

000 001 002 003 004 005 GROUP-WISE OPTIMIZATION FOR SELF-EXTENSIBLE 006 CODEBOOKS IN VECTOR QUANTIZED MODELS 007 008 009

010 **Anonymous authors**
011

012 Paper under double-blind review
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

011 Vector Quantized Variational Autoencoders (VQ-VAEs) leverage self-supervised
012 learning through reconstruction tasks to represent continuous vectors using the
013 closest vectors in a codebook. However, issues such as codebook collapse persist
014 in the VQ model. To address these issues, existing approaches employ im-
015 plicit static codebooks or jointly optimize the entire codebook, but these methods
016 constrain the codebook’s learning capability, leading to reduced reconstruction
017 quality. In this paper, we propose Group-VQ, which performs group-wise opti-
018 mization on the codebook. Each group is optimized independently, with joint
019 optimization performed within groups. This approach improves the trade-off be-
020 tween codebook utilization and reconstruction performance. Additionally, we
021 introduce a training-free codebook resampling method, allowing post-training
022 adjustment of the codebook size. In image reconstruction experiments under var-
023 ious settings, Group-VQ demonstrates improved performance on reconstruction
024 metrics. And the post-training codebook sampling method achieves the desired
025 flexibility in adjusting the codebook size. The core code is available at https://anonymous.4open.science/r/Group-VQ_anonymous-60E3

1 INTRODUCTION

030 Vector Quantization (VQ) (Gray, 1984) is a technique that maps continuous features to discrete
031 tokens. Specifically, VQ defines a finite codebook and selects the closest code vector for each feature
032 vector by calculating a similarity measure, typically Euclidean distance or cosine similarity (Yu
033 et al., 2021). This selected code vector serves as the discrete representation of the feature vector.
034 VQ-VAE (Van Den Oord et al., 2017; Razavi et al., 2019) employs vector quantization as an image
035 tokenizer, which quantizes the feature map output by the encoder to represent an image as a series
036 of integer indices. The decoder then uses only the quantized feature map to reconstruct the image.
037 Due to the non-differentiability (Huh et al., 2023) of the quantization operation, the Straight-Through
038 Estimator (STE) (Bengio et al., 2013) enables the encoder to receive gradients from the task loss by
039 copying the gradients of the quantized vectors to the pre-quantized vectors. VQ has found widespread
040 applications in autoencoders (Van Den Oord et al., 2017; Razavi et al., 2019; Zhao et al., 2024a) and
041 generative models (Rombach et al., 2022; Dhariwal et al., 2020; Tian et al., 2024; Weber et al., 2024;
042 Yu et al., 2024a).

043 Despite achieving success in numerous applications, traditional VQ training often encounters the
044 issue of low codebook utilization, where only a subset of code vectors are used and updated, leading
045 to “codebook collapse” (Roy et al., 2018; Huh et al., 2023; Yu et al., 2024b), which limits the model’s
046 encoding capability. To address these challenges, various improvements have been proposed, such
047 as reducing the dimensionality of the latent space (Yu et al., 2021; Mentzer et al., 2023; Yu et al.,
048 2023), initializing the codebook with pretrained models (Huh et al., 2023; Zhu et al., 2024a), and
049 jointly optimizing the entire codebook (Zhu et al., 2024b; Huh et al., 2023). In our paper, we refer to
050 these methods as “Joint VQ”. These methods have shown promising results, achieving near 100%
051 codebook utilization. However, in order to reach a 100% utilization rate, our experiments indicate
052 that these methods have restricted the learning ability of the codebook to some extent, resulting in
053 performance differences under the same utilization rate.

To alleviate this issue, we propose to approach codebook optimization from a group perspective,
thereby naturally introducing the Group-VQ method. This method organizes the codebook into

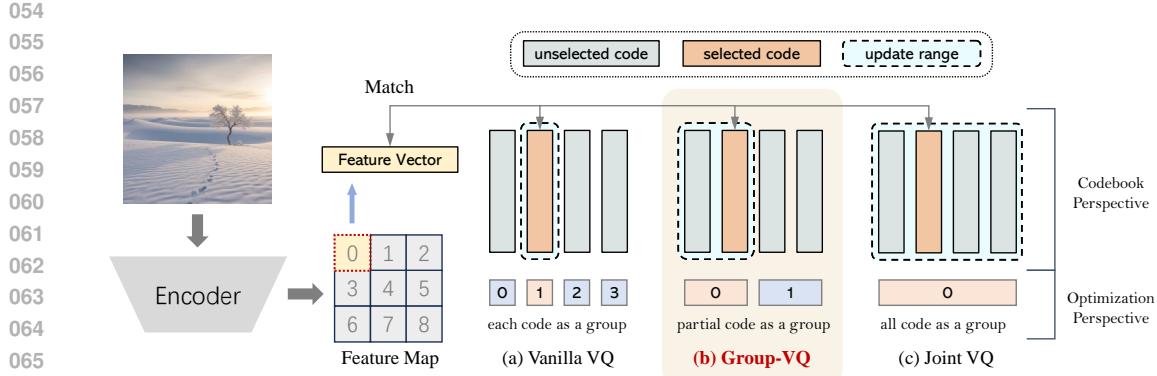


Figure 1: The differences among Vanilla VQ (a), Group-VQ (b), and Joint VQ (c) lie in their codebook update strategies: Vanilla VQ updates codes independently; Joint VQ optimizes the entire codebook jointly; and Group-VQ updates groups independently while optimizing jointly within each group.

multiple independent groups, where parameters are shared within each group to enable joint optimization within the group while keeping the groups independent of each other, i.e., group-wise optimization. This allows each group to focus on learning different feature distributions. Figure 1 shows a comparison among Vanilla VQ, Joint VQ, and Group-VQ. Additionally, we propose a codebook resampling method, which generates a new codebook by simply sampling after training. Our contributions can be summarized as follows:

- We propose the Group-VQ method, which approaches codebook optimization from a group perspective and balances the codebook utilization and reconstruction performance of the VQ model.
- We generalize the Joint VQ method based on shared parameters, and then introduce a post-training codebook sampling method to facilitate flexible adjustment of the codebook size without the need to retrain the model.
- We confirm the efficacy of Group-VQ and codebook resampling in image reconstruction, highlighting the importance of grouped design and outlining group number selection principles through ablation studies.

2 PRELIMINARY

The core of the visual tokenizer is vector quantization, which replaces any given vector with a discrete token from a codebook. For an image $I \in \mathbb{R}^{H \times W \times 3}$, VQ-VAE (Van Den Oord et al., 2017) first uses an encoder, typically a convolutional network with downsampling layers, to obtain the feature map $Z \in \mathbb{R}^{h \times w \times d}$, where h and w represent the height and width of the feature map, and d is the number of channels in the feature map. The quantizer includes a codebook $C = \{q_i \mid q_i \in \mathbb{R}^d, i = 0, 1, \dots, n - 1\} \in \mathbb{R}^{n \times d}$, which means the codebook contains n code vectors, each with a dimensionality of d . For each vector $z \in \mathbb{R}^d$ in the feature map, the quantizer finds the closest vector q in the codebook (typically using Euclidean distance) to replace z .

$$q = \underset{q_i \in C}{\operatorname{argmin}} \|z - q_i\|, \quad i = 0, 1, \dots, n - 1 \quad (1)$$

However, since the argmin operation is non-differentiable, VQ-VAE uses the straight-through estimator (STE) (Bengio et al., 2013) to pass the gradient directly through q to z , allowing the encoder to receive gradients from the reconstruction loss:

$$z_q = z + \operatorname{sg}[q - z] \quad (2)$$

Here, $\operatorname{sg}[\cdot]$ denotes stop gradient, meaning that the gradient will not propagate through the $\operatorname{sg}[\cdot]$ operation. By applying such quantization to each vector z in the feature map Z , the feature map is converted into a discrete representation $Q \in \mathbb{R}^{h \times w \times d}$ composed of each z_q . The decoder then

generates the reconstructed image $\hat{I} \in \mathbb{R}^{H \times W \times 3}$ based on the quantized discrete feature map Q . The VQ-VAE loss consists of both the image reconstruction loss and the codebook loss:

$$\mathcal{L} = \|I - \hat{I}\|^2 + \beta \|Q - \text{sg}[Z]\|^2 + \gamma \|Z - \text{sg}[Q]\|^2 \quad (3)$$

where β and γ are fixed hyperparameters. However, a major issue with this approach is that in each iteration, only a subset of the code vectors are selected, meaning that only those vectors receive gradients and get updated, which eventually leads to codebook collapse (Roy et al., 2018; Huh et al., 2023; Yu et al., 2024b).

To achieve high codebook utilization, VQGAN-LC (Zhu et al., 2024a) proposes using a pre-trained visual backbone to extract image features and initializing the codebook \hat{C} with cluster center vectors obtained through clustering. After initialization, the codebook remains frozen, and a projection layer $P(\cdot)$ is used to map the codebook to a projected codebook $C = P(\hat{C}) \in \mathbb{R}^{n \times d}$. During training, only this projection layer is optimized. This approach allows for the simultaneous adjustment of the entire codebook’s distribution. LFQ (Yu et al., 2023) and FSQ (Mentzer et al., 2023) employ implicit and fixed codebooks to prevent codebook collapse. SimVQ (Zhu et al., 2024b) simplifies the aforementioned approach by directly employing random initialization for $\hat{C} \in \mathbb{R}^{n \times d}$ and reparameterizing the codebook $C \in \mathbb{R}^{n \times d}$ in the form of $\hat{C}W$, where $W \in \mathbb{R}^{d \times d}$. This method represents each code vector as a linear combination of the rows in W . By updating W , each code vector is indirectly updated. Huh et al. (2023) proposes adjusting each code vector \hat{q} using shared global mean and standard deviation, defined as $q = c_{\text{mean}} + c_{\text{std}} \times \hat{q}$, where c_{mean} and c_{std} are affine parameters with the same dimensionality as the code vectors and are shared across the entire codebook. This approach simplifies the matrix W to a diagonal matrix and adding a bias vector.

The commonality among the aforementioned optimization methods for VQ lies in their use of shared learnable parameters to reparameterize the entire codebook, thereby enabling joint optimization of the codebook space to mitigate the issue of codebook collapse. As such, we collectively refer to them as Joint VQ (achieved through shared parameters).

3 METHOD

3.1 OBSERVATION

Joint VQ is straightforward and effective in addressing the codebook collapse problem; however, it suffers from a significant issue: the gradients generated by all selected code vectors affect the entire codebook distribution. While this helps the codebook quickly adapt to the feature distribution generated by the encoder, it remains overly coarse-grained. We believe this may lead to potential interference between updates of different codes, making it difficult for the codebook to adapt to complex distributions. To validate this conjecture, we conducted small-scale image reconstruction experiments comparing Joint VQ (implemented using SimVQ (Zhu et al., 2024b)) with Vanilla VQ, aiming to explore the relationship between codebook utilization and reconstruction quality. The parameter settings are detailed in Section 4.3.

The results are shown in Figure 2. It can be observed that Joint VQ rapidly achieves 100% codebook utilization by the 2nd epoch and maintains it, while Vanilla VQ’s utilization grows gradually each epoch and ultimately remains below 90%. However, for the rFID metric (lower is better) used to measure image reconstruction quality, Vanilla VQ performs better in the end. We can thus infer that the performance gains of Joint VQ with larger codebook sizes stem from higher utilization, but the quality of the used codes is inferior to that of Vanilla VQ, which independently fine-tunes each code.

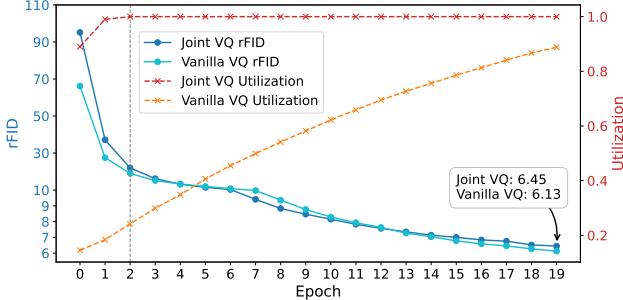


Figure 2: The codebook utilization rate and rFID for Joint VQ and Vanilla VQ at each epoch.

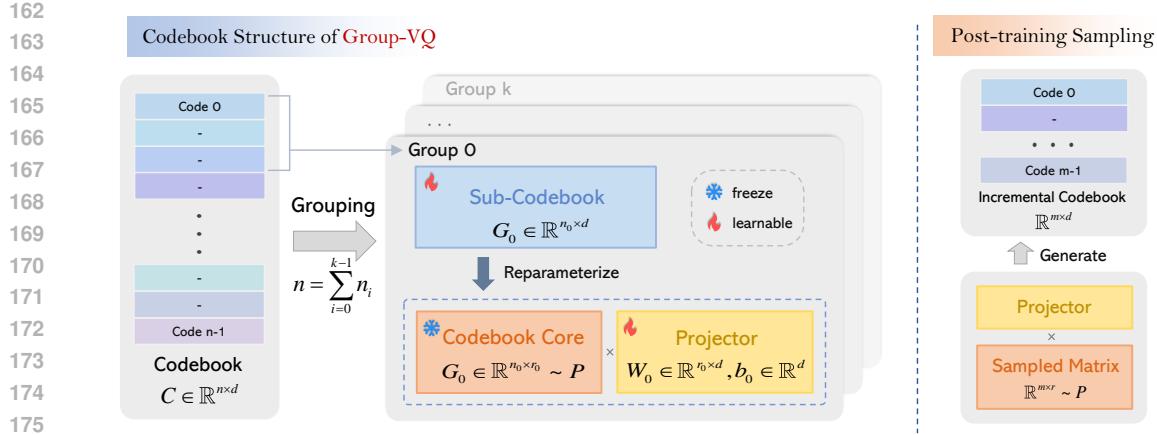


Figure 3: Left: The reparameterization method of the codebook by Group-VQ. It partitions the codebook into multiple disjoint groups (sub-codebooks), each of which undergoes separate reparameterization. Right: Post-training sampling. Simply sampling a new codebook core and applying the trained projector yields new codes.

3.2 GROUP-VQ

To address the trade-offs observed in our preliminary experiments, we propose a perspective on the codebook by considering it from the viewpoint of *groups*. In this context, a group is defined as the smallest unit of the codebook that is independently updated during training. Formally, let the codebook $C = \{q_i \mid q_i \in \mathbb{R}^d, i = 0, 1, \dots, n - 1\} \in \mathbb{R}^{n \times d}$ be partitioned into k groups (or sub-codebook), where each group $G_j \subseteq C$ (for $j = 0, 1, \dots, k - 1$) contains n_j code vectors. The groups are disjoint and collectively exhaustive:

$$\bigcup_{j=0}^{k-1} G_j = C, \quad G_j \cap G_{j'} = \emptyset \text{ if } j \neq j' \quad (4)$$

Specifically, for a group $G_j = \{q_{j_1}, q_{j_2}, \dots, q_{j_{|G_j|}}\}$, q_{j_t} denotes the t -th code in G_j , and \mathcal{L}_j represents the commitment loss corresponding to G_j . Since the groups are mutually disjoint and updated independently, when $j' \neq j$, $\mathcal{L}_{j'}$ does not depend on q_{j_t} , and thus $\nabla_{q_{j_t}} \mathcal{L}_{j'} = 0$. Therefore, the gradient of the total commitment loss \mathcal{L}_{cmt} with respect to the code vector $q_{j_t} \in G_j$ is given by:

$$\nabla_{q_{j_t}} \mathcal{L}_{\text{cmt}} = \nabla_{q_{j_t}} \left(\sum_{j'=0}^{k-1} \mathcal{L}_{j'} \right) = \nabla_{q_{j_t}} \mathcal{L}_j + \sum_{j' \neq j} \nabla_{q_{j_t}} \mathcal{L}_{j'} = \nabla_{q_{j_t}} \mathcal{L}_j. \quad (5)$$

Consequently, during training, the update rule for each code $q_{j_t} \in G_j$ can be expressed as:

$$q_{j_t} \leftarrow q_{j_t} - \eta \nabla_{q_{j_t}} \mathcal{L}_j \quad (6)$$

where η is the learning rate. The gradient $\nabla_{q_{j_t}} \mathcal{L}_j$ only affects the vectors within G_j , indicating that each group is updated independently based solely on the gradients computed from its contained codes, and the updates are confined to the vectors within G_j .

For each group G_j , in order to enable joint optimization of all code vectors within it, we can employ any method that supports joint optimization of codebooks. In Group-VQ, we adopt the parameter-sharing approach (Zhu et al., 2024b;a; Huh et al., 2023) to define each group. The group G_j is parameterized as follows:

$$G_j = \hat{G}_j W_j + b_j \quad (7)$$

where $\hat{G}_j \in \mathbb{R}^{n_j \times r_j}$, $W_j \in \mathbb{R}^{r_j \times d}$ and $b_j \in \mathbb{R}^d$. We refer to \hat{G}_j as the “codebook core” and W_j as the “projector”. r_j represents the rank of sub-codebook G_j . The values of n_j and r_j for each sub-codebook can be set differently, enabling the heterogeneity and asymmetry of the codebook. $b_j \in \mathbb{R}^d$ is the bias vector. Figure 3 (left) and Algorithm 1 illustrate the method to construct the codebook in the Group-VQ.

The vector quantization approach in Group-VQ remains unchanged. For each feature vector z output by the encoder, the quantizer finds the closest vector q in the codebook C . Since each feature vector always belongs to a specific sub-codebook, Group-VQ does not require an additional routing function design. Instead, feature vectors are automatically routed to the appropriate sub-codebook through distance metrics. Group-VQ inherently brings group-wise optimization during training.

Discussion. Under this group perspective, we can analyze existing vector quantization approaches. In Vanilla VQ, each code vector $q_i \in C$ is updated independently based on gradients from the feature vectors it quantizes, implying that each code vector forms its own group. This fine-grained update strategy results in a number of groups equal to the total number of code vectors, expressed as

$$k = n, \quad G_i = \{q_i\}, \quad \forall i = 0, 1, \dots, n - 1. \quad (8)$$

In contrast, Joint VQ, such as SimVQ (Zhu et al., 2024b) or VQGAN-LC (Zhu et al., 2024a), reparameterizes the entire codebook C using shared parameters, meaning the update of any code vector affects the entire codebook, corresponding to a single group, described by $k = 1$, $G_0 = C$. The proposed Group-VQ balances these extremes by partitioning the codebook into k disjoint and collectively exhaustive groups, where each group G_j contains n_j code vectors. This structure is formally defined as

$$C = \bigcup_{j=0}^{k-1} G_j, \quad G_j \cap G_{j'} = \emptyset \text{ if } j \neq j', \quad G_j = \{q_{j_1}, q_{j_2}, \dots, q_{j_{n_j}}\}, \quad \sum_{j=0}^{k-1} n_j = n. \quad (9)$$

The core idea of our proposed Group-VQ is to balance the codebook utilization and its expressive power by adjusting the number of groups. If we consider the *code* as a whole and the *group* as the minimal unit, Group-VQ is equivalent to Vanilla VQ. Conversely, if we regard the *group* as a whole and the *code* as the minimal unit, each group becomes a Joint VQ. From a global perspective, Group-VQ represents a hybrid of these two approaches. By adjusting the number of groups k , where $1 \leq k \leq n$, Group-VQ achieves a hybrid of Vanilla VQ and Joint VQ, enabling flexible control over codebook utilization and expressive power. Appendix C illustrates the dynamics between the number of groups and codebook utilization rate.

3.3 CODEBOOK RESAMPLING AND SELF-EXTENSION

In VQ models, changing the size of the codebook typically requires retraining or fine-tuning the entire codebook along with the corresponding encoder and decoder. However, we note that this process is straightforward for generative codebooks, which refer to codebooks generated using a learnable network from a fixed distribution of codebook cores. After training, modifying the codebook size only requires resampling the codebook cores from the fixed distribution, while the model itself does not require further training.

Specifically, we define a generative network, also referred to as a projector $F_\theta(\cdot)$, and a codebook core C_{core} . Here, $F_\theta(\cdot)$ is a learnable linear projection layer or a small neural network, with θ denoting its learnable parameters. During the training process, each vector in the codebook core C_{core} is randomly sampled from a fixed distribution P , with no learnable parameters. The final codebook C is generated by applying $F_\theta(\cdot)$ to C_{core} :

$$C = F_\theta(C_{\text{core}}), \quad C_{\text{core}} \sim P \quad (10)$$

Since C_{core} always follows the fixed-parameter distribution P , $F_\theta(\cdot)$ is trained to learn the transformation from the distribution P to the feature distribution of the encoder's output. This property allows us to resample C_{core} from the distribution P after training, thereby flexibly adjusting the size of the codebook without incurring additional costs.

In Group-VQ, each sub-codebook belongs to the aforementioned generative codebook, so we leverage this property to apply it to post-training self-expansion of the codebook. Specifically, we randomly initialize each sub-codebook core \hat{G}_j , for example, by sampling each row vector $\hat{g} \in \mathbb{R}^{r_j}$ independently from a standard normal distribution $\mathcal{N}(0, I)$. After training, we sample new row vectors $\hat{v} \in \mathbb{R}^{r_j}$ from $\mathcal{N}(0, I)$ and project them using the already trained W_j to obtain new code vectors:

$$\tilde{q} = \hat{v} W_j, \quad \hat{v} \sim \mathcal{N}(0, I) \quad (11)$$

These newly sampled code vectors \tilde{q} are then added to G_j to obtain the extended sub-codebook. The denser code vectors allow for finer quantization, thereby leading to improved reconstruction quality. Figure 3 (right) and Algorithm 2 illustrates the post-training sampling method.

270

Algorithm 1 Codebook Initialization in Group-VQ

271

Require: Number of code vectors n , dimensionality d , number of sub-codebooks k and sizes $\{n_j\}$, intrinsic dimensions $\{r_j\}$

272

Ensure: $\sum_{j=0}^{k-1} n_j = n$

273

1: **for** $j = 0$ **to** $k - 1$ **do**

274

2: Initialize matrices:

275

3: $\hat{G}_j \leftarrow \text{fix}(\hat{G}_j \in \mathbb{R}^{n_j \times r_j} \sim P)$

276

4: $W_j, b_j \leftarrow \text{random init}$

277

5: $G_j \in \mathbb{R}^{n_j \times d} \leftarrow \hat{G}_j W_j + b_j$

278

6: **end for**

279

7: $C \leftarrow \text{concat}(G_0, G_1, \dots, G_{k-1})$

280

8: **return** the final codebook C

281

282

283

284

285

286

4 EXPERIMENTS

287

In Section 4.1, we demonstrate the superior image reconstruction performance of Group-VQ, including codebook resampling and self-extension experiments. Section 4.2 provides statistical analysis and visualization of sub-codebook information, along with experiments validating the group-wise optimization strategy. Section 4.3 investigates how to set the number of groups in Group-VQ for optimal performance through ablation studies.

288

289

290

291

292

293

294

4.1 VISION RECONSTRUCTION

295

Implementation details. For a fair comparison, we align the settings of SimVQ (Zhu et al., 2024b) and view it as a strong baseline. Specifically, we train Group-VQ with an input image resolution of 128×128 . The image is processed by an encoder with multiple convolutional layers and downsampling layers, resulting in a total downsampling factor of $f = 8$. The encoder outputs a feature map of size $16 \times 16 \times 128$. For Group-VQ, the rank of each group is set to 128, and only each projector is trainable. We use the ImageNet-1k (Deng et al., 2009) and MS-COCO (Lin et al., 2014) datasets, with both VQGAN (Esser et al., 2021) and ViT-VQGAN (Yu et al., 2021) encoder/decoder architectures, and conduct different combinations to verify the broad applicability of Group-VQ. In our implementation, we simplify Group-VQ by evenly partitioning the codebook, ensuring an equal number of codes per group. So we use parallel implementation for faster speed and it can be found in Appendix B. All training is conducted on NVIDIA A5000 GPUs, with a batch size of 32 per GPU.

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

Optimizer settings. The learning rate is fixed at 1×10^{-4} , using the Adam optimizer (Kingma, 2014) with $\beta_1 = 0.5$ and $\beta_2 = 0.9$. We evaluate the performance of the Group-VQ method on the image reconstruction task using the rFID (reconstruction FID) (Heusel et al., 2017), LPIPS(VGG16) (Zhang et al., 2018), PSNR, and SSIM (Wang et al., 2004) metrics on the ImageNet validation set.

316

317

318

319

320

321

322

323

Main results and analysis. Table 1 presents the reconstruction performance of Group-VQ compared to other baseline methods. The primary baseline models include VQGAN (Esser et al., 2021), ViT-VQGAN, VQGAN-FC (Yu et al., 2021), FSQ (Mentzer et al., 2023), LFQ (Yu et al., 2023), VQGAN-LC (Zhu et al., 2024a), and SimVQ (Zhu et al., 2024b). The Group parameter in the table represents the number of groups in the codebook from the perspective of group-wise optimization. For

Algorithm 2 Codebook Post-Training Sampling

Require: Trained $\{W_j, b_j, G_j\}$, target sizes $\{m_j\}$ for new sub-codebooks

1: **for** $j = 0$ **to** $k - 1$ **do**
2: $G_j^\delta \leftarrow \hat{G}_j^\delta W_j + b_j$, $\hat{G}_j^\delta \in \mathbb{R}^{m_j \times r_j} \sim P$
3: **if** Resampling **then**
4: $G'_j \leftarrow G_j^\delta$
5: **else if** Self-Extension **then**
6: $G'_j \leftarrow \text{concat}(G_j, G_j^\delta[:, m_j - n_j])$
7: **end if**
8: **end for**
9: $C' \leftarrow \text{concat}(G'_0, G'_1, \dots, G'_{k-1})$
10: **return** the new sampling codebook C'

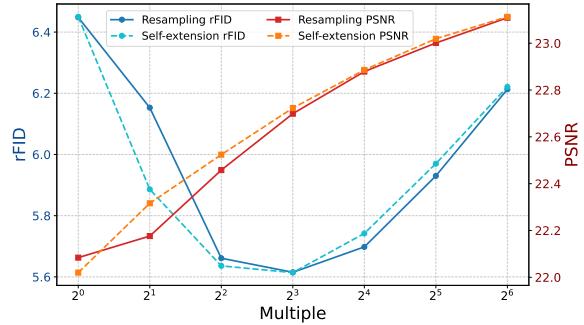


Figure 4: Using resampling and self-expansion methods, the rFID and PSNR under different multiples of expanding the codebook size. The codebook size during training is 1024.

324 Table 1: **Reconstruction performance of various VQ models.** Group-VQ achieves the best
 325 reconstruction quality across all datasets and encoder/decoder architecture settings.
 326

Method	Codebook Size	Group	Codebook Usage	rFID \downarrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow
<i>Base Structure: VQGAN, Dataset: ImageNet-1k, Epoch: 50</i>							
VQGAN	65,536	65,536	1.4%	3.74	0.17	22.20	0.706
VQGAN-EMA	65,536	65,536	4.5%	3.23	0.15	22.89	0.723
VQGAN-FC	65,536	65,536	100.0%	2.63	0.13	23.79	0.775
FSQ	64,000	0	100.0%	2.80	0.13	23.63	0.758
LFQ	65,536	0	100.0%	2.88	0.13	23.60	0.772
VQGAN-LC	65,536	1	100.0%	2.40	0.13	23.98	0.773
SimVQ	65,536	1	100.0%	2.24	0.12	24.15	0.784
SimVQ (ours run)	65,536	1	100.0%	1.99	0.12	24.34	0.788
Group-VQ	65,536	64	99.9%	1.86	0.11	24.37	0.787
<i>Base Structure: ViT-VQGAN, Dataset: 20% ImageNet-1k, Epoch: 40</i>							
ViT-VQGAN	8192	8192	1.08%	26.66	0.17	21.75	0.660
LFQ	8192	0	100.0%	12.27	0.13	23.57	0.755
SimVQ	8192	1	100.0%	11.44	0.12	23.74	0.761
Group-VQ	8192	8	100.0%	10.72	0.12	23.85	0.764
Group-VQ	8192	16	100.0%	10.67	0.12	23.87	0.765
<i>Base Structure: VQ-GAN, Dataset: MS-COCO, Epoch: 20</i>							
LFQ	4096	0	100.0%	14.20	0.19	21.87	0.713
SimVQ	4096	1	100.0%	13.18	0.18	21.90	0.719
Group-VQ	4096	16	100.0%	12.55	0.17	22.08	0.722

349 Table 2: Codebook resampling and self-extension of Group-VQ on ImageNet-1k.
 350

Method	Codebook Size	Group	Codebook Usage	rFID \downarrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow
Group-VQ	65,536	16	99.7%	1.87	0.12	24.32	0.785
+ downsampling	32,768	16	100.0%	2.16	0.12	24.02	0.773
+ upsampling	131,072	16	99.9%	1.79	0.11	24.49	0.791
+ self-extension	131,072	16	99.9%	1.76	0.11	24.51	0.792

351 methods where each code is updated independently, such as VQGAN, the number of groups equals
 352 the codebook size. For methods with joint updates, the number of groups is 1. FSQ and LFQ, which
 353 utilize implicit and non-learnable codebooks, have a group number of 0. Group-VQ demonstrates
 354 state-of-the-art performance across multiple metrics, with improved rFID scores suggesting its
 355 reconstruction results align more closely with the original images’ overall distribution. We present
 356 the images in Appendix E. In contrast, other methods with 100% codebook utilization exhibit varying
 357 performance. For instance, FSQ and LFQ completely freeze the codebook, resulting in relatively
 358 poorer performance. This suggests that we should not only focus on increasing codebook utilization
 359 but also enhance its learning capability.

360 **Codebook resampling and self-extension.** To validate the method proposed in Section 3.3, we
 361 resample the codebook to half the size used during training (downsampling) and double the size
 362 (upsampling) during evaluation. The self-extension method expands the codebook size by a factor
 363 of 2. The distinction between self-extension and resampling lies in the fact that the former retains
 364 the codes used during training, while the latter entirely replaces them with newly sampled codes.
 365 Table 2 reports the experimental results of codebook resampling and self-extension based on the post-
 366 training Group-VQ. The results demonstrate the expected decreases and increases in reconstruction
 367 metrics for downsampling, upsampling, and self-extension methods, respectively. Figure 4 presents
 368 additional results, where the codebook size during training is set to 1024, and it is expanded by
 369 powers of 2. PSNR consistently improves as the codebook size increases. We primarily focus on
 370 the more perceptually aligned rFID metric, which reaches its minimum value at an expansion of
 371 $1024 \times 2^3 = 8192$, before starting to rise. This indicates that codebook extension has a limit in scale:
 372 too many newly sampled and untrained codes can degrade reconstruction performance.

378

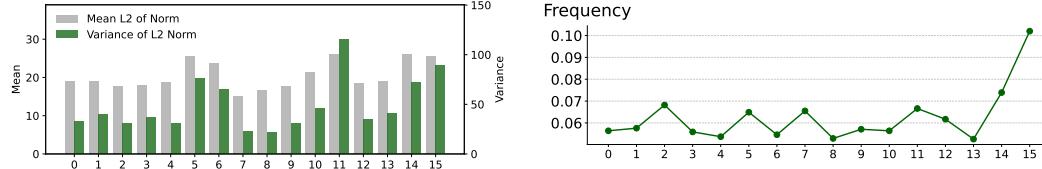
Table 3: Comparison of different codebook generation networks (projectors).

379

380

Linear	MLP	Trainable Parameters	Codebook Size	Codebook Usage	rFID \downarrow	PSNR \uparrow
✓	✗	16,512	1024	100.0%	6.45	22.02
✗	✓	33,024	1024	98.9%	7.66	21.73
✓	✓	49,536	1024	99.7%	6.66	22.15

381



382

383

384

Figure 5: Left: The average value and variance of the l_2 -norm of vectors in each group (0~15) in the codebook; Right: The usage frequency of each group when tested on the ImageNet validation set.

385

4.2 ANALYSIS OF GROUP-VQ

386

387

388

389

390

391

Different groups have learned different patterns. Analysis in the section is based on the Group-VQ with a codebook size of 65536 with a group number of 16 in Table 2. Figure 5 (left) shows the mean and variance of the l_2 -norm of the codes in each group of the Group-VQ after training, and Figure 5 (right) shows the utilization rate of each group during the evaluation phase. These differences in the statistical values of the groups indicate that different groups have differentiated. Figure 6 shows the heatmap of the pairwise cosine similarity of codes. The checkerboard - like image indicates that the codes within a group are relatively similar, while the differences between groups are relatively large.

392

In Figure 7, we visualize the code vectors in a two-dimensional space using random projections (Johnson et al., 1986; Bingham & Mannila, 2001). In Figure 7(a), group 7 (with the smallest variance), group 11 (with the largest variance), and group 15 (with the highest usage frequency) exhibit distinct distributions. Group 15 shows a more dispersed distribution, corroborating its higher utilization rate. Figure 7(b) provides an overview of all groups. Figure 7(c) displays the bias vectors, i.e., the centers, for each group. More visualizations in D. Overall, different groups in Group-VQ adaptively learn diverse feature spaces, each responsible for distinct distributions.

393

394

395

Are more complex projectors effective? The implementation of the Group-VQ method based on shared parameters is a reparameterization of the codebook. Therefore, it seems reasonable to consider that using a more complex network as the projector for generating the codebook might yield better results. We configure three types of projectors to verify whether this conjecture holds: the simplest linear projection layer, a multilayer perceptron (MLP) with one hidden layer, and a combination formed by summing the outputs of a linear projection layer and an MLP. We trained on a 25% subset of ImageNet for 20 epochs, with a codebook size of 1024 and the number of groups set to 1. Other hyperparameters and optimizer settings were the same as those in Section 4.1.

396

397

398

399

400

401

402

The experimental results, as shown in Table 3, indicate that the simplest linear projection layer achieved the best rFID, while the more complex MLP led to significant performance degradation. In the combination of a linear projection layer and an MLP, the two components seemed to counteract each other, resulting in performance that was intermediate between the two standalone approaches. This suggests that simply using a more complex projector network does not lead to better results and may even hinder the learning of the codebook. This result further underscores the necessity of independent updates for sub-codebooks in Group-VQ, indicating that its effectiveness stems from the use of multiple independent groups rather than a more complex codebook generation approach.

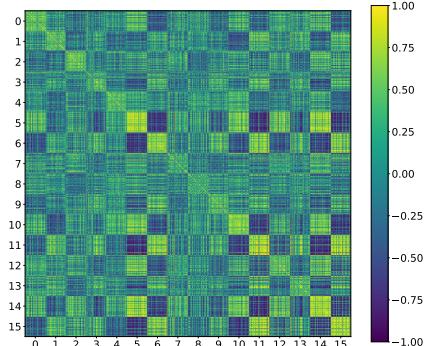
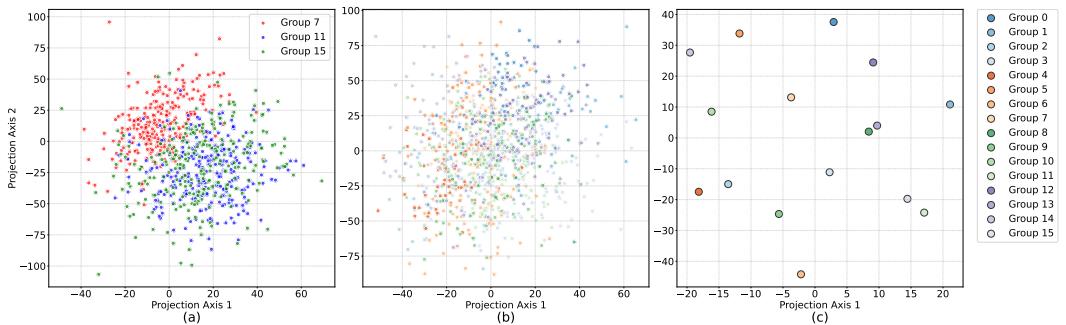


Figure 6: Heatmap of pairwise cosine similarity for codes. Randomly pick 128 codes from each group.

432 Table 4: The codebook utilization and image reconstruction performance under different settings of
 433 group numbers. A group size of 32~64 is considered optimal.

	Group Count										
	1	2	4	8	16	32	64	128	256	512	1024
Usage	100%	100%	100%	100%	100%	100%	100%	95.6%	81.7%	78.8%	88.9%
rFID \downarrow	6.45	6.52	6.29	6.19	6.13	6.05	6.09	6.11	6.15	6.28	6.13
PSNR \uparrow	22.02	22.07	22.12	22.13	22.13	22.14	22.16	22.08	22.02	22.06	22.14



443 Figure 7: The visualization of the code vectors from Group-VQ with group=16 on ImageNet,
 444 randomly projected onto 2 dimensions. (a) shows 256 sampled points per group for groups 7, 11, and
 445 15. (b) shows 64 sampled points per group for all groups. (c) shows the projection of the bias vectors
 446 for each group. This visualizes distinct distributions across different groups.

453 4.3 ABLATION STUDY

460 In this section, for efficiency, we conduct ablation experiments using a 25% subset of ImageNet. All
 461 models are trained for 20 epochs with a codebook size of 1024. Except for the number of groups in
 462 the codebook, all other parameters remain the same as that in Section 4.1.

464 Since each sub-codebook in Group-VQ is independently optimized, when the number of groups is
 465 set too high, it gradually degenerates into Vanilla VQ, leading to codebook collapse. Therefore, we
 466 need to carefully identify an appropriate number of groups to balance the modeling capability of the
 467 codebook while avoiding codebook collapse. Table 4 presents the codebook utilization and image
 468 reconstruction performance under different group settings. As can be seen from the table, when
 469 the number of groups increases from 1 to 32, the various metrics of Group-VQ generally show an
 470 improving trend. This indicates that, with a moderate increase in the number of sub-codebooks, a
 471 larger number of groups enhances the learning capability of the codebook without reaching the point
 472 of codebook collapse. However, when the number of groups increases further, the metrics of Group-
 473 VQ, particularly rFID, begin to rebound or fluctuate, and the codebook utilization starts to decline.
 474 The decrease in codebook utilization leads to wastage of the code, resulting in a gradual degradation
 475 of the metrics. Based on these experimental results, a group number of 32~64 is considered optimal.
 476 As the number of groups increases, more training time is required to achieve high utilization (shown
 477 in Figure 8). Given sufficient training time, a larger number of groups is the preferable choice.

478 5 CONCLUSION

480 In this paper, we first analyze the key differences between Vanilla VQ and Joint VQ. To balance
 481 codebook utilization and reconstruction performance, we propose Group-VQ, which introduces
 482 the idea of group-wise optimization of the codebook. We also propose a post-training codebook
 483 sampling method that enables flexible adjustment of the codebook size without retraining. In image
 484 reconstruction tasks, Group-VQ demonstrates superior performance. It would be interesting to explore
 485 the application of the group-wise optimization concept from Group-VQ to other, more complex Joint
 VQ methods in future work.

486 ETHICS STATEMENT

487

488 Our work introduces Group-VQ, a method for improving vector quantization in image reconstruction.
 489 While not directly enabling generative applications, VQ underpins such models, so we acknowledge
 490 potential misuse risks and advocate for responsible development. Public datasets may contain societal
 491 biases; we encourage future efforts to mitigate them. No human subjects or personal data were
 492 involved, and ethics guidelines are upheld.

493 REPRODUCIBILITY STATEMENT

494

495 To support the reproducibility of our research, we have provided an anonymous link to the
 496 core source code in the abstract: https://anonymous.4open.science/r/Group-VQ_anonymous-60E3. This code repository contains the core implementation of our proposed method
 497 along with configuration files. We encourage readers to consult this repository to obtain the complete
 498 technical details necessary to reproduce our results.

499

500 REFERENCES

501

502 Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
 503 stochastic neurons for conditional computation. *arXiv preprint arXiv:1308.3432*, 2013.

504

505 Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction: applications to
 506 image and text data. In *Proceedings of the seventh ACM SIGKDD international conference on*
 507 *Knowledge discovery and data mining*, pp. 245–250, 2001.

508

509 Hang Chen, Sankepally Sainath Reddy, Ziwei Chen, and Dianbo Liu. Balance of number of
 510 embedding and their dimensions in vector quantization. *arXiv preprint arXiv:2407.04939*, 2024.

511

512 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 513 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 514 pp. 248–255. Ieee, 2009.

515

516 Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya Sutskever.
 517 Jukebox: A generative model for music. *arXiv preprint arXiv:2005.00341*, 2020.

518

519 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
 520 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 521 pp. 12873–12883, 2021.

522

523 Christopher Fifty, Ronald G Junkins, Dennis Duan, Aniketh Iger, Jerry W Liu, Ehsan Amid, Sebastian
 524 Thrun, and Christopher Ré. Restructuring vector quantization with the rotation trick. *arXiv preprint*
 525 *arXiv:2410.06424*, 2024.

526

527 Robert Gray. Vector quantization. *IEEE Assp Magazine*, 1(2):4–29, 1984.

528

529 Haohan Guo, Fenglong Xie, Dongchao Yang, Hui Lu, Xixin Wu, and Helen Meng. Addressing index
 530 collapse of large-codebook speech tokenizer with dual-decoding product-quantized variational
 531 auto-encoder. *arXiv preprint arXiv:2406.02940*, 2024.

532

533 Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaobing
 534 Liu. Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis. *arXiv*
 535 *preprint arXiv:2412.04431*, 2024.

536

537 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
 538 trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural*
 539 *information processing systems*, 30, 2017.

540

541 Harold Hotelling. Analysis of a complex of statistical variables into principal components. *Journal*
 542 *of educational psychology*, 24(6):417, 1933.

543

544 Minyoung Huh, Brian Cheung, Pulkit Agrawal, and Phillip Isola. Straightening out the straight-
 545 through estimator: Overcoming optimization challenges in vector quantized networks. In *Internation-
 546 al Conference on Machine Learning*, pp. 14096–14113. PMLR, 2023.

- 540 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. *arXiv*
 541 *preprint arXiv:1611.01144*, 2016.
- 542
- 543 Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search.
 544 *IEEE transactions on pattern analysis and machine intelligence*, 33(1):117–128, 2010.
- 545 William B Johnson, Joram Lindenstrauss, and Gideon Schechtman. Extensions of lipschitz maps into
 546 banach spaces. *Israel Journal of Mathematics*, 54(2):129–138, 1986.
- 547
- 548 Lukasz Kaiser, Samy Bengio, Aurko Roy, Ashish Vaswani, Niki Parmar, Jakob Uszkoreit, and
 549 Noam Shazeer. Fast decoding in sequence models using discrete latent variables. In *International*
 550 *Conference on Machine Learning*, pp. 2390–2399. PMLR, 2018.
- 551 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 552 2014.
- 553
- 554 Adrian Łańcucki, Jan Chorowski, Guillaume Sanchez, Ricard Marxer, Nanxin Chen, Hans JGA
 555 Dolfin, Sameer Khurana, Tanel Alumäe, and Antoine Laurent. Robust training of vector quantized
 556 bottleneck models. In *2020 International Joint Conference on Neural Networks (IJCNN)*, pp. 1–7.
 557 IEEE, 2020.
- 558
- 559 Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
 560 generation using residual quantization. In *Proceedings of the IEEE/CVF Conference on Computer*
 561 *Vision and Pattern Recognition*, pp. 11523–11532, 2022.
- 562
- 563 Xiang Li, Kai Qiu, Hao Chen, Jason Kuen, Jiuxiang Gu, Jindong Wang, Zhe Lin, and Bhiksha Raj.
 564 Xq-gan: An open-source image tokenization framework for autoregressive generation. *arXiv*
 565 *preprint arXiv:2412.01762*, 2024.
- 566
- 567 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 568 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer vision–*
 569 *ECCV 2014: 13th European conference, zurich, Switzerland, September 6–12, 2014, proceedings,*
 570 *part v 13*, pp. 740–755. Springer, 2014.
- 571
- 572 Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar quantization:
 573 Vq-vae made simple. *arXiv preprint arXiv:2309.15505*, 2023.
- 574
- 575 Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. *The London,*
 576 *Edinburgh, and Dublin philosophical magazine and journal of science*, 2(11):559–572, 1901.
- 577
- 578 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 579 and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine*
 580 *learning*, pp. 8821–8831. Pmlr, 2021.
- 581
- 582 Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
 583 vq-vae-2. *Advances in neural information processing systems*, 32, 2019.
- 584
- 585 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 586 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-*
 587 *ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.
- 588
- 589 Aurko Roy, Ashish Vaswani, Arvind Neelakantan, and Niki Parmar. Theory and experiments on
 590 vector quantized autoencoders. *arXiv preprint arXiv:1805.11063*, 2018.
- 591
- 592 Fengyuan Shi, Zhuoyan Luo, Yixiao Ge, Yujiu Yang, Ying Shan, and Limin Wang. Taming scalable
 593 visual tokenizer for autoregressive image generation. *arXiv preprint arXiv:2412.02692*, 2024.
- 594
- 595 Casper Kaae Sønderby, Ben Poole, and Andriy Mnih. Continuous relaxation training of discrete
 596 latent variable image models. In *Beysian DeepLearning workshop, NIPS*, volume 201, 2017.
- 597
- 598 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
 599 Scalable image generation via next-scale prediction. *arXiv preprint arXiv:2404.02905*, 2024.
- 600
- 601 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in*
 602 *neural information processing systems*, 30, 2017.

- 594 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
 595 error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–612,
 596 2004.
- 597
- 598 Mark Weber, Lijun Yu, Qihang Yu, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh
 599 Chen. Maskbit: Embedding-free image generation via bit tokens. *arXiv preprint arXiv:2409.16211*,
 600 2024.
- 601 Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong
 602 Xu, Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan.
 603 *arXiv preprint arXiv:2110.04627*, 2021.
- 604
- 605 Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
 606 Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion-
 607 tokenizer is key to visual generation. *arXiv preprint arXiv:2310.05737*, 2023.
- 608 Qihang Yu, Ju He, Xueqing Deng, Xiaohui Shen, and Liang-Chieh Chen. Randomized autoregressive
 609 visual generation. *arXiv preprint arXiv:2411.00776*, 2024a.
- 610 Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh Chen. An
 611 image is worth 32 tokens for reconstruction and generation. *arXiv preprint arXiv:2406.07550*,
 612 2024b.
- 613
- 614 Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi. Sound-
 615 stream: An end-to-end neural audio codec. *IEEE/ACM Transactions on Audio, Speech, and
 616 Language Processing*, 30:495–507, 2021.
- 617 Borui Zhang, Wenzhao Zheng, Jie Zhou, and Jiwen Lu. Preventing local pitfalls in vector quantization
 618 via optimal transport. *arXiv preprint arXiv:2412.15195*, 2024.
- 619
- 620 Jiahui Zhang, Fangneng Zhan, Christian Theobalt, and Shijian Lu. Regularized vector quantization
 621 for tokenized image synthesis. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 622 and Pattern Recognition*, pp. 18467–18476, 2023.
- 623 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 624 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on
 625 computer vision and pattern recognition*, pp. 586–595, 2018.
- 626
- 627 Long Zhao, Sanghyun Woo, Ziyu Wan, Yandong Li, Han Zhang, Boqing Gong, Hartwig Adam,
 628 Xuhui Jia, and Ting Liu. ϵ -vae: Denoising as visual decoding. *arXiv preprint arXiv:2410.04081*,
 629 2024a.
- 630
- 631 Yue Zhao, Yuanjun Xiong, and Philipp Krähenbühl. Image and video tokenization with binary
 632 spherical quantization. *arXiv preprint arXiv:2406.07548*, 2024b.
- 633
- 634 Lei Zhu, Fangyun Wei, Yanye Lu, and Dong Chen. Scaling the codebook size of vqgan to 100,000
 635 with a utilization rate of 99%. *arXiv preprint arXiv:2406.11837*, 2024a.
- 636
- 637 Yongxin Zhu, Bocheng Li, Yifei Xin, and Linli Xu. Addressing representation collapse in vector
 638 quantized models with one linear layer. *arXiv preprint arXiv:2411.02038*, 2024b.
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647

648

A RELATED WORK

649

650 Addressing the shortcomings of unstable codebook training and suboptimal encoding performance in
651 Vanilla VQ models (Van Den Oord et al., 2017; Razavi et al., 2019), researchers have proposed various
652 methods. The relevant work can mainly be categorized into: (1) Improvements to Straight-Through
653 Estimator (2) Multi-index quantization (3) Improvements to the codebook.

654 **Improvements to Straight-Through Estimator.** Huh et al. (2023) alternately optimizes the codebook
655 and the model, using the gradient of the task loss to update the codebook synchronously. Fifty et al.
656 (2024) proposes a rotation trick to optimize the STE.

657 **Multi-index quantization.** The Vanilla VQ model represents each feature vector using a single code
658 vector from the codebook, corresponding to one index. For an entire feature map $Z \in \mathbb{R}^{h \times w \times d}$,
659 a total of $h \times w$ indices are used, which represents the theoretical upper limit of the information
660 content after quantization. To increase the information capacity of the encoded representation, it is
661 a natural idea to use more indices to represent the feature map, which also implies that more code
662 vectors are selected and optimized. RQ-VAE (Lee et al., 2022) quantizes the error vector between
663 the original and quantized feature vectors multiple times, allowing for a more precise representation
664 of each feature vector. Product Quantization (PQ) (Jegou et al., 2010; Zhang et al., 2024; Li et al.,
665 2024; Guo et al., 2024) divides the vector into multiple shorter sub-vectors and quantizes each
666 sub-vector separately. VAR (Tian et al., 2024) introduces multi-scale residual quantization, where the
667 feature map is downsampled multiple times, and each downsampled feature map is quantized. The
668 commonality of these methods lies in the use of more than $h \times w$ indices to represent the feature map.

669 **Improvements to the codebook.** This section includes the way to look up code vectors and the
670 optimization methods for the codebook. Van Den Oord et al. (2017) employs exponential moving
671 average (EMA) to update the codebook. Sønderby et al. (2017); Roy et al. (2018); Kaiser et al.
672 (2018) prevents certain codes from never being used by employing random sampling and probabilistic
673 relaxation during the training process, while Dhariwal et al. (2020); Zeghidour et al. (2021) achieves
674 this by periodically replacing inactive codes. The Vanilla VQ model uses Euclidean distance to
675 measure vector distances, while VQGAN-FC (Yu et al., 2021) projects features into a low-dimensional
676 space (Chen et al., 2024) and applies L2 normalization, making squared Euclidean distance equivalent
677 to cosine similarity. DALL-E (Ramesh et al., 2021) utilizes Gumbel-Softmax trick (Jang et al., 2016)
678 to represent the tokens of images. Some methods explore better codebook initialization, such as using
679 features from a pre-trained backbone for K-Means clustering to initialize the codebook (Łafćucki
680 et al., 2020; Huh et al., 2023; Zhu et al., 2024a). Lookup-free Quantization (LFQ) (Yu et al., 2023)
681 and Finite Scalar Quantization (FSQ) (Mentzer et al., 2023) project feature vectors onto an extremely
682 low dimension (typically < 10) and then perform integer quantization on each dimension respectively
683 after compression by a bounded function. LFQ and FSQ are equivalent to fixing the codebook (Han
684 et al., 2024; Zhao et al., 2024b), thus avoiding "codebook collapse". However, fixing the codebook
685 leads to performance degradation, so there are various methods proposed to jointly optimize the
686 entire codebook (Shi et al., 2024). Huh et al. (2023) perform affine transformations with shared
687 parameters on each code. VQGAN-LC (Zhu et al., 2024a) and SimVQ (Zhu et al., 2024b) freeze the
688 codebook and only train the projection layers after it. Zhang et al. (2023) aims to align the codebook
689 distribution with that of encoder features.

690
691
692
693
694
695
696
697
698
699
700
701

702 **B IMPLEMENTATION OF SIMPLIFIED GROUP-VQ**
703

704 In the simplified Group-VQ, each sub-codebook has the same codebook size and the same rank.
 705 Consistent with the setup in Section 3.2, the codebook contains n vectors, each with a dimension of
 706 d , and is divided into k sub-codebooks. Each sub-codebook in the simplified Group-VQ contains $\frac{n}{k}$
 707 (ensuring divisibility) code vectors, and all sub-codebooks have a rank of r . We use the following
 708 Algorithm 3 to parallelize the codebook generation.

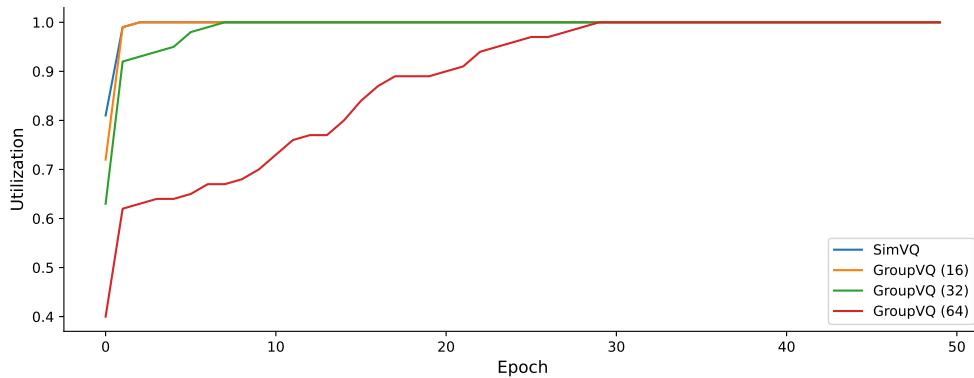
710 **Algorithm 3** Codebook Initialization in simplified Group-VQ

711 **Input:** Codebook size n , code vector dimension d , number of sub-codebooks k , sub-codebook
 712 rank r
 713 Random initialization (standard normal distribution): $\hat{C} \in \mathbb{R}^{\frac{n}{k} \times r}$, $W \in \mathbb{R}^{r \times (d \times k)}$, zero-initialized
 714 $b \in \mathbb{R}^{(d \times k)}$
 715 Compute intermediate result: $C' = \hat{C} W + b$
 716 Reshape C' from $(\frac{n}{k}, d \times k)$ to (n, d) to obtain the final codebook C
 717 **Output:** Codebook C

718 Since the codebook core is fixed, the above method only parallelizes the codebook generation process
 719 of the simplified Group-VQ and does not affect the parameter independence between sub-codebooks.
 720 It is worth noting that in this simplified version, since each sub-codebook shares the same codebook
 721 core, performance may slightly degrade when the number of codes per group is too small (e.g.,
 722 ≤ 16). However, the experimental setup in Section 4.1 does not fall into this range, so the impact
 723 can be ignored.

725 **C CODEBOOK UTILIZATION DYNAMICS**

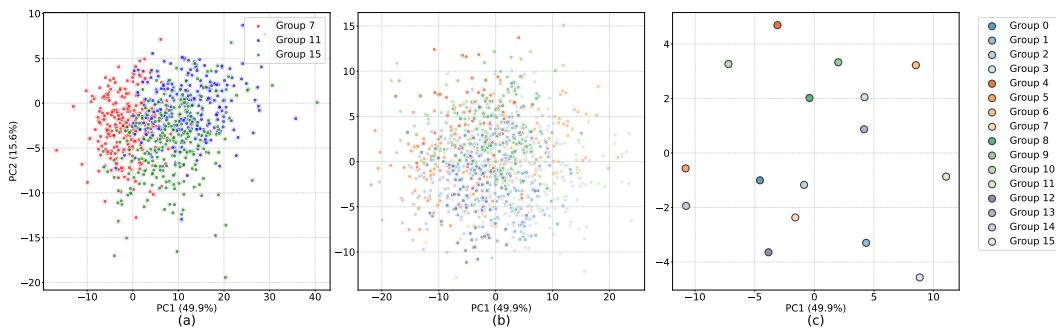
726 Figure 8 illustrates that the codebook utilization rate increases with the progression of epochs. The
 727 greater the number of independently optimized groups, the later the 100% utilization rate is achieved.



744 Figure 8: The codebook utilization rate increases with epochs. This includes SimVQ (equivalent
 745 to Group-VQ with a group number of 1) and Group-VQ with group numbers of 16, 32, and 64,
 746 respectively.

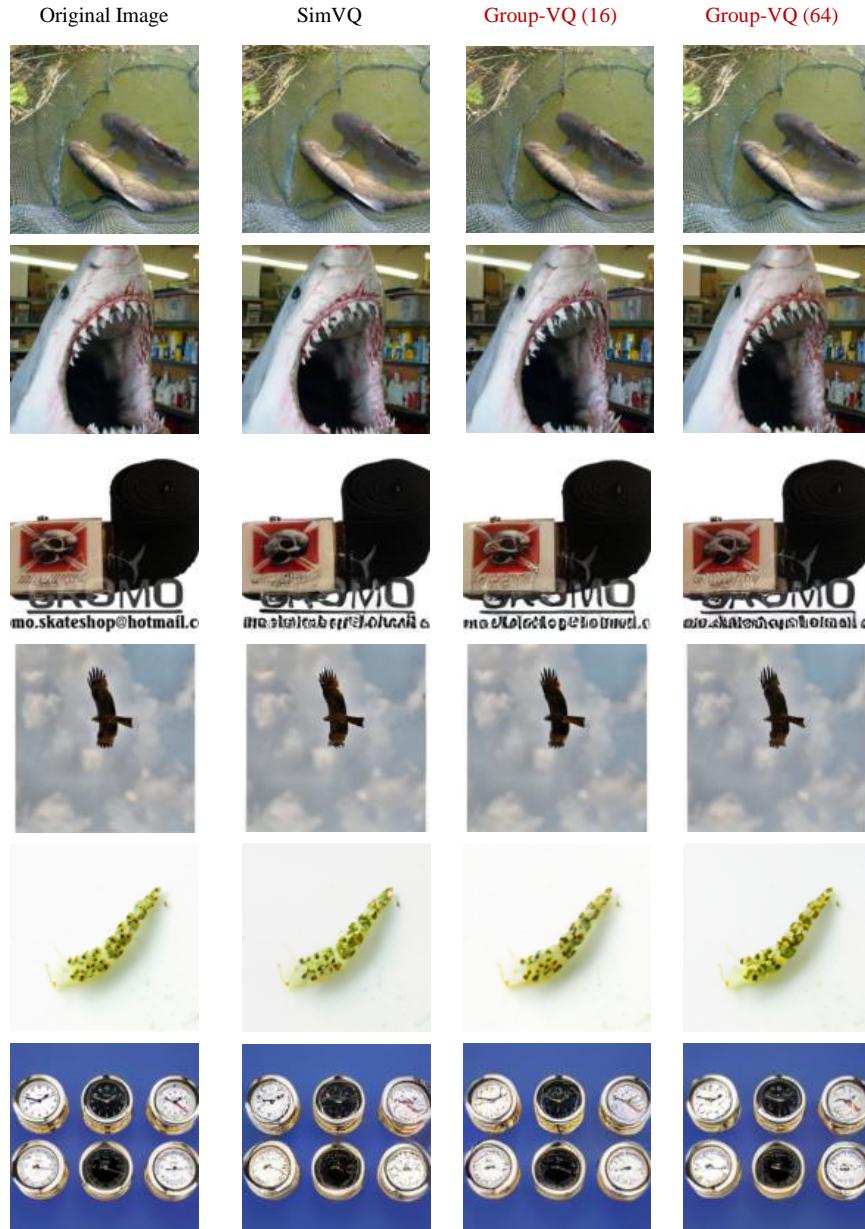
756 D MORE VISUALIZATION OF GROUP-VQ
757

758 In this section, we use Principal Component Analysis (PCA) (Pearson, 1901; Hotelling, 1933) to
759 reduce the dimension of the codebook to two dimensions. We combine all the code vectors and
760 standardize them. Then, we utilize PCA to extract the two principal components with the largest data
761 variance, forming a projection matrix. All codes are mapped onto a two - dimensional plane through
762 this projection matrix. The result is shown in Figure 9.



776 Figure 9: Use PCA to project the Group - VQ (group = 16) code vectors on ImageNet onto 2 -
777 dimensional space for visualization. The horizontal and vertical axes are the first two principal
778 components calculated by PCA. The horizontal axis represents the first principal component, PC1,
779 which preserves the most information. The vertical axis represents the second principal component,
780 PC2. The units of the coordinate axes are the values of the standardized data after being projected by
781 PCA. (a) shows 256 sampled points per group for groups 7, 11, and 15. (b) shows 64 sampled points
782 per group for all groups. (c) shows the projection of the bias vectors for each group.

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811 E SAMPLE RESULTS OF IMAGE RECONSTRUCTION812
813 Figures 10 present a selection of sample results from the image reconstruction on ImageNet discussed
814 in Section 4.1. For example, in the images of the fourth row, Group - VQ reconstructs the feathers at
815 the tips of the bird’s wings better. In the fifth row, the overall colors reconstructed by Group - VQ are
816 more consistent with the original image.858
859 Figure 10: Image reconstruction examples. The numbers in parentheses for Group-VQ indicate the
860 number of groups.

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Figure 11 presents a selection of sample results from the codebook resampling and self-extension discussed in Section 4.1.

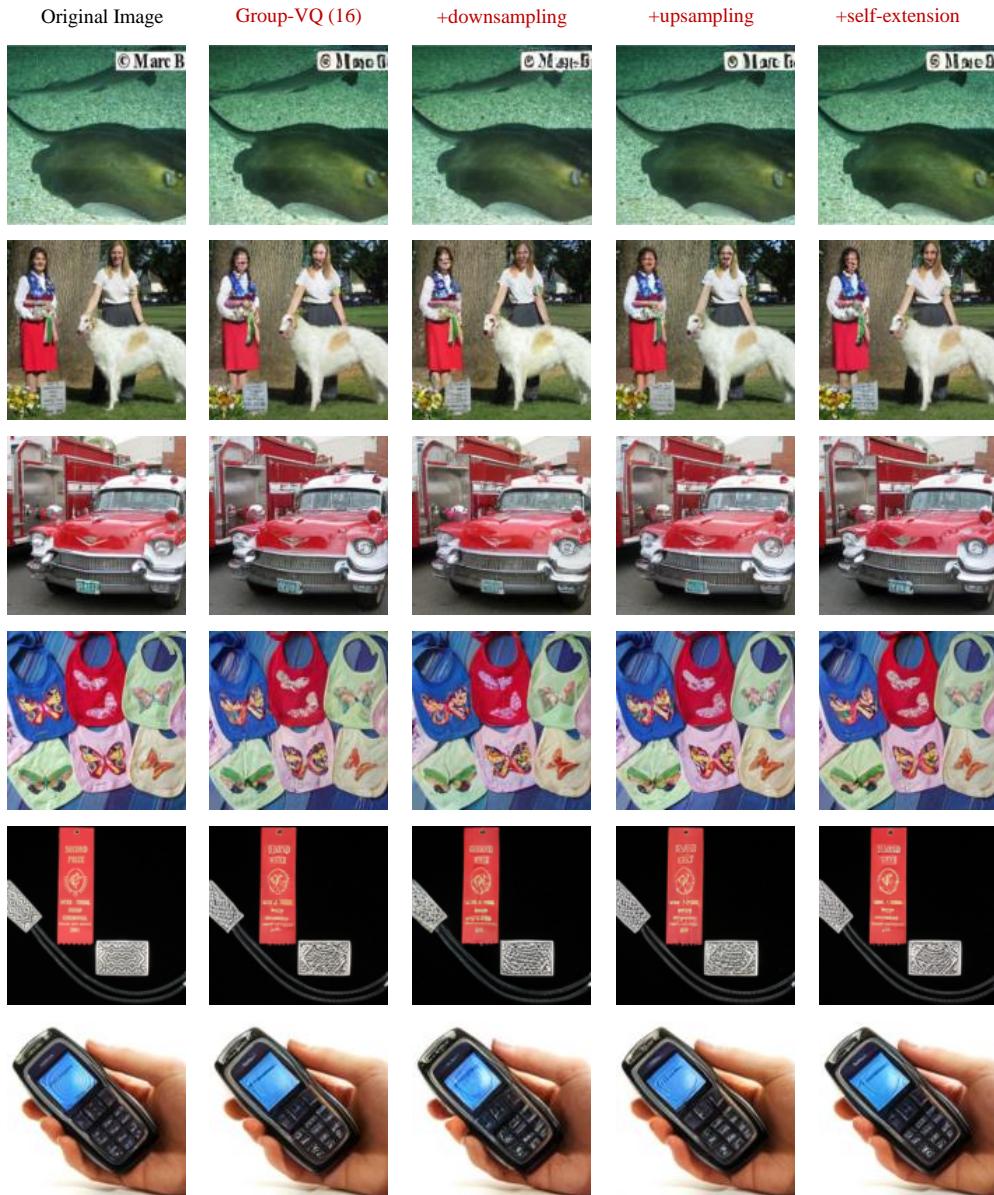


Figure 11: Images of codebook resampling and self-extension applied to Group-VQ with group=16.

918 F LIMITATION
919920 The VQ model discretizes images into tokens, ultimately serving the modeling needs of downstream
921 generative models. However, we have not yet validated the effectiveness of Group-VQ on generative
922 models. We clarify that Group-VQ improves the optimization dynamics of the codebook during
923 training solely by altering the parameterization of the codebook. Therefore, we believe Group-VQ
924 remains orthogonal to downstream tasks, and thus we leave this exploration for future work.
925926 G THE USE OF LARGE LANGUAGE MODELS
927928 In the preparation of this manuscript, a Large Language Model (LLM) was used solely for the purpose
929 of language polishing and stylistic refinement of the text. The LLM was prompted to improve clarity,
930 grammar, and fluency of expression, without altering the core scientific content, methodology, results,
931 or interpretations presented in the paper. The research ideas, experimental design, data analysis, and
932 original writing were entirely conducted by the human authors. The LLM did not contribute to the
933 generation of hypotheses, formulation of research questions, or development of novel concepts. Its
934 role was strictly limited to post-writing linguistic enhancement.
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971