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ABSTRACT

This paper proposes a method to analyze the compositional structure of emergent
languages using Categorial Grammar Induction (CGI). Emergent languages are
communication protocols arising among agents in environments such as signaling
games. Previous work has studied how similar or dissimilar emergent languages
are to natural languages in compositionality. However, most of them focused on
trivial compositionality, assuming flat structures in languages. We further focus
on non-trivial compositionality, i.e., the relationship between hierarchical syntax
and semantics. To this end, we apply CGI to emergent languages, inspired by
previous NLP work. Given sentence-meaning pairs of a language, CGI induces 1)
a categorial grammar that describes the syntax of the language and 2) a semantic
parser that compositionally maps sentences to meanings. We also propose compo-
sitionality measures based on the grammar size and semantic parser performance.
CGI and the proposed measures enable deeper insights into the non-trivial compo-
sitionality of emergent languages, while correlating well with existing measures
like TopSim.

1 INTRODUCTION

Figure 1: Illustration of a signaling
game and CGI.

Communication that emerges among artificial agents is
called emergent communication, and its protocols are
emergent languages (Lazaridou & Baroni, 2020). Com-
positionality has been an important concept in this lit-
erature since it has been pointed out that emergent lan-
guages are not similar to natural languages in that respect
(Kottur et al., 2017). In addition to the research direc-
tion of how to improve compositionality (Li & Bowl-
ing, 2019; Ren et al., 2020), it has been equally impor-
tant to measure the degree of compositionality of emer-
gent languages (Brighton & Kirby, 2006; Andreas, 2019;
Chaabouni et al., 2020). However, most of the previous
work focused on trivial compositionality and assumed flat
structures in languages. Little has been studied on how to
measure non-trivial compositionality (Steinert-Threlkeld,
2019), i.e., hierarchical syntactic structure and the sys-
tematic relationship between syntax and semantics.

Inspired by previous work in the NLP literature, we pro-
pose to apply Categorial Grammar Induction (CGI, e.g.,
Zettlemoyer & Collins, 2005) in order to analyze the syntax and non-trivial compositionality of
emergent languages. We also propose two CGI-based compositionality measures. Given sentence-
meaning pairs of a language, a CGI algorithm induces 1) a categorial grammar that describes the
syntax of the language and 2) a semantic parser that compositionally maps sentences to meanings.
CGI involves useful properties for compositionality measures. For example, the performance of the
induced semantic parser may indicate the systematicity and productivity (Hupkes et al., 2020) of the
language, and the grammar size may indicate the compactness of the language. Another important
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feature of CGI is that it is appropriate for analyzing a signaling game. Agents in the game are de-
fined as either a mapping from a meaning space to a message space or its inverse. The emergent
language is then represented as a set of message-meaning pairs, corresponding to sentence-meaning
pairs as an input to the CGI algorithm. Figure 1 illustrates the relationship between CGI and the sig-
naling game. In this paper, we define the meaning space as tree-structured compositional semantics,
similarly to Andreas (2019).

Several compositionality measures for emergent languages have been proposed, such as TopSim
(Brighton & Kirby, 2006; Lazaridou et al., 2018), TRE (Andreas, 2019), and PosDis/BosDis
(Chaabouni et al., 2020). However, they assume the trivial-compositionality, i.e., that emergent
languages have flat structures where each symbol is a content word denoting some attributes (e.g.,
a, b, c, . . .), and the sentences are constructed with simple conjunctions of the content words (e.g.,
a ∧ b ∧ c). In contrast, the non-trivial compositionality assumes a hierarchical structure rather
than a flat one. It involves function words, where some symbols have functional semantics (e.g.,
λx.f(x) in the lambda notation), and the sentences are constructed with function applications (e.g.,
(λx.f(x))(a) ⇒ f(a)) as well as conjunctions. In natural language, for instance, verbs and prepo-
sitions are functional. Transitive verbs (e.g., “likes”) can be seen as functions that take an object
(e.g., “Mary”) and a subject (e.g., “John”), and return a sentence (“John likes Mary”). Prepositions
can be seen as functions that take a noun phrase and return a prepositional phrase. TRE is partially
a non-trivial compositionality measure in the sense that it assumes hierarchical semantics, but not
fully because it does not reveal whether each symbol is content or function.

Previous work (van der Wal et al., 2020) applied Unsupervised Grammar Induction (UGI) to analyze
the syntax of emergent languages.1 The UGI algorithm induces a grammar, given a dataset of plain
sentences. UGI focuses solely on syntax because it does not involve semantic composition. UGI
does not clarify which part of the syntactic composition corresponds to which part of the semantic
composition. In contrast, CGI is more compositionality-oriented, as it takes both sentences and
meanings as datasets and induces compositional semantics parsers. CGI can represent the semantic
composition that proceeds parallel to the syntactic composition.

Our contributions are 1) we propose to apply Categorial Grammar Induction (CGI) to emergent lan-
guages for analyzing their compositional structure and 2) propose two CGI-based compositionality
measures that are more aware of non-trivial compositionality. We show they can indeed measure
compositionality. With the explicit assumption of hierarchical structures, our measures provide
deeper insight into the non-trivial compositionality of emergent languages, while correlating with
existing trivial compositionality measures like TopSim.

2 BACKGROUND: SIGNALING GAME AND COMPOSITIONALITY

2.1 DEFINITION OF SIGNALING GAME

Most studies on emergent communication employ Lewis’s signaling game (Lewis, 1969) or its vari-
ant, as an environment for agents to communicate. A signaling game is defined as a quadruple
(I,M, S,R), where I is an input space, M is a message space, S : I → M is a sender, and
R :M→ I is a receiver. The goal is the successful comunication from S to R, i.e., reconstruction
i = R(S(i)) for a sampled input i ∈ I. The input space I can vary between a set of image data
(Havrylov & Titov, 2017; Lazaridou et al., 2018; Bouchacourt & Baroni, 2018), sequential data (Lu
et al., 2020; Słowik et al., 2021), and attribute-value objects (Li & Bowling, 2019; Chaabouni et al.,
2020; Ren et al., 2020). The message spaceM is a set of discrete sequences in most studies. The
agents S,R are often represented as neural networks like RNN.

2.2 COMPOSITIONALITY OF EMERGENT LANGUAGE

Compositionality has been crucial in the emergent communication literature. Kottur et al. (2017)
noted that emergent languages are not necessarily similar to natural languages. The composition-
ality, in this context, is how separately the symbols of a message m ∈ M denote the pieces of
meanings i ∈ I. The input i ∈ I is often defined as an attribute-value object so that the com-
positionality can easily be measured. For example, Kottur et al. (2017) assumed an environment

1Specifically, they adopted CCL (Seginer, 2007) and DIORA (Drozdov et al., 2019).
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in which there are two attributes: color and shape, each of which can take four values (e.g., blue,
green, red, and purple for attribute color). If an emergent language is compositional in this environ-
ment, each message should be a combination of symbols separately denoting the color and shape
attributes. Several compositionality measures have been proposed including Topographic Similarity
(TopSim, Brighton & Kirby, 2006; Lazaridou et al., 2018) and Tree Reconstrctuon Error (TRE, An-
dreas, 2019). The former is a de facto measure in the emergent communication literature, while the
latter is similar to ours in the sense that inputs i ∈ I are assumed to be tree-structured.

Definition of TopSim Recall that G = (I,M, S,R) is a signaling game. Let dI , dM be distance
functions in I,M respectively. TopSim is defined as the Spearman correlation between dI(x, y)
and dM(S(x), S(y)) for all combinations x, y ∈ I, without repetition. In this paper, both dI and
dM are defined as the edit distance.

Definition of TRE The intuition behind TRE is that if a language is compositional, the sender
S : I →M should be approximated well by another explicitly compositional functionC : I →M.
Each i ∈ I is a binary tree and each m ∈M is a sequence of a fixed length L over a finite alphabet
A. The computation of TRE involves a composition Cη : I → RL×|A| with a trainable parameter
η = ⟨W1 ∈ RL×L,W2 ∈ RL×L, {Eo ∈ RL×|A|}o⟩. Cη is defined as:

Cη(i) :=

{
Eo (i is a leaf node o)

W1Cη(i1) +W2Cη(i2) (i is a binary node ⟨i1, i2⟩) (1)

The r-th row of Cη(i) represents the logits of a categorical distribution over the r-th symbol of a
message. Here, TRE is computed by approximating S(i) with Cη(i) via stochastic gradient descent:

TRE := min
η

1

L · |I|
∑
i∈I

δ(Cη(i), S(i)), (2)

where δ is the cross entropy loss with the Softmax layer.2 Note that the lower TRE is, the higher
compositionality is judged.

3 BACKGROUND: CATEGORIAL GRAMMAR INDUCTION

John likes Mary

N S\N/N N
: JOHN : λx.λy.LIKE(x, y) : MARY

>

S : λy.LIKE(MARY, y)
<

S : LIKE(MARY,JOHN)

Figure 2: Illustrative CG derivation.

This section introduces Categorial Grammar (CG) and
reviews its induction (CGI) for natural languages. CGI
is also feasible for analyzing emergent languages in sig-
naling games, as it derives a lexicon and a parser from
message-meaning pairs.3

3.1 CATEGORIAL GRAMMAR

The formalism for our semantic parsing is Categorial Grammar (CG, Steedman, 1996; 2000). CG
consists of lexical entries and forward/backward application rules. A lexical entry w ⊢X : ψ is a
triple of a word w, a category X (defined below), and a logical form ψ. Consider the following
example pair of a message and its logical form:

“John likes Mary” and LIKE(MARY,JOHN)

Their lexical entries can be described as follows:

John⊢N :JOHN, likes⊢S\N/N :λx.λy.LIKE(x, y), Mary⊢N :MARY

Symbols like N and S\N/N represent syntactic types or categories. A category is either an atomic
category of the form N,S or a complex category of the form X/Y,X\Y where X,Y are categories.
Nouns and sentences have atomic categories N and S respectively, while functional words such as

2Andreas (2019) defines δ as the L1 distance. In our preliminary experiments, however, it turned out to be
too weak to obtain reasonable scores in our setting. Also, we add the normalizer 1/L since we vary L.

3Previous work often uses Combinatory Categorial Grammar (CCG), but we restrict it to CG. The extensive
application of CCG induction is left for future work.
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transitive verbs have complex categories. In addition, CG has application rules to describe the way
to combine adjacent categories:

X/Y : f Y : a ⇒ X : f(a) (>)
Y : a X\Y : f ⇒ X : f(a) (<)

where X,Y are categories. The first rule “>” is the forward application rule, while the second one
“<” is the backward application rule. The forward (resp. backward) application rule means that a
predicate f of category X/Y (resp. X\Y ) can take an argument a of category Y to yield f(a) of
category X . With the lexical entries and the forward/backward application rules, we can construct a
derivation tree of “John likes Mary” as shown in Figure 2.

3.2 LOG-LINEAR PROBABILISTIC CATEGORIAL GRAMMARS

Given a set of lexical entries Λ (henceforth lexicon), there can be multiple derivations for each
message. Following Zettlemoyer & Collins (2005), we choose the most likely derivation by using a
log-linear model that contains a feature vector function ϕ and a parameter vector θ. Given a message
m, the joint probability of a logical form ψ and a derivation τ is defined as:

P (τ, ψ | m;θ,Λ) =
eθ

⊤ϕ(m,τ,ψ)∑
(τ ′,ψ′) e

θ⊤ϕ(m,τ ′,ψ′)
. (3)

The semantic parsing problem is to find the most likely logical form ψ̂ given a message m:

ψ̂ = arg max
ψ

P (ψ | m;θ,Λ) = arg max
ψ

∑
τ

P (τ, ψ | m;θ,Λ). (4)

3.3 CATEGORIAL GRAMMAR INDUCTION ALGORITHM

Algorithm 1 Common Structure of CG Induction

Input: A dataset E =
{
(mj , ψj)

}N
j=1

, a seed
lexicon Λseed, the number of iterations T , and
a learning rate γ.

Output: Lexicon Λ and parameter vector θ
1: Λ0 ← INITLEX(E ,Λseed)
2: θ0 ← INITPARAM(E ,Λseed)
3: for t ∈ {1, . . . , T} do
4: Λ+

t ← UPDATELEX(E , θt−1,Λt−1,Λ0)
5: θt ← UPDATEPARAM(E , θt−1,Λ

+
t , γ)

6: Λt ← PRUNELEX(E , θt−1,Λ
+
t )

7: end for
8: return ΛT and θT

Algorithm 1 is a pseudo-code for previous
CG induction (CGI) algorithms. In gen-
eral, the inputs are a training data E =
{(mj , ψj)}Nj=1 of message-meaning pairs, a
seed lexicon Λseed, the number of iterations T ,
and a learning rate γ, while the outputs are
a lexicon Λ and a parameter vector θ. CGI
involves four procedures: (1) lexicon and pa-
rameter initialization (INITLEX, INITPARAM)
that helps learning in early iterations, (2) lex-
icon update (UPDATELEX) that introduces a
new potential lexicon, (3) parameter update
(UPDATEPARAM) via gradient descent, and op-
tionally (4) lexicon pruning (PRUNELEX) that
discards a lexicon no longer in use.

ZC05 (Zettlemoyer & Collins, 2005) first formalized CGI. ZC07 (Zettlemoyer & Collins, 2007) is
its improved version. In ZC05/07, INITLEX is simply defined as Λ0 ← Λseed and UPDATELEX relies
on hand-crafted templates. KZGS10/11 (Kwiatkowski et al., 2010; 2011) modified UPDATELEX so
that it can create a new lexicon by automatically merging and splitting the existing lexical entries.
In KZGS10/11, INITLEX returns E itself with category S, in addition to Λseed:

Λ0 ← INITLEX(E ,Λseed) := Λseed ∪ {mj ⊢S :ψj | j = 1, . . . , N}. (5)

John likes Mary⊢S :LIKE(MARY, JOHN) ∈ Λ0

John⊢N :JOHN ∈ Λt likes Mary⊢S\N :λx.LIKE(MARY, x) ∈ Λt

likes⊢S\N/N :λy.λx.LIKE(y, x) ∈ Λt Mary⊢N :MARY ∈ Λt

Figure 3: Illustrative splitting procedure.

The lexical entries are then split and
merged during the iteration, seeking
an appropriate segmentation (see the
illustrative example in Figure 3). A
problem in KZGS10/11 is that the
lexicon size |Λ| increases monotoni-
cally over iterations. ADP14 (Artzi
et al., 2014) addressed this issue by
adding a lexicon pruning process (PRUNELEX) which discards the lexical entries no longer in use.
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4 PROPOSAL: CGI AS A COMPOSITIONALITY MEASURE

This section proposes two compositionality measures we call CGF and CGL. CGI has some bene-
ficial properties from which we can define compositionality measures. We focus on the following
two observations that motivate CGF and CGL, respectively. First, we can access the F1-score of
CG-based semantic parsing. It may indicate the systematicity and productivity (Hupkes et al., 2020)
of a language, i.e., the extent to which the language can combine existing lexical entries and produce
novel representations. Second, we can yield a lexicon that implies how compactly a language can be
described by CG.

4.1 DEFINITION OF CGF AND CGL

Let Etrain/Edev/Etest be a train/validation/test dataset for the CGI algorithm. We train/validate a
parser with Etrain/Edev to derive a lexicon Λ and a parameter vector θ and test with Etest to compute
the F1-score.4 Here, CGF and CGL are defined as:

CGF := F1-score, CGL :=
|Λ|
|Etrain|

. (6)

CGF is the F1-score of CG-based semantic parsing. By its definition, CGF ∈ [0, 1]. CGL is the
lexicon size |Λ| normalized by the train dataset size |Etrain|. The normalization makes CGL = 1 at
the beginning of the CGI algorithm, because we initialize the lexicon by Eq. 5. Note that the higher
CGF (resp. lower CGL) is, the more compositional a language is expected to be.

4.2 CGI ALGORITHM SPECIFIC TO EMERGENT LANGUAGES

We have to consider the following requirements for the CGI algorithm, in accordance with Occam’s
razor, since there is no prior structural knowledge on emergent languages:

(1) The feature vector function ϕ(·) should be as simple as possible.
(2) Lexical entries should be generated automatically without any manual templates.
(3) The lexicon size |Λ| should be minimal. Otherwise, it is hard to interpret CGL.

We combine the following three existing methods because no previous study satisfies them simulta-
neously. We follow ZC05 for (1): each feature is the count of each lexical entry used in a derivation.
However, ZC05 violates (2) as it relies on manual templates. Instead, we follow KZGS10 to create
a new lexicon by merging and splitting the entries already in use. KZGS10 then violates (3) since
the lexicon size increases monotonically during iterations. We follow ADP14 to discard the entries
no longer in use. Other modifications are detailed in Appendix A.

4.3 DIFFERENCE FROM EXISTING COMPOSITIONALITY MEASURES

What differentiates CGI from the existing measures like TopSim and TRE is that it can derive an
explicit lexicon and a semantic parser. Although the existing measures are also mappings from
message-meaning pairs E to a real number, they neither clarify the structure of a message spaceM
nor derive any compositional function M → I. TopSim only involves distance functions in the
spaces, the choice of which is left to humans, and it does not reveal the structure ofM. In contrast,
CGI can derive the structure ofM by deriving a lexicon. TRE induces a composition Cη : I →M,
but not the inverse. It causes a degenerate language (e.g., identical messages for all meanings) to
be judged compositional, contrary to our intuition (Andreas, 2019). CGI would not regard such a
degenerate language as compositional since a CGI parser is a functionM→ I.

5 EXPERIMENTAL SETUP

This section introduces a signaling game, optimization method, CGI algorithm, and evaluation met-
rics specific to our experiments.

4The precision and recall are defined as (#correctly parsed)/(#parsed) and (#correctly parsed)/|Etest| re-
spectively (Zettlemoyer & Collins, 2005).
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5.1 SIGNALING GAME SETUP

Input Space for Signaling Game We define an input space I as a synthetic compositional seman-
tics Dk. First, let D be the set defined inductively as:

1. D contains 4 atomic objects: {CIRCLE,TRIANGLE,SQUARE,STAR} ⊆ D.
2. If x, y ∈ D, then AND(x, y) ∈ D.

Then let I := Dk := {x ∈ D | AND occurs k times in x}. For instance, AND(CIRCLE,STAR) ∈
D1 and AND(AND(CIRCLE,STAR),TRIANGLE) ∈ D2.5 When an input i ∈ I is fed into or output
from neural agents, it is flattened to the Polish Notation similarly to the seq2seq semantic parsing
literature (Dong & Lapata, 2016).

Message Space for Signaling Game The message space M is defined as a set of discrete se-
quences of fixed length L over a finite alphabet A:M := {a1 · · · aL | ai ∈ A}.

Architecture and Optimization Sender and receiver agents are represented respectively as a
seq2seq model based on single-layer GRUs (Cho et al., 2014) with standard attention mechanisms
(Bahdanau et al., 2015). The game’s goal is redefined as the minimization of Hamming distance
between i and R(S(i)), as each input i is represented sequentially. As it is indifferentiable, we use
REINFORCE (Williams, 1992) for optimization.

For more detailed information (e.g., hyper-parameters), see Appendix B.

5.2 EXPERIMENTAL PROCEDURE

The overall experimental procedure is as follows:

• For each (I, L, |A|) ∈ {D2,D3} × {4, 8} × {8, 16, 32} and random seed ∈ {1, . . . , 8}:
– Define a signaling game G = (I,M, S,R), whereM = AL.
– Split I randomly 9:1 into Itrain and Itest.
– Train and validate S,R with Itrain.
– Split Itrain randomly 8:1 into I ′train and I ′′train.
– Make datasets for CGI by pairing each i with the corresponding S(i):

Etrain := {(i, S(i))}i∈I′
train
Edev := {(i, S(i))}i∈I′′

train
Etest := {(i, S(i))}i∈Itest

– Train/Validate/Test a CG parser with Etrain/Edev/Etest.

5.3 HOW TO EVALUATE THE EFFECTIVENESS OF OUR MEASURES

To evaluate the effectiveness of our measures, we focus on three perspectives: 1) relationship to gen-
eralization ability, 2) correlation with existing compositionality measures, and 3) score comparison
between different languages.6

1. Relationship to Generalization Ability The Relationship between compositionality and gen-
eralization ability is often discussed in the emergent communication literature. We measure the
generalization ability of agents with the test loss:

Ltest :=
1

|Itest|
∑
i∈Itest

Hamming(i, R(S(i))). (7)

Chaabouni et al. (2020) pointed out that high compositionality implies good generalization,
whereas the inverse does not. We investigate if our measures show similar tendencies.
5This is similar to Andreas (2019) except that our Dk has variable tree structures. In Andreas (2019), every

input has the fixed branching structure AND(AND(o1, o2),AND(o3, o4)) where o1, . . . , o4 are atomic objects.
6In Appendix C, we tried an additional perspective: 4) whether the existing method proposed to improve

TopSim is also effective for our measures. We picked up the ease-of-teaching paradigm (Li & Bowling, 2019),
and it turned out that sometimes it is effective, sometimes not.
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2. Correlation with Existing Measures As mentioned earlier, we choose TopSim and TRE for
comparison. A significant correlation between the existing measures and our own would be
supporting evidence for the effectiveness of our measures.

3. Score comparison between different languages Another possible paradigm is to compare
the measured scores among several (possibly synthetic) languages (van der Wal et al., 2020).
If obviously compositional (non-compositional) languages are judged compositional (non-
compositional) by any measure, it is expected to be effective. To this end, we use a) the
Polish-Notated input space (Input) as a fully compositional language, b) emergent language
(Emergent) as a partially compositional language, c) shuffled emergent language (Shuffled) as a
less compositional language, and d) random language (Random) as a totally non-compositional
language. Here, Input, Shuffled, and Random are defined as:

Input := {Polish Notation of i | i ∈ I}, (8)
Shuffled := {Random permutation of m | m = S(i), i ∈ I}, (9)

Random := {xi1 · · ·xiL | xij ∼ Uniform(A), i ∈ I}. (10)

6 EXPERIMENTAL RESULTS

7 2 3 2

N S\N S\S/N N
: TRIANGLE : λx.AND(SQUARE, x) : λx.λy.AND(x, y) : SQUARE

< >
S : AND(SQUARE, TRIANGLE) S\S : λy.AND(SQUARE, y)

<
S : AND(SQUARE, AND(SQUARE, TRIANGLE))

(a) CG derivation of the message “7 2 3 2.”

1 5 6 8

N N S/N\N\N N
: CIRCLE : SQUARE : λx.λy.λz.AND(AND(z, x), y) : STAR

<
S/N\N : λy.λz.AND(AND(z, SQUARE), y)

<
S/N : λz.AND(AND(z, SQUARE), CIRCLE)

>
S : AND(AND(STAR, SQUARE), CIRCLE)

(b) CG derivation of the message “1 5 6 8.”

Figure 4: Two derivation trees for one emergent language.

This section shows the experimental results based on the evaluation criteria in the previous section.
However, first, let us show several concrete results of the CGI algorithm. Figure 4 shows two CG
derivations obtained in the test split of an emergent language with (I, L, |A|) = (D2, 4, 8). The
message “7 2 3 2” is converted into the logical form AND(SQUARE,AND(SQUARE,TRIANGLE)) in
Figure 4a, while “1 5 6 8” into AND(AND(STAR,SQUARE),CIRCLE) in Figure 4b. Interestingly,
the CGI algorithm induces content-word-like lexical items (e.g., 7⊢N :TRIANGLE), function-word-
like lexical items (e.g., 6 ⊢ S/N\N\N : λx.λy.λz.AND(AND(x, z), y)), and their intermediate (e.g.,
2⊢S\N :λx.AND(SQUARE, x)).7

6.1 RELATIONSHIP TO GENERALIZATION ABILITY

Figure 5: Relationship between the test loss Ltest and our compositionality measures: CGF and
CGL. The x-axis represents either CGF or CGL and the y-axis represents Ltest.

Figure 5 shows the relationships between the test loss Ltest (Eq. 7) and our compositionality mea-
sures: CGF and CGL. CGF shows a similar tendency as Chaabouni et al. (2020) reported for other
compositionality measures. That is, high CGF implies a good generalization ability, whereas the
inverse implication does not hold. CGL shows similar tendencies, although several data points indi-
cate a good CGL yet bad generalization ability.

7The complete list of the induced lexical items of this emergent language is found at Appendix D.
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Figure 6: Correlation between TopSim and our measures: CGF and CGL. The x-axis represents the
TopSim score, and the y-axis represents either CGF or CGL.

Figure 7: Correlation between TRE and our measures: CGF and CGL. The x-axis represents the
TRE score, and the y-axis represents either CGF or CGL.

6.2 CORRELATION WITH EXISTING MEASURES

Figure 6 shows the correlations between TopSim and CGF/CGL. Our measures are significantly
correlated with TopSim according to the Pearson correlation and its p-value. The Pearson ρ =
0.64 (p = 0.00) for the TopSim-CGF scores, while ρ = −0.47 (p = 0.00) for the TopSim-CGL
scores. However, CGF and CGL seem to be stricter than TopSim. For instance, the high CGF
score implies the high TopSim score, but the inverse implication does not hold. We speculate that
the CGI algorithm is more sensitive to word segmentation and word orders than the edit distances
dI , dM used to compute the TopSim score. The edit distances may work even for languages with no
clear word segmentation and orders. Figure 7 shows the correlations between TRE and CGF/CGL.
Figure 7 indicates a similar tendency to Figure 6. CGF and CGL are significantly correlated with
TRE, while at the same time, they are stricter measures. The Pearson ρ = −0.51 (p = 0.00) for the
TRE-CGF scores, while ρ = 0.51 (p = 0.00) for the TRE-CGL scores.

6.3 SCORE COMPARISON BETWEEN DIFFERENT LANGUAGES

Figure 8 shows the CGF and CGL scores for languages Input, Emergent, Shuffled, and Random.
The following clear tendency is observed in CGF: “the CGF score for Input” > “the one for Emer-
gent” > “the one for Shuffled” ≥ “the one for Random” in each (I, L, |A|) configuration. The
tendency implies that CGF is effective as a compositionality measure. The CGF scores for Shuffled
and Random are almost zero, though Shuffled is expected to be more compositional than Random.
We speculate that it is due to the order sensitivity of the CGI algorithm. As we hypothesized, the
CGL scores for Input are significantly lower than those for other languages, though the CGL score
cannot clearly distinguish Emergent, Shuffled, and Random.
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Figure 8: CGF and CGL for languages Input, Emergent, Shuffled, and Random. The x-axis
represents the (I, L, |A|) configuration and the y-axis represents each score. The CGF scores for
Random are too small to display. The score for Input is displayed only twice in each figure because
it only depends on the input space I. The error bars represent the standard error.

7 DISCUSSION AND LIMITATIONS

Overall, the experiments showed that CGF and CGL indeed measure the compositionality of emer-
gent languages. We evaluated their effectiveness from three perspectives: 1) relationship to general-
ization ability, 2) correlation with existing measures, and 3) comparison with other languages. CGF
showed the expected behavior as compositionality measures. CGL might be a less effective mea-
sure than CGF. CGL showed a significant correlation with the existing compositionality measures,
but it could not clearly distinguish Emergent from Shuffled/Random. Another finding is that our
measures are stricter than TopSim and TRE. Whenever TopSim and TRE indicate that a language is
compositional, CGF and CGL also indicate that it is compositional. In contrast, the inverse implica-
tion does not hold. It is arguably because the CGI algorithm is more sensitive to word segmentation
and word order of a given language, with its strong inductive bias towards inducing CGs. It is an
important feature of our CGI-based measures to analyze the syntax and its systematic relationship
to semantics. Of course, the CGI algorithm may fail to find out the syntax that actually exists behind
the language, since it is an approximate inference algorithm with a finite dataset. It seems safe to use
our CGI-based measures in conjunction with the existing measures like TopSim. Another possible
way to mitigate the issue is to run the CGI algorithm several times with different random seeds and
take the best semantic parser, though we did not for the simple judgment of our measures.

We can directly observe the systematic composition of a message to a meaning, which is a salient
feature of CGI that previous work does not have (Figure 4). We hope that it brings deeper insights
into the syntax, semantics, and non-trivial compositionality of emergent languages. A crucial lim-
itation of our method is that it requires explicit meaning representations as an input space I. For
instance, the meaning representations are unclear when we use image data as I. However, we spec-
ulate that situated CGI (Artzi & Zettlemoyer, 2013) is applicable in this case, which induces a (com-
binatory) categorial grammar, taking an external world into consideration. In other words, CGI may
be applicable to visual referential games and 2D-grid world communication in the future. Another
limitation is that the grammar formalism is restricted to CG in this paper. Some complex linguistic
phenomena can be analyzed with CCG but not with CG (Steedman, 1996; 2000). The extension
from CGI to CCG Induction will be desired in the future, especially when emergent languages are
expected to be more complex than those in the standard signaling games.

8 CONCLUSION

This paper utilizes Categorial Grammar Induction (CGI) as a compositionality measure for emer-
gent languages. We proposed two CGI-based compositionality measures CGF and CGL. The exper-
iments revealed that they can measure compositionality as we hypothesized. As non-trivial compo-
sitionality measures, they also turned out to be stricter than existing measures, probably due to their
sensitivity to word order and segmentation, while correlating well with the existing measures.
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REPRODUCIBILITY STATEMENT

This paper ensures the reproducibility of our experiments and results in the following way:

• The (hyper-)parameters of our experiments are specified in Section 5.1 and Appendix B.

• The overall experimental procedure is stated in Section 5.2.

• Our experimental code will be released upon acceptance.
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A MODIFICATIONS OF CGI

A.1 ABOUT INITLEX

We set Λseed = ∅, as we do not have any prior knowledge on emergent languages.

A.2 ABOUT UPDATELEX

In KZGS10, UPDATELEX includes part of a potential new lexicon pruning the rest, while ours
includes all of them. This is because the PRUNELEX of ADP14 would implicitly do the same thing.
Moreover, the original UPDATELEX splits lexical entries as a higher-order unification problem to
find f and g s.t. h = f(g) or h = f ◦ g, given a logical form h. On the other hand, ours splits the
entries as a problem only to find h = f(g), ensuring that f ̸= λx.x. and g is not a function.

A.3 ABOUT INITPARAM

Since the algorithm can only search limited space in practice, a reasonable parameter initialization is
required. We follow KZGS10 to use a statistical translation method, namely, IBM Model 1 (Brown
et al., 1993).

B SOME MORE DETAIL ON EXPERIMENTAL SETUP

B.1 (HYPER-)PARAMETERS

Agents For agent architecture, the hidden state size is 100. For agent optimization, the number
of mini-batches per epoch is 128, the size of mini-batches is 1024, and the learning rate is 0.001.
Agents train either for 500 epochs or until the validation loss reaches 0. Besides, the weight of
sender’s (resp. receiver’s) entropy regularizer λS = 0.2 (resp. λR = 1). These parameters are
determined according to our preliminary experiments.

Signaling Game For signaling games, an input space I ∈ {D2,D3}, the alphabet size |A| is in
{8, 16, 32}, and a message length L ∈ {4, 8}.

CGI For CGI, the number of iterations T = 20, a learning rate γ = 0.1, and a beam size for CKY
parsing is 10, referring to Artzi et al. (2014) and our preliminary experiments.

TRE For TRE, a learning rate is 0.01, and the number of steps is 1000 following the implementa-
tion of Andreas (2019).

B.2 ARCHITECTURE AND OPTIMIZATION

Sender and receiver agents are represented respectively as a seq2seq model based on single-layer
GRUs (Cho et al., 2014) with standard attention mechanisms (Bahdanau et al., 2015). The goal of
the game is relaxed to the minimization of Hamming distance between i and R(S(i)) since each
input i is represented sequentially. As it is indifferentiable, we use REINFORCE (Williams, 1992)
which gives the following estimated gradient:

E[{Hamming(i, o)− b}∇ logPS(m | i)PR(o | m)] + λS∇H(PS) + λR∇H(PR),

where PS (resp. PR) is the output distribution of sender (resp. receiver) over a message m (resp.
output o) given an input i (resp. messagem), b is a mean baseline,H(·) denotes entropy, and λS , λR
are nonnegative hyper-parameters. The last terms are entropy regularizers (Williams & Peng, 1991).
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C EASE-OF-TEACHING PARADIGM AND COMPOSITIONALITY

Recall that, in the main content, we focused on the following three perspectives to evaluate the ef-
fectiveness of our compositionality measures: 1) relationship to generalization ability, 2) correlation
with existing compositionality measures, and 3) comparison with other (synthetic) languages. In
this section, we additionality tried the fourth perspective: 4) whether the existing method proposed
to improve TopSim is also effective for our measures. To this end, we picked up the ease-of-teaching
(EoT) paradigm (Li & Bowling, 2019), as it is a simple yet effective way to improve TopSim.

Setup What we have to do in the EoT setting is simple: reset the receiver agent R periodically
during training. In our experiment, we reset the receiver R every 50 epochs.

Result Table 1 shows the results for TopSim and TRE. In most of the (I, L, |A|) configurations,
the EoT turned out to be effective for TopSim and TRE. Likewise, Table 2 shows the results for
our compositionality measures CGF and CGL. It turned out that the EoT is sometimes effective,
sometimes not for our measures. The EoT is not effective for CGF roughly when (I, L, |A|) =
(D3, ∗, ∗). On the other hand, the EoT is not effective for CGL when (I, L, |A|) = (D2, 8, ∗).

Discussion These results seem to be related to our discussion in the main content that our measures
CGF and CGL are stricter than existing measures TopSim and TRE. That is, factors contributing to
the improvement of TopSim and TRE do not necessarily contribute to the improvement of CGF and
CGL.

I L |A| TopSim TopSim (EoT) Effective? TRE TRE (EoT) Effective?
D2 4 8 0.44± 0.04 0.60± 0.03 ✓ 0.50± 0.10 0.16± 0.09 ✓

16 0.39± 0.04 0.64± 0.03 ✓ 0.77± 0.15 0.06± 0.04 ✓
32 0.33± 0.02 0.58± 0.05 ✓ 0.88± 0.09 0.08± 0.04 ✓

8 8 0.39± 0.03 0.46± 0.03 ✓ 0.41± 0.09 0.11± 0.04 ✓
16 0.34± 0.03 0.47± 0.07 ✓ 0.43± 0.08 0.31± 0.15 ✓
32 0.37± 0.04 0.45± 0.07 ✓ 0.27± 0.06 0.30± 0.12

D3 4 8 0.40± 0.03 0.50± 0.03 ✓ 1.04± 0.10 0.27± 0.08 ✓
16 0.38± 0.04 0.48± 0.04 ✓ 1.32± 0.14 0.24± 0.12 ✓
32 0.30± 0.02 0.42± 0.06 ✓ 1.73± 0.06 0.25± 0.09 ✓

8 8 0.37± 0.02 0.47± 0.04 ✓ 0.77± 0.10 0.41± 0.08 ✓
16 0.38± 0.04 0.36± 0.04 0.90± 0.07 0.39± 0.11 ✓
32 0.34± 0.02 0.37± 0.03 ✓ 1.10± 0.13 0.23± 0.14 ✓

Table 1: The TopSim scores and the TRE scores in the vanilla and EoT settings. “±” represents the
standard error. The EoT is effective in most cases.

I L |A| CGF CGF (EoT) Effective? CGL CGL (EoT) Effective?
D2 4 8 0.37± 0.13 0.60± 0.11 ✓ 0.85± 0.13 0.49± 0.10 ✓
D2 4 16 0.18± 0.05 0.70± 0.07 ✓ 1.21± 0.05 0.53± 0.12 ✓
D2 4 32 0.11± 0.04 0.33± 0.09 ✓ 1.17± 0.08 0.65± 0.10 ✓
D2 8 8 0.17± 0.07 0.24± 0.08 ✓ 0.85± 0.09 0.85± 0.09
D2 8 16 0.12± 0.03 0.22± 0.11 ✓ 0.88± 0.14 1.02± 0.13
D2 8 32 0.14± 0.06 0.17± 0.09 ✓ 0.89± 0.08 0.94± 0.06
D3 4 8 0.02± 0.01 0.02± 0.01 1.02± 0.01 0.97± 0.02 ✓
D3 4 16 0.06± 0.02 0.01± 0.00 1.03± 0.04 0.99± 0.01 ✓
D3 4 32 0.07± 0.02 0.03± 0.02 1.14± 0.03 0.96± 0.03 ✓
D3 8 8 0.19± 0.07 0.24± 0.07 ✓ 1.06± 0.06 0.88± 0.05 ✓
D3 8 16 0.20± 0.06 0.13± 0.08 1.00± 0.05 0.91± 0.06 ✓
D3 8 32 0.12± 0.05 0.00± 0.00 1.09± 0.06 1.01± 0.03 ✓

Table 2: The CGF scores and the CGL scores in the vanilla and EoT settings. “±” represents the
standard error. The EoT is sometimes effective but sometimes not.
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D FULL LIST OF LEXICAL ITEMS OF ONE EMERGENT LANGUAGE

3⊢S\N\N :λx4.λx5.And(STAR,And(x4, x5))
1 6⊢N :CIRCLE

6⊢S/N\N\N :λx3.λx4.λx5.And(And(x5, x3), x4)
6 3⊢S\S :λx5.And(STAR, x5)
7 6⊢N :TRIANGLE
6 6⊢N :TRIANGLE

2⊢S\N :λx5.And(SQUARE, x5)
3⊢S\S/N :λx4.λx5.And(x4, x5)
1⊢S\N :λx5.And(CIRCLE, x5)
3⊢S\N/N\N :λx3.λx4.λx5.And(x4,And(x3, x5))
2⊢S/N :λx5.And(x5,SQUARE)
1⊢N :CIRCLE
3⊢S/N :λx5.And(x5,STAR)
7⊢S\N :λx5.And(TRIANGLE, x5)
6⊢N :TRIANGLE

4 8⊢N :STAR
8⊢S\N :λx5.And(STAR, x5)

8 6⊢N :STAR
2⊢N :SQUARE
3⊢N :STAR
7⊢N :TRIANGLE
8⊢N :STAR
5⊢N :SQUARE
4⊢N :STAR
4⊢S/N\S :λx4.λx5.And(x5, x4)
6⊢N :STAR

Figure 9: The complete list of induced lexical items of the same emergent language as shown in
Figure 4.
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