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ABSTRACT

Vector Quantized Variational Autoencoders (VQ-VAEs) leverage self-supervised
learning through reconstruction tasks to represent continuous vectors using the
closest vectors in a codebook. However, issues such as codebook collapse per-
sist in the VQ model. To address these issues, existing approaches employ im-
plicit static codebooks or jointly optimize the entire codebook, but these methods
constrain the codebook’s learning capability, leading to reduced reconstruction
quality. In this paper, we propose Group-VQ, which performs group-wise opti-
mization on the codebook. Each group is optimized independently, with joint
optimization performed within groups. This approach improves the trade-off be-
tween codebook utilization and reconstruction performance. Additionally, we
introduce a training-free codebook resampling method, allowing post-training
adjustment of the codebook size. In image reconstruction experiments under var-
ious settings, Group-VQ demonstrates improved performance on reconstruction
metrics. And the post-training codebook sampling method achieves the desired
flexibility in adjusting the codebook size. The core code is available at https:
//anonymous.4open.science/r/Group-VQ_anonymous-60E3

1 INTRODUCTION

Vector Quantization (VQ) (Gray, 1984) is a technique that maps continuous features to discrete
tokens. Specifically, VQ defines a finite codebook and selects the closest code vector for each feature
vector by calculating a similarity measure, typically Euclidean distance or cosine similarity (Yu
et al., 2021). This selected code vector serves as the discrete representation of the feature vector.
VQ-VAE (Van Den Oord et al., 2017; Razavi et al., 2019) employs vector quantization as an image
tokenizer, which quantizes the feature map output by the encoder to represent an image as a series
of integer indices. The decoder then uses only the quantized feature map to reconstruct the image.
Due to the non-differentiability (Huh et al., 2023) of the quantization operation, the Straight-Through
Estimator (STE) (Bengio et al., 2013) enables the encoder to receive gradients from the task loss by
copying the gradients of the quantized vectors to the pre-quantized vectors. VQ has found widespread
applications in autoencoders (Van Den Oord et al., 2017; Razavi et al., 2019; Zhao et al., 2024a) and
generative models (Rombach et al., 2022; Dhariwal et al., 2020; Tian et al., 2024; Weber et al., 2024;
Yu et al., 2024a).

Despite achieving success in numerous applications, traditional VQ training often encounters the
issue of low codebook utilization, where only a subset of code vectors are used and updated, leading
to “codebook collapse” (Roy et al., 2018; Huh et al., 2023; Yu et al., 2024b), which limits the model’s
encoding capability. To address these challenges, various improvements have been proposed, such
as reducing the dimensionality of the latent space (Yu et al., 2021; Mentzer et al., 2023; Yu et al.,
2023), initializing the codebook with pretrained models (Huh et al., 2023; Zhu et al., 2024a), and
jointly optimizing the entire codebook (Zhu et al., 2024b; Huh et al., 2023). In our paper, we refer to
these methods as “Joint VQ”. These methods have shown promising results, achieving near 100%
codebook utilization. However, in order to reach a 100% utilization rate, our experiments indicate
that these methods have restricted the learning ability of the codebook to some extent, resulting in
performance differences under the same utilization rate.

To alleviate this issue, we propose to approach codebook optimization from a group perspective,
thereby naturally introducing the Group-VQ method. This method organizes the codebook into
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Figure 1: The differences among Vanilla VQ (a), Group-VQ (b), and Joint VQ (c) lie in their codebook
update strategies: Vanilla VQ updates codes independently; Joint VQ optimizes the entire codebook
jointly; and Group-VQ updates groups independently while optimizing jointly within each group.

multiple independent groups, where parameters are shared within each group to enable joint op-
timization within the group while keeping the groups independent of each other, i.e., group-wise
optimization. This allows each group to focus on learning different feature distributions. Figure
1 shows a comparison among Vanilla VQ, Joint VQ, and Group-VQ. Additionally, we propose a
codebook resampling method, which generates a new codebook by simply sampling after training.
Our contributions can be summarized as follows:

• We propose the Group-VQ method, which approaches codebook optimization from a group
perspective and balances the codebook utilization and reconstruction performance of the
VQ model.

• We generalize the Joint VQ method based on shared parameters, and then introduce a
post-training codebook sampling method to facilitate flexible adjustment of the codebook
size without the need to retrain the model.

• We confirm the efficacy of Group-VQ and codebook resampling in image reconstruction,
highlighting the importance of grouped design and outlining group number selection princi-
ples through ablation studies.

2 PRELIMINARY

The core of the visual tokenizer is vector quantization, which replaces any given vector with a discrete
token from a codebook. For an image I ∈ RH×W×3, VQ-VAE (Van Den Oord et al., 2017) first
uses an encoder, typically a convolutional network with downsampling layers, to obtain the feature
map Z ∈ Rh×w×d, where h and w represent the height and width of the feature map, and d is
the number of channels in the feature map. The quantizer includes a codebook C = {qi | qi ∈
Rd, i = 0, 1, . . . , n− 1} ∈ Rn×d, which means the codebook contains n code vectors, each with a
dimensionality of d. For each vector z ∈ Rd in the feature map, the quantizer finds the closest vector
q in the codebook (typically using Euclidean distance) to replace z.

q = argmin
qi∈C

∥z − qi∥, i = 0, 1, . . . , n− 1 (1)

However, since the argmin operation is non-differentiable, VQ-VAE uses the straight-through
estimator (STE) (Bengio et al., 2013) to pass the gradient directly through q to z, allowing the encoder
to receive gradients from the reconstruction loss:

zq = z + sg[q − z] (2)

Here, sg[] denotes stop gradient, meaning that the gradient will not propagate through the sg[]
operation. By applying such quantization to each vector z in the feature map Z, the feature map
is converted into a discrete representation Q ∈ Rh×w×d composed of each zq. The decoder then
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generates the reconstructed image Î ∈ RH×W×3 based on the quantized discrete feature map Q. The
VQ-VAE loss consists of both the image reconstruction loss and the codebook loss:

L = ∥I − Î∥2 + β∥Q− sg[Z]∥2 + γ∥Z − sg[Q]∥2 (3)

where β and γ are fixed hyperparameters. However, a major issue with this approach is that in each
iteration, only a subset of the code vectors are selected, meaning that only those vectors receive
gradients and get updated, which eventually leads to codebook collapse (Roy et al., 2018; Huh et al.,
2023; Yu et al., 2024b).

To achieve high codebook utilization, VQGAN-LC (Zhu et al., 2024a) proposes using a pre-trained
visual backbone to extract image features and initializing the codebook Ĉ with cluster center vectors
obtained through clustering. After initialization, the codebook remains frozen, and a projection layer
P (·) is used to map the codebook to a projected codebook C = P (Ĉ) ∈ Rn×d. During training,
only this projection layer is optimized. This approach allows for the simultaneous adjustment of
the entire codebook’s distribution. LFQ (Yu et al., 2023) and FSQ (Mentzer et al., 2023) employ
implicit and fixed codebooks to prevent codebook collapse. SimVQ (Zhu et al., 2024b) simplifies the
aforementioned approach by directly employing random initialization for Ĉ ∈ Rn×d and reparame-
terizing the codebook C ∈ Rn×d in the form of ĈW , where W ∈ Rd×d. This method represents
each code vector as a linear combination of the rows in W . By updating W , each code vector is
indirectly updated. Huh et al. (2023) proposes adjusting each code vector q̂ using shared global mean
and standard deviation, defined as q = cmean + cstd × q̂, where cmean and cstd are affine parameters
with the same dimensionality as the code vectors and are shared across the entire codebook. This
approach simplifies the matrix W to a diagonal matrix and adding a bias vector.

The commonality among the aforementioned optimization methods for VQ lies in their use of shared
learnable parameters to reparameterize the entire codebook, thereby enabling joint optimization of
the codebook space to mitigate the issue of codebook collapse. As such, we collectively refer to them
as Joint VQ (achieved through shared parameters).

3 METHOD

3.1 OBSERVATION
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Figure 2: The codebook utilization rate and rFID for Joint
VQ and Vanilla VQ at each epoch.

Joint VQ is straightforward and ef-
fective in addressing the codebook
collapse problem; however, it suffers
from a significant issue: the gradi-
ents generated by all selected code
vectors affect the entire codebook dis-
tribution. While this helps the code-
book quickly adapt to the feature dis-
tribution generated by the encoder, it
remains overly coarse-grained. We
believe this may lead to potential in-
terference between updates of differ-
ent codes, making it difficult for the
codebook to adapt to complex distri-
butions. To validate this conjecture,
we conducted small-scale image re-
construction experiments comparing Joint VQ (implemented using SimVQ (Zhu et al., 2024b)) with
Vanilla VQ, aiming to explore the relationship between codebook utilization and reconstruction
quality. The parameter settings are detailed in Section 4.3.

The results are shown in Figure 2. It can be observed that Joint VQ rapidly achieves 100% codebook
utilization by the 2nd epoch and maintains it, while Vanilla VQ’s utilization grows gradually each
epoch and ultimately remains below 90%. However, for the rFID metric (lower is better) used to
measure image reconstruction quality, Vanilla VQ performs better in the end. We can thus infer that
the performance gains of Joint VQ with larger codebook sizes stem from higher utilization, but the
quality of the used codes is inferior to that of Vanilla VQ, which independently fine-tunes each code.
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Codebook Structure of Group-VQ
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Figure 3: Left: The reparameterization method of the codebook by Group-VQ. It partitions the
codebook into multiple disjoint groups (sub-codebooks), each of which undergoes separate reparame-
terization. Right: Post-training sampling. Simply sampling a new codebook core and applying the
trained projector yields new codes.

3.2 GROUP-VQ

To address the trade-offs observed in our preliminary experiments, we propose a perspective on
the codebook by considering it from the viewpoint of groups. In this context, a group is defined
as the smallest unit of the codebook that is independently updated during training. Formally, let
the codebook C = {qi | qi ∈ Rd, i = 0, 1, . . . , n − 1} ∈ Rn×d be partitioned into k groups (or
sub-codebook), where each group Gj ⊆ C (for j = 0, 1, . . . , k − 1) contains nj code vectors. The
groups are disjoint and collectively exhaustive:

k−1⋃
j=0

Gj = C, Gj ∩Gj′ = ∅ if j ̸= j′ (4)

Specifically, for a group Gj = {qj1 , qj2 , . . . , qj|Gj |
}, qjt denotes the t-th code in Gj , and Lj

represents the commitment loss corresponding to Gj . Since the groups are mutually disjoint and
updated independently, when j′ ̸= j, Lj′ does not depend on qjt , and thus∇qjt

Lj′ = 0. Therefore,
the gradient of the total commitment loss Lcmt with respect to the code vector qjt ∈ Gj is given by:

∇qjt
Lcmt = ∇qjt

k−1∑
j′=0

Lj′

 = ∇qjt
Lj +

∑
j′ ̸=j

∇qjt
Lj′ = ∇qjt

Lj . (5)

Consequently, during training, the update rule for each code qjt ∈ Gj can be expressed as:

qjt ← qjt − η∇qjt
Lj (6)

where η is the learning rate. The gradient∇qjt
Lj only affects the vectors within Gj , indicating that

each group is updated independently based solely on the gradients computed from its contained codes,
and the updates are confined to the vectors within Gj .

For each group Gj , in order to enable joint optimization of all code vectors within it, we can employ
any method that supports joint optimization of codebooks. In Group-VQ, we adopt the parameter-
sharing approach (Zhu et al., 2024b;a; Huh et al., 2023) to define each group. The group Gj is
parameterized as follows:

Gj = ĜjWj + bj (7)

where Ĝj ∈ Rnj×rj , Wj ∈ Rrj×d and b0 ∈ Rd. We refer to Ĝj as the “codebook core” and Wj

as the “projector”. rj represents the rank of sub-codebook Gj . The values of nj and rj for each
sub-codebook can be set differently, enabling the heterogeneity and asymmetry of the codebook.
bj ∈ Rd is the bias vector. Figure 3 (left) and Algorithm 1 illustrate the method to construct the
codebook in the Group-VQ.
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The vector quantization approach in Group-VQ remains unchanged. For each feature vector z output
by the encoder, the quantizer finds the closest vector q in the codebook C. Since each feature vector
always belongs to a specific sub-codebook, Group-VQ does not require an additional routing function
design. Instead, feature vectors are automatically routed to the appropriate sub-codebook through
distance metrics. Group-VQ inherently brings group-wise optimization during training.

Discussion. Under this group perspective, we can analyze existing vector quantization approaches.
In Vanilla VQ, each code vector qi ∈ C is updated independently based on gradients from the feature
vectors it quantizes, implying that each code vector forms its own group. This fine-grained update
strategy results in a number of groups equal to the total number of code vectors, expressed as

k = n, Gi = {qi}, ∀i = 0, 1, . . . , n− 1. (8)
In contrast, Joint VQ, such as SimVQ (Zhu et al., 2024b) or VQGAN-LC (Zhu et al., 2024a),
reparameterizes the entire codebook C using shared parameters, meaning the update of any code
vector affects the entire codebook, corresponding to a single group, described by k = 1, G0 = C.
The proposed Group-VQ balances these extremes by partitioning the codebook into k disjoint and
collectively exhaustive groups, where each group Gj contains nj code vectors. This structure is
formally defined as

C =

k−1⋃
j=0

Gj , Gj ∩Gj′ = ∅ if j ̸= j′, Gj = {qj1 , qj2 , . . . , qjnj
},

k−1∑
j=0

nj = n. (9)

The core idea of our proposed Group-VQ is to balance the codebook utilization and its expressive
power by adjusting the number of groups. If we consider the code as a whole and the group as
the minimal unit, Group-VQ is equivalent to Vanilla VQ. Conversely, if we regard the group as a
whole and the code as the minimal unit, each group becomes a Joint VQ. From a global perspective,
Group-VQ represents a hybrid of these two approaches. By adjusting the number of groups k, where
1 ≤ k ≤ n, Group-VQ achieves a hybrid of Vanilla VQ and Joint VQ, enabling flexible control over
codebook utilization and expressive power. Appendix C illustrates the dynamics between the number
of groups and codebook utilization rate.

3.3 CODEBOOK RESAMPLING AND SELF-EXTENSION

In VQ models, changing the size of the codebook typically requires retraining or fine-tuning the entire
codebook along with the corresponding encoder and decoder. However, we note that this process
is straightforward for generative codebooks, which refer to codebooks generated using a learnable
network from a fixed distribution of codebook cores. After training, modifying the codebook size
only requires resampling the codebook cores from the fixed distribution, while the model itself does
not require further training.

Specifically, we define a generative network, also referred to as a projector Fθ(·), and a codebook core
Ccore. Here, Fθ(·) is a learnable linear projection layer or a small neural network, with θ denoting its
learnable parameters. During the training process, each vector in the codebook core Ccore is randomly
sampled from a fixed distribution P , with no learnable parameters. The final codebook C is generated
by applying Fθ(·) to Ccore:

C = Fθ(Ccore) , Ccore ∼ P (10)
Since Ccore always follows the fixed-parameter distribution P , Fθ(·) is trained to learn the transforma-
tion from the distribution P to the feature distribution of the encoder’s output. This property allows
us to resample Ccore from the distribution P after training, thereby flexibly adjusting the size of the
codebook without incurring additional costs.

In Group-VQ, each sub-codebook belongs to the aforementioned generative codebook, so we leverage
this property to apply it to post-training self-expansion of the codebook. Specifically, we randomly
initialize each sub-codebook core Ĝj , for example, by sampling each row vector ĝ ∈ Rrj indepen-
dently from a standard normal distribution N (0, I). After training, we sample new row vectors
v̂ ∈ Rrj from N (0, I) and project them using the already trained Wj to obtain new code vectors:

q̃ = v̂ Wj , v̂ ∼ N (0, I) (11)
These newly sampled code vectors q̃ are then added to Gj to obtain the extended sub-codebook. The
denser code vectors allow for finer quantization, thereby leading to improved reconstruction quality.
Figure 3 (right) and Algorithm 2 illustrates the post-training sampling method.

5
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Algorithm 1 Codebook Initialization in Group-VQ

Require: Number of code vectors n, dimen-
sionality d, number of sub-codebooks k and
sizes {nj}, intrinsic dimensions {rj}

Ensure:
∑k−1

j=0 nj = n

1: for j = 0 to k − 1 do
2: Initialize matrices:
3: Ĝj ← fix(Ĝj ∈ Rnj×rj ∼ P )
4: Wj , bj ← random init
5: Gj ∈ Rnj×d ← ĜjWj + bj
6: end for
7: C ← concat(G0, G1, . . . , Gk−1)
8: return the final codebook C

Algorithm 2 Codebook Post-Training Sampling

Require: Trained {Wj , bj , Gj}, target sizes
{mj} for new sub-codebooks

1: for j = 0 to k − 1 do
2: Gδ

j ← Ĝδ
jWj + bj , Ĝ

δ
j ∈ Rmj×rj ∼ P

3: if Resampling then
4: G′

j ← Gδ
j

5: else if Self-Extension then
6: G′

j ← concat(Gj , G
δ
j [: mj − nj ])

7: end if
8: end for
9: C ′ ← concat(G′

0, G
′
1, . . . , G

′
k−1)

10: return the new sampling codebook C ′

4 EXPERIMENTS

In Section 4.1, we demonstrate the superior image reconstruction performance of Group-VQ, includ-
ing codebook resampling and self-extension experiments. Section 4.2 provides statistical analysis
and visualization of sub-codebook information, along with experiments validating the group-wise
optimization strategy. Section 4.3 investigates how to set the number of groups in Group-VQ for
optimal performance through ablation studies.

4.1 VISION RECONSTRUCTION
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Figure 4: Using resampling and self-expansion meth-
ods, the rFID and PSNR under different multiples of
expanding the codebook size. The codebook size during
training is 1024.

Implementation details. For a fair
comparison, we align the settings of
SimVQ (Zhu et al., 2024b) and view it as
a strong baseline. Specifically, we train
Group-VQ with an input image resolu-
tion of 128 × 128. The image is pro-
cessed by an encoder with multiple con-
volutional layers and downsampling layers,
resulting in a total downsampling factor
of f = 8. The encoder outputs a feature
map of size 16× 16× 128. For Group-VQ,
the rank of each group is set to 128, and
only each projector is trainable. We use
the ImageNet-1k (Deng et al., 2009) and
MS-COCO (Lin et al., 2014) datasets, with
both VQGAN (Esser et al., 2021) and ViT-
VQGAN (Yu et al., 2021) encoder/decoder
architectures, and conduct different combi-
nations to verify the broad applicability of Group-VQ. In our implementation, we simplify Group-VQ
by evenly partitioning the codebook, ensuring an equal number of codes per group. So we use parallel
implementation for faster speed and it can be found in Appendix B. All training is conducted on
NVIDIA A5000 GPUs, with a batch size of 32 per GPU.

Optimizer settings. The learning rate is fixed at 1 × 10−4, using the Adam optimizer (Kingma,
2014) with β1 = 0.5 and β2 = 0.9. We evaluate the performance of the Group-VQ method on the
image reconstruction task using the rFID (reconstruction FID) (Heusel et al., 2017), LPIPS(VGG16)
(Zhang et al., 2018), PSNR, and SSIM (Wang et al., 2004) metrics on the ImageNet validation set.

Main results and analysis. Table 1 presents the reconstruction performance of Group-VQ compared
to other baseline methods. The primary baseline models include VQGAN (Esser et al., 2021),
ViT-VQGAN, VQGAN-FC (Yu et al., 2021), FSQ (Mentzer et al., 2023), LFQ (Yu et al., 2023),
VQGAN-LC (Zhu et al., 2024a), and SimVQ (Zhu et al., 2024b). The Group parameter in the table
represents the number of groups in the codebook from the perspective of group-wise optimization. For

6
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Table 1: Reconstruction performance of various VQ models. Group-VQ achieves the best
reconstruction quality across all datasets and encoder/decoder architecture settings.

Method Codebook Size Group Codebook Usage rFID↓ LPIPS↓ PSNR↑ SSIM↑

Base Structure: VQGAN, Dataset: ImageNet-1k, Epoch: 50
VQGAN 65,536 65,536 1.4% 3.74 0.17 22.20 0.706
VQGAN-EMA 65,536 65,536 4.5% 3.23 0.15 22.89 0.723
VQGAN-FC 65,536 65,536 100.0% 2.63 0.13 23.79 0.775
FSQ 64,000 0 100.0% 2.80 0.13 23.63 0.758
LFQ 65,536 0 100.0% 2.88 0.13 23.60 0.772
VQGAN-LC 65,536 1 100.0% 2.40 0.13 23.98 0.773
SimVQ 65,536 1 100.0% 2.24 0.12 24.15 0.784
SimVQ (ours run) 65,536 1 100.0% 1.99 0.12 24.34 0.788
Group-VQ 65,536 64 99.9% 1.86 0.11 24.37 0.787

Base Structure: ViT-VQGAN, Dataset: 20% ImageNet-1k, Epoch: 40
ViT-VQGAN 8192 8192 1.08% 26.66 0.17 21.75 0.660
LFQ 8192 0 100.0% 12.27 0.13 23.57 0.755
SimVQ 8192 1 100.0% 11.44 0.12 23.74 0.761
Group-VQ 8192 8 100.0% 10.72 0.12 23.85 0.764
Group-VQ 8192 16 100.0% 10.67 0.12 23.87 0.765

Base Structure: VQ-GAN, Dataset: MS-COCO, Epoch: 20
LFQ 4096 0 100.0% 14.20 0.19 21.87 0.713
SimVQ 4096 1 100.0% 13.18 0.18 21.90 0.719
Group-VQ 4096 16 100.0% 12.55 0.17 22.08 0.722

Table 2: Codebook resampling and self-extension of Group-VQ on ImageNet-1k.

Method Codebook Size Group Codebook Usage rFID↓ LPIPS↓ PSNR↑ SSIM↑

Group-VQ 65,536 16 99.7% 1.87 0.12 24.32 0.785
+ downsampling 32,768 16 100.0% 2.16 0.12 24.02 0.773
+ upsampling 131,072 16 99.9% 1.79 0.11 24.49 0.791
+ self-extension 131,072 16 99.9% 1.76 0.11 24.51 0.792

methods where each code is updated independently, such as VQGAN, the number of groups equals
the codebook size. For methods with joint updates, the number of groups is 1. FSQ and LFQ, which
utilize implicit and non-learnable codebooks, have a group number of 0. Group-VQ demonstrates
state-of-the-art performance across multiple metrics, with improved rFID scores suggesting its
reconstruction results align more closely with the original images’ overall distribution. We present
the images in Appendix E. In contrast, other methods with 100% codebook utilization exhibit varying
performance. For instance, FSQ and LFQ completely freeze the codebook, resulting in relatively
poorer performance. This suggests that we should not only focus on increasing codebook utilization
but also enhance its learning capability.

Codebook resampling and self-extension. To validate the method proposed in Section 3.3, we
resample the codebook to half the size used during training (downsampling) and double the size
(upsampling) during evaluation. The self-extension method expands the codebook size by a factor
of 2. The distinction between self-extension and resampling lies in the fact that the former retains
the codes used during training, while the latter entirely replaces them with newly sampled codes.
Table 2 reports the experimental results of codebook resampling and self-extension based on the post-
training Group-VQ. The results demonstrate the expected decreases and increases in reconstruction
metrics for downsampling, upsampling, and self-extension methods, respectively. Figure 4 presents
additional results, where the codebook size during training is set to 1024, and it is expanded by
powers of 2. PSNR consistently improves as the codebook size increases. We primarily focus on
the more perceptually aligned rFID metric, which reaches its minimum value at an expansion of
1024× 23 = 8192, before starting to rise. This indicates that codebook extension has a limit in scale:
too many newly sampled and untrained codes can degrade reconstruction performance.
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Table 3: Comparison of different codebook generation networks (projectors).

Linear MLP Trainable Parameters Codebook Size Codebook Usage rFID↓ PSNR↑
✓ ✗ 16,512 1024 100.0% 6.45 22.02
✗ ✓ 33,024 1024 98.9% 7.66 21.73
✓ ✓ 49,536 1024 99.7% 6.66 22.15
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Figure 5: Left: The average value and variance of the l2-norm of vectors in each group (0~15) in the
codebook; Right: The usage frequency of each group when tested on the ImageNet validation set.

4.2 ANALYSIS OF GROUP-VQ

Different groups have learned different patterns. Analysis in the section is based on the Group-VQ
with a codebook size of 65536 with a group number of 16 in Table 2. Figure 5 (left) shows the mean
and variance of the l2-norm of the codes in each group of the Group-VQ after training, and Figure 5
(right) shows the utilization rate of each group during the evaluation phase. These differences in the
statistical values of the groups indicate that different groups have differentiated. Figure 6 shows the
heatmap of the pairwise cosine similarity of codes. The checkerboard - like image indicates that the
codes within a group are relatively similar, while the differences between groups are relatively large.
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Figure 6: Heatmap of pairwise cosine
similarity for codes. Randomly pick 128
codes from each group.

In Figure 7, we visualize the code vectors in a two-
dimensional space using random projections (Johnson
et al., 1986; Bingham & Mannila, 2001). In Figure 7(a),
group 7 (with the smallest variance), group 11 (with the
largest variance), and group 15 (with the highest usage
frequency) exhibit distinct distributions. Group 15 shows
a more dispersed distribution, corroborating its higher
utilization rate. Figure 7(b) provides an overview of all
groups. Figure 7(c) displays the bias vectors, i.e., the cen-
ters, for each group. More visualizations in D. Overall,
different groups in Group-VQ adaptively learn diverse
feature spaces, each responsible for distinct distributions.

Are more complex projectors effective? The implemen-
tation of the Group-VQ method based on shared param-
eters is a reparameterization of the codebook. Therefore,
it seems reasonable to consider that using a more com-
plex network as the projector for generating the codebook
might yield better results. We configure three types of
projectors to verify whether this conjecture holds: the simplest linear projection layer, a multilayer
perceptron (MLP) with one hidden layer, and a combination formed by summing the outputs of a
linear projection layer and an MLP. We trained on a 25% subset of ImageNet for 20 epochs, with
a codebook size of 1024 and the number of groups set to 1. Other hyperparameters and optimizer
settings were the same as those in Section 4.1.

The experimental results, as shown in Table 3, indicate that the simplest linear projection layer
achieved the best rFID, while the more complex MLP led to significant performance degradation. In
the combination of a linear projection layer and an MLP, the two components seemed to counteract
each other, resulting in performance that was intermediate between the two standalone approaches.
This suggests that simply using a more complex projector network does not lead to better results
and may even hinder the learning of the codebook. This result further underscores the necessity of
independent updates for sub-codebooks in Group-VQ, indicating that its effectiveness stems from the
use of multiple independent groups rather than a more complex codebook generation approach.
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Table 4: The codebook utilization and image reconstruction performance under different settings of
group numbers. A group size of 32~64 is considered optimal.

Group Count

1 2 4 8 16 32 64 128 256 512 1024

Usage 100% 100% 100% 100% 100% 100% 100% 95.6% 81.7% 78.8% 88.9%
rFID↓ 6.45 6.52 6.29 6.19 6.13 6.05 6.09 6.11 6.15 6.28 6.13
PSNR↑ 22.02 22.07 22.12 22.13 22.13 22.14 22.16 22.08 22.02 22.06 22.14

40 20 0 20 40 60
Projection Axis 1

100

75

50

25

0

25

50

75

100

Pr
oj

ec
tio

n 
Ax

is 
2

(a)

Group 7
Group 11
Group 15

40 20 0 20 40 60
Projection Axis 1

75

50

25

0

25

50

75

100

(b)
20 15 10 5 0 5 10 15 20

Projection Axis 1

40

30

20

10

0

10

20

30

40

(c)

Group 0
Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10
Group 11
Group 12
Group 13
Group 14
Group 15

Figure 7: The visualization of the code vectors from Group-VQ with group=16 on ImageNet,
randomly projected onto 2 dimensions. (a) shows 256 sampled points per group for groups 7, 11, and
15. (b) shows 64 sampled points per group for all groups. (c) shows the projection of the bias vectors
for each group. This visualizes distinct distributions across different groups.

4.3 ABLATION STUDY

In this section, for efficiency, we conduct ablation experiments using a 25% subset of ImageNet. All
models are trained for 20 epochs with a codebook size of 1024. Except for the number of groups in
the codebook, all other parameters remain the same as that in Section 4.1.

Since each sub-codebook in Group-VQ is independently optimized, when the number of groups is
set too high, it gradually degenerates into Vanilla VQ, leading to codebook collapse. Therefore, we
need to carefully identify an appropriate number of groups to balance the modeling capability of the
codebook while avoiding codebook collapse. Table 4 presents the codebook utilization and image
reconstruction performance under different group settings. As can be seen from the table, when
the number of groups increases from 1 to 32, the various metrics of Group-VQ generally show an
improving trend. This indicates that, with a moderate increase in the number of sub-codebooks, a
larger number of groups enhances the learning capability of the codebook without reaching the point
of codebook collapse. However, when the number of groups increases further, the metrics of Group-
VQ, particularly rFID, begin to rebound or fluctuate, and the codebook utilization starts to decline.
The decrease in codebook utilization leads to wastage of the code, resulting in a gradual degradation
of the metrics. Based on these experimental results, a group number of 32~64 is considered optimal.
As the number of groups increases, more training time is required to achieve high utilization (shown
in Figure 8). Given sufficient training time, a larger number of groups is the preferable choice.

5 CONCLUSION

In this paper, we first analyze the key differences between Vanilla VQ and Joint VQ. To balance
codebook utilization and reconstruction performance, we propose Group-VQ, which introduces
the idea of group-wise optimization of the codebook. We also propose a post-training codebook
sampling method that enables flexible adjustment of the codebook size without retraining. In image
reconstruction tasks, Group-VQ demonstrates superior performance. It would be interesting to explore
the application of the group-wise optimization concept from Group-VQ to other, more complex Joint
VQ methods in future work.
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ETHICS STATEMENT

Our work introduces Group-VQ, a method for improving vector quantization in image reconstruction.
While not directly enabling generative applications, VQ underpins such models, so we acknowledge
potential misuse risks and advocate for responsible development. Public datasets may contain societal
biases; we encourage future efforts to mitigate them. No human subjects or personal data were
involved, and ethics guidelines are upheld.

REPRODUCIBILITY STATEMENT

To support the reproducibility of our research, we have provided an anonymous link to the
core source code in the abstract: https://anonymous.4open.science/r/Group-VQ_
anonymous-60E3. This code repository contains the core implementation of our proposed method
along with configuration files. We encourage readers to consult this repository to obtain the complete
technical details necessary to reproduce our results.
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A RELATED WORK

Addressing the shortcomings of unstable codebook training and suboptimal encoding performance in
Vanilla VQ models (Van Den Oord et al., 2017; Razavi et al., 2019), researchers have proposed various
methods. The relevant work can mainly be categorized into: (1) Improvements to Straight-Through
Estimator (2) Multi-index quantization (3) Improvements to the codebook.

Improvements to Straight-Through Estimator. Huh et al. (2023) alternately optimizes the codebook
and the model, using the gradient of the task loss to update the codebook synchronously. Fifty et al.
(2024) proposes a rotation trick to optimize the STE.

Multi-index quantization. The Vanilla VQ model represents each feature vector using a single code
vector from the codebook, corresponding to one index. For an entire feature map Z ∈ Rh×w×d,
a total of h × w indices are used, which represents the theoretical upper limit of the information
content after quantization. To increase the information capacity of the encoded representation, it is
a natural idea to use more indices to represent the feature map, which also implies that more code
vectors are selected and optimized. RQ-VAE (Lee et al., 2022) quantizes the error vector between
the original and quantized feature vectors multiple times, allowing for a more precise representation
of each feature vector. Product Quantization (PQ) (Jegou et al., 2010; Zhang et al., 2024; Li et al.,
2024; Guo et al., 2024) divides the vector into multiple shorter sub-vectors and quantizes each
sub-vector separately. VAR (Tian et al., 2024) introduces multi-scale residual quantization, where the
feature map is downsampled multiple times, and each downsampled feature map is quantized. The
commonality of these methods lies in the use of more than h×w indices to represent the feature map.

Improvements to the codebook. This section includes the way to look up code vectors and the
optimization methods for the codebook. Van Den Oord et al. (2017) employs exponential moving
average (EMA) to update the codebook. Sønderby et al. (2017); Roy et al. (2018); Kaiser et al.
(2018) prevents certain codes from never being used by employing random sampling and probabilistic
relaxation during the training process, while Dhariwal et al. (2020); Zeghidour et al. (2021) achieves
this by periodically replacing inactive codes. The Vanilla VQ model uses Euclidean distance to
measure vector distances, while VQGAN-FC (Yu et al., 2021) projects features into a low-dimensional
space (Chen et al., 2024) and applies L2 normalization, making squared Euclidean distance equivalent
to cosine similarity. DALL-E (Ramesh et al., 2021) utilizes Gumbel-Softmax trick (Jang et al., 2016)
to represent the tokens of images. Some methods explore better codebook initialization, such as using
features from a pre-trained backbone for K-Means clustering to initialize the codebook (Łańcucki
et al., 2020; Huh et al., 2023; Zhu et al., 2024a). Lookup-free Quantization (LFQ) (Yu et al., 2023)
and Finite Scalar Quantization (FSQ) (Mentzer et al., 2023) project feature vectors onto an extremely
low dimension (typically < 10) and then perform integer quantization on each dimension respectively
after compression by a bounded function. LFQ and FSQ are equivalent to fixing the codebook (Han
et al., 2024; Zhao et al., 2024b), thus avoiding "codebook collapse". However, fixing the codebook
leads to performance degradation, so there are various methods proposed to jointly optimize the
entire codebook (Shi et al., 2024). Huh et al. (2023) perform affine transformations with shared
parameters on each code. VQGAN-LC (Zhu et al., 2024a) and SimVQ (Zhu et al., 2024b) freeze the
codebook and only train the projection layers after it. Zhang et al. (2023) aims to align the codebook
distribution with that of encoder features.
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B IMPLEMENTATION OF SIMPLIFIED GROUP-VQ

In the simplified Group-VQ, each sub-codebook has the same codebook size and the same rank.
Consistent with the setup in Section 3.2, the codebook contains n vectors, each with a dimension of
d, and is divided into k sub-codebooks. Each sub-codebook in the simplified Group-VQ contains n

k
(ensuring divisibility) code vectors, and all sub-codebooks have a rank of r. We use the following
Algorithm 3 to parallelize the codebook generation.

Algorithm 3 Codebook Initialization in simplified Group-VQ

Input: Codebook size n, code vector dimension d, number of sub-codebooks k, sub-codebook
rank r
Random initialization (standard normal distribution): Ĉ ∈ Rn

k ×r, W ∈ Rr×(d×k), zero-initialized
b ∈ R(d×k)

Compute intermediate result: C ′ = Ĉ W + b
Reshape C ′ from

(
n
k , d× k

)
to

(
n, d

)
to obtain the final codebook C

Output: Codebook C

Since the codebook core is fixed, the above method only parallelizes the codebook generation process
of the simplified Group-VQ and does not affect the parameter independence between sub-codebooks.
It is worth noting that in this simplified version, since each sub-codebook shares the same codebook
core, performance may slightly degrade when the number of codes per group is too small (e.g.,
<= 16). However, the experimental setup in Section 4.1 does not fall into this range, so the impact
can be ignored.

C CODEBOOK UTILIZATION DYNAMICS

Figure 8 illustrates that the codebook utilization rate increases with the progression of epochs. The
greater the number of independently optimized groups, the later the 100% utilization rate is achieved.
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Figure 8: The codebook utilization rate increases with epochs. This includes SimVQ (equivalent
to Group-VQ with a group number of 1) and Group-VQ with group numbers of 16, 32, and 64,
respectively.
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D MORE VISUALIZATION OF GROUP-VQ

In this section, we use Principal Component Analysis (PCA) (Pearson, 1901; Hotelling, 1933) to
reduce the dimension of the codebook to two dimensions. We combine all the code vectors and
standardize them. Then, we utilize PCA to extract the two principal components with the largest data
variance, forming a projection matrix. All codes are mapped onto a two - dimensional plane through
this projection matrix. The result is shown in Figure 9.

10 0 10 20 30 40
PC1 (49.9%)

20

15

10

5

0

5

10

PC
2 

(1
5.

6%
)

(a)

Group 7
Group 11
Group 15

20 10 0 10 20
PC1 (49.9%)

10

5

0

5

10

15

(b)
10 5 0 5 10

PC1 (49.9%)

4

2

0

2

4

(c)

Group 0
Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10
Group 11
Group 12
Group 13
Group 14
Group 15

Figure 9: Use PCA to project the Group - VQ (group = 16) code vectors on ImageNet onto 2 -
dimensional space for visualization. The horizontal and vertical axes are the first two principal
components calculated by PCA. The horizontal axis represents the first principal component, PC1,
which preserves the most information. The vertical axis represents the second principal component,
PC2. The units of the coordinate axes are the values of the standardized data after being projected by
PCA. (a) shows 256 sampled points per group for groups 7, 11, and 15. (b) shows 64 sampled points
per group for all groups. (c) shows the projection of the bias vectors for each group.
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E SAMPLE RESULTS OF IMAGE RECONSTRUCTION

Figures 10 present a selection of sample results from the image reconstruction on ImageNet discussed
in Section 4.1. For example, in the images of the fourth row, Group - VQ reconstructs the feathers at
the tips of the bird’s wings better. In the fifth row, the overall colors reconstructed by Group - VQ are
more consistent with the original image.

Original Image SimVQ Group-VQ (16) Group-VQ (64)

Figure 10: Image reconstruction examples. The numbers in parentheses for Group-VQ indicate the
number of groups.
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Figure 11 presents a selection of sample results from the codebook resampling and self-extension
discussed in Section 4.1.

Original Image Group-VQ (16) +downsampling +self-extension+upsampling

Figure 11: Images of codebook resampling and self-extension applied to Group-VQ with group=16.
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F LIMITATION

The VQ model discretizes images into tokens, ultimately serving the modeling needs of downstream
generative models. However, we have not yet validated the effectiveness of Group-VQ on generative
models. We clarify that Group-VQ improves the optimization dynamics of the codebook during
training solely by altering the parameterization of the codebook. Therefore, we believe Group-VQ
remains orthogonal to downstream tasks, and thus we leave this exploration for future work.

G THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, a Large Language Model (LLM) was used solely for the purpose
of language polishing and stylistic refinement of the text. The LLM was prompted to improve clarity,
grammar, and fluency of expression, without altering the core scientific content, methodology, results,
or interpretations presented in the paper. The research ideas, experimental design, data analysis, and
original writing were entirely conducted by the human authors. The LLM did not contribute to the
generation of hypotheses, formulation of research questions, or development of novel concepts. Its
role was strictly limited to post-writing linguistic enhancement.
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