
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GROUP-WISE OPTIMIZATION FOR SELF-EXTENSIBLE
CODEBOOKS IN VECTOR QUANTIZED MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Vector Quantized Variational Autoencoders (VQ-VAEs) leverage self-supervised
learning through reconstruction tasks to represent continuous vectors using the
closest vectors in a codebook. However, issues such as codebook collapse per-
sist in the VQ model. To address these issues, existing approaches employ im-
plicit static codebooks or jointly optimize the entire codebook, but these methods
constrain the codebook’s learning capability, leading to reduced reconstruction
quality. In this paper, we propose Group-VQ, which performs group-wise opti-
mization on the codebook. Each group is optimized independently, with joint
optimization performed within groups. This approach improves the trade-off be-
tween codebook utilization and reconstruction performance. Additionally, we
introduce a training-free codebook resampling method, allowing post-training
adjustment of the codebook size. In image reconstruction experiments under var-
ious settings, Group-VQ demonstrates improved performance on reconstruction
metrics. And the post-training codebook sampling method achieves the desired
flexibility in adjusting the codebook size. The core code is available at https:
//anonymous.4open.science/r/Group-VQ_anonymous-60E3

1 INTRODUCTION

Vector Quantization (VQ) (Gray, 1984) is a technique that maps continuous features to discrete
tokens. Specifically, VQ defines a finite codebook and selects the closest code vector for each feature
vector by calculating a similarity measure, typically Euclidean distance or cosine similarity (Yu
et al., 2021). This selected code vector serves as the discrete representation of the feature vector.
VQ-VAE (Van Den Oord et al., 2017; Razavi et al., 2019) employs vector quantization as an image
tokenizer, which quantizes the feature map output by the encoder to represent an image as a series
of integer indices. The decoder then uses only the quantized feature map to reconstruct the image.
Due to the non-differentiability (Huh et al., 2023) of the quantization operation, the Straight-Through
Estimator (STE) (Bengio et al., 2013) enables the encoder to receive gradients from the task loss by
copying the gradients of the quantized vectors to the pre-quantized vectors. VQ has found widespread
applications in autoencoders (Van Den Oord et al., 2017; Razavi et al., 2019; Zhao et al., 2024a) and
generative models (Rombach et al., 2022; Dhariwal et al., 2020; Tian et al., 2024; Weber et al., 2024;
Yu et al., 2024a).

Despite achieving success in numerous applications, traditional VQ training often encounters the
issue of low codebook utilization, where only a subset of code vectors are used and updated, leading
to “codebook collapse” (Roy et al., 2018; Huh et al., 2023; Yu et al., 2024b), which limits the model’s
encoding capability. To address these challenges, various improvements have been proposed, such
as reducing the dimensionality of the latent space (Yu et al., 2021; Mentzer et al., 2023; Yu et al.,
2023), initializing the codebook with pretrained models (Huh et al., 2023; Zhu et al., 2024a), and
jointly optimizing the entire codebook (Zhu et al., 2024b; Huh et al., 2023). In our paper, we refer to
these methods as “Joint VQ”. These methods have shown promising results, achieving near 100%
codebook utilization. However, in order to reach a 100% utilization rate, our experiments indicate
that these methods have restricted the learning ability of the codebook to some extent, resulting in
performance differences under the same utilization rate.

To alleviate this issue, we propose to approach codebook optimization from a group perspective,
thereby naturally introducing the Group-VQ method. This method organizes the codebook into

1

https://anonymous.4open.science/r/Group-VQ_anonymous-60E3
https://anonymous.4open.science/r/Group-VQ_anonymous-60E3

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Optimization

Perspective

(a) Vanilla VQ (c) Joint VQ(b) Group-VQ

unselected code selected code

0 1 2 3 0 1 0

update range

each code as a group partial code as a group all code as a group

Codebook

Perspective

Encoder

1 2

3 4 5

6 7 8

0

Match

Feature Map

Feature Vector

Figure 1: The differences among Vanilla VQ (a), Group-VQ (b), and Joint VQ (c) lie in their codebook
update strategies: Vanilla VQ updates codes independently; Joint VQ optimizes the entire codebook
jointly; and Group-VQ updates groups independently while optimizing jointly within each group.

multiple independent groups, where parameters are shared within each group to enable joint op-
timization within the group while keeping the groups independent of each other, i.e., group-wise
optimization. This allows each group to focus on learning different feature distributions. Figure
1 shows a comparison among Vanilla VQ, Joint VQ, and Group-VQ. Additionally, we propose a
codebook resampling method, which generates a new codebook by simply sampling after training.
Our contributions can be summarized as follows:

• We propose the Group-VQ method, which approaches codebook optimization from a group
perspective and balances the codebook utilization and reconstruction performance of the
VQ model.

• We generalize the Joint VQ method based on shared parameters, and then introduce a
post-training codebook sampling method to facilitate flexible adjustment of the codebook
size without the need to retrain the model.

• We confirm the efficacy of Group-VQ and codebook resampling in image reconstruction,
highlighting the importance of grouped design and outlining group number selection princi-
ples through ablation studies.

2 PRELIMINARY

The core of the visual tokenizer is vector quantization, which replaces any given vector with a discrete
token from a codebook. For an image I ∈ RH×W×3, VQ-VAE (Van Den Oord et al., 2017) first
uses an encoder, typically a convolutional network with downsampling layers, to obtain the feature
map Z ∈ Rh×w×d, where h and w represent the height and width of the feature map, and d is
the number of channels in the feature map. The quantizer includes a codebook C = {qi | qi ∈
Rd, i = 0, 1, . . . , n− 1} ∈ Rn×d, which means the codebook contains n code vectors, each with a
dimensionality of d. For each vector z ∈ Rd in the feature map, the quantizer finds the closest vector
q in the codebook (typically using Euclidean distance) to replace z.

q = argmin
qi∈C

∥z − qi∥, i = 0, 1, . . . , n− 1 (1)

However, since the argmin operation is non-differentiable, VQ-VAE uses the straight-through
estimator (STE) (Bengio et al., 2013) to pass the gradient directly through q to z, allowing the encoder
to receive gradients from the reconstruction loss:

zq = z + sg[q − z] (2)

Here, sg[] denotes stop gradient, meaning that the gradient will not propagate through the sg[]
operation. By applying such quantization to each vector z in the feature map Z, the feature map
is converted into a discrete representation Q ∈ Rh×w×d composed of each zq. The decoder then

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

generates the reconstructed image Î ∈ RH×W×3 based on the quantized discrete feature map Q. The
VQ-VAE loss consists of both the image reconstruction loss and the codebook loss:

L = ∥I − Î∥2 + β∥Q− sg[Z]∥2 + γ∥Z − sg[Q]∥2 (3)

where β and γ are fixed hyperparameters. However, a major issue with this approach is that in each
iteration, only a subset of the code vectors are selected, meaning that only those vectors receive
gradients and get updated, which eventually leads to codebook collapse (Roy et al., 2018; Huh et al.,
2023; Yu et al., 2024b).

To achieve high codebook utilization, VQGAN-LC (Zhu et al., 2024a) proposes using a pre-trained
visual backbone to extract image features and initializing the codebook Ĉ with cluster center vectors
obtained through clustering. After initialization, the codebook remains frozen, and a projection layer
P (·) is used to map the codebook to a projected codebook C = P (Ĉ) ∈ Rn×d. During training,
only this projection layer is optimized. This approach allows for the simultaneous adjustment of
the entire codebook’s distribution. LFQ (Yu et al., 2023) and FSQ (Mentzer et al., 2023) employ
implicit and fixed codebooks to prevent codebook collapse. SimVQ (Zhu et al., 2024b) simplifies the
aforementioned approach by directly employing random initialization for Ĉ ∈ Rn×d and reparame-
terizing the codebook C ∈ Rn×d in the form of ĈW , where W ∈ Rd×d. This method represents
each code vector as a linear combination of the rows in W . By updating W , each code vector is
indirectly updated. Huh et al. (2023) proposes adjusting each code vector q̂ using shared global mean
and standard deviation, defined as q = cmean + cstd × q̂, where cmean and cstd are affine parameters
with the same dimensionality as the code vectors and are shared across the entire codebook. This
approach simplifies the matrix W to a diagonal matrix and adding a bias vector.

The commonality among the aforementioned optimization methods for VQ lies in their use of shared
learnable parameters to reparameterize the entire codebook, thereby enabling joint optimization of
the codebook space to mitigate the issue of codebook collapse. As such, we collectively refer to them
as Joint VQ (achieved through shared parameters).

3 METHOD

3.1 OBSERVATION

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Epoch

6
7
8
9

10

30

50

70

90

110

rF
ID

Joint VQ: 6.45
Vanilla VQ: 6.13

0.2

0.4

0.6

0.8

1.0

Ut
iliz

at
io

n

Joint VQ rFID
Vanilla VQ rFID
Joint VQ Utilization
Vanilla VQ Utilization

Figure 2: The codebook utilization rate and rFID for Joint
VQ and Vanilla VQ at each epoch.

Joint VQ is straightforward and ef-
fective in addressing the codebook
collapse problem; however, it suffers
from a significant issue: the gradi-
ents generated by all selected code
vectors affect the entire codebook dis-
tribution. While this helps the code-
book quickly adapt to the feature dis-
tribution generated by the encoder, it
remains overly coarse-grained. We
believe this may lead to potential in-
terference between updates of differ-
ent codes, making it difficult for the
codebook to adapt to complex distri-
butions. To validate this conjecture,
we conducted small-scale image re-
construction experiments comparing Joint VQ (implemented using SimVQ (Zhu et al., 2024b)) with
Vanilla VQ, aiming to explore the relationship between codebook utilization and reconstruction
quality. The parameter settings are detailed in Section 4.3.

The results are shown in Figure 2. It can be observed that Joint VQ rapidly achieves 100% codebook
utilization by the 2nd epoch and maintains it, while Vanilla VQ’s utilization grows gradually each
epoch and ultimately remains below 90%. However, for the rFID metric (lower is better) used to
measure image reconstruction quality, Vanilla VQ performs better in the end. We can thus infer that
the performance gains of Joint VQ with larger codebook sizes stem from higher utilization, but the
quality of the used codes is inferior to that of Vanilla VQ, which independently fine-tunes each code.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Codebook Structure of Group-VQ

Group k

. . .

Group 0

0

0

n d
G




Sub-Codebook

Reparameterize

Code n-1

-

-

-

Code 0

. . .

Codebook
n dC 

-

-

Grouping

1

0

k

i

i

n n
−

=

=

freeze

learnable

Projector

0

0 0,
r d dbW


 0 0

0 ~
n r

PG




Codebook Core

~m r P

Sampled Matrix

Projector

Code m-1

-

Code 0

. . .

Incremental Codebook

m d

Post-training Sampling

Generate

Figure 3: Left: The reparameterization method of the codebook by Group-VQ. It partitions the
codebook into multiple disjoint groups (sub-codebooks), each of which undergoes separate reparame-
terization. Right: Post-training sampling. Simply sampling a new codebook core and applying the
trained projector yields new codes.

3.2 GROUP-VQ

To address the trade-offs observed in our preliminary experiments, we propose a perspective on
the codebook by considering it from the viewpoint of groups. In this context, a group is defined
as the smallest unit of the codebook that is independently updated during training. Formally, let
the codebook C = {qi | qi ∈ Rd, i = 0, 1, . . . , n − 1} ∈ Rn×d be partitioned into k groups (or
sub-codebook), where each group Gj ⊆ C (for j = 0, 1, . . . , k − 1) contains nj code vectors. The
groups are disjoint and collectively exhaustive:

k−1⋃
j=0

Gj = C, Gj ∩Gj′ = ∅ if j ̸= j′ (4)

Specifically, for a group Gj = {qj1 , qj2 , . . . , qj|Gj |
}, qjt denotes the t-th code in Gj , and Lj

represents the commitment loss corresponding to Gj . Since the groups are mutually disjoint and
updated independently, when j′ ̸= j, Lj′ does not depend on qjt , and thus∇qjt

Lj′ = 0. Therefore,
the gradient of the total commitment loss Lcmt with respect to the code vector qjt ∈ Gj is given by:

∇qjt
Lcmt = ∇qjt

k−1∑
j′=0

Lj′

 = ∇qjt
Lj +

∑
j′ ̸=j

∇qjt
Lj′ = ∇qjt

Lj . (5)

Consequently, during training, the update rule for each code qjt ∈ Gj can be expressed as:

qjt ← qjt − η∇qjt
Lj (6)

where η is the learning rate. The gradient∇qjt
Lj only affects the vectors within Gj , indicating that

each group is updated independently based solely on the gradients computed from its contained codes,
and the updates are confined to the vectors within Gj .

For each group Gj , in order to enable joint optimization of all code vectors within it, we can employ
any method that supports joint optimization of codebooks. In Group-VQ, we adopt the parameter-
sharing approach (Zhu et al., 2024b;a; Huh et al., 2023) to define each group. The group Gj is
parameterized as follows:

Gj = ĜjWj + bj (7)

where Ĝj ∈ Rnj×rj , Wj ∈ Rrj×d and b0 ∈ Rd. We refer to Ĝj as the “codebook core” and Wj

as the “projector”. rj represents the rank of sub-codebook Gj . The values of nj and rj for each
sub-codebook can be set differently, enabling the heterogeneity and asymmetry of the codebook.
bj ∈ Rd is the bias vector. Figure 3 (left) and Algorithm 1 illustrate the method to construct the
codebook in the Group-VQ.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The vector quantization approach in Group-VQ remains unchanged. For each feature vector z output
by the encoder, the quantizer finds the closest vector q in the codebook C. Since each feature vector
always belongs to a specific sub-codebook, Group-VQ does not require an additional routing function
design. Instead, feature vectors are automatically routed to the appropriate sub-codebook through
distance metrics. Group-VQ inherently brings group-wise optimization during training.

Discussion. Under this group perspective, we can analyze existing vector quantization approaches.
In Vanilla VQ, each code vector qi ∈ C is updated independently based on gradients from the feature
vectors it quantizes, implying that each code vector forms its own group. This fine-grained update
strategy results in a number of groups equal to the total number of code vectors, expressed as

k = n, Gi = {qi}, ∀i = 0, 1, . . . , n− 1. (8)
In contrast, Joint VQ, such as SimVQ (Zhu et al., 2024b) or VQGAN-LC (Zhu et al., 2024a),
reparameterizes the entire codebook C using shared parameters, meaning the update of any code
vector affects the entire codebook, corresponding to a single group, described by k = 1, G0 = C.
The proposed Group-VQ balances these extremes by partitioning the codebook into k disjoint and
collectively exhaustive groups, where each group Gj contains nj code vectors. This structure is
formally defined as

C =

k−1⋃
j=0

Gj , Gj ∩Gj′ = ∅ if j ̸= j′, Gj = {qj1 , qj2 , . . . , qjnj
},

k−1∑
j=0

nj = n. (9)

The core idea of our proposed Group-VQ is to balance the codebook utilization and its expressive
power by adjusting the number of groups. If we consider the code as a whole and the group as
the minimal unit, Group-VQ is equivalent to Vanilla VQ. Conversely, if we regard the group as a
whole and the code as the minimal unit, each group becomes a Joint VQ. From a global perspective,
Group-VQ represents a hybrid of these two approaches. By adjusting the number of groups k, where
1 ≤ k ≤ n, Group-VQ achieves a hybrid of Vanilla VQ and Joint VQ, enabling flexible control over
codebook utilization and expressive power. Appendix C illustrates the dynamics between the number
of groups and codebook utilization rate.

3.3 CODEBOOK RESAMPLING AND SELF-EXTENSION

In VQ models, changing the size of the codebook typically requires retraining or fine-tuning the entire
codebook along with the corresponding encoder and decoder. However, we note that this process
is straightforward for generative codebooks, which refer to codebooks generated using a learnable
network from a fixed distribution of codebook cores. After training, modifying the codebook size
only requires resampling the codebook cores from the fixed distribution, while the model itself does
not require further training.

Specifically, we define a generative network, also referred to as a projector Fθ(·), and a codebook core
Ccore. Here, Fθ(·) is a learnable linear projection layer or a small neural network, with θ denoting its
learnable parameters. During the training process, each vector in the codebook core Ccore is randomly
sampled from a fixed distribution P , with no learnable parameters. The final codebook C is generated
by applying Fθ(·) to Ccore:

C = Fθ(Ccore) , Ccore ∼ P (10)
Since Ccore always follows the fixed-parameter distribution P , Fθ(·) is trained to learn the transforma-
tion from the distribution P to the feature distribution of the encoder’s output. This property allows
us to resample Ccore from the distribution P after training, thereby flexibly adjusting the size of the
codebook without incurring additional costs.

In Group-VQ, each sub-codebook belongs to the aforementioned generative codebook, so we leverage
this property to apply it to post-training self-expansion of the codebook. Specifically, we randomly
initialize each sub-codebook core Ĝj , for example, by sampling each row vector ĝ ∈ Rrj indepen-
dently from a standard normal distribution N (0, I). After training, we sample new row vectors
v̂ ∈ Rrj from N (0, I) and project them using the already trained Wj to obtain new code vectors:

q̃ = v̂ Wj , v̂ ∼ N (0, I) (11)
These newly sampled code vectors q̃ are then added to Gj to obtain the extended sub-codebook. The
denser code vectors allow for finer quantization, thereby leading to improved reconstruction quality.
Figure 3 (right) and Algorithm 2 illustrates the post-training sampling method.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Codebook Initialization in Group-VQ

Require: Number of code vectors n, dimen-
sionality d, number of sub-codebooks k and
sizes {nj}, intrinsic dimensions {rj}

Ensure:
∑k−1

j=0 nj = n

1: for j = 0 to k − 1 do
2: Initialize matrices:
3: Ĝj ← fix(Ĝj ∈ Rnj×rj ∼ P)
4: Wj , bj ← random init
5: Gj ∈ Rnj×d ← ĜjWj + bj
6: end for
7: C ← concat(G0, G1, . . . , Gk−1)
8: return the final codebook C

Algorithm 2 Codebook Post-Training Sampling

Require: Trained {Wj , bj , Gj}, target sizes
{mj} for new sub-codebooks

1: for j = 0 to k − 1 do
2: Gδ

j ← Ĝδ
jWj + bj , Ĝ

δ
j ∈ Rmj×rj ∼ P

3: if Resampling then
4: G′

j ← Gδ
j

5: else if Self-Extension then
6: G′

j ← concat(Gj , G
δ
j [: mj − nj])

7: end if
8: end for
9: C ′ ← concat(G′

0, G
′
1, . . . , G

′
k−1)

10: return the new sampling codebook C ′

4 EXPERIMENTS

In Section 4.1, we demonstrate the superior image reconstruction performance of Group-VQ, includ-
ing codebook resampling and self-extension experiments. Section 4.2 provides statistical analysis
and visualization of sub-codebook information, along with experiments validating the group-wise
optimization strategy. Section 4.3 investigates how to set the number of groups in Group-VQ for
optimal performance through ablation studies.

4.1 VISION RECONSTRUCTION

20 21 22 23 24 25 26

Multiple

5.6

5.8

6.0

6.2

6.4

rF
ID

Resampling rFID
Self-extension rFID

Resampling PSNR
Self-extension PSNR

22.0

22.2

22.4

22.6

22.8

23.0

PS
NR

Figure 4: Using resampling and self-expansion meth-
ods, the rFID and PSNR under different multiples of
expanding the codebook size. The codebook size during
training is 1024.

Implementation details. For a fair
comparison, we align the settings of
SimVQ (Zhu et al., 2024b) and view it as
a strong baseline. Specifically, we train
Group-VQ with an input image resolu-
tion of 128 × 128. The image is pro-
cessed by an encoder with multiple con-
volutional layers and downsampling layers,
resulting in a total downsampling factor
of f = 8. The encoder outputs a feature
map of size 16× 16× 128. For Group-VQ,
the rank of each group is set to 128, and
only each projector is trainable. We use
the ImageNet-1k (Deng et al., 2009) and
MS-COCO (Lin et al., 2014) datasets, with
both VQGAN (Esser et al., 2021) and ViT-
VQGAN (Yu et al., 2021) encoder/decoder
architectures, and conduct different combi-
nations to verify the broad applicability of Group-VQ. In our implementation, we simplify Group-VQ
by evenly partitioning the codebook, ensuring an equal number of codes per group. So we use parallel
implementation for faster speed and it can be found in Appendix B. All training is conducted on
NVIDIA A5000 GPUs, with a batch size of 32 per GPU.

Optimizer settings. The learning rate is fixed at 1 × 10−4, using the Adam optimizer (Kingma,
2014) with β1 = 0.5 and β2 = 0.9. We evaluate the performance of the Group-VQ method on the
image reconstruction task using the rFID (reconstruction FID) (Heusel et al., 2017), LPIPS(VGG16)
(Zhang et al., 2018), PSNR, and SSIM (Wang et al., 2004) metrics on the ImageNet validation set.

Main results and analysis. Table 1 presents the reconstruction performance of Group-VQ compared
to other baseline methods. The primary baseline models include VQGAN (Esser et al., 2021),
ViT-VQGAN, VQGAN-FC (Yu et al., 2021), FSQ (Mentzer et al., 2023), LFQ (Yu et al., 2023),
VQGAN-LC (Zhu et al., 2024a), and SimVQ (Zhu et al., 2024b). The Group parameter in the table
represents the number of groups in the codebook from the perspective of group-wise optimization. For

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Reconstruction performance of various VQ models. Group-VQ achieves the best
reconstruction quality across all datasets and encoder/decoder architecture settings.

Method Codebook Size Group Codebook Usage rFID↓ LPIPS↓ PSNR↑ SSIM↑

Base Structure: VQGAN, Dataset: ImageNet-1k, Epoch: 50
VQGAN 65,536 65,536 1.4% 3.74 0.17 22.20 0.706
VQGAN-EMA 65,536 65,536 4.5% 3.23 0.15 22.89 0.723
VQGAN-FC 65,536 65,536 100.0% 2.63 0.13 23.79 0.775
FSQ 64,000 0 100.0% 2.80 0.13 23.63 0.758
LFQ 65,536 0 100.0% 2.88 0.13 23.60 0.772
VQGAN-LC 65,536 1 100.0% 2.40 0.13 23.98 0.773
SimVQ 65,536 1 100.0% 2.24 0.12 24.15 0.784
SimVQ (ours run) 65,536 1 100.0% 1.99 0.12 24.34 0.788
Group-VQ 65,536 64 99.9% 1.86 0.11 24.37 0.787

Base Structure: ViT-VQGAN, Dataset: 20% ImageNet-1k, Epoch: 40
ViT-VQGAN 8192 8192 1.08% 26.66 0.17 21.75 0.660
LFQ 8192 0 100.0% 12.27 0.13 23.57 0.755
SimVQ 8192 1 100.0% 11.44 0.12 23.74 0.761
Group-VQ 8192 8 100.0% 10.72 0.12 23.85 0.764
Group-VQ 8192 16 100.0% 10.67 0.12 23.87 0.765

Base Structure: VQ-GAN, Dataset: MS-COCO, Epoch: 20
LFQ 4096 0 100.0% 14.20 0.19 21.87 0.713
SimVQ 4096 1 100.0% 13.18 0.18 21.90 0.719
Group-VQ 4096 16 100.0% 12.55 0.17 22.08 0.722

Table 2: Codebook resampling and self-extension of Group-VQ on ImageNet-1k.

Method Codebook Size Group Codebook Usage rFID↓ LPIPS↓ PSNR↑ SSIM↑

Group-VQ 65,536 16 99.7% 1.87 0.12 24.32 0.785
+ downsampling 32,768 16 100.0% 2.16 0.12 24.02 0.773
+ upsampling 131,072 16 99.9% 1.79 0.11 24.49 0.791
+ self-extension 131,072 16 99.9% 1.76 0.11 24.51 0.792

methods where each code is updated independently, such as VQGAN, the number of groups equals
the codebook size. For methods with joint updates, the number of groups is 1. FSQ and LFQ, which
utilize implicit and non-learnable codebooks, have a group number of 0. Group-VQ demonstrates
state-of-the-art performance across multiple metrics, with improved rFID scores suggesting its
reconstruction results align more closely with the original images’ overall distribution. We present
the images in Appendix E. In contrast, other methods with 100% codebook utilization exhibit varying
performance. For instance, FSQ and LFQ completely freeze the codebook, resulting in relatively
poorer performance. This suggests that we should not only focus on increasing codebook utilization
but also enhance its learning capability.

Codebook resampling and self-extension. To validate the method proposed in Section 3.3, we
resample the codebook to half the size used during training (downsampling) and double the size
(upsampling) during evaluation. The self-extension method expands the codebook size by a factor
of 2. The distinction between self-extension and resampling lies in the fact that the former retains
the codes used during training, while the latter entirely replaces them with newly sampled codes.
Table 2 reports the experimental results of codebook resampling and self-extension based on the post-
training Group-VQ. The results demonstrate the expected decreases and increases in reconstruction
metrics for downsampling, upsampling, and self-extension methods, respectively. Figure 4 presents
additional results, where the codebook size during training is set to 1024, and it is expanded by
powers of 2. PSNR consistently improves as the codebook size increases. We primarily focus on
the more perceptually aligned rFID metric, which reaches its minimum value at an expansion of
1024× 23 = 8192, before starting to rise. This indicates that codebook extension has a limit in scale:
too many newly sampled and untrained codes can degrade reconstruction performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Comparison of different codebook generation networks (projectors).

Linear MLP Trainable Parameters Codebook Size Codebook Usage rFID↓ PSNR↑
✓ ✗ 16,512 1024 100.0% 6.45 22.02
✗ ✓ 33,024 1024 98.9% 7.66 21.73
✓ ✓ 49,536 1024 99.7% 6.66 22.15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

M
ea

n

0

50

100

150

Va
ria

nc
e

Mean L2 of Norm
Variance of L2 Norm

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.06
0.07
0.08
0.09
0.10

Frequency

Figure 5: Left: The average value and variance of the l2-norm of vectors in each group (0~15) in the
codebook; Right: The usage frequency of each group when tested on the ImageNet validation set.

4.2 ANALYSIS OF GROUP-VQ

Different groups have learned different patterns. Analysis in the section is based on the Group-VQ
with a codebook size of 65536 with a group number of 16 in Table 2. Figure 5 (left) shows the mean
and variance of the l2-norm of the codes in each group of the Group-VQ after training, and Figure 5
(right) shows the utilization rate of each group during the evaluation phase. These differences in the
statistical values of the groups indicate that different groups have differentiated. Figure 6 shows the
heatmap of the pairwise cosine similarity of codes. The checkerboard - like image indicates that the
codes within a group are relatively similar, while the differences between groups are relatively large.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 6: Heatmap of pairwise cosine
similarity for codes. Randomly pick 128
codes from each group.

In Figure 7, we visualize the code vectors in a two-
dimensional space using random projections (Johnson
et al., 1986; Bingham & Mannila, 2001). In Figure 7(a),
group 7 (with the smallest variance), group 11 (with the
largest variance), and group 15 (with the highest usage
frequency) exhibit distinct distributions. Group 15 shows
a more dispersed distribution, corroborating its higher
utilization rate. Figure 7(b) provides an overview of all
groups. Figure 7(c) displays the bias vectors, i.e., the cen-
ters, for each group. More visualizations in D. Overall,
different groups in Group-VQ adaptively learn diverse
feature spaces, each responsible for distinct distributions.

Are more complex projectors effective? The implemen-
tation of the Group-VQ method based on shared param-
eters is a reparameterization of the codebook. Therefore,
it seems reasonable to consider that using a more com-
plex network as the projector for generating the codebook
might yield better results. We configure three types of
projectors to verify whether this conjecture holds: the simplest linear projection layer, a multilayer
perceptron (MLP) with one hidden layer, and a combination formed by summing the outputs of a
linear projection layer and an MLP. We trained on a 25% subset of ImageNet for 20 epochs, with
a codebook size of 1024 and the number of groups set to 1. Other hyperparameters and optimizer
settings were the same as those in Section 4.1.

The experimental results, as shown in Table 3, indicate that the simplest linear projection layer
achieved the best rFID, while the more complex MLP led to significant performance degradation. In
the combination of a linear projection layer and an MLP, the two components seemed to counteract
each other, resulting in performance that was intermediate between the two standalone approaches.
This suggests that simply using a more complex projector network does not lead to better results
and may even hinder the learning of the codebook. This result further underscores the necessity of
independent updates for sub-codebooks in Group-VQ, indicating that its effectiveness stems from the
use of multiple independent groups rather than a more complex codebook generation approach.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: The codebook utilization and image reconstruction performance under different settings of
group numbers. A group size of 32~64 is considered optimal.

Group Count

1 2 4 8 16 32 64 128 256 512 1024

Usage 100% 100% 100% 100% 100% 100% 100% 95.6% 81.7% 78.8% 88.9%
rFID↓ 6.45 6.52 6.29 6.19 6.13 6.05 6.09 6.11 6.15 6.28 6.13
PSNR↑ 22.02 22.07 22.12 22.13 22.13 22.14 22.16 22.08 22.02 22.06 22.14

40 20 0 20 40 60
Projection Axis 1

100

75

50

25

0

25

50

75

100

Pr
oj

ec
tio

n
Ax

is
2

(a)

Group 7
Group 11
Group 15

40 20 0 20 40 60
Projection Axis 1

75

50

25

0

25

50

75

100

(b)
20 15 10 5 0 5 10 15 20

Projection Axis 1

40

30

20

10

0

10

20

30

40

(c)

Group 0
Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10
Group 11
Group 12
Group 13
Group 14
Group 15

Figure 7: The visualization of the code vectors from Group-VQ with group=16 on ImageNet,
randomly projected onto 2 dimensions. (a) shows 256 sampled points per group for groups 7, 11, and
15. (b) shows 64 sampled points per group for all groups. (c) shows the projection of the bias vectors
for each group. This visualizes distinct distributions across different groups.

4.3 ABLATION STUDY

In this section, for efficiency, we conduct ablation experiments using a 25% subset of ImageNet. All
models are trained for 20 epochs with a codebook size of 1024. Except for the number of groups in
the codebook, all other parameters remain the same as that in Section 4.1.

Since each sub-codebook in Group-VQ is independently optimized, when the number of groups is
set too high, it gradually degenerates into Vanilla VQ, leading to codebook collapse. Therefore, we
need to carefully identify an appropriate number of groups to balance the modeling capability of the
codebook while avoiding codebook collapse. Table 4 presents the codebook utilization and image
reconstruction performance under different group settings. As can be seen from the table, when
the number of groups increases from 1 to 32, the various metrics of Group-VQ generally show an
improving trend. This indicates that, with a moderate increase in the number of sub-codebooks, a
larger number of groups enhances the learning capability of the codebook without reaching the point
of codebook collapse. However, when the number of groups increases further, the metrics of Group-
VQ, particularly rFID, begin to rebound or fluctuate, and the codebook utilization starts to decline.
The decrease in codebook utilization leads to wastage of the code, resulting in a gradual degradation
of the metrics. Based on these experimental results, a group number of 32~64 is considered optimal.
As the number of groups increases, more training time is required to achieve high utilization (shown
in Figure 8). Given sufficient training time, a larger number of groups is the preferable choice.

5 CONCLUSION

In this paper, we first analyze the key differences between Vanilla VQ and Joint VQ. To balance
codebook utilization and reconstruction performance, we propose Group-VQ, which introduces
the idea of group-wise optimization of the codebook. We also propose a post-training codebook
sampling method that enables flexible adjustment of the codebook size without retraining. In image
reconstruction tasks, Group-VQ demonstrates superior performance. It would be interesting to explore
the application of the group-wise optimization concept from Group-VQ to other, more complex Joint
VQ methods in future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work introduces Group-VQ, a method for improving vector quantization in image reconstruction.
While not directly enabling generative applications, VQ underpins such models, so we acknowledge
potential misuse risks and advocate for responsible development. Public datasets may contain societal
biases; we encourage future efforts to mitigate them. No human subjects or personal data were
involved, and ethics guidelines are upheld.

REPRODUCIBILITY STATEMENT

To support the reproducibility of our research, we have provided an anonymous link to the
core source code in the abstract: https://anonymous.4open.science/r/Group-VQ_
anonymous-60E3. This code repository contains the core implementation of our proposed method
along with configuration files. We encourage readers to consult this repository to obtain the complete
technical details necessary to reproduce our results.

REFERENCES

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction: applications to
image and text data. In Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 245–250, 2001.

Hang Chen, Sankepally Sainath Reddy, Ziwei Chen, and Dianbo Liu. Balance of number of
embedding and their dimensions in vector quantization. arXiv preprint arXiv:2407.04939, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya Sutskever.
Jukebox: A generative model for music. arXiv preprint arXiv:2005.00341, 2020.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 12873–12883, 2021.

Christopher Fifty, Ronald G Junkins, Dennis Duan, Aniketh Iger, Jerry W Liu, Ehsan Amid, Sebastian
Thrun, and Christopher Ré. Restructuring vector quantization with the rotation trick. arXiv preprint
arXiv:2410.06424, 2024.

Robert Gray. Vector quantization. IEEE Assp Magazine, 1(2):4–29, 1984.

Haohan Guo, Fenglong Xie, Dongchao Yang, Hui Lu, Xixin Wu, and Helen Meng. Addressing index
collapse of large-codebook speech tokenizer with dual-decoding product-quantized variational
auto-encoder. arXiv preprint arXiv:2406.02940, 2024.

Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaobing
Liu. Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis. arXiv
preprint arXiv:2412.04431, 2024.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Harold Hotelling. Analysis of a complex of statistical variables into principal components. Journal
of educational psychology, 24(6):417, 1933.

Minyoung Huh, Brian Cheung, Pulkit Agrawal, and Phillip Isola. Straightening out the straight-
through estimator: Overcoming optimization challenges in vector quantized networks. In Interna-
tional Conference on Machine Learning, pp. 14096–14113. PMLR, 2023.

10

https://anonymous.4open.science/r/Group-VQ_anonymous-60E3
https://anonymous.4open.science/r/Group-VQ_anonymous-60E3

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search.
IEEE transactions on pattern analysis and machine intelligence, 33(1):117–128, 2010.

William B Johnson, Joram Lindenstrauss, and Gideon Schechtman. Extensions of lipschitz maps into
banach spaces. Israel Journal of Mathematics, 54(2):129–138, 1986.

Lukasz Kaiser, Samy Bengio, Aurko Roy, Ashish Vaswani, Niki Parmar, Jakob Uszkoreit, and
Noam Shazeer. Fast decoding in sequence models using discrete latent variables. In International
Conference on Machine Learning, pp. 2390–2399. PMLR, 2018.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Adrian Łańcucki, Jan Chorowski, Guillaume Sanchez, Ricard Marxer, Nanxin Chen, Hans JGA
Dolfing, Sameer Khurana, Tanel Alumäe, and Antoine Laurent. Robust training of vector quantized
bottleneck models. In 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–7.
IEEE, 2020.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
generation using residual quantization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11523–11532, 2022.

Xiang Li, Kai Qiu, Hao Chen, Jason Kuen, Jiuxiang Gu, Jindong Wang, Zhe Lin, and Bhiksha Raj.
Xq-gan: An open-source image tokenization framework for autoregressive generation. arXiv
preprint arXiv:2412.01762, 2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer vision–
ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014, proceedings,
part v 13, pp. 740–755. Springer, 2014.

Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar quantization:
Vq-vae made simple. arXiv preprint arXiv:2309.15505, 2023.

Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin philosophical magazine and journal of science, 2(11):559–572, 1901.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pp. 8821–8831. Pmlr, 2021.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2. Advances in neural information processing systems, 32, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Aurko Roy, Ashish Vaswani, Arvind Neelakantan, and Niki Parmar. Theory and experiments on
vector quantized autoencoders. arXiv preprint arXiv:1805.11063, 2018.

Fengyuan Shi, Zhuoyan Luo, Yixiao Ge, Yujiu Yang, Ying Shan, and Limin Wang. Taming scalable
visual tokenizer for autoregressive image generation. arXiv preprint arXiv:2412.02692, 2024.

Casper Kaae Sønderby, Ben Poole, and Andriy Mnih. Continuous relaxation training of discrete
latent variable image models. In Beysian DeepLearning workshop, NIPS, volume 201, 2017.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. arXiv preprint arXiv:2404.02905, 2024.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612,
2004.

Mark Weber, Lijun Yu, Qihang Yu, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh
Chen. Maskbit: Embedding-free image generation via bit tokens. arXiv preprint arXiv:2409.16211,
2024.

Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan.
arXiv preprint arXiv:2110.04627, 2021.

Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion–
tokenizer is key to visual generation. arXiv preprint arXiv:2310.05737, 2023.

Qihang Yu, Ju He, Xueqing Deng, Xiaohui Shen, and Liang-Chieh Chen. Randomized autoregressive
visual generation. arXiv preprint arXiv:2411.00776, 2024a.

Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh Chen. An
image is worth 32 tokens for reconstruction and generation. arXiv preprint arXiv:2406.07550,
2024b.

Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi. Sound-
stream: An end-to-end neural audio codec. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 30:495–507, 2021.

Borui Zhang, Wenzhao Zheng, Jie Zhou, and Jiwen Lu. Preventing local pitfalls in vector quantization
via optimal transport. arXiv preprint arXiv:2412.15195, 2024.

Jiahui Zhang, Fangneng Zhan, Christian Theobalt, and Shijian Lu. Regularized vector quantization
for tokenized image synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 18467–18476, 2023.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

Long Zhao, Sanghyun Woo, Ziyu Wan, Yandong Li, Han Zhang, Boqing Gong, Hartwig Adam,
Xuhui Jia, and Ting Liu. ϵ-vae: Denoising as visual decoding. arXiv preprint arXiv:2410.04081,
2024a.

Yue Zhao, Yuanjun Xiong, and Philipp Krähenbühl. Image and video tokenization with binary
spherical quantization. arXiv preprint arXiv:2406.07548, 2024b.

Lei Zhu, Fangyun Wei, Yanye Lu, and Dong Chen. Scaling the codebook size of vqgan to 100,000
with a utilization rate of 99%. arXiv preprint arXiv:2406.11837, 2024a.

Yongxin Zhu, Bocheng Li, Yifei Xin, and Linli Xu. Addressing representation collapse in vector
quantized models with one linear layer. arXiv preprint arXiv:2411.02038, 2024b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A RELATED WORK

Addressing the shortcomings of unstable codebook training and suboptimal encoding performance in
Vanilla VQ models (Van Den Oord et al., 2017; Razavi et al., 2019), researchers have proposed various
methods. The relevant work can mainly be categorized into: (1) Improvements to Straight-Through
Estimator (2) Multi-index quantization (3) Improvements to the codebook.

Improvements to Straight-Through Estimator. Huh et al. (2023) alternately optimizes the codebook
and the model, using the gradient of the task loss to update the codebook synchronously. Fifty et al.
(2024) proposes a rotation trick to optimize the STE.

Multi-index quantization. The Vanilla VQ model represents each feature vector using a single code
vector from the codebook, corresponding to one index. For an entire feature map Z ∈ Rh×w×d,
a total of h × w indices are used, which represents the theoretical upper limit of the information
content after quantization. To increase the information capacity of the encoded representation, it is
a natural idea to use more indices to represent the feature map, which also implies that more code
vectors are selected and optimized. RQ-VAE (Lee et al., 2022) quantizes the error vector between
the original and quantized feature vectors multiple times, allowing for a more precise representation
of each feature vector. Product Quantization (PQ) (Jegou et al., 2010; Zhang et al., 2024; Li et al.,
2024; Guo et al., 2024) divides the vector into multiple shorter sub-vectors and quantizes each
sub-vector separately. VAR (Tian et al., 2024) introduces multi-scale residual quantization, where the
feature map is downsampled multiple times, and each downsampled feature map is quantized. The
commonality of these methods lies in the use of more than h×w indices to represent the feature map.

Improvements to the codebook. This section includes the way to look up code vectors and the
optimization methods for the codebook. Van Den Oord et al. (2017) employs exponential moving
average (EMA) to update the codebook. Sønderby et al. (2017); Roy et al. (2018); Kaiser et al.
(2018) prevents certain codes from never being used by employing random sampling and probabilistic
relaxation during the training process, while Dhariwal et al. (2020); Zeghidour et al. (2021) achieves
this by periodically replacing inactive codes. The Vanilla VQ model uses Euclidean distance to
measure vector distances, while VQGAN-FC (Yu et al., 2021) projects features into a low-dimensional
space (Chen et al., 2024) and applies L2 normalization, making squared Euclidean distance equivalent
to cosine similarity. DALL-E (Ramesh et al., 2021) utilizes Gumbel-Softmax trick (Jang et al., 2016)
to represent the tokens of images. Some methods explore better codebook initialization, such as using
features from a pre-trained backbone for K-Means clustering to initialize the codebook (Łańcucki
et al., 2020; Huh et al., 2023; Zhu et al., 2024a). Lookup-free Quantization (LFQ) (Yu et al., 2023)
and Finite Scalar Quantization (FSQ) (Mentzer et al., 2023) project feature vectors onto an extremely
low dimension (typically < 10) and then perform integer quantization on each dimension respectively
after compression by a bounded function. LFQ and FSQ are equivalent to fixing the codebook (Han
et al., 2024; Zhao et al., 2024b), thus avoiding "codebook collapse". However, fixing the codebook
leads to performance degradation, so there are various methods proposed to jointly optimize the
entire codebook (Shi et al., 2024). Huh et al. (2023) perform affine transformations with shared
parameters on each code. VQGAN-LC (Zhu et al., 2024a) and SimVQ (Zhu et al., 2024b) freeze the
codebook and only train the projection layers after it. Zhang et al. (2023) aims to align the codebook
distribution with that of encoder features.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B IMPLEMENTATION OF SIMPLIFIED GROUP-VQ

In the simplified Group-VQ, each sub-codebook has the same codebook size and the same rank.
Consistent with the setup in Section 3.2, the codebook contains n vectors, each with a dimension of
d, and is divided into k sub-codebooks. Each sub-codebook in the simplified Group-VQ contains n

k
(ensuring divisibility) code vectors, and all sub-codebooks have a rank of r. We use the following
Algorithm 3 to parallelize the codebook generation.

Algorithm 3 Codebook Initialization in simplified Group-VQ

Input: Codebook size n, code vector dimension d, number of sub-codebooks k, sub-codebook
rank r
Random initialization (standard normal distribution): Ĉ ∈ Rn

k ×r, W ∈ Rr×(d×k), zero-initialized
b ∈ R(d×k)

Compute intermediate result: C ′ = Ĉ W + b
Reshape C ′ from

(
n
k , d× k

)
to

(
n, d

)
to obtain the final codebook C

Output: Codebook C

Since the codebook core is fixed, the above method only parallelizes the codebook generation process
of the simplified Group-VQ and does not affect the parameter independence between sub-codebooks.
It is worth noting that in this simplified version, since each sub-codebook shares the same codebook
core, performance may slightly degrade when the number of codes per group is too small (e.g.,
<= 16). However, the experimental setup in Section 4.1 does not fall into this range, so the impact
can be ignored.

C CODEBOOK UTILIZATION DYNAMICS

Figure 8 illustrates that the codebook utilization rate increases with the progression of epochs. The
greater the number of independently optimized groups, the later the 100% utilization rate is achieved.

0 10 20 30 40 50
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ut
iliz

at
io

n

SimVQ
GroupVQ (16)
GroupVQ (32)
GroupVQ (64)

Figure 8: The codebook utilization rate increases with epochs. This includes SimVQ (equivalent
to Group-VQ with a group number of 1) and Group-VQ with group numbers of 16, 32, and 64,
respectively.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D MORE VISUALIZATION OF GROUP-VQ

In this section, we use Principal Component Analysis (PCA) (Pearson, 1901; Hotelling, 1933) to
reduce the dimension of the codebook to two dimensions. We combine all the code vectors and
standardize them. Then, we utilize PCA to extract the two principal components with the largest data
variance, forming a projection matrix. All codes are mapped onto a two - dimensional plane through
this projection matrix. The result is shown in Figure 9.

10 0 10 20 30 40
PC1 (49.9%)

20

15

10

5

0

5

10

PC
2

(1
5.

6%
)

(a)

Group 7
Group 11
Group 15

20 10 0 10 20
PC1 (49.9%)

10

5

0

5

10

15

(b)
10 5 0 5 10

PC1 (49.9%)

4

2

0

2

4

(c)

Group 0
Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10
Group 11
Group 12
Group 13
Group 14
Group 15

Figure 9: Use PCA to project the Group - VQ (group = 16) code vectors on ImageNet onto 2 -
dimensional space for visualization. The horizontal and vertical axes are the first two principal
components calculated by PCA. The horizontal axis represents the first principal component, PC1,
which preserves the most information. The vertical axis represents the second principal component,
PC2. The units of the coordinate axes are the values of the standardized data after being projected by
PCA. (a) shows 256 sampled points per group for groups 7, 11, and 15. (b) shows 64 sampled points
per group for all groups. (c) shows the projection of the bias vectors for each group.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E SAMPLE RESULTS OF IMAGE RECONSTRUCTION

Figures 10 present a selection of sample results from the image reconstruction on ImageNet discussed
in Section 4.1. For example, in the images of the fourth row, Group - VQ reconstructs the feathers at
the tips of the bird’s wings better. In the fifth row, the overall colors reconstructed by Group - VQ are
more consistent with the original image.

Original Image SimVQ Group-VQ (16) Group-VQ (64)

Figure 10: Image reconstruction examples. The numbers in parentheses for Group-VQ indicate the
number of groups.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 11 presents a selection of sample results from the codebook resampling and self-extension
discussed in Section 4.1.

Original Image Group-VQ (16) +downsampling +self-extension+upsampling

Figure 11: Images of codebook resampling and self-extension applied to Group-VQ with group=16.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F LIMITATION

The VQ model discretizes images into tokens, ultimately serving the modeling needs of downstream
generative models. However, we have not yet validated the effectiveness of Group-VQ on generative
models. We clarify that Group-VQ improves the optimization dynamics of the codebook during
training solely by altering the parameterization of the codebook. Therefore, we believe Group-VQ
remains orthogonal to downstream tasks, and thus we leave this exploration for future work.

G THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, a Large Language Model (LLM) was used solely for the purpose
of language polishing and stylistic refinement of the text. The LLM was prompted to improve clarity,
grammar, and fluency of expression, without altering the core scientific content, methodology, results,
or interpretations presented in the paper. The research ideas, experimental design, data analysis, and
original writing were entirely conducted by the human authors. The LLM did not contribute to the
generation of hypotheses, formulation of research questions, or development of novel concepts. Its
role was strictly limited to post-writing linguistic enhancement.

18

