
Published at the ICLR 2022 workshop on Objects, Structure and Causality

INFERNO: INFERRING OBJECT-CENTRIC 3D SCENE
REPRESENTATIONS WITHOUT SUPERVISION

Lluis Castrejon 1 Nicolas Ballas 2 Aaron Courville 1,3

1 Mila Quebec AI Institute - Université de Montréal
2 Meta AI Research
3 CIFAR Fellow

ABSTRACT

We propose INFERNO, a method to infer object-centric representations of visual
scenes without annotations. Our method decomposes a scene into multiple objects,
with each object having a structured representation that disentangles its shape, ap-
pearance and pose. Each object representation defines a localized neural radiance
field used to generate 2D views of the scene through differentiable rendering. Our
model is subsequently trained by minimizing a reconstruction loss between inputs
and corresponding rendered scenes. We empirically show that INFERNO discovers
objects in a scene without supervision. We also validate the interpretability of the
learned representations by manipulating inferred scenes and showing the corre-
sponding effect in the rendered output. Finally, we demonstrate the usefulness of
our 3D object representations in a visual reasoning task using the CATER dataset.

1 INTRODUCTION

Inferring objects and their geometry in a scene is a fundamental ability of biological visual sys-
tems (Kahneman et al., 1992). Replicating this ability in machines is a promising step for applications
such as object manipulation, navigation or forecasting. Recent works (Locatello et al., 2020; Burgess
et al., 2019) have shown that neural networks can learn object-centric representations from low-level
features. They learn to recognize the objects in a visual scene from an image without supervision.
However, most approaches consider 2D representations and ignore the underlying 3D geometry of
scenes. On the other hand, Neural Radiance Fields (NeRFs) (Mildenhall et al., 2020) combine differ-
entiable renderers with gradient-based optimization to learn high-fidelity 3D scene reconstructions.

In this work, we leverage these advances in object-centric representation learning and 3D modelling
and propose INFERNO, a model which infers a structured representation of objects and their poses
from a single image. Each object is represented by latent variables characterizing its appearance,
together with an explicit representation of their poses (translation, scale and rotation). The object
representations are then decoded using implicit functions that are localized in the scene according
to the objects poses and combined together to generate a 2D output view. Our model does not need
supervision and instead is fitted by minimizing a reconstruction loss, akin to an autoencoder.

Disentangling the object appearance and pose in a scene representation allows for scene manipulations.
We demonstrate that INFERNO learns interpretable object poses, which we can modify and render
to alter the pose of an object in a scene. We also validate that our approach learns meaningful
representations for object discovery and visual reasoning. More specifically, we show that our
approach is competitive on the CLEVR6 object discovery benchmark (Greff et al., 2019) as well as
for the snitch localization visual reasoning task of CATER (Girdhar & Ramanan, 2019).

In summary, our contributions are the following:

• We propose a model able to infer and render 3D scene representations composed of multiple
objects, each of them modeled by an implicit function and explicitly localized in the scene.

• We show that the learned representations are interpretable and amenable to manipulations.
• We demonstrate that the inferred representations are useful for downstream tasks by showing

competitive performance in object discovery and reasoning tasks.

1



Published at the ICLR 2022 workshop on Objects, Structure and Causality

2 METHOD

Shape

Appearance

Pose

Shape

Appearance

Pose

Shape

Appearance

Pose

Shape

Appearance

Camera

INFERENCE RENDERING

Input View

Slots
Scene 

Representation
Canonical 
Objects

Transformed 
Objects

Background

Low Resolution
Rendering Reconstruction

1 2 3 4 5 6

Figure 1: Model Overview: We propose INFERNO, a model that infers and renders object-centric 3D scene
representations. 1 Our model decomposes an observation into multiple object slots. 2 For each slot we infer
a structured representation. 3 Shape and appearance determine canonical objects rendered through NeRFs. 4
Objects are transformed and located in the scene according to their pose. 5 We combine objects and background
and render a low-resolution scene. 6 (Optionally) The output of rendering is scaled up to full resolution.

We propose INFERNO (Infer NeRF Objects). The goal of our method is to infer object-centric 3D
scene representations from single 2D views. Given an image x ∈ RH×W×3, we learn an inference
function fθ that maps images to scene representations s = fθ(x) = (o1, o2, ..., oK , obg, c). Scenes
are composed of K objects oi, a background object obg and a camera location c.

Each object is composed of three tensors oi = (oshapei , oappi , oposei ). The object shape oshapei ∈
RDshape and object appearance oapp ∈ RDshape are tensors that respectively describe the shape
occupancy and color of an object with an implicit function. The object location oposei ∈ R4×4 is an
affine matrix that describes the object pose (i.e. scale, translation and rotation) in the scene. The
background object obg = (bgshape, bgapp) only models shape and color, and its location is fixed,
encompassing the back-of-scene cube. We also define a camera matrix c ∈ R3×4, that determines the
location of the scene camera and defines a 2D projection of the 3D scene.

To optimize our inference function we minimize a reconstruction loss over a dataset, similar to
an auto-encoder. We define a rendering function gγ that takes as input a scene representation and
generates a 2D view of that scene x̂ = gγ(fθ(x)). We assume a isotropic Gaussian likelihood model
with unit covariance and optimize the probability of the data under our model, which is equivalent
to minimizing the mean squared error of inputs and reconstructions: We describe our inference
mechanism, rendering pipeline and implementation in the Appendix.

3 RELATED WORK

3.1 3D SHAPE REPRESENTATIONS

There are different ways to represent 3D geometry such as voxels or meshes (Rematas & Ferrari,
2020; Gkioxari et al., 2019). Voxel-based methods have trouble scaling up to high resolutions as
the size of a voxel representation scales cubically with the resolution. Recently, the use of functions
that implicitly model 3D volumes has gained popularity (Park et al., 2019; Mescheder et al., 2019;
Sitzmann et al., 2020b;a). Implicit representations have better scaling properties, as usually the output
resolution does not directly affect the dimensionality of the learned function. NeRFs (Mildenhall
et al., 2020) generate scenes by learning a function that outputs the occupancy and color of points
in a scene when viewed from a particular direction. NeRFs have obtained superior reconstructions
compared to other implict methods, and our model uses NeRFs to represent multiple objects and the
background of a scene. Most methods using NeRFs represent scenes monolithically as a single entity.
GIRAFFE (Niemeyer & Geiger, 2021) is a GAN-based method that represents multiple objects in
a scene with NeRFs. Our model uses a rendering pipeline inspired by GIRAFFE. However, we
focus on recovering scene representations from existing images, while GIRAFFE does not have
an inference mechanism. ObjSURF (Stelzner et al., 2021) and UORF (Yu et al., 2021) infer scene

2



Published at the ICLR 2022 workshop on Objects, Structure and Causality

representations composed of multiple objects, each object represented with a differently instantiated
NeRF. Different from our work, they focus on novel view generation and do not explicitly infer the
pose of the different objects in the scene. Furthermore, both methods require multiple scene views
and their associated ground-truth camera locations, and ObjSURF requires depth annotations.

3.2 OBJECT-CENTRIC SCENE MODELS

Recently there is a line of work on object-centric generative models of scenes (Kosiorek et al., 2021;
Burgess et al., 2019; Locatello et al., 2020). These models learn to generate scenes as a composition
of multiple objects and a background. MONet (Burgess et al., 2019) implements a multi-object VAE
that segments object sequentially by infering latents corresponding over parts of the scene not yet
attended to iteratively. Slot-Attention (Locatello et al., 2020) maps a set of entities, called slots,
to image features through multiple rounds of soft attention. The slots compete among themselves
to attend to features, making each slot attend to a region of the input image. Our model uses a
variant of Slot Attention to decide on which part of a 2D view should each object in our scene attend
to, but we infer 3D-aware representations for each object. Object-centric scene models have also
been implemented as world models, with the goal of simulating dynamics (Lin et al., 2020). By
decomposing the scene into objects, these methods can simulate dynamics at an object level, which
are usually simpler and shared among objects. Contrary to most previous approaches which segment
2D shapes, our method infers object-centric scene representations in 3D space.

4 EXPERIMENTS

In this section we showcase the capabilities of INFERNO with three main experiments. First,
we demonstrate the interpretability of the scene representations through manipulating scenes and
verifying the corresponding effects in the rendered outputs. Then we show that it learns to identify
and segment the objects in a scene without supervision. Finally, we highlight the usefulness of such
representations for downstream tasks by applying our model on the CATER snitch localization task.

4.1 TRAINING SETUP

We train our models for 400K iterations using the Adam optimizer Kingma & Ba (2014) and
1× 10−4 learning rate. We use a batch size of 32 and one nVidia V100 GPU. We use learning rate
warmup (Goyal et al., 2017) to avoid optimization issues with Slot Attention and we use a weight
decay rate of 1× 10−6. We use three iterations of slot attention during training and evaluation. We
remove the neural upscaler and render at full resolution after 100K iterations. We set the number
of objects in a scene as the maximum possible number of objects in a dataset, i.e. 5 objects for
CLEVR2345 and 10 for CATER. Refer to Appendix B for more details on the experimental setup.

4.2 SCENE INFERENCE

Table 1: Reconstruction error on CLEVR2345 We compare INFERNO to an autoencoder baseline with a
single NeRF object (NeRF-AE). Our model produces better reconstructions under all metrics and allows for
object identity/pose manipulations.

Model MSE (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

NeRF-AE 5.14× 10−4 44.89 59.24 % 168.9× 10−3

Ours 1.22× 10−4 52.07 72.4 % 18.93× 10−3

In this section we demonstrate the properties of our scene representation. Our model infers object-
centric scene representations from single 2D views. These representations disentangle the appearance
and pose of objects, which allows for semantic manipulations of the scene not possible otherwise.
These manipulations can be validated by rendering the modified scene representations. Additionally,
we verify that decomposing the scene into multiple objects leads to better reconstructions.

First, we verify the quality of INFERNO’s generations by comparing them two baselines: i) a version
of our model that does not consider multiple objects, and ii) the GAN method of GIRAFFE (Niemeyer

3



Published at the ICLR 2022 workshop on Objects, Structure and Causality

Input Recon. Addition Removal Scale Forward Right

Figure 2: Manipulated scenes on CLEVR2345

Table 2: FID on CLEVR2345

Model FID (↓)

GIRAFFE 37.7

Ours - Reconstruction 23.5

Ours - Remove Object 42.4
Ours - Add Object 27.2
Ours - Swap Object 23.7

& Geiger, 2021). We perform this comparison on the CLEVR-2345 dataset introduced by GIRAFFE,
which contains CLEVR images with 2 to 5 objects. We compare reconstruction using MSE, PSNR
and SSIM and we compare populations of generations using the Frechet Inception Distance (FID).

In INFERNO, we generate novel scenes by inferring representations for ground-truth images and then
manipulating them. To compare to GIRAFFE, we manipulate scenes by adding additional objects and
swapping object shapes and appearances across scenes. Manipulations are described in more detail in
the Appendix. We highlight that GIRAFFE is an unconditional model, while INFERNO generates
novel scenes conditioned on existing ones. We also investigate different interpretable manipulations
of scene representations and visualize the effects in the corresponding output renderings. We also
conduct this experiment on the CLEVR-2345 dataset. We validate that our model is able to render
out-of-distribution scenes not corresponding to training examples, such as scenes having 1 or 6
objects, and verify that the pose manipulations have semantically coherent effects.

Table 1 shows the reconstruction metrics obtained by our model and baseline on the CLEVR2345
dataset. Note that GIRAFFE is a GAN-method that does not have an inference mechanism, and
therefore it cannot reconstruct scenes. We observe that the NeRF-AE baseline obtains higher
reconstruction error than our regular model, as our object-centric method can make better use of
its capacity. In Table 2 we compare INFERNO with GIRAFFE using the FID metric. Our model
reconstructions have better FID than the generations of the GIRAFFE. Additionally, our model can
perform inference and manipulations on existing scenes. We use that capability to generate novel
scenes by manipulating existing ones. Our model is able to generate novel scenes with additional
objects or with altered object shapes and appearances, with better FID than GIRAFFE. In Figure 2
we show examples of the manipulations possible with our model. Given a scene representation, we
can add, remove or rearrange objects, change their locations or change the object scales. While some
of these manipulations can be performed with 2D object-centric models, modifications to the scale
and location of the objects are hard to implement without explicitly modeling 3D object poses.

4.3 OBJECT DISCOVERY

Unsupervised object discovery consists in segmenting the objects in a scene without using annotations.
We test our model on CLEVR6, a variant of CLEVR with scenes of up to 6 objects annotated with 2D
object masks. We choose this dataset to compare to previous work in unsupervised object discovery.
Note that this setup evaluates 2D segmentation masks, although our model naturally provides 3D
segmentations. We evaluate the quality of the segmentations using the Adjusted Random Index (ARI)
metric (Rand, 1971), which is a measure of clustering similarity. In particular, we consider objects as
different clusters and compare the cluster assignment of each pixel in the image to its prediction.

Table 3 reports ARI for different models. INFERNO is competitive with state-of-the-art methods,
surpassing MONet and having slightly lower ARI than Slot-Attention and IODINE. However, our
model learns to segment objects in 3D, while the other baselines extract 2D segmentation masks. A
visual example of the object masks infered by our model can be found in Figure 3 in the Appendix.

4



Published at the ICLR 2022 workshop on Objects, Structure and Causality

Table 3: Object Discovery on CLEVR6
Despite inferring 3D object poses, our model
is competitive with state-of-the-art 2D object
discovery methods.

Model ARI % (↑)

Slot-Attention 98.8± 0.3
IODINE 98.8± 0.0
MONet 96.2± 0.6
Slot MLP 60.4± 6.6

Ours 96.7± 0.2

Table 4: Snitch Localization on CATER. Our model outper-
forms the R3D models and is competitive with the state-of-the-
art specialized models, without being specifically designed
for this task.

Model Top-1 Top-5

Sp
ec

ia
liz

ed R3D LSTM 60.2 81.8
Hopper 73.2 93.8
Aloe (w/out SSL loss) 60.1 -
Aloe 74.0 94.0

Fi
ne

-t
un

e Slot-Attention 59.1 88.0
Ours (w/out pretraining) 2.91 12.9
Ours (w/out SSL loss) 69.17 87.68
Ours 71.7 88.9

4.4 SNITCH LOCALIZATION

The goal of this experiment is to show that the representation learned by our model is useful for
the snitch localization task from CATER (Girdhar & Ramanan, 2019). We follow the experimental
setup of Ding et al. (2020). First, we train INFERNO to reconstruct images from the CATER dataset.
Then we discard its rendering pipeline, and use the scene representations as input to a 12-layer
transformer to predict the final snitch position. Each object in our representation is an input token to
the transformer. The last output of the transformer is fed to a MLP head that predicts the logits for
the 36 possible output positions. We minimize the sum of the cross-entropy and a L1 loss between
the predicted and the true snitch final position. Following (Ding et al., 2020), we optionally use an
auxiliary SSL loss after pretraining. During training, we sample 40 frames from a video and predict
the snitch location from these frames. At test time, we randomly sample 10 temporal crops of 40
frames each and average the model predictions to compute the final probabilities.

Table 4 reports CATER Top-1 and Top-5 accuracies for different methods. We first compare our
model pretrained to reconstruct images on CATER with a randomly initialized encoder. Using a
randomly initialized encoder does not perform well, suggesting that the pretraining rather than the
encoder architecture is key to learn useful representations for the task. We also observe that the
additional SSL loss slightly improves the performance of our model. We next compare our approach
to methods designed for CATER including Aloe (Ding et al., 2020), R3D (Girdhar & Ramanan,
2019), and Hopper (Zhou et al., 2021). Our model outperforms the R3D model, indicating that our
representation is useful for visual reasoning tasks. Our model outperforms Aloe, an object-centric
method using 2D object representation, when both methods do not use additional SSL loss. Aloe
benefits more from the use of an additional SSL loss. Overall, INFERNO achieves performances
close to the state-of-art specialized approaches. We also evaluate the performance of a slot-attention
baseline (Locatello et al., 2020) in Table 4. The slot-attention baseline first pretrains a slot-attention
encoder, with a similar architecture than our model, by reconstructing CATER frames using a mask
decoder, and then fine-tunes the encoder as in our setup. Our model significantly outperforms the
slot-attention model, supporting the advantage of using 3D-aware representations to solve CATER.

5 CONCLUSIONS AND FUTURE WORK

We propose INFERNO, a model for inferring object-centric 3D scene representations. Our model is
able to discover objects in a scene without annotations, and the inferred scene representations are
interpretable and amenable to manipulations. Further, the scene representation is useful for visual
reasoning downstream tasks such as the snitch localization task in CATER. While our model can
render novel scenes from modified scene representations, currently it has issues inferring the hidden
sides of objects or scaling to more complex datasets, which we will address in future work.

5



Published at the ICLR 2022 workshop on Objects, Structure and Causality

REFERENCES

Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt Botvinick,
and Alexander Lerchner. Monet: Unsupervised scene decomposition and representation. arXiv
preprint arXiv:1901.11390, 2019.

David Ding, Felix Hill, Adam Santoro, and Matt Botvinick. Object-based attention for spatio-
temporal reasoning: Outperforming neuro-symbolic models with flexible distributed architectures.
arXiv preprint arXiv:2012.08508, 2020.

Vincent Dumoulin, Ethan Perez, Nathan Schucher, Florian Strub, Harm de Vries, Aaron Courville,
and Yoshua Bengio. Feature-wise transformations. Distill, 3(7):e11, 2018.

Rohit Girdhar and Deva Ramanan. Cater: A diagnostic dataset for compositional actions and temporal
reasoning. arXiv preprint arXiv:1910.04744, 2019.

Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh r-cnn. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 9785–9795, 2019.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess, Daniel
Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation
learning with iterative variational inference. In International Conference on Machine Learning, pp.
2424–2433. PMLR, 2019.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Daniel Kahneman, Anne Treisman, and Brian J Gibbs. The reviewing of object files: Object-specific
integration of information. Cognitive psychology, 24(2):175–219, 1992.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Adam R Kosiorek, Heiko Strathmann, Daniel Zoran, Pol Moreno, Rosalia Schneider, Soňa Mokrá,
and Danilo J Rezende. Nerf-vae: A geometry aware 3d scene generative model. arXiv preprint
arXiv:2104.00587, 2021.

Zhixuan Lin, Yi-Fu Wu, Skand Peri, Bofeng Fu, Jindong Jiang, and Sungjin Ahn. Improving
generative imagination in object-centric world models. In International Conference on Machine
Learning, pp. 6140–6149. PMLR, 2020.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention.
arXiv preprint arXiv:2006.15055, 2020.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
Occupancy networks: Learning 3d reconstruction in function space. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4460–4470, 2019.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In European
conference on computer vision, pp. 405–421. Springer, 2020.

Michael Niemeyer and Andreas Geiger. Giraffe: Representing scenes as compositional generative
neural feature fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11453–11464, 2021.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape representation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174, 2019.

6



Published at the ICLR 2022 workshop on Objects, Structure and Causality

William M Rand. Objective criteria for the evaluation of clustering methods. Journal of the American
Statistical association, 66(336):846–850, 1971.

Konstantinos Rematas and Vittorio Ferrari. Neural voxel renderer: Learning an accurate and
controllable rendering tool. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5417–5427, 2020.

Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. Graf: Generative radiance fields
for 3d-aware image synthesis. arXiv preprint arXiv:2007.02442, 2020.

Vincent Sitzmann, Eric R Chan, Richard Tucker, Noah Snavely, and Gordon Wetzstein. Metasdf:
Meta-learning signed distance functions. arXiv preprint arXiv:2006.09662, 2020a.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in Neural Information
Processing Systems, 33, 2020b.

Karl Stelzner, Kristian Kersting, and Adam R Kosiorek. Decomposing 3d scenes into objects via
unsupervised volume segmentation. arXiv preprint arXiv:2104.01148, 2021.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612,
2004.

Hong-Xing Yu, Leonidas J Guibas, and Jiajun Wu. Unsupervised discovery of object radiance fields.
arXiv preprint arXiv:2107.07905, 2021.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

Honglu Zhou, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir
Kapadia, and Hans Peter Graf. Hopper: Multi-hop transformer for spatiotemporal reasoning. arXiv
preprint arXiv:2103.10574, 2021.

7



Published at the ICLR 2022 workshop on Objects, Structure and Causality

A ADDITIONAL MODEL DETAILS

Our model is composed of inference and rendering pipelines, with five main modules: encoder, slot
attention, slot to object mapping, NeRF decoder and neural network upscaler. In this section we
provide additional details about each part of the model as well as these modules and describe their
architecture.

A.1 RENDERING PIPELINE

We represent objects as Neural Radiance Fields (NeRFs) (Mildenhall et al., 2020) with a similar
setup as that of GIRAFFE (Niemeyer & Geiger, 2021). A NeRF is a function gτ that defines a 3D
shape implicitly. It takes as input a 3D location l = (x, y, z) and a 2D viewing direction d = (ψ, ϕ)
and outputs an occupancy value σ and a color value a = (r, g, b). NeRFs are usually implemented
using fully connected neural networks. Additionally, the inputs are usually embedded into a higher-
dimensional space using positional encodings γ that embed locations and viewing directions into
higher dimensional spaces RPl and RPd , respectively.

gτ : RPl × RPd → R+ × R3;

(γ(l), γ(d)) → (σ,a)
(1)

To represent multiple shapes with the same NeRF function, we can augment it with latent variables
that determine which shape is being modeled (Schwarz et al., 2020). NeRFs are usually augmented
with two random variables: one random variable µ ∈ RDshape defines the shape of the entity being
modeled, while υ ∈ RDapp models its appearance. In practice, this specialization is enforced by
making the occupancy output a function of only the shape latent, while the color output is conditioned
on the appearance latent.

g′τ : RPl × RPd × RDshape×RDapp → R+ × R3;

(γ(l), γ(d), µ, υ) → (σ,a)
(2)

In INFERNO, we share a single parametrization of a NeRF function across all objects. Each
object specific shape and appearance is defined by the shape and appearance latent variables, which
correspond to the object attributes oshape, oapp. The background is defined as another NeRF with
separate parameters. The background NeRF also has shape and appearance latent variables to model
different backgrounds.

The pose of an object oi in the scene is determined by the affine transformation matrix oposei . We
denote the coordinate system of the NeRF function of an object as the object space, and the coordinate
system of the scene (and the background NeRF) as scene space. Given an object pose, we can convert
points from the scene space to the object space by applying the opose transformation matrix on those
points, and we can transform points from object space to scene space by computing the inverse of the
object pose matrix.

To render a scene, we cast rays from each pixel in the 2D plane defined by a given camera to the 3D
scene. We evaluate NeRFs at different points along a given ray, and integrate their occupancy and
color outputs to determine pixel values. Rays might traverse multiple object NeRFs in addition to the
background NeRF. To determine the occupancy and color of points described by multiple NeRFs,
we first query each NeRF at those particular points. To query the object NeRFs, we first need to
transform the points from scene space to the particular object space. Then, we compose the results of
each NeRF with a pooling function C, which in our case is a weighted average:

C(l,d) = (σ =

N∑
i=1

σi,
1

σ

N∑
i=1

σiai) (3)

Since rendering with NeRFs as originally proposed is computationally expensive, at the beginning of
training we render output views at a fixed low resolution. Low resolution scenes are then upscaled

8



Published at the ICLR 2022 workshop on Objects, Structure and Causality

to the desired output resolution using a convolutional neural network, keeping the entire rendering
pipeline differentiable. Additionally, low resolution scenes are rendered with additional channels,
allowing for more detailed upscalings beyond those possible when just rendering low resolution RGB
outputs. After some iterations and once the model is capable of reconstructing the input view, we
remove the neural network upscaler and render with NeRFs at full resolution. This second stage of
training has slower iteration times and higher memory requirements.

A.2 INFERENCE MECHANISM

Given the rendering pipeline, the goal of our method is to infer representations that reconstruct a
given scene. Our inference mechanism computes image features through a neural network encoder
and then extracts K object and a background slots. These slots are then mapped to our structured
scene representation through learned neural networks.

To extract image features for each object and background slots, we use Slot Attention (Locatello
et al., 2020). Slot Attention is a mechanism that maps a set of K entities, called slots, to image
features without annotations. It extracts image features I ∈ RH×W×D from a given input using
a resolution-preserving convolutional encoder. These features are then attended to by a set of K
randomly sampled slots πj ∼ N (µ, σ) of dimension D, where µ and σ are learnable parameters. We
denote by π the matrix concatenating all the sampled slots. Slots attend spatial chunks of the input
features I through soft-attention u = TQT , where T = k(I) and Q = q(π) are the embeddings of
the inputs and slots respectively. The attention weights are normalized through a softmax operating
on the slots axis, which makes slots compete among themselves and discourages multiple slots
from attending the same input region w = softmax(u). The weighted average of I according
to the attention weights is then computed and fed to a GRU network, to update each slot value:
πj = GRU(wj ∗ I, πj) ∀j ∈ 1,K. Multiple rounds of soft attention are performed to iteratively
refine the slots. For more details about Slot-Attention, please refer to (Locatello et al., 2020).

Object slots are unstructured tensors that result from aggregating image features. We map these
slots to our structured scene representation through small fully-connected networks that operate on
individual objects. More concretely, we map object slots to their 3D pose in the scene through a
2-layer MLP. To infer the object shape and appearance tensors we also use 2-layer MLPs, but we
make them conditional on the predicted object pose through conditional normalization (Dumoulin
et al., 2018).

A.3 MODEL ARCHITECTURE

Table 5: Encoder Neural Network

Layer Type Size Normalization Activation Other details

Conv 5× 5 64 - ReLU Stride 1 Pad. 1
Conv 5× 5 64 - ReLU Stride 1 Pad. 1
Conv 5× 5 64 - ReLU Stride 1 Pad. 1
Conv 5× 5 64 - ReLU Stride 1 Pad. 1

Encoder The goal of the encoder is to extract image features. We use an encoder with no downsam-
pling, as it is typically used with Slot Attention. Details about the encoder architecture are described
in Table 5.

Slot Attention We employ Slot Attention to map image features to object slots. Slots are sampled
randomly from a Gaussian distribution with learned parameters. We use different distributions for the
background slot and the object slots. During training we employ three iterations of slot attention to
refine the image features to slot assignments.

Slot to Object Net The background and object slots are mapped to scene parameters using a series
of MLP. For each object slot, we first map the object to its pose parameters. We use a 2-layer MLP
with LayerNorm to map a slot to its pose. The size of the hidden dimension is the same than the output

9



Published at the ICLR 2022 workshop on Objects, Structure and Causality

Table 6: Slot Attention Neural Network

Name Size Description

Positional emb. 64 Additive embedding, same size as CNN input features
Flatten - Flattens the spatial dimensions of CNN features

QKV MLP 128 Linear layers that map slots and input features to the same dimension
LayerNorm 128 Normalizes the slots/inputs

MLP + GRU 128 The output of soft-attention goes through a linear layer + GRU

Table 7: Slot to Object MLP details

MLP Name Size Act and Norm. Description

Obj Pose 7 ReLU, LayerNorm Slot to translation, scale and rotation
Obj Shape/App. 128 ReLU, CondLayerNorm Slot to shape and appearance
BG Shape/App. 128 ReLU, LayerNorm Background slot to its shape/app, fixed pose.

dimension size. We parametrize object pose as a 7-dimensional tensor. We use three dimensions
for the object location along each axis, three dimensions for the scale of the object and a single
dimension to express a rotation of the object along the X axis. These parameters are then mapped to
their corresponding 4× 4 affine transformation matrix for each object. Note that in practice we are
not modeling rotations in the experimental section.

Once we have inferred the object poses, we infer object shapes and appearances. These are inferred
individually for each object using a common 2-layer MLP. The MLPs are conditional on the object
pose using Conditional Layer Normalization, that makes the learned parameters of LayerNorm be a
function of a condition. Specifically, we map the 7-dimensional pose tensor to LayerNorm parameters
with a single linear layer with no activation or normalization. Shapes and appearances are defined by
the output of the MLPs, which produce two 128-dimensional tensors.

For the background object we only infer shape and appearance, and define its pose to be that of the
scene cube. The shape and appearance of the background are inferred through another 2-layer MLP
with ReLU and LayerNorm.

Note that our scene representation also admits a camera pose. In our experiments we fix the camera
location to look at the scene from a standard location (centered and 33 degrees above the Z plane).
Other concurrent approaches (Yu et al., 2021; Stelzner et al., 2021) use ground-truth camera locations
to generate novel views, while we focus on recovering scene representations without the use of
ground-truth annotations.

Table 8: Details about the NeRF MLPs used

MLP Name Layers Size Description

Obj MLP 8 64 ReLU activation, no norm. Skip connection with layer 4.
BG MLP 4 16 ReLU activation , no norm.

NeRF MLPs With the object shape and appearance tensors we can render them following
GRAF (Schwarz et al., 2020). We use one NeRF for the objects and one NeRF MLP for the
background. The details about each NeRF architecture can be found in Table 8. Note that, to render
objects according to their pose, we query their NeRF MLP in a canonical object space by transforming
input coordinates in scene space to object space using the object pose. To reduce the computational
complexity of rendering with many NeRFs, we render scenes at a fixed resolution of 16x16. Instead
of rendering RGB pixels, we render feature images with 128 channels. The output of the rendering is
then upscaled and mapped to RGB views with a neural network upscaler.

10



Published at the ICLR 2022 workshop on Objects, Structure and Causality

Table 9: Neural Upscaler architecture

Layer Size Activation Normalization Other

Conv 3× 3 64 ReLU Instance Stride=1 Pad=1
Upsample - - - Nearest Neighbors

Conv 3× 3 64 ReLU Instance Stride=1 Pad=1
Upsample - - - Nearest Neighbors

(Only 128px) Conv 3× 3 64 ReLU Instance Stride=1 Pad=1
(Only 128px) Upsample - - - Nearest Neighbors

Conv 3× 3 3 - - Stride=1 Pad=1

Neural Upscaler The neural upscaler takes the low resolution output of the NeRF MLPs and
upscales it to the full output resolution. Additionally, it maps the rendered image to RGB space. This
module is implemented using a convolutional neural network. We always render the NeRF output at
16px when using a neural network upscaler. Consequently, we add additional layers to the neural
upscaler depending on the desired output resolution. For most experiments we use a resolution of
64px, while for the Scene Inference experiments on CLEVR2345 we use a resolution of 128px. The
architecture of the neural upscaler can be found in Table 9. After some training iterations and once
the model correctly reconstructs its inputs, we remove the neural upscaler and render scenes using
NeRFs at full resolution.

B EXPERIMENT DETAILS

B.1 SCENE MANIPULATION

Dataset For generating manipulated scenes we consider the CLEVR2345 dataset (Niemeyer &
Geiger, 2021). Images in the CLEVR2345 dataset contain from 2 to 5 objects. We use the original
train and test splits. Images are resized to 128x128 pixels and RGB values are normalized in the [0,
1] range.

Training We use a batch size of 128 and train our model for 400k iterations. We use Adam with a
learning rate of 1× 10−4 and weight decay 1× 10−6. We use 5 objects and rely on the model to not
use additional slots if the scene shows less than 5 objects. We use the neural upscaler with additional
layers to upscale to 128px. We remove the neural upscaler and render at full resolution after 100K
iterations. Additionally, for this experiment we use an additional LPIPS loss. We use the LPIPS
metric computed by an AlexNet network, and we add this loss to our regular MSE loss. We weight
the LPIPS loss by a factor of 100, so that it has a comparable order of magnitude to the MSE loss.

Manipulations Manipulations are done as follows:

• Substraction: We randomly delete up to two of the object slots.

• Addition: We randomly add an object slot from another scene.

• Scale: We reduce the scale (in all XYZ axis) of one of the objects in the substraction scene.

• Forward: We manipulate the pose vector of one object in the substraction scene and move it
forward on the Z axis.

• Right: We manipulate the pose vector of one object in the substraction scene and move it
forward on the X axis.

Additionally, we consider the Swap transformation for Table 1. This transformations modifies a scene
by replacing the object shape and appearance vectors with those of an object from another scene.

Metrics To compare reconstructions we use Mean-Squared Error, Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity (SSIM) and the LPIPS metrics.

11



Published at the ICLR 2022 workshop on Objects, Structure and Causality

MSE measure the average squared difference between pixel values.

MSE(x, x′) =
1

N

∑
N

(x− x′)2 (4)

PSNR is a metric commonly used in signal processing.
PSNR(x, x′) = −10 log10(MSE(x, x′)) (5)

SSIM (Wang et al., 2004) provides scores more aligned with human perception, specially under the
presence of image noise. Scores are computed convolutionally by applying a kernel over images,
which are then contrasted.

LPIPS (Zhang et al., 2018) computes differences in neural network activations for two images. It is
a perceptual metric that has been shown to have higher correlation to human perception than other
metrics not based on neural networks.

To compare populations of generated images we use the Frechet Inception Distance (Heusel et al.,
2017). The Frechet Inception Distance embeds images into a neural network space and then fits a
Gaussian distribution to the generated and ground-truth activation statistics. The score is obtained
by then computing the Frechet distance between the two. Note that other metrics such as Inception
Score are not applicable for the CLEVR2345 since there are no well-defined classes.

B.2 OBJECT DISCOVERY

Input Background Object 1 Object 2 Object 3 Object 4 Object 5 Object 6

Figure 3: Object Discovery on CLEVR6: INFERNO identifies the different objects in a scene
without supervision. For each input image, we show which regions of the input are attended by each
object as well as the background. We include an example of a failed segmentation in the last row,
where one object slot (4) is trying to represent multiple objects at the same time.

Dataset For object discovery we consider the CLEVR6 dataset. We use the original CLEVR6
dataset and extract the images from TFRecord files available at this URL. We use the original
training/test split, using the first 70% images for training and the remaining ones for test. We take a
crop between pixels [29, 221] and [64, 256], for the height and width respectively, and then resize the
crop to 64px. We normalize the value of the images between [0, 1]. To generate the CLEVR6 dataset,
we keep only those images that have at maximum 6 objects according to the annotation files.

12

https://github.com/deepmind/multi_object_datasets


Published at the ICLR 2022 workshop on Objects, Structure and Causality

Training We use a batch size of 128 and train our model for 400k iterations. We use Adam with a
learning rate of 1× 10−4 and weight decay 1× 10−6. We use 6 objects and rely on the model to not
use additional slots when needed.

Metrics We follow previous work (Greff et al., 2019) and use the Adjusted Rand Index (ARI) (Rand,
1971) to evaluate cluster assignments in object discovery. ARI scores range from 0 (random assigment)
to 1 (perfect match). As in previous works, we do not consider a segmentation mask for the
background.

Additional Visualizations An additional visualization of the object masks learned by our model
can be seen in 3. We can see that the model learns to segment different objects and properly discards
object slots when the number of objects in the scene is lower than needed. We also include an example
that our model fails to segment properly - multiple objects are segmented by the same object slot, and
a single object is represented in multiple parts by different slots.

B.3 VISUAL REASONING ON CATER

For the visual reasoning task, we consider the CATER dataset and uses 5K videos that do not have
camera motion. All the videos are resized to a 64x64 resolution.

B.3.1 PRETRAINING

We first pretrain our INFERNO to reconstruct individual frames from the CATER dataset. We
bootstrap a model trained on CLEVR6 for object discovery for 400k iterations and train it on the
CATER dataset for an additional 100k iterations to speed-up training, as the iteration time of a model
with 10 objects is larger. We use a batch size of 128 and we use Adam with a learning rate of 1×10−4

and weight decay 1× 10−6. When training on CLEVR6 we use 6 object slots, while when training
on CATER we use 10 object slots.

B.3.2 FINETUNING

After pretraining, we finetune the INFERNO encoder to the supervised task of snitch localization. We
discard the rendering pipeline of our model, and instead feed the inferred object slots representations
to a transformer that aims at predicting the final position of the snitch.

To predict the snitch, we consider a 12 layers transformer with the hidden dimension of 128 which
takes the slot representation as input. The transformer treats each object as input element. A learned
positional embedding is added each slots representation based on their frames index, i.e. the position
of the objects is the same within a frame. The final output to the transformer is given to a 1 layer
MLP head with an hidden dimension of 128. It outputs 36 logits that correspond to possible snitch
location. We minimize the sum of the cross-entropy between the predicted position and the true target
and a the l1 loss between the prediction and target.

We optionally use a SSL loss similar to Ding et al. (2020). The SSL loss randomly masks one object
per-frame and tries to predict its representation at the corresponding output. The model minimizes
the L2 distance between the predicted object representation and the observed one. The SSL loss is
only backpropagated through the transformer and not the encoder. We weight the SSL loss by a factor
of 1.0e− 3.

We use an Adam optimizer to minimize the loss. The initial learning rate is set to the 1.0e− 4 and
gradually decreased to 1.0e− 6 using a cosine learning rate decay. Similarly, we use a initial weight
decay of 1.0e− 5 that we increases to 1.0e− 3 using a cosine schedule. Our model is finetuned for
500 epochs. We don’t make use of learning rate decay.

During training, we randomly samples 40 frames from a video and predict the snitch localization
from this one crop. At test time, we randomly sample 10 temporal crop of 40 frames each and average
the prediction over the 10 crops as our final prediction.

13



Published at the ICLR 2022 workshop on Objects, Structure and Causality

Input Recon. Input Recon. Input Recon.

Figure 4: Additional reconstructions on CLEVR2345.

C ADDITIONAL VISUALIZATIONS

We have included additional manipulations of one scene in GIF format in the supplementary material.
We show: i) each object rendered individually, ii) object identity swaps with other scenes, iii) object
translations along one axis, iv) translations in diagonal (two axis), and v) objects moving in a circle.

We also include more examples of reconstructions and scene manipulations where we add and remove
objects in Figure 4 and Figure 5, respectively.

D NOVEL VIEW SYNTHESIS

In this section we synthesize novel views of a scene by modifying the camera pose. For each example
we show the input image, our reconstruction, then two images as a result of moving the camera ±15◦

14



Published at the ICLR 2022 workshop on Objects, Structure and Causality

Input Add Remove Input Add Remove

Figure 5: Additional object additions and removals on CLEVR2345. For each scene, we show
images with one randomly added object, and with 1-3 random objects removed. Some of these images
show out-of-distribution samples with a number of objects not seen during training (2-5 objects).

in the azimuth axis, and two images as a result of zooming in the scene. This experiment is shown in
Figure 6. While our model is trained without ground-truth camera poses and with single views of
scenes, it is able to generalize to small camera pose modifications and render novel views of a scene.

E NERF OUTPUT WITH NEURAL UPSCALER

In this section we show the raw outputs of the NeRF function. These outputs show scene views
rendered at low resolution, which are then upscaled with a neural network. While these generations
have reduced details due to their resolution, they clearly show the different objects and their location
in the scene. We show these visualizations in Figure 7. NeRFs are rendered at low resolution to ease
the computational costs, as the time and memory requirements of rendering with a NeRF are linearly

15



Published at the ICLR 2022 workshop on Objects, Structure and Causality

Input Recon. Rot. +15 deg. Rot. -15 deg. Zoom x1.5 Zoom x2

Figure 6: Novel view synthesis on CLEVR2345. For each scene, we move the camera ±15◦ on
the azimuth axis. Additionally, we zoom in the scene twice. While our model is trained with a fixed
default camera pose and single scene views, it is able to generalize to small camera pose modifications
and render novel views of a scene.

correlated with the number of casted rays/pixels in the output image. After we bootstrap the model
with the neural upscaler, we then remove it and render with NeRFs at full resolution.

16



Published at the ICLR 2022 workshop on Objects, Structure and Causality

Input Recon. NeRF out Input Recon. NeRF out

Figure 7: NeRF outputs on CLEVR2345. For each input scene we show the reconstructed image
as well as each the low resolution output of the NeRF function. This output is then upscaled with a
neural network to obtain the reconstructed scene. While NeRF output lack full detail, they correctly
depict each individual object and their position in the scene.

F SLOT VISUALIZATION

In this section we show the rendering of individual slots. Given an input scene, we first infer its
representation. Then, for each object in the representation, we render it individually against a black
background. Examples from this visualization are shown in Figure 8. We observe that, in general,
each object slot is rendering a part of the scene corresponding to a single object instance. Additionally,
for some objects their slot captures parts of its shading.

G ACKNOWLEDGEMENTS

We thank the Mila Quebec AI Institute for managing the computer clusters on which this research
was conducted. This work was supported by an IVADO PhD Fellowship to L.C. and by funding from
CIFAR.

17



Published at the ICLR 2022 workshop on Objects, Structure and Causality

Input Object 1 Object 2 Object 3 Object 4 Object 5 Object 6 Object 7

Figure 8: Object Slots rendered individually on CATER: For each input scene we show the
reconstructed image as well as each individual object slot rendered against a black background. We
observe that each object slot is rendering a part of the scene corresponding to a single object instance.

18


	Introduction
	Method
	Related Work
	3D Shape Representations
	Object-Centric Scene Models

	Experiments
	Training Setup
	Scene Inference
	Object Discovery
	Snitch Localization

	Conclusions and Future Work
	Additional Model Details
	Rendering Pipeline
	Inference Mechanism
	Model Architecture

	Experiment Details
	Scene Manipulation
	Object Discovery
	Visual Reasoning on CATER
	Pretraining
	Finetuning


	Additional Visualizations
	Novel View Synthesis
	NeRF output with Neural Upscaler
	Slot visualization
	Acknowledgements

