
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CAN - CONTINUOUSLY ADAPTING NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Catastrophic forgetting is a fundamental challenge in neural networks that pre-
vents continuous learning, which is one of the properties essential for achieving
true general artificial intelligence. When trained sequentially on multiple tasks,
conventional neural networks overwrite previously learned knowledge, hindering
their ability to retain and apply past experiences. However, humans and other ani-
mals can learn new things continuously without forgetting them. To overcome this
problem, we devised an architecture that preserves significant task-specific con-
nections by combining selective neuron freezing with Hebbian learning principles.
Hebbian learning enables the network to adaptively strengthen synaptic connec-
tions depending on parameter activation. It is inspired by the synaptic plasticity
seen in the brain. By preserving the most important neurons using selective neuron
freezing, new tasks can be trained without changing parameter weights. Experi-
ments conducted on standard datasets show that our model significantly reduces
the risk of catastrophic forgetting, allowing the network to learn continually.

1 INTRODUCTION

Artificial Neural Networks (ANNs) are an important aspect of modern Deep Learning models. Even
though they are biologically plausible in certain aspects, they are still incapable of doing many
important tasks that biological neural networks can easily perform. Continual Learning is one area
where ANNs don’t work well with their vanilla architecture Wang et al. (2024). To learn tasks
from a new distribution, ANNs have to be trained on the entire dataset from the beginning due to
which they end up forgetting the previously learned task Zenke et al. (2017). On the other hand, the
human brain can learn from non-stationary data and store it easily Mao et al. (2021); Kudithipudi
et al. (2022). It could be because of poor mimicry of the biological capabilities of the neurons that
ANNs currently don’t have this property, or it could also be because of some missing piece in the
architecture Bashivan et al. (2019).

Catastrophic forgetting is a problem faced by the current designs of ANNs where the network for-
gets the previously learned data distribution when trained on different data distributions Bagus &
Gepperth (2021); De Lange et al. (2022); Toneva* et al. (2018); Harun et al. (2023). Continual
Learning is an important and interesting property for a neural network to attain. There are a few dif-
ferent methods using which other papers have tried to solve this problem Zenke et al. (2017); Yang
et al. (2023). We have tried to solve this issue through architectural changes in this work. In gen-
eral ANNs, the parameters are trained to store the tuned values corresponding to the tasks. Updating
these parameters for a different distribution makes the model forget the previous task. Therefore, the
most intuitive way to retain the memory of the previous task is to freeze those parameters Hou et al.
(2025). Then comes the next intuitive question, i.e., which parameters to freeze? We developed a
method that utilizes Hebb’s principle to compute a hebbian update matrix which upon normalization
acts as scaler values to scale the incoming gradients with the connection importance. This allows
the algorithm to strengthen or weaken or completely ignore the gradients based on the connection
importance. As new tasks keep coming, it is made sure that the previously trained neurons are not
updated. The key highlight of this algorithm is that it dynamically selects the important neurons rel-
evant for the task based on the incoming data distribution and trains accordinglyAmato et al. (2019).
The idea inspired from how the brain uses both local and global feedback to optimize and update
the neurons connections.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this paper, we will show how a general ANN can be extended to attain Continual Learning by
dynamically training sub-networks for different tasks Kohonen (1982). We show this is possible
using a simple combination of local and global feedback systems.

2 RELATED WORK

Continual Learning has been addressed through multiple approaches in the past. Here are some of
the techniques using which this was done:

2.1 REGULARIZATION-BASED METHODS

Regularization techniques use penalties to limit changes to important parameters during the learning
of new tasks. These approaches retain task-specific knowledge by minimizing parameter updates
that could damage previously learned knowledge. One notable method is Synaptic Intelligence
(SI), which stores task-relevant information over time to prevent catastrophic forgetting Zenke et al.
(2017). Other approaches use elastic weight consolidation (EWC) or L2 regularization to maintain
network stability while learning new tasks Kann et al. (2023).

2.2 REPLAY-BASED METHODS

Replay-based approaches store samples from previous tasks in memory and periodically revisit them
during training on new tasks to maintain learned knowledge van de Ven et al. (2020). The stored
samples can be used for rehearsal, ensuring the model retains information from earlier tasks. Recent
works have shown that even simple memory replay methods can outperform more complex strategies
when memory is managed effectively Bagus & Gepperth (2021). Techniques like generative replay
have also been explored Bashivan et al. (2019), where synthetic samples from previous tasks are
generated and used for rehearsal. Certain techniques make use of external memory to store and
fetch required data Du et al. (2022); Sun et al. (2024).

2.3 PARAMETER ISOLATION TECHNIQUES

Parameter isolation methods assign different sets of parameters to different tasks, preventing inter-
ference between them. A prominent example is the Progressive Neural Network, which grows the
network by adding new neurons for each task, avoiding overwriting the learned parameters of previ-
ous tasks. Freezing critical parameters, based on neuron importance scores, is another approach to
prevent interference Hou et al. (2025). This technique can be effective but may lead to inefficiencies
as networks expand.

2.4 DYNAMIC ARCHITECTURES

Dynamic architectures allow the model to grow and adapt based on the complexity of the tasks. This
approach modifies the network’s architecture by adding or adjusting components as new tasks are
introduced, making it more flexible in dealing with non-stationary data. Recent work using Heb-
bian Learning has proposed dynamic architectures that automatically freeze important neurons and
connections, allowing the model to learn incrementally without catastrophic forgetting Amato et al.
(2019). Another recent work using probabilistic modeling has proposed approaches like Contin-
ual Learning with Adaptive Weights (CLAW), which adaptively determine shared and task-specific
components to mitigate catastrophic forgetting while enabling task transfer Adel et al. (2020).

2.5 META-LEARNING APPROACHES

Meta-learning, or learning to learn, has been applied to create models that quickly adapt to new
tasks with minimal forgetting. These methods often involve training the model on task sequences,
enabling it to generalize well to unseen tasks while retaining knowledge from prior ones. Meta-
learning-based Continual Learning has shown promise in effectively balancing stability and plastic-
ity Zenke et al. (2017); Javed & White (2019).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 METHODOLGY

In order to solve the Continual Learning problem, we need to stop the relevant parameters of the
previous tasks from changing while training for a newer task. This can be achieved by calculating
an “importance score” for each parameter. One of the ways to calculate this importance score is to
use a locally learning algorithms that computes a score using the activations of all the parameters of
a neuron. One such algorithm is Hebbian learning. Since this algorithm is really good at learning
patterns and it dynamically learns patterns according to the coming tasks, it can be applied to any
dataset, making it adaptable for dynamically identifying important neurons across different tasks.
However, it is crucial to ensure that previously trained neurons are not selected again during the
training of new tasks. We have designed an architecture where the gradients of the SGD algorithm
is scaled by the locally received feedback. This feedback is computed using the Hebbian learning
algorithm.

This model starts by training a set of parameters θ1 for a given task and subsequently training another
set of parameters θ2 for the next task. Here, both θ1 and θ2 belong to the set of parameters θ. The
goal of the network is to minimize the loss for a task Tn using the parameters θn which belongs to
the set θ.

L(θ) = Ln(θn) ∈ Tn

The model learns to select important parameters for a given task and train them for that particular
task. The important neurons are selected dynamically using the computed importance score. These
scores are calculated using Hebbian Learning Bahroun & Soltoggio (2018). The learning rule for
Hebb’s Principle is: “Neurons that fire together wire together”. This is considered the property of
the human brain and is responsible for the plasticity of the connections. Frequently activating the
relevant connections allows us to learn the action for that particular task.

3.1 HEBBIAN LEARNING

3.1.1 INTRODUCTION

Hebbian Learning is an unsupervised algorithm that updates the parameters according to their ac-
tivation. Since activations are different for different kinds of data, the important parameters to be
updated change according to activated values. In order to calculate an importance score for every
neuron, we calculate the average of all the weights relevant to one particular neuron at a time and
repeat the same for all the neurons. At the end, the values are scaled to get a score value. The
Hebbian weights are updated using the following formula :

δw = lr ∗ (yi ∗ xj)

Where w is the Hebbian parameter, lr is the learning rate, and x and y are input and output values
from the synapses, respectively. Hebbian Learning works locally by depending only on the input
and output values of the synapses. This means that it doesn’t rely on any global error signal and
works for unseen data. It naturally strengthens connections between co-active neurons, allowing the
network to find relevant connections for a particular data distribution.

3.1.2 OJA’S RULE

The base form of Hebbian learning doesn’t really normalize the weights but rather continuously
keeps on increasing the parameter if the connection is strong every time. In other words, the param-
eters very easily explodes and reaches infinity. Oja’s Rule stabilizes hebbian learning with a very
simple way. To update rule is as follows:

δw = lr ∗ yi ∗ (xj − yi ∗ wij)

Oja’s rule normalizes the weights and can be used in practice to find the first principal component,
effectively performing PCA. The resulting weight vector coincides with the principal axis. A single
linear neuron trained with Oja’s rule thus extracts the most information it can from the input samples.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1.3 LATERAL INHIBITION

The aforementioned learning rules of Hebbian learning are only applicable to networks with a single
output neuron. Every single neurons learns the first principal component, but this is not what we
want. It is expected for each of the neurons to learn different patterns to give prediction on all inputs.
Therefore we introduce competition among the neurons. Each neuron can now inhibit every other
neuron (in the same layer) and competition is established. When a certain input pattern is applied, the
neurons compete and only a few neurons respond strongly to the pattern, while the other neurons are
inhibited. Such an inhibition scheme is actually biologically motivated. This encourages different
neurons to learn various patterns.

3.2 SELECTIVE TRAINING AND INFERENCE MASKING

Selective training is used to train only the selected neurons by freezing the others. This prevents the
loss of previously trained tasks. In PyTorch, we implemented hooks that automatically multiply the
scaled hebbian updated values with the gradients. In such a method, gradients are scaled according
to the importance of the connections and even completely ignored if the scaling value is 0. During
the forward propagation, we use a masking technique where the activation from irrelevant neurons
for a particular task is multiplied by zero. This allows the data to flow only through the few selected
neurons and train them.

Figure 1: The red neurons represent the rejected neurons. While training, the gradient only flows
through the white neurons and only trains them. The red neurons only receive zero gradients until
they become relevant for the next task. The gradients of the other relevant neurons are scaled
according to it’s importance.

Figure 1 shows how important neurons are selected and others are masked. The red ones are the
rejected neurons and the remaining neurons get together to form a sub-network. These sub-networks
are dynamically formed even with the use of non-stationary data.

Every task will have its sub-network and is stored as masks in the db. During the inference time, a
relevant mask can be selected and used to get the prediction. Now, the question arises of how we
choose an appropriate mask. We are also working on creating a gating mechanism, which is part of
this project’s future scope.

3.3 ARCHITECTURE

Our architecture comprises three important modules: the ANN, Importance Calculator and Selective
Trainer. Importance Calculator uses Hebbian Learning, an unsupervised algorithm to dynamically
and locally calculate scores. Based on these scores, the Selective Trainer trains only those neurons
with a score above a pre-defined threshold. The Trainer also trains the selected neurons with the
received local feedback from the hebbian update. It simply scales the gradients of SGD with the
connection importance.

Importance Calculator uses Hebbian Learning, an unsupervised algorithm to dynamically and lo-
cally calculate scores. Hebbian Learning is used here since it can learn important representation
from non-stationary data, especially unsupervised. These scores are then passed to the Selective
Trainer, a function that uses hooks to select relevant neurons based on their scores and scale the

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

remains ones. It does this by setting the gradient of irrelevant neurons to zero during the training
process, thereby focusing the model’s Learning on the most important neural pathways.

Figure 2: Data Flow Diagram of CAN’s Architecture.

Figure 2 shows the Data Flow diagram of our architecture. This shows how different important
component of our architecture work together to solve the problem of Continual Learning.

4 EXPERIMENT

All our experiments were conducted on the MNIST and the CIFAR-10 Dataset. We tested our model
for both task-incremental learning and domain-incremental learning. All our experiments were run
on a network with hidden layers as 256, 128 and 64 with ReLU activation functions and Sigmoid
activation at the end.

4.1 DATASET

4.1.1 TASK-INCREMENTAL LEARNING

For our experiments, we divided the MNIST and the CIFAR-10 Dataset into two sets with the
classes 0-4 and 5-9 respectively. Experiments could be conducted with any such classification data
by dividing them into multiple tasks. One of the constraints of our architecture is that we can’t use
a continuous stream of data belonging to a variable number of classes.

The division of data doesn’t need to be equal all the time. Task-Incremental learning measures the
amount of forgetting the network goes through after training the model on different tasks.

4.1.2 DOMAIN-INCREMENTAL LEARNING

For this experiment, we create two different version of the same dataset. The first version is the
normal training data as it is and second version is added with different random properties like Hori-
zontalFlip, RandomRotation, RandomAffine, ColorJitter, random noise.

The model is then trained on both the datasets one by one. In this case masks are not used for
forward propagation as the entire dataset is used when it is trained both the times. Our algorithm
showed improvements from the vanilla model.

4.2 TRAINING

4.2.1 TASK-INCREMENTAL LEARNING

The model is first trained on classes 0-4. The model automatically identifies the most activated
neurons and trains the regular gradients scaled with the importance factor of the connection. The
model is trained for 10 epochs with a learning rate scheduler to attain stability. After the first training,
the mask representing the sub-network for this particular task is stored as a binary mask. This mask

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

is then used for both further training and inference. While training for the subsequent tasks, the
previous masks are used to ensure that those neurons are not affected during further training.

The model is then trained on classes 5-9, using the same hyper-parameters as in the previous training
phase. Simultaneously, it ensures that no neurons selected for the current training were used for
prior tasks. This training approach can be generalized with N number of tasks. The network will
continue learning tasks until it reaches its capacity, meaning all neurons have been utilized. In such
a situation, the concept of a growing network comes into the picture. Implementing this is part of
the project’s future work.

4.2.2 DOMAIN-INCREMENTAL LEARNING

The model is trained on the regular dataset first. The model uses our algorithm which uses the
combination of gradient descent and hebbian learning. In this experiment there are no masks since
the entire data is used to train. The training with the second dataset then starts with a similar fashion
the first one.

After the training, the model is tested on the test data of both the datasets one by one to compute the
average accuracy.

4.3 INFERENCE

For the task-incremental experiment, After the training phase, there exists a binary mask for each of
the task. Currently, to analyze the performance of the model, we are manually selecting the mask and
measuring the metrics but it can be done using a gating system that automatically selects the relevant
gate according to the given task during inference. A gating system can be easily implemented by
training a simple auto-encoder for each task. During the inference phase, data can be passed through
every auto-encoder to calculate the reconstruction error and hence choose the auto-encoder with the
least error. The mask corresponding to that particular auto-encoder would be used for the inference.

Whereas for the domain-incremental experiment, we just simply test the model on the test sets of
both the datasets one by one.

5 RESULTS

We have measured the capabilities of our model using the average accuracy metric. We have plotted
some graphs to make the differences clear between our model and the vanilla one.

5.1 TASK-INCREMENTAL LEARNING & DOMAIN-INCREMENTAL LEARNING RESULTS

Figure 3: The Vanilla network running regular SGD performs as follows in the Task-Incremental
Task

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: The network running our algorithm performs as follows in the Task-Incremental Task

Figure 5: The Vanilla network’s performance in the domain-incremental task.

Figure 6: The network’s performance in the domain-incremental task using our algorithm

5.2 AVERAGE ACCURACY (ACC)

It is the average accuracy over all tasks after the entire sequence of tasks has been learned. It provides
a summary of how well the model performs across the different tasks once the final task has been
completed. This metric offers a holistic view of the model’s effectiveness in Continual Learning. A
high ACC indicates that the model successfully learns new tasks while retaining knowledge of older
tasks.

ACC =
1

n

n∑
i=1

Ai,n

Where Ai,n is the accuracy on task i after learning the last task n and n is the total number of tasks.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Average Accuracy

MODEL AVG ACC of TIL AVG ACC of DIL
CAN (ours) 27.1% 27.01%

Vanilla ANNs 22.5% 15.5%

The above values are the results by using the CIFAR-10 dataset.

5.3 TIME TO STABILITY

The time (in terms of epochs or iterations) it takes for the model’s performance on a new task to
stabilize after learning it. Stability is reached when the model’s performance on the new task no
longer fluctuates significantly. A shorter time to stability implies that the model adapts quickly to
new information, which is crucial for reducing training time and computational resources.

While it converged in 10 epochs for the initial task, the model needed more epochs for the second
one. For instance, the second task needed 20 epochs to reach convergence. Despite this increased
epoch requirement for later tasks, the model consistently achieved convergence. All of these exper-
iments were conducted with a seed value of 720 to ensure reproducibility.

6 FUTURE SCOPE

Future scope for our project can be divided into two different aspects, i.e., implementing a Gating
system and allowing the network to grow after it reaches its limitation.

Gating Mechanism: This is an important mechanism in order to attain true Continual Learning,
as the model needs to automatically identify the kind of task and use the respective sub-network
for inference. This can easily be implemented by training an auto-encoder for every new task and
measuring the reconstruction error.

Growing Network: It is understood that a fixed number of neurons cannot keep on learning forever.
Therefore, we need a mechanism using which the network grows once all the existing neurons are
exhausted. This allows the network to grow forever and attain actual Continual Learning. One
possible approach is to use Reinforcement Learning for the network to learn the rules of growing.

REFERENCES

Tameem Adel, Han Zhao, and Richard E. Turner. Continual Learning with Adaptive Weights
(CLAW), June 2020. URL http://arxiv.org/abs/1911.09514. arXiv:1911.09514
[cs, stat].

Giuseppe Amato, Fabio Carrara, Fabrizio Falchi, Claudio Gennaro, and Gabriele Lagani. Heb-
bian Learning Meets Deep Convolutional Neural Networks. volume 11751, pp. 324–334,
Cham, 2019. Springer International Publishing. ISBN 9783030306410 9783030306427.
doi: 10.1007/978-3-030-30642-7 29. URL https://link.springer.com/10.1007/
978-3-030-30642-7_29.

Benedikt Bagus and Alexander Gepperth. An Investigation of Replay-based Approaches for Contin-
ual Learning. In 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–9, July
2021. doi: 10.1109/IJCNN52387.2021.9533862. URL http://arxiv.org/abs/2108.
06758. arXiv:2108.06758 [cs].

Yanis Bahroun and Andrea Soltoggio. Online Representation Learning with Single and Multi-layer
Hebbian Networks for Image Classification, January 2018. URL http://arxiv.org/abs/
1702.06456. arXiv:1702.06456 [cs].

Pouya Bashivan, Martin Schrimpf, Robert Ajemian, Irina Rish, Matthew Riemer, and Yuhai Tu.
Continual Learning with Self-Organizing Maps, April 2019. URL https://arxiv.org/
abs/1904.09330v1.

8

http://arxiv.org/abs/1911.09514
https://link.springer.com/10.1007/978-3-030-30642-7_29
https://link.springer.com/10.1007/978-3-030-30642-7_29
http://arxiv.org/abs/2108.06758
http://arxiv.org/abs/2108.06758
http://arxiv.org/abs/1702.06456
http://arxiv.org/abs/1702.06456
https://arxiv.org/abs/1904.09330v1
https://arxiv.org/abs/1904.09330v1


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gre-
gory Slabaugh, and Tinne Tuytelaars. A Continual Learning Survey: Defying Forgetting in
Classification Tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44
(7):3366–3385, July 2022. ISSN 1939-3539. doi: 10.1109/TPAMI.2021.3057446. URL
https://ieeexplore.ieee.org/document/9349197.

Zhekai Du, Zhe Xiao, Ruijing Wang, Ruimeng Gan, and Jingjing Li. Online Continual Learning
with Declarative Memory, 2022. URL https://www.ssrn.com/abstract=4293723.

Md Yousuf Harun, Jhair Gallardo, Tyler L. Hayes, and Christopher Kanan. How Efficient Are
Today’s Continual Learning Algorithms? In 2023 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition Workshops (CVPRW), pp. 2431–2436, June 2023. doi: 10.
1109/CVPRW59228.2023.00241. URL https://ieeexplore.ieee.org/document/
10208398. ISSN: 2160-7516.

Jingrui Hou, Georgina Cosma, and Axel Finke. Advancing continual lifelong learning in neural
information retrieval: Definition, dataset, framework, and empirical evaluation. Information
Sciences, 687:121368, January 2025. ISSN 00200255. doi: 10.1016/j.ins.2024.121368. URL
https://linkinghub.elsevier.com/retrieve/pii/S0020025524012829.

Khurram Javed and Martha White. Meta-learning representations for continual learning. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/f4dd765c12f2ef67f98f3558c282a9cd-Paper.pdf.

Bonpagna Kann, Sandra Castellanos-Paez, and Philippe Lalanda. Evaluation of Regularization-
based Continual Learning Approaches: Application to HAR, April 2023. URL http://
arxiv.org/abs/2304.13327. arXiv:2304.13327 [cs, stat].

Teuvo Kohonen. Self-organized formation of topologically correct feature maps. Biological Cy-
bernetics, 43(1):59–69, January 1982. ISSN 1432-0770. doi: 10.1007/BF00337288. URL
https://doi.org/10.1007/BF00337288.

Dhireesha Kudithipudi, Mario Aguilar-Simon, Jonathan Babb, Maxim Bazhenov, Douglas Black-
iston, Josh Bongard, Andrew P. Brna, Suraj Chakravarthi Raja, Nick Cheney, Jeff Clune, Anurag
Daram, Stefano Fusi, Peter Helfer, Leslie Kay, Nicholas Ketz, Zsolt Kira, Soheil Kolouri, Jef-
frey L. Krichmar, Sam Kriegman, Michael Levin, Sandeep Madireddy, Santosh Manicka, Ali
Marjaninejad, Bruce McNaughton, Risto Miikkulainen, Zaneta Navratilova, Tej Pandit, Alice
Parker, Praveen K. Pilly, Sebastian Risi, Terrence J. Sejnowski, Andrea Soltoggio, Nicholas
Soures, Andreas S. Tolias, Darı́o Urbina-Meléndez, Francisco J. Valero-Cuevas, Gido M. van de
Ven, Joshua T. Vogelstein, Felix Wang, Ron Weiss, Angel Yanguas-Gil, Xinyun Zou, and Hava
Siegelmann. Biological underpinnings for lifelong learning machines. Nature Machine Intelli-
gence, 4(3):196–210, March 2022. ISSN 2522-5839. doi: 10.1038/s42256-022-00452-0. URL
https://www.nature.com/articles/s42256-022-00452-0.

Fubing Mao, Weiwei Weng, Mahardhika Pratama, and Edward Yapp Kien Yee. Continual learn-
ing via inter-task synaptic mapping. Knowledge-Based Systems, 222:106947, June 2021. ISSN
09507051. doi: 10.1016/j.knosys.2021.106947. URL https://linkinghub.elsevier.
com/retrieve/pii/S0950705121002100.

Guanglu Sun, Baolun Ji, Lili Liang, and Minghui Chen. CeCR: Cross-entropy contrastive replay
for online class-incremental continual learning. Neural Networks, 173:106163, May 2024. ISSN
08936080. doi: 10.1016/j.neunet.2024.106163. URL https://linkinghub.elsevier.
com/retrieve/pii/S089360802400087X.

Mariya Toneva*, Alessandro Sordoni*, Remi Tachet des Combes*, Adam Trischler, Yoshua Bengio,
and Geoffrey J. Gordon. An Empirical Study of Example Forgetting during Deep Neural Network
Learning. September 2018. URL https://openreview.net/forum?id=BJlxm30cKm.

Gido M. van de Ven, Hava T. Siegelmann, and Andreas S. Tolias. Brain-inspired replay for contin-
ual learning with artificial neural networks. Nature Communications, 11(1):4069, August 2020.

9

https://ieeexplore.ieee.org/document/9349197
https://www.ssrn.com/abstract=4293723
https://ieeexplore.ieee.org/document/10208398
https://ieeexplore.ieee.org/document/10208398
https://linkinghub.elsevier.com/retrieve/pii/S0020025524012829
https://proceedings.neurips.cc/paper_files/paper/2019/file/f4dd765c12f2ef67f98f3558c282a9cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f4dd765c12f2ef67f98f3558c282a9cd-Paper.pdf
http://arxiv.org/abs/2304.13327
http://arxiv.org/abs/2304.13327
https://doi.org/10.1007/BF00337288
https://www.nature.com/articles/s42256-022-00452-0
https://linkinghub.elsevier.com/retrieve/pii/S0950705121002100
https://linkinghub.elsevier.com/retrieve/pii/S0950705121002100
https://linkinghub.elsevier.com/retrieve/pii/S089360802400087X
https://linkinghub.elsevier.com/retrieve/pii/S089360802400087X
https://openreview.net/forum?id=BJlxm30cKm


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ISSN 2041-1723. doi: 10.1038/s41467-020-17866-2. URL https://www.nature.com/
articles/s41467-020-17866-2.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A Comprehensive Survey of Continual
Learning: Theory, Method and Application. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 46(8):5362–5383, August 2024. ISSN 1939-3539. doi: 10.1109/TPAMI.
2024.3367329. URL https://ieeexplore.ieee.org/document/10444954.

Yang Yang, Jie Huang, and Dexiu Hu. Lifelong learning with Shared and Private Latent Represen-
tations learned through synaptic intelligence. Neural Networks, 163:165–177, June 2023. ISSN
08936080. doi: 10.1016/j.neunet.2023.04.005. URL https://linkinghub.elsevier.
com/retrieve/pii/S089360802300182X.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual Learning Through Synaptic Intelli-
gence, June 2017. URL http://arxiv.org/abs/1703.04200. arXiv:1703.04200 [cs,
q-bio, stat].

10

https://www.nature.com/articles/s41467-020-17866-2
https://www.nature.com/articles/s41467-020-17866-2
https://ieeexplore.ieee.org/document/10444954
https://linkinghub.elsevier.com/retrieve/pii/S089360802300182X
https://linkinghub.elsevier.com/retrieve/pii/S089360802300182X
http://arxiv.org/abs/1703.04200

	Introduction
	Related Work
	Regularization-based Methods
	Replay-Based Methods
	Parameter Isolation Techniques
	Dynamic Architectures
	Meta-Learning Approaches

	Methodolgy
	Hebbian Learning
	Introduction
	Oja's Rule
	Lateral Inhibition

	Selective Training and Inference Masking
	Architecture

	Experiment
	Dataset
	Task-Incremental Learning
	Domain-Incremental Learning

	Training
	Task-Incremental Learning
	Domain-Incremental Learning

	Inference

	Results
	Task-Incremental Learning & Domain-Incremental Learning Results
	Average Accuracy (ACC)
	Time to stability

	Future Scope

