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ABSTRACT

Multi-entity causal discovery is a fundamental problem in machine learning. Un-
derstanding the underlying causal relations is important for counterfactual rea-
soning and robustness. However, the causal structure is only identifiable up to a
Markov Equivalence Class with observational data. In real life, it is usually hard
or even unethical to gather interventional data. Fortunately, the presence of simu-
lators allows for the production of real or simulated intervention data that can help
in identifying causal graphs. We propose a causal discovery algorithm that can it-
eratively and actively gather intervention data to improve the prediction of causal
graphs. We demonstrate on several datasets that iterative interventional data aug-
mentation improves both causal discovery and dynamics prediction performance.

1 INTRODUCTION

Multi-entity interactive systems are prevalent in our lives, such as human body joint movements
(CMU, 2003), robots navigation, and autonomous driving. Modeling causal relations and predicting
forward dynamics among interactive entities have always been a core task in robotics (Li et al.,
2020a; Yi et al., 2019; Li et al., 2020b; Kipf et al., 2018; Song et al., 2020). Previous work have
designed several physical synthetic datasets for causal relational and structural learning (Yi et al.,
2019; You & Han, 2020; Ramanishka et al., 2018; McDuff et al., 2021; Schölkopf et al., 2021; Pearl,
2009). Inferring the causal structure in interactive systems makes model predictions explainable and
robust (Smith & Ramamoorthy, 2020). Furthermore, it opens up opportunities for counterfactual
data augmentation that is applicable to fields such as reinforcement learning (Pitis et al., 2020).

Generalizing outside the observational data is critical for robust predictions of multi-entity trajec-
tories and causal structures. However, theoretically, given only the observational data, the causal
graph is only identifiable up to a Markov equivalent class (Spirtes et al., 2000). Fortunately, inter-
ventional data could produce local changes in the conditional distribution and help us identify the
true underlying causal graph (Scherrer et al., 2021; Brouillard et al., 2020; Ke et al., 2020). When
we are at a traffic scene, we observe the current state and we are capable of simulating other inter-
ventional and counterfactual scenarios that could have happened at the moment or in the future. We
have the ability to change the current belief of the causal structure through simulating interventions
before making predictions. This motivates us to discover means of aggregating interventional data
from simulators to improve causal discovery performance. With a simulator, there are a number of
intervention targets to choose from. To efficiently utilize the intervention resources, which is often
considered costly, (Scherrer et al., 2021) suggests the active selection of intervention targets that can
be readily integrated into many differential causal discovery algorithms.

We propose a causal discovery algorithm with an intervention augmentation mechanism that can
actively and iteratively choose intervention targets based on the entropy of the posterior. Those
targets are intervened to augment the observational dataset for causal discovery and to improve both
causal discovery performance and downstream prediction accuracy.

2 BACKGROUND AND RELATED WORK

Causal Structure Learning. Given samples from some joint distribution, inferring the ground truth
causal graph G is called causal structure learning or causal discovery (Pearl et al., 2000; Peters
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et al., 2017). Most existing works infer the causal graph through observational data. Constraint-
based methods usually utilize conditional independence tests to narrow down the potential causal
structure graphs that may have produced the data samples (Spirtes et al., 2000), and allow for the
presence of latent confounders (Hyttinen et al., 2014; Heinze-Deml et al., 2018). Score-based meth-
ods search for all possible directed acyclic graphs (DAGs) and maximize a defined score function
S(G) (Chickering, 2002; Nandy et al., 2018). Continuous-optimization methods reformulate the
combinatorial search problem into a continuous optimization problem through a smooth and exact
characterization of the acyclic constraint (Zheng et al., 2018a).

Instead of directly searching and evaluating the causal graphs, works such as Neural Relational
Inference (NRI) (Kipf et al., 2018), Amortized Causal Discovery (Löwe et al., 2022), and Visual
Causal Discovery Network (VCDN) (Li et al., 2020b) use graphical neural networks to simultane-
ously model the forward dynamics and the causal interactions. This framework uses an encoder
to explicitly model the interactive relations as graphs and make trajectory predictions based on the
static graph with a decoder. While these models assume the causal relationships remain constant
over time, Dynamic-NRI (Graber & Schwing, 2020) and EvolveGraph (Li et al., 2020a) proceed
further to dynamically predict the relational graph over time.

Intervention. An intervention applied to a target variable Xi in the graph is defined as the local
change in the conditional distribution: pi (Xi | pa (Xi)) → p̃ (Xi | pa (Xi)), where pa(x) denotes
the parent nodes of x. Previous works have utilized intervention data to improve generalization. For
instance, artificial expert intervention has proven to be effective in imitation learning, letting human
experts intervene when a region of the state-action space is not good enough in autonomous driving
(Spencer et al., 2020). The Invariant Causal Prediction (ICP) algorithm (Heinze-Deml et al., 2018)
has been proposed to explore the underlying causal structure by exploiting the invariances of the
causal relations under different interventions. Peters et al. (2016) also exploits the invariance among
causal models in prediction under various intervention setups. Our work aims to apply intervention
efficiently in the context of multi-entity dynamics predictions and causal discovery.

3 METHODS

Given the temporal trajectory data of multiple entities, we model the relations as a directed acyclic
graph G = (V, E). The vertices V contain information about the node attributes and the edge eij ∼ E
contains relational information between node i and node j. The node attributes of vertices at time t
are denoted as xt. As shown in Figure 1, given observational data DO generated from an underlying
generative system with fixed or time-varying causal structure and causal parameters, we aim to
discover the underlying causal graph G and make predictions with iteratively and actively collected
data from soft interventions. Data gathered from the joint distribution P without interventions are
called observational data, and otherwise called interventional data.

Graph discovery module. First, given the temporal sequence data x1:T , we use the graph discovery
module F to get a posterior distribution on the edges of G. We adopt the same graph discovery ar-
chitecture as in VCDN (Li et al., 2020b), where a graph neural network is used as a spatial encoder
that embeds the nodes and edges for each time frame. The information on the temporal dimension
is aggregated with a gated recurrent unit or 1-D convolutional neural network, which supports vary-
ing input sizes. Finally, another graph neural network will take in the aggregated information and
output a posterior distribution of the causal structure over the edge types: p

(
Ẽ | x1:T

)
≜ F (x1:T ).

To backpropagate gradients through sampling from this discrete distribution, the Gumbel-Softmax
technique (Jang et al., 2016) is used to approximate the gradients.

Active intervention selection. To efficiently collect interventional data that will provide more infor-
mative knowledge about the causal graph, an intervention policy I will be used to select intervention
targets vint that the model is currently least confident about. Based on the entropy of the posterior,
it chooses the edges with the lowest confidence about its edge type and set the nodes connected with
these edges as targets vint, concretely vint are connected by argminel maxk p (el == k | x1:T ),
where el == k denotes the event that l th edge is of edge type k.

Iterative interventional data collection. Suppose the ground truth parameter of the generation
system is W , given an intervention target node vint, we sample a random value c and conduct
intervention as vint ∼ do (pa (vint) = c |W ), where. Interventional data dI={x̂t . . . x̂t+n} will be

2



Under review at the ICLR 2022 workshop on Objects, Structure and Causality

Figure 1: Algorithmic
Overview of Iterative
Causal Discovery with
Active Interventions. Dur-
ing training, interventional
data can be actively and it-
eratively gathered from the
simulator and aggregated
with the observational data
to improve generalization
in causal discovery and
dynamics prediction tasks.

Algorithm Iterative Causal Discovery with Active Interventions

Require:
Observational data DO, Simulator Sim

Initialize:
Graph discovery module F , Intervention policy I, Dynamics module H

while not converge do
Sample a training example dO from observational data DO
Infer initial causal graph g ∼ F(dO)
Select intervention targets vint ∼ I(g)
for t = 0; t < T ; t++ do ▷ T roll out steps into the future

if collect intervention data then
Intervene on vint and collect {x̂t . . . x̂t+n} ∼ Sim(xt, vint, n) for n steps
Infer causal graph with augmented data gupdated ∼ F(dO ∪ {x̂t . . . x̂t+n})
Select intervention targets vint ∼ I(gupdated)

end if
Predict next step xt+1 ∼ H (xt+1 | xt, gupdated) ▷ Exploit current belief of graph

end for
end while

collected for n steps from the simulator. We augment current sample’s observational dataset dO
with the intervention data dO ∪ {xt . . . xt+n}. Then, the graph discovery module will update the
current belief of the graph by inferring again with the augmented dataset, producing an updated
graph gupdated. This interventional data augmentation stage can be applied iteratively.

Dynamics module. Conditioning on the updated causal graph gupdated and current state xt, the
dynamics module H will predict the next step xt+1 ∼ H (xt+1 | xt, gupdated) for the nodes in the
graph, completing one roll out step of the training pipeline illustrated in the algorithm box above. In
implementation, we choose graph recurrent network as the architecture of H.

4 EXPERIMENTS

We evaluate our algorithm on the multi-body interaction environment and synthetic time-varying
structural equation model for the performance of causal discovery and prediction task. Addition-
ally, we test the combination of our iterative intervention gathering module and several baseline
algorithms on the linear model with Gaussian noise.

4.1 MULTI-BODY ENVIRONMENT

Data collection and simulator. We use the Pymunk simulator to spawn 5 balls in a fixed square-
shaped 2D space. In each episode, 5 balls will be randomly placed inside the square frame and
the relation between each pair of the balls is randomly selected from one of {rigid rod, spring,
No relation} with equal probability. We followed the same environment set up as in VCDN (Li
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(a) Causal Discovery Edge Accuracy (b) Prediction Mean Squared Error

Figure 2: Effect of adding interventional data compared to equal sample sized observational data

et al., 2020b) and generated a dataset of 5000 episodes of 500 frames for training and testing. For
intervention, after selecting the targets of intervention, we apply intervention to the balls by changing
their positions within a circle of predefined radius that satisfies the environment constraints.

Effect of augmenting interventional data during training. To test if augmenting interventional
data during training helps causal discovery and dynamic prediction, we compared training with only
observational data (100 time steps) and with half observational data (50 time steps) and half in-
terventional data (50 time steps) in the multi-body environment. We further compared collecting
multiple rounds of interventional data during training, named as “multi-step” in Figure 2. At in-
ference time, we do not assume access to interventional data and we evaluate on various identify
sequence length and roll out steps for the three training set up. As shown in Figure 2, the augmented
interventional data improves both the identifiability of the causal graph and the prediction perfor-
mance as compared to equally sized observational data. The improvement continues with more
rounds of interventional data collected iteratively and actively.

4.2 TIME-VARYING STRUCTURAL EQUATION MODEL DATASET

Time-varying dataset generation. We generate a synthetic dataset of varying causal structure with
three nodes for T steps: x(t) = {x(t)

1 , x
(t)
2 , x

(t)
3 }, for t = 1, . . . , T . The nodes value over time and

the relationship between the nodes are described by the following equation:

x
(t)
1 = x

(t−1)
1 + α(t)x

(t−1)
2 + ϵ

(t)
1

x
(t)
2 = x

(t−1)
1 x

(t−1)
3 + ϵ

(t)
2

x
(t)
3 = c+ ϵ

(t)
3

(1) α(t) =

{
0 1 < t ≤ 50
1 50 < t ≤ 150
0 150 < t ≤ 200

(2)

Node values {x(0)
1 , x

(0)
2 , x

(0)
3 } are initialized to 0. The ϵ

(t)
i , i = 1, 2, 3 are all Gaussian variables.

The constant c is sampled from −1, 0, 1 randomly and α(t) varies over time as in equation 2.

We collect a temporal dataset for T = 200 steps. To compare causal structure learning without
intervention and with intervention, we calculate the True Positive Rate (TPR), True Negative Rate
(TNR), F1 Score, and Accuracy of the predicted graph. We tested our algorithm with various rounds
of iterative intervention data gathering. The results in Table 1 show that with more interventional
data, causal discovery metrics mostly demonstrate a growing trend on TNR, TPR, F1-Score, and
accuracy, indicating the positive effect of iterative interventional data gathering.

Table 1: Effect of adding different steps of intervention data

Set up TNR TPR F1-Score Accuracy
Without intervention 0.538 0.643 0.471 0.590
5-step intervention 0.686 0.569 0.503 0.622

10-step intervention 0.695 0.628 0.528 0.656
20-step intervention 0.814 0.692 0.641 0.640
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Figure 3: False discovery
rate (FDR) and true pos-
itive rate (TPR) of causal
discovery with different
amounts of interventional
data using different un-
derlying causal discovery
methods in our iterative
framework. Columns:
varying number of nodes
in DAG. The legend in-
dicates how many times
of the original data of in-
terventional data is aug-
mented for causal discov-
ery. Results show that in-
terventional data is gener-
ally beneficial for causal
discovery across various
experiment settings.

4.3 ITERATIVE RANDOM INTERVENTION ON BASELINE CAUSAL DISCOVERY ALGORITHMS

Dataset generation. Following the synthetic data generation approaches in Zheng et al. (2018a),
we sample DAGs from two graph generation models: Erdôs-Rényi (ER) and scale-free (SF). We
simulate each graph xi = fi (pa(xi))+zi with gaussian noise z and fixed linear function fi for fixed
sample size n = 100. We test on graphs of varying sizes, with number of nodes d = {10, 20, 50}.
We evaluate baselines’ performance with two causal discovery metrics: false discovery rate (FDR)
and true positive rate (TPR).

Results on baselines. We combine the iterative interventional data gathering part with several causal
discovery baselines including constrained-based method PC (Kalisch & Bühlman, 2007), gradient-
based methods Notears (Zheng et al., 2018b) and its non-linear variant Notears-MLP (Zheng et al.,
2020), Grandag (Lachapelle et al., 2019), and function-based method ICALiNGAM (Shimizu et al.,
2006) . We test on adding varying numbers of interventional data randomly, as our active inter-
vention policy is not applicable to these baselines, where some of them do not generate a posterior
distribution over the edges. Aware of the randomness in experiments, we averaged the results over 5
seeds. From the results demonstrated in Figure 3, more interventional data generally exert positive
impacts on the causal discovery performance in terms of FDR and TPR. We noticed that the effect of
iteratively augmenting interventional data is not obvious for constrained-based PC algorithm but has
a positive impact on Notears, Notears-MLP, Grandag, and ICALiNGAM across various experiment
settings.

5 CONCLUSION

In this work, we introduced the iterative causal discovery with active interventions. By efficiently
collecting interventional data, our algorithm demonstrates performance gains in both causal discov-
ery and downstream prediction tasks. For future work, we plan to test on real-world datasets and
design methods to loosen the requirement on simulators.
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