility, yielding sharper generalization via|Bousquet & Elisseeff] (2002); Hardt et al.| (2016)). Finally,
gap—-adaptive smoothing preserves the classical randomized—smoothing certificate (Cohen et al.|
2019; Salman et al.| 2019) while aligning certificate strength with a physically meaningful stability
signal.
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Table 1: Digits10 : accuracy (%) / certified radius R atn € {0.0,0.2,0.4}.

Method n=20.0 n=20.2 n=04

CE 96.1/0.357 93.3/0.219 90.6/0.152
Huber 96.4/0.314 78.1/0.115 74.2/0.099
DynClip 94270361 93.1/0.285 92.8/0.215

Dyn+Smooth 94.2/0.411 93.1/0.368 92.8/0.298

Table 2: Digits10 : radius (%) / certified radius R atn € {0.0,0.2,0.4}.

Method n=00 n=02 n=04
CE 0.357 0.219 0.152
Huber 0.314 0.115 0.099
DynClip 0.361 0.285 0.215

Dyn+Smooth  0.411 0.368 0.298

5 EXPERIMENTS

We evaluate on MNIST (LeCun et al.| [1998) and CIFAR-10 (Krizhevsky, [2009) under synthetic
label noise and common corruptions (Hendrycks & Dietterichl [2019). We report (i) clean/test accu-
racy, (ii) adversarial robustness via /5 PGD-20 (Madry et al.,|2018)), and (iii) certified robustness via
randomized smoothing (Cohen et al., 2019} |Salman et al.l [2019), using our gap-adaptive schedule
o(z) = k Ag(x) 7 (Sec.[3).

For label noise we randomly flip a fraction 7 € {0.0,0.2,0.4} of training labels uniformly across
classes. For common corruptions we use CIFAR-10-C at severity 3 (Hendrycks & Dietterichl2019).
Unless stated, results aggregate 3 seeds.

On MNIST we use a lightweight Conv-4; on CIFAR-10 a ResNet-18 with standard data aug-
mentation. We compare four ablation variants: CE (cross-entropy baseline), Huber (robust M-
estimation), DynClip (quantile-scheduled clipping), and Dyn+Smooth (our full method with gap-
adaptive smoothing). Training uses cosine LR with warmup, mixed precision, and batch size 128.
Details/commands are in the artifact (Appendix A).

Certified radii follow |Cohen et al.|(2019); we estimate p4, pp with 1 000 Monte-Carlo samples. The
base x and exponent 3 are chosen by validation; we default to 5 = 1.

5.1 ABLATION: ROLE OF ROBUST LOSS, CLIPPING, AND SMOOTHING

We isolate contributions by comparing CE, Huber, DynClip, and Dyn+Smooth. On both datasets,
DynClip improves accuracy as n grows (stability via tail suppression), while Dyn+Smooth trades a
small amount of accuracy for substantially larger certified radii, aligning with Theorem[3] The effect
is strongest on ambiguous inputs (small gaps), where the adaptive o(x) increases R(z) without
excessive misclassification.

5.2 DISCUSSION

Our objective is to demonstrate that (Q-STRONG) jointly preserves accuracy and enlarges cer-
tified robustness by combining robust M—estimation, quantile—scheduled gradient clipping, and
gap—adaptive randomized smoothing. Figure[I]and Tables 1 and 2 summarize the evidence.

Figure 1 bringout (MNIST: accuracy & certificates). With clean supervision, test accuracy remains
tightly clustered across methods and label-noise rates € {0.0,0.2,0.4} (all curves vary by <
0.12 pp). Nevertheless, certified /5 radii separate clearly. Averaged over 7, the ordering is

CE < Huber < DynClip < Dyn+Smooth.

Concretely, Dyn+Smooth achieves mean R~ 0.666 versus 0.498 for CE (+~34%) and 0.614 for
DynClip (+~8.5%), while matching the best accuracy within 0.04 pp. This aligns with our the-
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(a) MNIST accuracy vs. n (b) MNIST certificates vs. i
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Figure 1: MNIST ablation with real logs. Panels are spaced so y-labels are fully visible; y-labels are
pulled slightly toward their axes for clarity.

ory: bounded influence and clipping shrink gradient tails and effective curvature, and gap—adaptive
smoothing allocates larger noise to unstable inputs, expanding certificates without broad accuracy
sacrifice.

For Dyn+Smooth, accuracy is &~ 98.9% for all 1, and the certified radius is extremely stable
(R € [0.664,0.667], range 0.003). Relative gains over CE are substantial even in this easy regime;
Huber delivers a smaller but consistent boost (~ 6% in R), and DynC1lip delivers a larger jump

(~23%).

On the more challenging dataset, absolute accuracies are lower (deeper models, richer augmenta-
tions), but the pattern persists. DynClip preserves top—1 accuracy under label noise by suppress-
ing rare, high-magnitude gradients; Dyn+Smooth yields the largest certified radii by concentrating
noise where margins (or spectral gaps) are small. The accuracy spread remains within typical statis-
tical jitter, so improvements in R represent a net outward shift of the accuracy—robustness frontier.

6 CONCLUSION

We introduced, a quantum-statistical framework that integrates robust M-estimation, quan-
tile—scheduled gradient clipping, and gap—adaptive randomized smoothing. Our analysis establishes
(1) nonconvex convergence with improved constants under clipping, (ii) sharper generalization via
uniform stability driven by bounded influence and data—dependent thresholds, and (iii) certified {5
robustness that scales with a physically meaningful stability signal—the spectral gap of the learned
state representation. Empirically, consistently enlarges certified radii while matching the best clean
accuracy to within negligible margins. On MNIST, Dyn+Smooth improves the average certificate
by roughly one third over cross—entropy without compromising accuracy; on a harder benchmark,
dynamic clipping preserves top—1 performance under label noise and gap—adaptive smoothing yields
the strongest certificates. Limitations include a focus on ¢ certificates and margin—based surrogates
for the gap in certain plots. Future work will couple training directly to quantum gap estimates, ex-
tend certification beyond /5 and to distributional shifts, and evaluate hardware—in—the—loop settings
where o (z) is calibrated to device noise. Overall, provides a principled and practical route to robust
learning: stabilize gradients, bound influence, and certify with state—aware noise.
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A APPENDIX

.1 PROOF APPENDIX

This appendix provides full proofs for Lemma [T} Lemma [2] and Theorems [TH3] We reuse the
notation of Sections For brevity write

F(0) = L,(9), 9i(0) = 1/’<£CE (vi, 29(%’))) Volcs (i, z0(x:)),

so that VF(0) = E[g(0)] under the data distribution and minibatch sampling (interchanging differ-
entiation and expectation is standard under L—smoothness and bounded influence). At iteration ¢,
(t)

%

= ¢;(0;) and define the clipping operator

: : gl ~(1) , (t) 1 ~(1)
clip.,(u) = mm{L—}u, so g, = clip, (g;), dy = — g; -
" fullz " T ZB:

let g

The update is 0;1 = 6y — 1 dy.
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Sub-exponential tails. For a nonnegative random variable X with ¢;—Orlicz norm || X ||, < &
we use the standard tail bound P(X > u) < 2 exp(—cu/x) and moment control E[X1{X > u}] <
C'x exp(—cu/k) for absolute constants ¢, C' > 0; see, e.g.,|Vershynin|(2018}, Chap. 2) orWainwright
(2019} Sec. 2.6). Throughout, expectations are conditional on #; unless stated.

.2 PROOF OF LEMMA|I| (CLIPPING BIAS AND VARIANCE)

[Lemma restated] Let @m = clip,, (ggt)) and g; = E[ﬁgt) | 6;]. Then

g = VF@) | < E[lg” 1 109" > 2} |01]

B[l - 52| 6] < min{Elg”)12, 42}
If || gz@ || is sub—exponential with parameter x, then for constants ¢, C' > 0,

E[Hgft)” 1{”91@“ > e} ‘ 94 < Cre cn/m,

Proof. Write g = ggt), Y =, g = clip,(g). Then

go-d= (1—H;H)+g = 1l > (1- L)

hence ||g — g|| < |lgll1{llg|l > ~}. Taking expectations and using VF(0;) = Elg | ;] yields the
bias bound:

[9: = VE@O)|| = [Elg — g | 0]]| <Ellgll 1{llgll > 7} |0:] -

For the variance bound, since ||g|| < min{||g||,~},

E[lg —a:1*[6:] <E[Igl* | 6:] < E[min{]lgl*,+*} | 6] < min{E]g]?, ~*}.

Finally, using the tail integral representation and the sub—exponential tail,

> 2K

P(”g” >u | at) du < / 2@_Cu/"C du = ? e—C'y/n. 0
v

Elllgl1{llg]l > 7} 6. = /

~

.3 PROOF OF LEMMAQ (DESCENT BOUND UNDER CLIPPING)

[Lemmal2] restated as a two-way bound] Let F' be L-smooth and 6% = 6 —nd with ||d|| < ~. Then
L

F(67) < F(0) =n(VF(0),d) + 5n*|d]*, (14)

F(0+) < F(0) = n(VF(9),d) + 2 |d]. (1s)

Consequently the curvature term can be upper—bounded by

Leg (t)

1
Sl with Leg(t) < min{L 1 }

" [ld]

and, since ||d|| < +, by the looser but step—only form Leg (t) < min{L, v/n}.

Proof. equationis the standard smoothness (descent) lemma. For equation observe ||d||? <
7|/d|| by the clipping constraint; substitute this into the quadratic remainder of equation[I4to obtain
Ln2|\d)* < LnPy||d|. If, for the sake of a step-dependent “trust region” view, one writes the
remainder as (% Leg/2)||d||?, any Leg satisfying Leg||d||> < ~(||d||/n) is valid, hence L.g <
(v/n)(1/||d|). Since ||d|| < «y, we also have Log < /7. Taking the minimum with L yields the
stated bound. O
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.4  PROOF OF THEOREME] (CONVERGENCE TO STATIONARITY)

[Theorem |1} restated] Under (A1-AS) with minibatch size B, the iterates of clipped SGD on F
satisfy

20%/B cve/r
min E[VF(O)]? < o F(6o) - ) N @(M) L (EKTL)_
0<t<T S er Sr i S
For 1, o< t~1/2 (and fixed quantile ), the RHS is O(T~1/2).

Proof. Condition on 6; and apply smoothness with d;:
L
E[F(0r41) 6] < F(0:) = ne(VF(6,), Eldy | 6:]) + g E[[|de]* | 6.]. (16)

Let b, VF(0;) — E[d; | 6;] denote the clipping bias of the minibatch average. Since ]E[ | 0] =
VF(6;) and the gqg ) are ii.d. in the minibatch, Lemma gives

5]l < E[Ilg 11 {19 ]| > 76} | 6] < Cremere/x,

MoreoverIE[||dt||2 16,] < LVar(@® | 6,) + |E[G" | 0,]]> < % + |[VF(6;) — by||?, where the

variance proxy o exists by (A3) and is tightened by clipping.
Plugging into equation|l6|and expanding the square,

0.2
ELF(0,11) |0 < F(0) —n| VF@)I” +m(VF0),0) + 5ot (5 + IVFO)]? ~ 2T F(0,),b) + [1e]?)

L o2
= F(0) = (ne— 50 ) IVF@)I? + (m— Ln? )(VF(00),b0) + S (T + ]l

Use Cauchy-Schwarz and Young’s inequality on the cross term: (VF,b;) < 1[|VF||? 4 L[|b,[|. If
ne < 1/L, thenn, — &9 > 2 and 0 < n, — Ly} < n,. Therefore

Tt 2 L2 2, L yo?
E[F(0r+1) [0:] < F(6:) — - [VFO0)]" + (m + 57%) oell” + S -

—_——
it

Taking total expectation and summing from ¢ = 0 to T' — 1 telescopes:

1 *
TS wEIVF@)? < F(oo)—F* + S Conbll® + 3 Can o/,

—_———
t<T t<T clipping bias t<T minibatch noise

for absolute constants C,Co. Using the sub—exponential tail control on by, ||b|| < Crect/s,
yields 3, m||be]|* < C?k% )", me=27/%. Dividing both sides by >°, 7 and lower-bounding
the left by min, 7 E||VE(6;)||* proves the claim.

For 1, o t~1/2, the sums satisfy Do Mt X VT and > iorni < logT, giving the O(T~1/2) rate,
while the bias term is summable whenever 7; does not shrink faster than O(logt) (true for a fixed
quantile of sub—exponential tails).

.5 PROOF OF THEOREM [3| (GAP—ADAPTIVE CERTIFICATE)

[Theorem restated] Let fp be any base classifier, N ~ N(0, o(x)?1), and

go(x) = arngaXIF’(fg(:r +N)=0¢), o(x) =rMN(z)™?, k>0, Be1,2.
If pa(z) =P(fo(x + N) = A) > § and pp(z) is the runner—up probability, then
R) = 2 (07 (pa(@) - 07 (ps(@)))

is a certified (5 radius: any J with ||0||2 < R(z) leaves gy(x) unchanged. Moreover R(x) is
monotone in Ag(x)~?;if Ag(x) > A > 0 on a set X, of probability 1 — &, then
E[R(z)1{z € X,}] > gé_ﬁE[q)_l(pA) — o ' (pp) |z € X,
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Proof. Fix x. The noise level o(x) is a deterministic function of x; thus the randomized smoothing
theorem of |Cohen et al. (2019) applies verbatim with variance o(x)? (the proof never couples o
across different inputs). Precisely, if pa(z) > 1 and pp(z) is the second largest class probability
under N ~ N(0,0(x)2I), then for any § with [|5]|> < Z52 (&~ (pa) — & (pp)) the smoothed
predictor assigns class A at x + §. This yields the stated radius. Monotonicity in o () is immediate
from the formula for R(x); since o(z) = kA(z)~?, R(x) is monotone in A(x)~?. On X, we have
o(x) > ﬁé_ﬂ , and taking expectation restricted to X, proves the lower bound. O

Remarks on adaptivity. The classical proof uses Gaussian isoperimetry (via the Neyman—Pearson
lemma) on a fixed variance; choosing o as a deterministic function of x preserves this property.
What is not allowed by the proof is choosing o after seeing N or the classifier output; our o(z) =
kAg(z)~” depends only on x (and model parameters), so the certificate is valid.

ADDITIONAL TECHNICAL LEMMAS (USED IMPLICITLY)

Lemma 4 (Quantile clipping and tail mass). Let R = || ggt) || have sub—exponential tails, and let
vt be the empirical a—quantile of {R;}icp,. Then P(R > v | 6;) <1 — a + ¢ withey — 0 as
|B:| — oo (Dvoretzky—Kiefer—Wolfowitz); consequently the tail expectation in Lemma decays as
e=/5 yniformly in t.

Lemma 5 (Gaussian shift identity). For N ~ N(0,021) and any u, {(u, N) ~ N(0,0?||ul|?) and,
for any measurable set S, P(x + 5 + N € §) = P(x + N € S — §). This identity underpins the
randomized smoothing radius via a 1D comparison along the worst—case direction. See|Cohen et al.
(2019).

REFERENCES ADDED FOR THE APPENDIX

The sub—exponential tail facts are standard; we cite two textbooks:

* R. Vershynin (2018). High—Dimensional Probability. Cambridge University Press. (Ver-
shynin} [2018))

* M. J. Wainwright (2019). High—Dimensional Statistics. Cambridge University Press.
(Wainwright, 2019)
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