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Abstract

Translation-based AMR parsers have recently
gained popularity due to their simplicity and
effectiveness. They predict linearized graphs
as free texts, avoiding explicit structure mod-
eling. However, this simplicity neglects struc-
tural locality in AMR graphs and introduces
unnecessary tokens to represent coreferences.
In this paper, we introduce new target forms of
AMR parsing and a novel model, CHAP, which
is equipped with causal hierarchical attention
and the pointer mechanism, enabling the inte-
gration of structures into the Transformer de-
coder. We empirically explore various alter-
native modeling options. Experiments show
that our model outperforms baseline models on
four out of five benchmarks in the setting of no
additional data.

1 Introduction

Abstract Meaning Representation (Banarescu et al.,
2013) is a semantic representation of natural lan-
guage sentences typically depicted as directed
acyclic graphs, as illustrated in Fig. 1a. This rep-
resentation is both readable and broad-coverage,
attracting considerable research attention across
various domains, including information extrac-
tion (Zhang and Ji, 2021; Xu et al., 2022), sum-
marization (Hardy and Vlachos, 2018; Liao et al.,
2018), and vision-language understanding (Schus-
ter et al., 2015; Choi et al., 2022). However, the
inherent flexibility of graph structures makes AMR
parsing , i.e., translating natural language sentences
into AMR graphs, a challenging task.

The development of AMR parsers has been
boosted by recent research on pretrained sequence-
to-sequence (seq2seq) models. Several studies, cat-
egorized as translation-based models, show that
fine-tuning pretrained seq2seq models to predict
linearized graphs as if they are free texts (e.g., ex-
amples in Tab.1.ab) can achieve competitive or
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even superior performance (Konstas et al., 2017;
Xu et al., 2020; Bevilacqua et al., 2021; Lee et al.,
2023). This finding has spurred a wave of sub-
sequent efforts to design more effective training
strategies that maximize the potential of pretrained
decoders (Bai et al., 2022; Cheng et al., 2022;
Wang et al., 2022; Chen et al., 2022), thereby
sidelining the exploration of more suitable de-
coders for graph generation. Contrary to preceding
translation-based models, we contend that explicit
structure modeling within pretrained decoders re-
mains beneficial in AMR parsing. To our knowl-
edge, the Ancestor parser (Yu and Gildea, 2022)
is the only translation-based model contributing
to explicit structure modeling, which introduces
shortcuts to access ancestors in the graph. How-
ever, AMR graphs contain more information than
just ancestors, such as siblings and coreferences,
resulting in suboptimal modeling.

In this paper, we propose CHAP, a novel
translation-based AMR parser distinguished by
three innovations. Firstly, we introduce new tar-
get forms of AMR parsing. As demonstrated in
Tab. 1.c-e, we use multiple layers to capture dif-
ferent semantics, such that each layer is simple
and concise. Particularly, the base layer, which en-
capsulates all meanings except for coreferences (or
reentrancies), is a tree-structured representation, en-
abling more convenient structure modeling than the
graph structure of AMR. Meanwhile, coreferences
are presented through pointers, circumventing sev-
eral shortcomings associated with the variable-
based coreference representation (See Sec. 3 for
more details) used in all previous translation-based
models. Secondly, we propose Causal Hierarchical
Attention (CHA), the core mechanism of our incre-
mental structure modeling, inspired by Transformer
Grammars (Sartran et al., 2022). CHA describes a
procedure of continuously composing child nodes
to their parent nodes and encoding new nodes with
all uncomposed nodes, as illustrated in Fig. 2. Un-
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Figure 1: AMR of Employees
liked their city tour.

ID Name Representation

a PM ( a / alpha :arg0 ( b / beta ) :arg1 ( g / gamma :arg2 b ) )

b S-DFS ( <R0> alpha :arg0 ( <R1> beta ) :arg1 ( <R2> gamma :arg2 <R1> ) )

c ⇓ sgl. ( alpha :arg0 ( beta ) :arg1 ( gamma :arg2 beta ) )

d ⇓ dbl. ( alpha :arg0 ( beta )1 )2 :arg1 ( gamma :arg2 beta )1 )2 )1 )2

e ⇑
alpha :arg0 beta ■ :arg1 gamma :arg2 beta ■ ■

Table 1: Graph representations. PM and S-DFS denote the PENMAN form and
the SPRINGDFS form, the DFS-based linearization proposed by Bevilacqua et al.
(2021), respectively. (c)-(d) are our proposed representations. (c) is for ⇓single(c)
(Fig. 3c). (d) is for ⇓double(c) (Fig. 3b). (e) is for ⇑ (Fig. 3d). Red pointers ,
which represent coreferences, constitute the coref layer. Blue pointers , which point
to the left boundaries of subtrees, constitute the auxiliary structure layer. Texts,
which encapsulate all other meanings, constitute the base layer.

Property Translation-based Transition-based Factor.-based Ours

Trainability ✓ require alignments ✓ ✓

Structure modeling ✗ ✗ ✓ ✓

Pretrained decoder ✓ ✓ ✗ ✓

Variable-free ✗ ✓ ✓ ✓

Table 2: Strengths, shortcomings of different types of models.

like the causal attention in translation-based mod-
els, which allows a token to interact with all its
preceding tokens, CHA incorporates a strong in-
ductive bias of recursion, composition, and graph
topology. Thirdly, deriving from transition-based
AMR parsers (Zhou et al., 2021a,b), we introduce a
pointer encoder for encoding histories and a pointer
net for predicting coreferences, which is proven
to be an effective solution for generalizing to a
variable-size output space (Vinyals et al., 2015;
See et al., 2017).

We propose various alternative modeling op-
tions of CHA and strategies for integrating CHA
with existing pretrained seq2seq models and in-
vestigate them via extensive experiments. Ulti-
mately, our model CHAP achieves superior per-
formance on two in-distribution and three out-of-
distribution benchmarks. Our code is available at
https://github.com/LouChao98/chap_amr_parser.

2 Related Work

2.1 AMR Parsing

Most recent AMR parsing models generate AMR
graphs via a series of local decisions. Transition-
based models (Ballesteros and Al-Onaizan, 2017;
Naseem et al., 2019; Fernandez Astudillo et al.,

2020; Zhou et al., 2021a,b) and translation-based
models (Konstas et al., 2017; Xu et al., 2020;
Bevilacqua et al., 2021; Lee et al., 2023) epito-
mize local models as they are trained with teacher
forcing, optimizing only next-step predictions, and
rely on greedy decoding algorithms, such as greedy
search and beam search. Particularly, transition-
based models predict actions permitted by a transi-
tion system, while translation-based models pre-
dict AMR graph tokens as free texts. Some
factorization-based models are also local (Cai and
Lam, 2019, 2020), sequentially composing sub-
graphs into bigger ones. We discern differences in
four properties among previous local models and
our model in Tab. 2:

Trainability Whether additional information is
required for training. Transition-based models rely
on word-node alignment to define the gold action
sequence.

Structure modeling Whether structures are mod-
eled explicitly in the decoder. Transition-based
models encode action histories like texts without
considering graph structures. Besides, translation-
based models opt for compatibility with pretrained
decoders, prioritizing this over explicit structure

https://github.com/LouChao98/chap_amr_parser
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Figure 2: Demonstration of Causal Hierarchical Attention. We draw the aggregation on graphs performed at four
steps in (a)-(d) and highlight the corresponding token for each step in (e) with green boxes. the The generation order
is depth-first and left-to-right: alpha→ beta→ delta→ epsilon→ gamma→ zeta→ eta→ theta. The node
of interest at each step is highlighted in blue, gathering information from all solid nodes. Gray dashed nodes, on the
other hand, are invisible.

modeling.

Pretrained decoder Whether pretrained de-
coders can be leveraged.

Variable-free Whether there are variable tokens
in the target representation. Transition-based mod-
els, factorization-based models and ours generate
coreference pointers, obviating the need of intro-
ducing variables.

2.2 Transformer Grammar

Transformer Grammars (TGs; Sartran et al., 2022)
are a novel class of language models that simulta-
neously generate sentences and constituency parse
trees, in the fashion of transition-based parsing.
The base layer of Tab. 1.c can be viewed as an
example action sequence. There are three types
of actions in TG: (1) the token “(” represents the
action ONT, opening a nonterminal; (2) the token
“)” represents the action CNT, closing the nearest
open nonterminal; and (3) all other tokens (e.g., a
and :arg0) represent the action T, generating a ter-
minal. TG carries out top-down generation, where
a nonterminal is allocated before its children. We
will also explore a bottom-up variant in Sec. 3.4.
Several studies have already attempted to generate
syntax-augmented sequences (Aharoni and Gold-
berg, 2017; Qian et al., 2021). However, TG differ-
entiates itself from prior research through its unique
simulation of stack operations in transition-based
parsing, which is implemented by enforcing a spe-
cific instance of CHA. A TG-like CHA is referred

to as ⇓double in this paper and we will present tech-
nical details in Sec. 3.3 along with other variants.

3 Structure Modeling

We primarily highlight two advantages of incorpo-
rating structured modeling into the decoder. Firstly,
the sequential order and adjacence of previous lin-
earized form mismatch the locality of real graph
structures, making the Transformer decoder hard
to understand graph data. Specifically, adjacent
nodes in an AMR graph exhibit strong semantic
relationships, but they could be distant in the lin-
earized form (e.g., person and tour-01 in Fig. 1a).
Conversely, tokens closely positioned in the lin-
earized form may be far apart in the AMR graph
(e.g., employ-01 and tour-01 in Fig. 1a). Sec-
ondly, previous models embed variables into the
linearized form (e.g., b in Tab. 1.a and <R1> in
Tab. 1.b) and represent coreferences (or reentran-
cies) by reusing the same variables. However, the
literal value of variables is inconsequential. For ex-
ample, in the PENMAN form, (a / alpha :arg0
(b / beta)) conveys the same meaning as (n1
/ alpha :arg0 (n2 / beta)). Furthermore,
the usage of variables brings up problems regard-
ing generalization (Wong and Mooney, 2007; Poel-
man et al., 2022). For instance, in the SPRINGDFS
form, <R0> invariably comes first and appears in
all training samples, while <R100> is considerably
less frequent.
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Figure 3: The target forms and the attention mask of the
three variants of CHA for the tree in (a). Orange cells
represent the compose operation, while blue cells with
plaid represent the expand operation. White cells are
masked out. The vertical and horizontal axis represent
attending and attended tokens, respectively.

3.1 Multi-layer Target Form

As shown in Tab. 1.c, we incorporate a new layer,
named the coreference (coref) layer, on top of the
conventional one produced by a DFS linearization,
named the base layer1. The coref layer serves to
represent coreferences, in which a pointer points
from a mention to its nearest preceding mention,
and the base layer encapsulates all other meanings.
From a graph perspective, a referent is replicated
to new nodes with an amount equal to the reference
count that are linked by newly introduced coref
pointers, as illustrated in Fig. 1b. We argue that
our forms are more promising because our forms
can avoid meaningless tokens (i.e., variables) from
cluttering up the base layer, yielding several bene-
ficial byproducts: (1) it shortens the representation
length; (2) it aligns the representation more closely
with natural language; and (3) it allows the base
layer to be interpreted as trees, a vital characteristic
for our structure modeling.

Tab. 1.d and e are two variants of Tab. 1.c. These
three forms are designed to support different vari-
ants of CHA, which will be introduced in Sec. 3.3

1We use the DFS order provided in the AMR datasets.

and 3.4.

3.2 Causal Hierarchical Attention

Causal Hierarchical Attention (CHA) is situated in
the decoder and maintains structures during gen-
eration. For each token, CHA performs one of
the two actions, namely compose and expand, as
demonstrated in Fig. 2. The compose operation
is performed once all children of a parent node
have been generated. It aggregates these children
to obtain a comprehensive representation of the
subtree under the parent node, subsequently set-
ting the children invisible in future attention. On
the other hand, the expand operation aggregates all
visible tokens to derive the representation of the
subsequent token.

We note the subtle distinction between the term
parent in the DAG representation (e.g., Fig. 1a) and
in target forms (e.g., Tab. 1 and Fig. 3a). Recall
that TG uses “(” (ONT) to indicate a new nonter-
minal, which is the parent node of all following
tokens before a matched “)” (CNT). This implies
that alpha in Tab. 1.c is considered as a child node,
being a sibling of :arg0, rather than a parent node
governing them. This discrepancy does not impact
our modeling because we can treat labels of non-
terminals as a particular type of child nodes, which
are absorbed into the parent node when drawing
the DAG representation. The tree of target forms
are illustrated in Appx. A.1.

The two actions can be implemented by modi-
fying attention masks conveniently. Specially, the
compose operation masks out attention to tokens
that are not destined to be composed, as depicted
in the fourth row of Fig. 3c. Moreover, the expand
operation masks out attention to tokens that have
been composed in previous steps, as depicted in
the top three rows and the fifth row of Fig. 3c.

In subsequent sections, we will explore two
classes of generation procedures that utilize dif-
ferent target forms and variants of CHA, akin to
top-down (Dyer et al., 2016; Nguyen et al., 2021;
Sartran et al., 2022) and bottom-up (Yang and Tu,
2022) parsing.

3.3 Top-down generation

Most prior studies utilize paired brackets to de-
note nested structures, as shown in Tab. 1.a-d. Sec-
tion 2.2 outlines that, in left-to-right decoding, due
to the prefix “(”, this type of representation results
in top-down tree generation.



We consider two modeling options of top-down
generation, ⇓single (Fig. 3c and ⇓double (Fig. 3b),
varying on actions triggered by “)”. More precisely,
upon seeing a “)”, ⇓single executes a compose,
whereas ⇓double executes an additional expand af-
ter the compose. For other tokens, both ⇓single and
⇓double execute an expand operation. Because the
decoder performs one attention for each token, in
⇓double, each “)” is duplicated to represent com-
pose and expand respectively, i.e., “)” becomes “)1
)2”. We detail the procedure of generating MCHA
for ⇓single in Alg. 1. The procedure for ⇓double
can be found in Sartran et al.’s (2022) Alg. 1.

The motivation for the two variants is as follows.
In a strict leaf-to-root information aggregation pro-
cedure, which is adopted in many studies on tree
encoding (Tai et al., 2015; Drozdov et al., 2019;
Hu et al., 2021; Zhou et al., 2022), a parent node
only aggregates information from its children, re-
maining unaware of other generated structures (e.g.,
beta is unaware of alpha in Fig. 2b). However,
when new nodes are being expanded, utilizing all
available information could be a more reasonable
approach (e.g., gamma in Fig. 2c). Thus, an expand
process is introduced to handle this task. The sit-
uation with CHA becomes more flexible. Recall
that all child nodes are encoded with the expand ac-
tion, which aggregates information from all visible
nodes, such that information of non-child nodes
is leaked to the parent node during composition.
⇓single relies on the neural network’s capability
to encode all necessary information through this
leakage, while ⇓double employs an explicit expand
to allow models to directly revisit their histories.

3.4 Bottom-up generation

In the bottom-up generation, the parent node is al-
located after all child nodes have been generated.
This process enables the model to review all yet-to-
be-composed tokens before deciding which ones
should be composed into a subtree, in contrast to
the top-down generation, where the model is re-
quired to predict the existence of a parent node
without seeing its children. The corresponding
target form, as illustrated in Tab. 1.e, contains no
brackets. Instead, a special token ■ is placed after
the rightmost child node of each parent node, with
a pointer pointing to the leftmost child node. We
execute the compose operation for ■ and the ex-
pand operation for other tokens. The generation of
the attention mask (Fig. 3d) is analogous to ⇓single,

Algorithm 1: MCHA for ⇓single.
Data: sequence of token t with length N
Result: attention mask MCHA ∈ RN×N

S ← [ ] � Empty stack
MCHA ← −∞
for i← 1 to N do

if t[i] = ’)’ then � compose
j ← i
while t[j] ̸= ’(’ do

MCHA[ij]← 0
j ← S.pop()

end
MCHA[ij]← 0
S.push(i)

else
S.push(i)
for j ∈ S do � expand

MCHA[ij]← 0
end

end
end
return MCHA

but we utilize pointers in place of left brackets to
determine the left boundaries of subtrees. The ex-
act procedure can be found in Appx. B.

4 Parsing Model

Our parser is based on BART (Lewis et al., 2020),
a pretrained seq2seq model. We make three mod-
ifications to BART: (1) we add a new module in
the decoder to encode generated pointers, (2) we
enhance decoder layers with CHA, and (3) we use
the pointer net to predict pointers.

4.1 Encoding Pointers

The target form can be represented as a tuple of
(t, p)2, where t and p are the sequence of the base
layer and the coref layer, respectively, such that
each pi is the index of the pointed token. We define
pi = −1 if there is no pointer at index i.

In the BART model, t is encoded using the token
embedding. However, no suitable module exists
for encoding p. To address this issue, we introduce
a multi-layer perceptron, denoted as MLPp, which
takes in the token and position embeddings of the
pointed tokens and then outputs the embedding

2For the sake of simplicity, we only discuss the target form
of top-down generation. The additional struct layer in the
bottom-up generation can be modeled similarly to p.



of p. Notably, if pi = −1, the embedding is set
to 0. All embeddings, including that of t, p and
positions, are added together before being fed into
subsequential modules.

4.2 Augmenting Decoder with CHA
We explore three ways to integrate CHA in the de-
coder layer, as shown in Fig. 4. The inplace archi-
tecture replaces the attention mask of some atten-
tion heads with MCHA in the original self-attention
module without introducing new parameters. How-
ever, this affects the normal functioning of the re-
placed heads such that the pretrained model is dis-
rupted.

Alternatively, we can introduce adapters into de-
coder layers (Houlsby et al., 2019). In the parallel
architecture, an adapter is introduced in parallel
to the original self-attention module. In contrast,
an adapter is positioned subsequent to the original
module in the pipeline architecture. Our adapter is
defined as follows:

x1 = FFN1(hi),

x2 = Attention(WQx1,W
Kx1,W

V x1,MCHA),

ho = FFN2(LayerNorm(x1 + x2)),

where WQ,WK ,WV are query/key/value projec-
tion matrices, FFN1/FFN2 are down/up projection,
hi is the input hidden states and ho is the output
hidden states.

4.3 Predicting Pointer
Following previous work (Vinyals et al., 2015;
Zhou et al., 2021b), we reinterpret decoder self-
attention heads as a pointer net. However, unlike
the previous work, we use the average attention
probabilities from multiple heads as the pointer
probabilities instead of relying on a single head.
Our preliminary experiments indicate that this mod-
ification results in a slight improvement.

A cross-entropy loss between the predicted
pointer probabilities and the ground truth point-
ers is used for training. We disregard the associated
loss at positions that do not have pointers and ex-
clude their probabilities when calculating the entire
pointer sequence’s probability.

4.4 Training and Inference
We optimize the sum of the standard sequence gen-
eration loss and the pointer loss:

L = Lseq2seq + αLpointer,

where α is a scalar hyperparameter.
For decoding, the probability of a hypothesis is

the product of the probabilities of the base layer,
the coref sequence, and the optional struct layer.
We enforce a constraint during decoding to ensure
the validity of MCHA: the number of ) should not
surpass the number of (, and two constraints to
ensure the well-formedness of pointer: (1) coref-
erence pointers can only point to positions with
the same token, and (2) left boundary pointers in
bottom-up generation cannot point to AMR rela-
tions (e.g., :ARG0).

5 Experiment

5.1 Setup

Datasets We conduct experiments on two in-
distribution benchmarks: (1) AMR 2.0 (Knight
et al., 2017), which contains 36521, 1368 and 1371
samples in the training, development and test set,
and (2) AMR 3.0 (Knight et al., 2020), which
has 55635, 1722 and 1898 samples in the train-
ing, development and test set, as well as three out-
of-distribution benchmarks: (1) The Little Prince
(TLP), (2) BioAMR and (3) New3. Besides, we
also explore the effects of using silver training data
following previous work. To obtain silver data, we
sample 200k sentences from the One Billion Word
Benchmark data (Chelba et al., 2014) and use a
trained CHAP parser to annotate AMR graphs.

Metrics We report the Smatch score (Cai and
Knight, 2013) and other fine-grained metrics (Da-
monte et al., 2017) averaged over three runs with
different random seeds3. All these metrics are in-
variant to different graph linearizations and exhibit
better performance when they are higher. Addition-
ally, to provide a more accurate comparison, we
include the standard deviation (std dev) if Smatch
scores are close.

Pre-/post-processing Owing to the sparsity of
wiki tags4 in the training set, we follow previ-
ous work to remove wiki tags from AMR graphs
in the pre-processing, and use the BLINK entity
linker (Wu et al., 2020) to add wiki tags in the post-
processing5. In the post-processing, we also use

3We use the amr-evaluation-enhanced software to com-
pute scores, which is available at https : / / github . com /
ChunchuanLv/amr-evaluation-tool-enhanced.

4https : / / github . com / amrisi / amr - guidelines /
blob/master/amr.md#named-entities

5We do not add wiki tags in analytical experiments.

https://github.com/ChunchuanLv/amr-evaluation-tool-enhanced
https://github.com/ChunchuanLv/amr-evaluation-tool-enhanced
https://github.com/amrisi/amr-guidelines/blob/master/amr.md#named-entities
https://github.com/amrisi/amr-guidelines/blob/master/amr.md#named-entities
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Figure 4: Three architectures for applying CHA to pretrained decoder layers. Residual connections and layernorms
are omitted.

the amrlib software6 to ensure graph validity.

Implementation details We use the BART-base
model in analytical experiments and the BART-
large model in comparison with baselines. We mod-
ify all decoder layers when using the BART-base
model, while only modifying the top two layers
when using the BART-large model7. For the paral-
lel and pipeline architectures, attention modules in
adapters have four heads and a hidden size 512. For
the inplace architecture, four attention heads are set
to perform CHA. We reinterpret four self-attention
heads of the top decoder layer as a pointer net. The
weight for the pointer loss α is set to 0.075. We use
a zero initialization for FFN2 and MLPp, such that
the modified models are equivalent to the original
BART model at the beginning of training. More
details are available at Appx. D

Baselines SPRING (Bevilacqua et al., 2021) is
a BART model fine-tuned with an augmented vo-
cabulary and improved graph representations (as
shown in Tab. 1.b). Ancestor (Yu and Gildea,
2022) enhances the decoder of SPRING by in-
corporating ancestral information of graph nodes.
BiBL (Cheng et al., 2022) and AMRBART (Bai
et al., 2022) augment SPRING with supplemen-
tary training losses. LeakDistill (Vasylenko et al.,
2023)8 trains a SPRING using leaked information
and then distills it into a standard SPRING.

All these baselines are translation-based models.
Transition-based and factorization-based models
are not included due to their inferior performance.

6https://github.com/bjascob/amrlib
7The training becomes unstable if we modify all decoder

layers of the BART-large model.
8Contemporary work.

CHA Smatch

⇓single 82.60
expand→ causal 82.53
compose→ expand 82.47

⇓double 82.63
⇑ 82.57

Table 3: The influence of different CHA.

Architecture Smatch std dev

Parallel 82.63 0.02
Pipeline 82.59 0.05
Inplace 82.43 0.04
w/o CHA 82.38 0.12

Table 4: The influence of different architectures.

5.2 Results on Alternative Modeling Options

Structural modeling We report the results of dif-
ferent CHA options in Tab. 3. ⇓double exhibits a
slightly better performance than ⇑ and ⇓single. Be-
sides, we find that breaking structural localities, i.e.,
(1) allowing parent nodes to attend to nodes other
than their immediate children (row 3, −0.13) and
(2) allowing non-parent nodes to attend to nodes
that have been composed (row 2, −0.07), nega-
tively impacts the performance. We present the
attention masks of these two cases in Appx. A.2.

Architecture In Tab. 4, we can see that the in-
place architecture has little improvement over the
baseline, w/o CHA. This suggests that changing the
functions of pretrained heads can be harmful. We
also observe that the parallel architecture performs
slightly better than the pipeline architecture.

Based on the above results, we present CHAP,
which adopts the parallel adapter and uses ⇓double.

https://github.com/bjascob/amrlib


Model Extra Data Smatch NoWSD Wiki. Conc. NER Neg. Unlab Reent. SRL

AMR 2.0
SPRING − 83.8 84.4 84.3 90.2 90.6 74.4 86.1 70.8 79.6
Ancestor − 84.8 85.3 84.1 90.5 91.8 74.0 88.1 75.1 83.4
BiBL − 84.6 85.1 83.6 90.3 92.5 73.9 87.8 74.4 83.1
LeakDistill A 85.7 86.2 83.9 91.0 91.1 76.8 88.6 74.2 81.8
CHAP (ours) − 85.1 85.6 86.4 90.9 90.4 73.4 88.0 73.0 81.0

AMRBART 200K 85.4 85.8 81.4 91.2 91.5 74.0 88.3 73.5 81.5
LeakDistill A, 140K 86.1 86.5 83.9 91.4 91.6 76.6 88.8 75.1 82.4
CHAP (ours) 200K 85.8 86.1 86.3 91.4 80.4 78.3 88.6 73.9 81.8
AMR 3.0
SPRING − 83.0 83.5 82.7 89.8 87.2 73.0 85.4 70.4 78.9
Ancestor − 83.5 84.0 81.5 89.5 88.9 72.6 86.6 74.2 82.2
BiBL − 83.9 84.3 83.7 89.8 93.2 68.1 87.2 73.8 81.9
LeakDistill A 84.5 84.9 80.7 90.5 88.5 73.7 87.5 73.1 80.7
CHAP (ours) − 84.4∗ 84.8 84.7 90.5 87.9 73.5 87.3 72.6 80.1

AMRBART 200K 84.2 84.6 78.9 90.2 88.5 72.1 87.1 72.4 80.3
LeakDistill A, 140K 84.6 84.9 81.3 90.7 87.8 73.0 87.5 73.4 80.9
CHAP (ours) 200K 84.6 85.0 84.5 90.7 88.4 75.2 87.5 73.1 80.7

Table 5: Fine-grained Smatch scores on in-domain benchmarks. Bold and underlined numbers represent the best
and the second-best results, respectively. “A” in the Extra Data column denotes alignment. *Std dev is 0.04.

Model Extra Data TLP Bio New3

SPRING − 77.3 59.7 73.7
BiBL − 78.6 61.0 75.4
BiBL 200K 78.3 61.1 75.4
AMRBART 200K 76.9 63.2 76.9
LeakDistill A, 140K 82.6 64.5 −

CHAP (ours) − 79.0 62.7 74.8
CHAP (ours) 200K 79.8 63.5 75.1
CHAP (ours) − 81.8 65.1 −
CHAP (ours) 200K 82.7α 66.1β −

Table 6: Test results on out-of-distribution benchmarks.
The scores represented in grey cells derive from a model
trained on AMR 2.0, whereas the remaining scores come
from a model trained on AMR 3.0. −: New3 is part
of AMR 3.0, so these settings are excluded from OOD
evaluation. αStd dev on TLP is 0.14. βStd dev on Bio
is 0.46.

5.3 Main Results

Tab. 5 shows results on in-distribution benchmarks.
In the setting of no additional data (such that
LeakDistill is excluded), CHAP outperforms all
previous models by a 0.3 Smatch score on AMR
2.0 and 0.5 on AMR 3.0. Regarding fine-grained
metrics, CHAP performs best on five metrics for

AMR 3.0 and three for AMR 2.0. Compared to pre-
vious work, which uses alignment, CHAP matches
LeakDistill on AMR 3.0 but falls behind it on AMR
2.0. One possible reason is that alignment as addi-
tional data is particularly valuable for a relatively
small training set of AMR 2.0. We note that the
contribution of LeakDistill is orthogonal to ours,
and we can expect an enhanced performance by in-
tegrating their method with our parser. When using
silver data, the performance of CHAP on AMR 2.0
can be significantly improved, achieving similar
performance to LeakDistill. This result supports
the above conjecture. However, on AMR 3.0, the
gain from silver data is marginal as in previous
work, possibly because AMR 3.0 is sufficiently
large to train a model based on BART-large.

In out-of-distribution evaluation, CHAP is com-
petitive with all baselines on both TLP and Bio, as
shown in Tab. 6, indicating CHAP’s strong ability
of generalization thanks to the explicit structure
modeling.

5.4 Ablation Study

An ablation study is presented in Table 7. The
first four rows demonstrate that, for a model based
on BART-base, when we exclude the encoding of
pointers, the CHA adapters, and the separation



EP Adapter CL Base Large
AMR3 AMR3 TLP Bio

✓ CHA ✓ 82.91 84.44 81.8 65.1
✗ CHA ✓ 82.82 84.17 81.7 64.8
✓ ✗ ✓ 82.75 84.28 − −
− CHA ✗ 82.63 84.09 82.1 64.6
− Causal ✗ 82.44 83.79 − −
− ✗ ✗ 82.38 83.84 81.6 64.3

Table 7: Ablation study. EP: Encoding Pointers. CL:
Coreference Layer. Base(Large): BART-base(large).

of coreferences on AMR 3.0, there are declines
in Smatch scores of −0.09, −0.16, and −0.28,
respectively and −0.27, −0.16, and −0.35 for a
model based on BART-large. Additionally, we sub-
stitute CHA in adapters with standard causal atten-
tion to ascertain whether the improvement mainly
arises from an increased parameter count. From
the last three rows, it is evident that CHA has a
greater contribution (+0.25) than adding parame-
ters (+0.06).

The two rightmost columns in Tab. 7 present the
ablation study results on OOD benchmarks. We
find that the three proposed components contribute
variably across different benchmarks. Specifically,
CHA consistently enhances generalization, while
the other two components slightly reduce perfor-
mance on TLP.

6 Conclusion

We have presented an AMR parser with new target
forms of AMR graphs, explicit structure modeling
with causal hierarchical attention, and the integra-
tion of pointer nets. We discussed and empirically
compared multiple modeling options of CHA and
the integration of CHA with the Transformer de-
coder. Eventually, CHAP outperforms all previous
models on in-distribution benchmarks in the set-
ting of no additional data, indicating the benefit of
structure modeling.

Limitations

We focus exclusively on training our models to pre-
dict AMR graphs using natural language sentences.
Nevertheless, various studies suggest incorporating
additional training objectives and strategies, such
as BiBL and LeakDistill, to enhance performance.
These methods also can be applied to our model.

There exist numerous other paradigms for se-
mantic graph parsing, including Discourse Repre-

sentation Structures. In these tasks, prior research
often employs the PENMAN notation as the tar-
get form. These methodologies could also poten-
tially benefit from our innovative target form and
structural modeling. Although we do not conduct
experiments within these tasks, results garnered
from a broader range of tasks could provide more
compelling conclusions.
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A More Plots

A.1 Tree View of the Base Layer

Fig. 6 demonstrates the tree structure of the base
layer. There are two main differences from the
DAG representation of AMR: (1) Non-leaf nodes
have no label. Instead, the label is a child node. (2)
relations are presented as nodes instead of labeled
edges.

A.2 Attention Mask with Broken Structural
Locality

Fig. 5 shows the two variants of breaking structural
localities, which is discussed in Sec 5.2.

B Generate Attention Mask for
Bottom-up Generation

Alg. 2 shows the procedure of generating MCHA
for ⇑.

C Metrics

We report following fine-grained metrics:

• No WSD: This process computes while disre-
garding PropBank senses.

• Wikification: This denotes the F-score related
to the Wikification task.

• Concepts: This signifies the F-score for the
Concept Identification task.

• NER: This pertains to the F-score associated
with the Named Entity Recognition task.

• Negations: This involves the F-score for the
Negation Detection task.

• Unlabeled: This involves computations on the
predicted graphs after all edge labels have
been removed.

• Reentrancy: This is computed solely on reen-
trant edges.

• Semantic Role Labeling (SRL): This is com-
puted only for ’:ARG-i roles’.

D Implementation Details

We use the BART-base and BART-large check-
points downloaded from the transformer library
to initialize our models. An augmented vocabulary
is used, which includes additional AMR relation
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Figure 5: The target forms and the attention mask of
two variants of ⇓single. Black squares mean that the
cell is changed.

tokens, such as :arg0. Unlike other translation-
based models, we do not add predicates (e.g.,
have-condition-91) into the vocabulary because
they have ingorable effects on performance accord-
ing to our preliminary experiments.

We train our models for 50,000 steps, using a
batch size of 16. This amounts to approximately 22
epochs on AMR 2.0 and around 15 epochs on AMR
3.0. We use an AdamW optimizer (Loshchilov and
Hutter, 2019), accompanied by a cosine learning
rate scheduler (Loshchilov and Hutter, 2017) with
a warm-up phase of 5,000 steps. The peak learning
rate is set at 5×10−5 for base models and 3×10−5

for large models. We use one NVIDIA TITAN V
to train models based on BART base, costing about
6 hours, and use one NVIDIA A40 to train models
based on BART large, costing about 15 hours.

Algorithm 2: MCHA for ⇑.
Data: sequence of token t with length N ,

sequence of pointers s with lengthN
Result: attention mask MCHA ∈ RN×N

S ← [ ] � Empty stack
MCHA ← −∞
for i← 1 to N do

if t[i] =′ ■′ then � compose
j ← i
while j > s[i] do

MCHA[ij]← 0
j ← S.pop()

end
MCHA[ij]← 0
S.push(i)

else
S.push(i)
for j ∈ S do � expand

MCHA[ij]← 0
end

end
end
return MCHA
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(b) The tree related to gamma in Fig. 2 in the ⇓single form.
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(c) The tree related to gamma in Fig. 2 in the ⇑ form.

Figure 6: The structure modeled in the base layer.


