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Fig. 1. Big Ben, the clock tower of the Palace of Westminster in London.

Abstract— In recent years, the usefulness of surface normal
estimation methods has been demonstrated in various areas of
robotics and computer vision. State-of-the-art methods show
strong generalization capability and are highly efficient, run-
ning in real-time even on laptop computers. This makes them
a strong candidate for being an ”always-on” perception for
vision-based robots. Using the extracted surface normal cues
as a foundation, task-(and domain-)specific functionalities can
be built and called ”on-demand”.

In this paper, we push the limits of single-image surface
normal estimation by rethinking the inductive biases needed
for the task. Specifically, we propose to (1) utilize the per-
pixel ray direction and (2) encode the relationship between
neighboring surface normals by learning their relative rotation.
The proposed method can generate crisp — yet, piecewise
smooth — predictions for challenging in-the-wild images of
arbitrary resolution and aspect ratio. Compared to a re-
cent ViT-based state-of-the-art model, our method shows a
stronger generalization ability, despite being trained on an
orders of magnitude smaller dataset. The code is available at
https://github.com/baegwangbin/DSINE.

At the workshop, we will show a real-time demo of the
proposed method using a laptop computer.

I. INTRODUCTION

What do you see in Fig. 1? When you see the street, you
know — without even trying — that it is a flat surface. When
you see the double-decker bus, you would instantly associate
it with some geometric shape, which was probably developed
from your previous experience. When we see an image, we
do not perceive it as an array of RGB values, but instead
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as a set of geometric objects, and such geometric perception
seems to be always-on.

Then someone asks, ”How tall do you think the Big
Ben is?”. This now requires more reasoning. We need to
identify the objects for which we have a strong prior on
their physical size and also estimate their relative distance
to the camera, so our 3D reconstruction of the scene can be
scaled properly. Similarly, when performing complex object
manipulation tasks (e.g. building a Lego set), we need to
obtain a more precise and fine-grained geometry of the
objects. Such inference requires more compute, but we can
stay efficient by only doing it on-demand.

Recent advances in single-image surface normal estima-
tion show that the state-of-the-art models can be used as
an always-on perception for vision-based robots. This task,
unlike monocular depth estimation, is not affected by scale
ambiguity and has a compact output space (a unit sphere
vs. positive real value), making it feasible to collect data
that densely covers the output space. As a result, learning-
based surface normal estimation methods show strong gen-
eralization capability for out-of-distribution images, despite
being trained on relatively small datasets [1]. They are also
efficient, running in real-time even on laptop computers.

Despite their essentially local property, predicted surface
normals contain rich information about scene geometry.
In recent years, their usefulness has been demonstrated in
various areas of robotics and computer vision, including
object grasping [2], multi-task learning [3], image genera-
tion [4], depth estimation [5], [6], simultaneous localization
and mapping [7], human body shape estimation [8], [9],
[10], and CAD model alignment [11]. The goal of this paper
is to improve upon the existing methods by rethinking the
inductive biases needed for the task.

II. INDUCTIVE BIAS FOR SURFACE NORMAL ESTIMATION

A. Encoding per-pixel ray direction

Under perspective projection, each pixel is associated with
a ray that passes through the camera center and intersects the
image plane at the pixel. Assuming a pinhole camera, a ray
of unit depth for a pixel at (u, v) can be written as

r(u, v) =
[u−cu

fu
v−cv
fv

1
]T

, (1)

where fu and fv are the focal lengths and (cu, cv) are the
pixel coordinates of the principal point.

Per-pixel ray direction is essential for surface normal
estimation. For rectangular structures (e.g. buildings), we can
identify sets of parallel lines and their respective vanishing
points. The ray direction at the vanishing point then gives
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Fig. 2. Motivation. In this paper, we propose to utilize the per-pixel ray direction and estimate the surface normals by learning the relative rotation
between nearby pixels. (a) Ray direction serves as a useful cue for pixels near occluding boundaries as the normal should be perpendicular to the ray. (b)
It also gives us the range of normals that would be visible, effectively halving the output space. (c) The surface normals of certain scene elements (in this
case, the floor) may be difficult to estimate due to the lack of visual cues. Nonetheless, we can infer their normals by learning the pairwise relationship
between nearby normals (e.g. which surfaces should be perpendicular). (d) The relative angle between the normals of the yellow pixels can be inferred
from that of the red pixels by assuming circular symmetry.

us the 3D orientation of the lines and hence the surface
normals [12]. Early works on single-image 3D reconstruction
[13], [14], [15], [16] made explicit use of such cues.

Now consider an occluding boundary created by a smooth
(i.e. infinitely differentiable) surface. The surface normals
at an occluding boundary can be determined uniquely by
forming a generalized cone [17] (whose apex is at the camera
center) that intersects the image plane at the boundary.
In other words, the normals at the boundary should be
perpendicular to the ray direction (see Fig. 2-a). To this end,
we compute the per-pixel ray direction — i.e. Equation 1 —
and provide this as an additional input to the network.

B. Ray ReLU activation

The ray direction also decides the range of normals that
would be visible in that pixel, effectively halving the output
space (see Fig. 2-b). To incorporate such a bias, we propose
a ray direction-based activation function analogous to ReLU.
Given the estimated normal n and ray direction r (both are
normalized), the activation can be written as

σray(n, r) :=
n+ (min(0,n · r)− n · r) r
∥n+ (min(0,n · r)− n · r) r∥

. (2)

Equation 2 ensures that n · r = cos θ (i.e. the magnitude
of n along r) is less than or equal to zero. The rectified
normal is then re-normalized to have a unit length.

C. Modeling inter-pixel constraints

The surface normals of two pixels are related by a 3D
rotation matrix, R. We first represent R using the axis-angle
representation, θ = θe, where a unit vector e represents the
axis of rotation and θ is the angle of rotation.

Within flat surfaces (which are prevalent in man-made
scenes/objects), θ would be zero and R would simply be the
identity. In a typical indoor scene, the surfaces of objects are
often perpendicular or parallel to the ground plane, creating
lines across which the normals should rotate by 90◦ (see
Fig. 2-c). For a curved surface, the relative angle between
the pixels can be inferred from the occluding boundaries by
assuming a certain level of symmetry (see Fig. 2-d).

We encode such inter-pixel constraints by learning the
relative rotation with respect to the neighboring pixels. For
pixel i, we can define its local neighborhood Ni = {j :
|ui−uj | ≤ β and |vi−vj | ≤ β} (β is set to 2). We can then
learn the pairwise relationship between the surface normals
ni and nj in the form of a rotation matrix Rij .

For each pair of pixels, three quantities should be esti-
mated: First is the angle θij between the two normals. This
is easy to learn as θij is independent of the viewing direction
and is 0◦ or 90◦ for many pixel pairs. Secondly, we need
to estimate the axis of rotation eij (i.e. a 3D unit vector
around which the normals rotate). While directly learning eij
requires complicated 3D reasoning, we propose to learn the
2D projection of eij on the image plane. As image intensity
tends to change sharply near the intersection between two
locally flat surfaces, this task can be as simple as edge
detection. Then, we recover its 3D orientation by ensuring
that eij is perpendicular to nj .

After rotating the neighboring pixels’ normal vectors, we
fuse them using a learnable set of weights {wij}. The
updated normal of pixel i is thus written as

nt+1
i =

∑
j wijσray(Rijn

t
j , ri)

∥
∑

j wijσray(Rijnt
j , ri)∥

Rij = exp (θij [eij ]×) .

(3)

where the proposed ray-ReLU activation is used to ensure
that the rotated normals are in the visible range for the
target pixel i. We also added a superscript for the normals
to represent an iterative update.

D. Network architecture

We use a light-weight CNN with a bottleneck recurrent
unit. The architecture is the same as that of [6] except for the
quantities that are estimated from the updated hidden state.
The number of surface normal updates Niter is set to 5, as
it gave a good balance between accuracy and computational
efficiency. As a result, each forward pass returns Niter + 1
predictions (initial prediction obtained via direct regression
+ Niter updates). We then apply convex upsampling [19] to



Fig. 3. Comparison to Omnidata v2 [18]. Our method shows a stronger generalization capability for challenging in-the-wild objects. For textureless
regions (e.g. sky in the fourth column), our model resolves any inconsistency in the prediction and outputs a flat surface, while preserving sharp boundaries
around other objects.

recover full-resolution outputs. The network is trained by
minimizing the weighted sum of their angular losses. The
loss for pixel i can be written as

Li =

Niter∑
t=0

γNiter−t cos−1(ngt
i · nt

i) (4)

where 0 < γ < 1 puts a bigger emphasis on the final
prediction. We set γ = 0.8 following RAFT [19].

E. Dataset and training

The model is trained on a meta-dataset, consisting of 160K
images sampled from a set of RGB-D datasets [20], [21],
[22], [23], [24], [25], [26], [27], [28], [18]. Our dataset,
compared to Omnidata [18], has a similar number of scenes
(1655 vs. 1905) but a significantly smaller number of images
(160K vs. 12M).

The network is trained for 5 epochs. We use the AdamW
optimizer [29] and schedule the learning rate using 1cycle
policy [30] with lrmax = 3.5 × 10−4. The batch size is set
to 4 and the gradients are accumulated every 4 batches. The
training approximately takes 12 hours on a single NVIDIA
4090 GPU.

III. RESULTS

In Figure 3, we compare the generalization performance
of our method to that of Omnidata v2 [18], [31], on
challenging in-the-wild images from OASIS [32]. Omnidata
v2 is a transformer architecture [33] trained on 12 million
images. Despite being trained on an orders of magnitude
smaller dataset, our method shows stronger generalization
performance with a significantly higher level of detail.

One notable advantage of our method over ViT-based
models (e.g. [31]) lies in the simplicity and efficiency
of network training. For example, Omnidata v2 [31] was

trained for 2 weeks on four NVIDIA V100 GPUs. A set
of sophisticated 3D data augmentation functions [31] were
used to improve the generalization performance and cross-
task consistency [34] was enforced by utilizing other ground
truth labels. On the contrary, our model can be trained in just
12 hours on a single NVIDIA 4090 GPU, does not require
geometry-aware 3D augmentations, and does not require any
additional supervisory signal. Our model also has 40% fewer
parameters compared to [31] (72M vs 123M).

IV. CONCLUSION

In this paper, we discussed the inductive biases needed
for surface normal estimation and introduced how per-pixel
ray direction and the relative rotational relationship between
neighboring pixels can be encoded in the output. Per-pixel
ray direction allows camera intrinsics-aware inference and
thus improves the generalization ability, especially when
tested on images taken with out-of-distribution cameras.
Explicit modeling of inter-pixel constraints — implemented
in the form of rotation estimation — leads to piece-wise
smooth predictions that are crisp near surface boundaries.

Compared to a recent transformer-based state-of-the-art
method, our method shows stronger generalization capability
and a significantly higher level of detail in the prediction,
despite being trained on an orders of magnitude smaller
dataset. Thanks to its fully convolutional architecture, our
model can be applied to images of arbitrary resolution and
aspect ratio, without the need for image resizing or positional
encoding inter/extrapolation. We believe that the domain-
and camera-agnostic generalization capability of our method
makes it a strong front-end perception that can benefit many
downstream 3D computer vision tasks.
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