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Abstract

In this paper, we aim to evaluate multi-agent001
systems against complex dependencies, includ-002
ing spatial, causal, and temporal constraints.003
First, we construct a new benchmark, named004
VillagerBench, within the Minecraft environ-005
ment. VillagerBench comprises diverse tasks006
crafted to test various aspects of multi-agent007
collaboration, from workload distribution to dy-008
namic adaptation and synchronized task execu-009
tion. Second, we introduce a Directed Acyclic010
Graph Multi-Agent Framework (DAGENT) to011
resolve complex inter-agent dependencies and012
enhance collaborative efficiency. This solution013
incorporates a task decomposer that creates a014
directed acyclic graph (DAG) for structured015
task management, an agent controller for task016
distribution, and a state manager for tracking017
environmental and agent data. Our empirical018
evaluation on VillagerBench demonstrates that019
DAGENT outperforms the existing AgentVerse020
model, reducing hallucinations and improving021
task decomposition efficacy. The results under-022
score DAGENT’s potential in advancing multi-023
agent collaboration, offering a scalable and gen-024
eralizable solution in dynamic environments.025

1 Introduction026

Multi-agent collaboration using LLM is a challeng-027

ing research topic that aims to enable multiple au-028

tonomous agents to coordinate their actions and029

achieve a common goal (Wang et al., 2023b; Xi030

et al., 2023; Qian et al., 2023b,a; Xie et al., 2023;031

Wu et al., 2023a). The collaboration process re-032

quires communication, planning, and reasoning033

among multiple intelligent agents. It has many034

applications in domains such as robotics, gaming035

(Wang et al., 2023a), and social simulation (Li et al.,036

2023).037

There are increasing interests in developing multi-038

agent systems using LLMs. MindAgent introduces039

the CuisineWorld gaming scenario as a benchmark,040

utilizing the Collaboration Score (CoS) to measure041
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Figure 1: Minecraft Multi-Agent Benchmark (Villager-
Bench) is the first multi-scenario benchmark designed
to evaluate the cooperative capabilities of multi-agent
systems within the real-world context of Minecraft.

the efficiency of collaboration (Gong et al., 2023). 042

AgentVerse organizes its framework into four es- 043

sential stages: Expert Recruitment, Collaborative 044

Decision-Making, Action Execution, and Evalu- 045

ation, thereby effectively deploying multi-agent 046

groups that outperform a single agent (Chen et al., 047

2023). MetaGPT, on the other hand, employs an 048

assembly line approach, designating specific roles 049

to agents and efficiently breaking down complex 050

tasks into subtasks involving many agents working 051

together (Hong et al., 2023). However, these multi- 052

agent collaboration models either tend to restrict 053

agents to parallel-executable subtasks each round, 054

even when unnecessary, or bind them to a fixed 055

pipeline and task stage, overlooking complex task 056

dependencies. This may cause issues for tasks that 057

need both sequential and parallel execution, thus 058

limiting model generality and scalability (Gong 059

et al., 2023; Chen et al., 2023; Hong et al., 2023). 060

In this paper, we focus on multi-agent collaboration 061

for problem solving with complex dependencies. 062

These dependencies can be of different types, such 063

as spatial dependencies that constrain the locations 064

of the sub tasks, causal dependencies that affect 065

the availability and effects of the sub tasks, and 066
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temporal dependencies that impose constraints on067

the timing of the sub tasks. It is crucial to under-068

stand and manage these dependencies for effective069

multi-agent collaboration, enabling the agents to070

reason about the long-term consequences of their071

actions and avoid potential conflicts.072

First, we introduce VillagerBench, a new multi-073

agent benchmark in the Minecraft environment de-074

signed for the evaluation of complex dependencies075

(Figure 6). Some of the multi-agent research is be-076

ing tested within the Overcooked-AI (Carroll et al.,077

2020). Nevertheless, due to limitations in the num-078

ber of agents, scenario flexibility, and task diversity,079

there is a desire for more comprehensive frame-080

works to test multi-agent cooperation. Inspired by081

Voyager (Wang et al., 2023a), GITM (Zhu et al.,082

2023), and MindAgent (Gong et al., 2023), we083

construct a multi-agent and multi-task evaluation084

framework with greater degrees of freedom using085

Minecraft. Minecraft offers a rich and diverse set086

of tasks that can be used to benchmark and evaluate087

multi-agent systems, such as building and farming.088

It allows players to explore dynamic environments089

that pose various challenges for multi-agent collab-090

oration, such as resource allocation, task decom-091

position, and coordination. Specifically, we intro-092

duce three tasks, i.e., Construction Cooperation,093

Farm-to-Table Cooking and Escape Room Chal-094

lenge. The Construction Cooperation task tests095

agents’ aptitude for understanding task require-096

ments and orchestrating team workload, focusing097

on the evaluation of spatial dependencies in multi-098

agent collaboration. The Farm-to-Table Cooking099

task assesses their agility in adapting to fluctuating100

environmental conditions, aiming to solve complex101

causal dependencies. The Escape Room Challenge102

task tests agents on their ability to execute tasks103

both sequentially and in parallel, requiring the rea-104

soning of temporal dependencies and the ability to105

synchronize actions.106

Second, we introduce a Directed Acyclic Graph107

Multi-Agent framework (DAGENT) to tackle com-108

plex dependencies in multi-agent collaborations.109

Each subtask is represented as a graph node in the110

DAG. We dynamically adjust the graph structure111

and the agent roles according to the environment112

and the agent states. DAGENT consists of task de-113

composer, agent controller, state manager and base114

agents. The Task Decomposer generate a Directed115

Acyclic Graph (DAG) of subtask nodes each round,116

while the Agent Controller oversees the assignment117

of these subtasks to the Base Agents for execution 118

and self-reflection. Meanwhile, the State Manager 119

is responsible for maintaining the status informa- 120

tion of both the environment and the agents. 121

We quantitatively evaluate our method on Villager- 122

Bench. We demonstrate the superior performance 123

of DAGENT over AgentVerse (Chen et al., 2023) 124

by fewer hallucinations and enhancing the effec- 125

tiveness of task decomposition. 126

2 VillagerBench Design 127

Our VillagerBench uses Mineflayer (PrismarineJS, 128

2013) to establish Agent APIs, offering a platform 129

to examine cooperative behaviors in multi-agent 130

systems via tasks such as construction, cooking, 131

and escape room challenges (Figure 1). 132

We evaluate multi-agent systems powered by LLMs 133

using three key metrics: Completion (C) that mea- 134

sures the average task completion rate; Efficiency 135

(E) that assesses the speed of task execution and the 136

utilization of resources; and Balance (B) that ex- 137

amines the distribution of workload among agents, 138

with higher values indicating a more equitable as- 139

signment of tasks. Further details can be found in 140

Appendix A. 141

Construction Cooperation Task: Interpretation 142

and Allocation. Construction Cooperation task 143

is centered around the agents’ proficiency in inter- 144

preting detailed task documents and efficiently al- 145

locating the workload among team members. This 146

task necessitates a high level of comprehension 147

and coordination, as agents must parse the project 148

specifications and judiciously assign sub-tasks to 149

optimize collective performance. 150

Agents are provided with textual architectural 151

blueprints that specify the positions and orienta- 152

tions of blocks required for construction tasks. 153

Building materials are supplied in chests or at a 154

material factory, where agents must mine and trans- 155

port them to the building site. Further details can 156

be found in Appendix B.1. 157

Farm-to-Table Cooking Task: Environmental 158

Variability and Strategic Flexibility. In Farm- 159

to-Table Cooking task, agents must adapt their 160

strategies to changing environmental conditions 161

and varying difficulty levels. They need to gather 162

information, source ingredients either from contain- 163

ers or through activities like harvesting and hunting, 164

and adjust their methods to prepare complex dishes. 165

We simulate this by having agents act as farmers 166
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VillagerBench

Task Graph

Thought:
Steve currently has an 
iron axe on hand and 
will begin to work on 
cutting logs next.
Action:
mine_block oak_log
Observation: 
{'message': dig block ...', 
'status': True}

Env Feedback

Env Interaction

Base Agent

Agent ControllerTask Decomposer

Scenario 1: Using the provided blueprint, please collaborate to build in Minecraft.

State Manager

Get iron_axe and find other 
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Place logs to build base 
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for the structure

Get iron_axe and find other 
materials in the chest
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chosen as she is close to ...

I choose Steve arbitrarily, as 
Steve equipped an iron_axe.

Agent Status & Environment
Steve opened a chest at ... and found it contains 
multiple stacks of dirt, as well as ladders and then 
equiped an iron_axe from it. 
Alex searched around and found many logs at ... 
Nothing is in Alex’s bag.

There are a chest at ..., a rabbit at ..., and a fur-
nace at ... near two agents.
Steve is holding an iron_axe and has five logs in 
Steve’s bag. Alex is holding nothing.
The info of nearest sign is ...

Plan & Action Experience
Here is the Actions of the most similar task Place 
a dirt path block at coordinates (-8, -60, 1):
Follow the steps: 
 [move_to_position, place_item,...]
The task will be done.

To place blocks, Here is an experience task graph:
Subtasks Graph: 
1.1 Collect materials from chest,
1.2 Dig logs in the fartory parallel with 1.1
...

Thought:
Now, Alex can attempt to 
place the dirt path block 
at the specified coordi-
nates...
Action:
place_item oak_log
Observation: 
{'message': place block 
...', 'status': True}

Task Graph
Agent Feedback

: I collect     ×5

Agent State

Figure 2: Overview of the DAGENT framework. Our framework acts as the central architecture for individual
agents, enhancing their collaborative capabilities. Featuring a Task Decomposer that generates subtask DAGs, an
Agent Controller for task assignment, a State Manager for status updating, and Base Agents for task execution and
self-assessment.

who are tasked with making cake and rabbit stew167

in Minecraft. These recipes are recognized for their168

high complexity in terms of ingredient synthesis,169

making them challenging targets for the task. Fur-170

ther details can be found in Appendix B.2.171

Escape Room Challenge Task: Synchronization172

and Sequential Execution. Escape Room Chal-173

lenge task tests agents’ ability to work together174

and perform actions in a precise order, focusing on175

synchronization and timing. Agents must navigate176

environments with objects that have specific acti-177

vation requirements, and success depends on their178

coordinated timing and teamwork.179

Each room offers unique challenges that demand180

effective team collaboration and strategic planning.181

For example, a basic task may require two agents182

to press switches at different locations simultane-183

ously to open a door. Further details and visual184

representations of each scenario can be found in185

Appendix B.3.186

3 DAGENT: A Directed Acyclic Graph187

Multi-Agent Framework188

3.1 Overview189

The DAGENT framework comprises four main190

components: Task Decomposer, Agent Controller,191

State Manager, and Base Agents. It operates by192

having the Task Decomposer generate a Directed193

Acyclic Graph (DAG) of subtask nodes each round,194

based on the current state, while the Agent Con- 195

troller oversees the assignment of these subtasks to 196

the Base Agents for execution and self-reflection. 197

Meanwhile, the State Manager is responsible for 198

maintaining the status information of both the envi- 199

ronment and the agents (Figure 2). 200

Agent Notations. We denote each base agent as 201

Ai and the corresponding agent state as Si. The 202

agent state is a textual representation that recur- 203

sively summarizes the agent’s actions, possessions, 204

and the entities in the surrounding environment. 205

Each agent has an action history (Hi) that consists 206

of the last p actions. We assume that there are k 207

agents in the game. The agent set can be repre- 208

sented as A = {Ai|i = 1, . . . , k} and the agent 209

state set is denoted as S = {Si|i = 1, . . . , k} 210

Task Notations. We model the execution depen- 211

dencies of a complex task with a graph of subtasks. 212

Each subtask node Nj is represented by a quadru- 213

ple, i.e, (Tj , Dj ,Cj , Fj). T denotes the subtask 214

description and D represents the data from doc- 215

uments related to the subtask. C represents the 216

assigned agents that have been selected by the Task 217

Manager from the base agent set A. F denotes the 218

execution feedback. We denote the set of subtask 219

nodes as N = {Nj |j = 1, . . . ,m} where m is the 220

number of subtask nodes. 221

3



3.2 Task Decomposer222

The Task Decomposer is responsible for manag-223

ing and constructing the directed graph G. The224

directed graph represents the concurrency of the225

subtasks. In this graph, each node vi ∈ V cor-226

responds to a subtask Ni, and each directed edge227

(vi, vj) signifies that subtask Ni must be completed228

before commencing subtask Nj . Parallel execution229

of subtasks is permitted when there is no direct230

edge dictating the execution order between them.231

The details of constructing the directed graph G232

from the set of subtasks N can be found in Ap-233

pendix A.1.234

Subtask Set Update. The Task Decomposer is235

also used to update the subtask set N. Given the236

goal task description Tg, the relevant environment237

state E queried from the State Manager, the agent238

state set S, and the current nodes N, the Task De-239

composer generates a set of new subtask nodes N′.240

N′ = TD(E, Tg,S,N)241
242

N = N′ ∪ N243

During task decomposition, the Task Decomposer244

adopts a zero-shot chain-of-thought (CoT) ap-245

proach (Wei et al., 2023). This method is integrated246

into the prompt, as Figure 8 illustrates, to guide the247

LLM in generating responses in JSON format, spec-248

ify the index of the immediate predecessor for each249

subtask as needed and specify JSON path expres-250

sions for each subtask, referencing the provided251

data D. Subsequently, each subtask node will use252

these JSON path expressions to query the data re-253

lated to its subtask.254

3.3 Agent Controller255

The Agent Controller focuses on analyzing the task256

graph and assigning the appropriate subtask to the257

right agent in an efficient manner.258

Ready-to-Execute Tasks Identification. The259

Agent Controller identifies ready-to-execute task260

set Nready. It checks all unexecuted tasks, where261

tasks with no remaining dependencies will be262

added to the ready-to-execute task set Nready.263

Subtask Allocation. Based on the environment264

state E, ready-to-execute nodes Nready, and the265

states of the agents S, the Agent Controller deter-266

mines the allocation of agents to subtasks:267

AC(E,Nready,A,S)→ [(Ai, Nj), . . .]268

In this process, the Agent Controller (AC) queries 269

LLM to pair tasks with agents. It anticipates a 270

JSON-formatted response containing the indices of 271

tasks and the identifiers of the selected agents. The 272

Agent Controller initiates the execution of tasks by 273

the designated agents simultaneously. 274

3.4 State Manager 275

The State Manager (SM) is used to update the agent 276

states and the environment information. 277

Agent State Update. SM updates the agent state 278

based on the agent’s action history Hi: 279

Si = LLM(prompta, Si, Hi). 280

where prompta is the agent state update prompt. 281

The agent state Si acts as a long-term memory, in 282

contrast to the action history Hi, which serves as 283

short-term memory. 284

Environment State Retrieval. The global envi- 285

ronment state (I) is the union of the local environ- 286

ment state from each agent. The local environment 287

state of agent Ai can be obtained via the library 288

API, i.e., Env(Ai). 289

Given the task description Tg, the relevant envi- 290

ronment state E can be retrieved from the global 291

environment state (I): 292

E = LLM(prompte, Tg, I). 293

where prompte is the environment state retrieval 294

prompt. prompta, prompte can be found in Ap- 295

pendix 11, 12. 296

3.5 Base Agent Architecture 297

Each base agent Ai is responsible for executing 298

its assigned subtask node Nj . The states of the 299

agents associated with the predecessor nodes of 300

the current node Nj in DAG can be represented 301

as Sselected. This execution results in an updated 302

temporal action history and generates feedback: 303

(Hi, Fj) = Exec(Nj , Hi, Sselected, E) 304

Upon execution of the subtask node Nj , two pro- 305

cesses occur within the agent Ai: 306

ReAct Procedure. The Base Agent formulates a 307

prompt that integrates its action history Hi, the 308

current state of agents Si, the assigned subtask 309

node Nj , and environmental data E provided by 310

the State Manager. Utilizing the ReAct method, 311
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Figure 3: Comparison of DAGENT and AgentVerse on
Farm-to-Table Cooking Task. DAGENT outperforms
AgentVerse in Completion Rate (Chen et al., 2023).
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Figure 4: Comparison of LLMs on VillagerBench. We
show the relative performance gap against the best in
each scenario. GPT-4-1106-preview achieves higher
scores across most metrics, whereas Gemini-Pro demon-
strates better efficiency in the Escape Room Challenge.

the agent iteratively generates actions and obser-312

vations.(Yao et al., 2023) This iterative process is313

subject to a constraint of a maximum of 6 iterations314

or a total execution time limit of 120 seconds.315

Self-Reflection. Upon completion of the task, the316

Base Agent updates the action history Hi and the317

task description T into a reflection prompt. LLM318

then generates a response that serves as feedback319

Fj for the subtask node Nj .320

4 Experiments321

LLM Capability Test. To rigorously evaluate322

the capabilities of LLMs, we conducted tests on323

the VillagerBench benchmark using the DAGENT324

framework based on three models: GPT-4-1106-325

preview(ope, 2023), Gemini Pro(gem, 2023), and326

GLM-4(Du et al., 2022). Our evaluation targeted327

three types of tasks: 100 Construction tasks, 100328

Farm-to-table cooking tasks, and 25 Escape room 329

challenges, each executed once. We terminate a 330

testing round if the task execution exceeds the an- 331

ticipated time frame or once the task has been suc- 332

cessfully completed. The parameters for LLM rea- 333

soning can be found in Appendix 5. 334

Construction Cooperation Task. For the con- 335

struction tasks ranging from 0 to 99, we deployed 336

two agents, Alice and Bob, each equipped with 337

essential APIs, to collaborate effectively. We inten- 338

tionally omitted the requirement for agents to mine 339

blocks from the material factory, considering the 340

inherent complexity of the tasks. The blueprint pro- 341

vided to the agents is a more concise and readable 342

format, thereby streamlining the context and facil- 343

itating more efficient task completion, as detailed 344

in Appendix B.1. 345

Farm-to-Table Cooking Task. For the Farm- 346

to-Table Cooking tasks, numbered 0 through 99. 347

Tasks 0 to 35 are dedicated to cake-making, while 348

tasks 36 to 99 focus on the preparation of rabbit 349

stew. We supply cooking recipes to serve as a 350

reference for the agents. DAGENT vs. Agent- 351

Verse in Cooking: We’ve transitioned AgentVerse 352

BaseAgent from the Voyager environment (Wang 353

et al., 2023a) to our VillagerBench BaseAgent, en- 354

suring a fair comparison by preserving the prompt 355

format and default settings, including the use of 356

agent names Alice and Bob. Our modifications 357

involve the adoption of the gpt-4-1106-preview lan- 358

guage model, setting the temperature parameter 359

to 0, and refining the feedback prompt to suit our 360

ReAct Agent (Figure 15). 361

Escape Room Challenge Task. We’ve crafted 18 362

atom-based escape room tasks that simulate puzzle- 363

solving scenarios for agents. Our generator con- 364

structs these tasks from the ground up, selecting 365

appropriate atom tasks based on room attributes, 366

required materials, and agent information, and then 367

automatically scales them into full-fledged puz- 368

zles. The generator also ensures task feasibility 369

by accounting for agent cooperation and item de- 370

pendencies. For consistent LLM testing, we’ve 371

designated seeds for each of five difficulty levels, 372

with 25 unique tasks in total, and set a default si- 373

multaneous item activation wait time of 30 seconds 374

for task completion. 375

Influence of Agent Quantity on Cooperative 376

Task Execution. We analyzed how varying num- 377
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Models Construction Task Avg. Score Escape Challenge Avg. Score

C (%) VHR (%) E (%/min) B (%) C (%) E (%/min) B (%)

gemini-pro 8.12 13.83 0.76 63.74 69.2 153.3 80.35
glm-4 23.16 29.36 2.37 81.12 68.17 100.8 95.3
gpt-4-1106-preview 36.45 49.05 3.88 95.38 73.29 149.4 90.03

Table 1: GPT-4-1106-preview(ope, 2023), GLM-4(Du et al., 2022) and Gemini-Pro(gem, 2023) results on Construc-
tion Cooperation task and Escape Room Challenge Task.

bers of agents (1, 2, 4, 8) affect cooperative task378

performance in construction scenarios, specifically379

comparing the simplest task(task 0) and a complex380

task(task 64). Using the GPT-4-1106-preview(ope,381

2023) model within the DAGENT framework, each382

task was repeated six times.383

Assessing the Impact of Varied Agent Abilities384

on Cooperative Task Performance We evalu-385

ate how different agent skill sets impact a com-386

plex farm-to-table cooking task (task 99 - rabbit387

stew preparation). With GPT-4-1106-preview(ope,388

2023) as the base model, we tested two trios of389

agents: one with uniform API abilities (7 Base390

APIs plus SmeltingCooking, MineBlock, and At-391

tackTarget) and another with diverse abilities (7392

Base APIs with one unique additional API per393

agent). Each repeated six times.394

4.1 Evaluation Metrics395

Completion Rate (C): For each scenario, we396

monitor certain indicators that signify progress to-397

wards the scenario’s objectives, such as blocks,398

ingredients or triggers. The completion rate is cal-399

culated based on the quantity of these indicators,400

providing a measure of how much of the scenario401

has been completed defined in AppendixA. The402

formula for calculating the completion rate is as403

follows:404

Completion (C) =
# Indicators Detected

# Total Indicators Expected
405

Efficiency of Completion (E): It is defined as the406

ratio of the task completion rate to the actual time407

taken by the agents. The efficiency of completion408

is computed as follows:409

Efficiency (E) =
# Task Completion Rate
# Total Execution Time

410

Balanced Agent Utilization Score (B): This411

metric assesses the distribution of workload among412

agents, aiming for a balanced utilization where413

each agent’s active running time is similar. The 414

ideal state is one where no single agent is either 415

overburdened or underutilized. 416

t′ =
t−min(t)

max(t)−min(t)
(1) 417

418
Balance(B) = 1− σ(t′) (2) 419

Here, n is the number of agents, t ∈ Rn, ti repre- 420

sents the active running time of agent i, and t̄ is the 421

average active running time across all agents. 422

Block Placement View Hit Rate (VHR) evalu- 423

ates the structural integrity and visual coherence of 424

the construction from multiple vantage points. It is 425

calculated as the intersection over union (IoU) of 426

the constructed structure with the expected struc- 427

ture across a predefined set of viewpoints. 428

Svhr =
1

V

V∑
v=1

IoU(Cv(θ,ϕ) , Ev(θ,ϕ)) (3) 429

Here, V is the number of viewpoints, Cv is the 430

construction as seen from viewpoint v, and Ev is 431

the expected view from viewpoint v. 432

Agent Contribution Rate (ACR) quantifies the 433

contribution of each agent in a Minecraft game 434

based on the items they have crafted in farm-to- 435

table cooking tasks. The specific definitions can be 436

found in Appendix A. 437

4.2 Evaluation Results 438

GPT-4 with DAGENT Achieves Optimal Perfor- 439

mance. Across the board, GPT-4-1106-preview, 440

when integrated with DAGENT, consistently de- 441

livered the highest completion scores in task al- 442

location (Figure 3), as seen in Construction, Es- 443

cape Room Tasks and Farm-to-Table Cooking (Ta- 444

ble 1, 2). It demonstrated a superior understanding 445

of task requirements and agent management, out- 446

performing GLM-4 and Gemini-Pro in View Hit 447

Rate (VHR) and Agent Contribution Rate (ACR). 448
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Models Cooking Task Avg. Score

C (%) ACR E (%/min) B (%)

AgentVerse gpt 29.75 48.64 3.54 87.13
DAGENT gemini 26.05 32.92 3.35 83.15
DAGENT glm 46.84 54.07 4.79 75.46
DAGENT gpt 73.75 58.11 6.98 96.13

Table 2: Performance comparison between Agent-
Verse(Chen et al., 2023) and DAGENT on the Farm-to-
Table Task. Note that gpt refers to GPT-4-1106-preview,
gemini to Gemini-Pro, and glm to GLM-4

Gemini-Pro Excels in Efficiency for Escape449

Room Challenge. In the context of less complex450

tasks that prioritize timing and sequence, such as451

the Escape Room Tasks, Gemini-Pro showcased452

its strengths. It achieved efficiency comparable453

to GLM-4 and, in some cases, outperformed oth-454

ers due to its faster inference and response times,455

leading to a high-efficiency rating (Table 1).456

DAGENT Outperforms AgentVerse: Despite457

AgentVerse’s use of GPT-4 and similar scores in458

Agent Contribution Rate (ACR) and Balance (B) in459

the Farm-to-Table Cooking Tasks (Figure 3), DA-460

GENT’s implementation with GPT-4-1106-preview461

surpassed it. AgentVerse was notably prone to462

hallucinatory behavior (Figure 5), with agents re-463

porting task completion and environmental details464

inaccurately, which compromised its overall perfor-465

mance. DAGENT’s superior results highlight its466

effectiveness in managing complex task execution467

without such issues.468

Agent Collaboration and Performance Dynam-469

ics. Data analysis from Table 3 shows that DA-470

GENT’s task performance improves with addi-471

tional agents up to a point, after which it declines.472

Initially, more agents contribute positively, en-473

hancing task handling through collective capability.474

However, as agent numbers increase further, perfor-475

mance gains diminish due to issues like resource476

competition and increased management complexity477

for the LLM. The relationship between agent count478

and performance is thus characterized by a peak479

at moderate levels of collaboration, suggesting an480

optimal balance for system efficiency without spec-481

ifying a precise range.482

483

Diverse Abilities Hinder Coordination. The484

analysis of Table 4 reveals that a trio of agents485

with distinct extra APIs underperforms in all evalu-486

Config Construction Avg. Score

C (%) VHR(%) E (%/min) B (%)

Task01p 100 100 12.96 -
Task02p 100 100 17.75 93.09
Task04p 100 100 17.41 81.64
Task08p 66.63 63.33 12.45 55.67
Task641p 35.25 36.25 1.92 -
Task642p 41.67 35.62 2.34 90.77
Task644p 46.67 39.38 3.28 88.91
Task648p 30.21 33.33 2.27 74.09

Table 3: Evaluation on task execution efficiency with dif-
ferent agent quantities. The Balanced Agent Utilization
Score (B) is inapplicable for a single-player scenario.

Agent Type Farm-to-Table Cooking Avg. Score

C (%) VHR(%) E (%/min) B (%)

Same 56.67 60.22 3.91 95.47
Diverse 36.67 30.46 2.87 92.2

Table 4: Results of varied agent abilities on cooperative
task performance on Farm-to-Table Cooking Task 99.

ated metrics. This underperformance is attributed 487

to the increased complexity in coordination when 488

agents possess different capabilities. For example, 489

the workflow may be disrupted if one agent’s task 490

depends on the completion of another’s, leading to 491

potential bottlenecks and task failure. 492

Despite the lower efficiency, the diverse skill set 493

among agents introduces a richer complexity to 494

the task environment, paving the way for more 495

intricate cooperative interactions. While not opti- 496

mal for score maximization, this setup serves as a 497

fertile ground for investigating advanced collabora- 498

tive behaviors and strategies within our benchmark 499

framework. 500

5 Related Work 501

Minecraft Agents. Minecraft agents are intel- 502

ligent programs that can perform various tasks 503

within Minecraft world. Recently, researchers have 504

come to aware the extraordinary general planning 505

ability for LLMs (Huang et al., 2022a). Many 506

works (Huang et al., 2022b; Yuan et al., 2023; 507

Wang et al., 2023c,a; Zhu et al., 2023) have lever- 508

aged LLMs for enhancing the high-level plan- 509

ning ability of minecraft agents. Inner Mono- 510

logue (Huang et al., 2022b) leveraged environment 511

feedback to improve the planning ability of LLM. 512

Voyager (Wang et al., 2023a) developed an ever- 513

growing skill library of executable code for storing 514

and retrieving complex behaviors. The base agent 515
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DAGENT v.s. AgentVerse
Task: Farming_20
Environment: bucket and egg in chest, wheat and sugarcane in farm
Agent num: 2

DAGENT

Plan:
[
  {
    "id": 1,
    "description": "Harvest wheat and craft into
wheat blocks if necessary",
    ...
    "assigned agents": ["Alice"]
  },
  {
    "id": 2,
    "description": "Find sugar cane or honey bottles
to craft sugar",
    ...
    "assigned agents": ["Bob"]
  }
]

✅

✅

AgentVerse

Discussion:
[Alice]: Hey Bob, to make a cake we need 3 buckets of milk, 2 sugar, 1 egg, and 3 wheat.
Let's check the chests for these ingredients first. If we don't find them, we'll need to gather
them. How about I focus on getting the milk and wheat, and you focus on finding sugar
and an egg? If we find extra ingredients in the chests, we can adjust our plan accordingly.
What do you think?
[Bob]: Sounds good, Alice. I'll start by checking the chests for sugar and an egg. If I don't find
them there, I'll go look for sugarcane to make sugar and search for chickens to get an egg.
Let's meet back here with the ingredients we've gathered. If we both end up finding some of
the same ingredients, we can share them to make sure we have everything we need. Let's
get to it!
[Alice]: Bob, I've managed to get the 3 buckets of milk and found 2 wheat in the chests.
How did your search go? Do you have the sugar and egg? If not, we should split up to find
the remaining wheat, sugar, and egg. I can go harvest or find another wheat, and if you
haven't found sugar and egg yet, you could continue searching for those. Let's update each
other on what we still need.
[Bob]: ...

❌hallucination: Alice hasn't done it

✅

✅

Figure 5: DAGENT v.s. AgentVerse(Chen et al., 2023) on Farm-to-Table Task. Hallucination exists in agent
discussion stage of AgentVerse.

in our DAGENT framework is designed to account516

for the states of other agents and features a modu-517

lar design, enabling it to function independently as518

well as in collaboration with other base agents.519

MultiAgent Frameworks. MultiAgent frame-520

works are increasingly leveraging LLMs due to521

their potential in complex system development522

(Qian et al., 2023b,a; Xie et al., 2023; Wu et al.,523

2023a). CAMEL utilizes role-play to reduce hal-524

lucinations and improve collaboration (Li et al.,525

2023). MindAgent’s CuisineWorld uses a Collabo-526

ration Score to gauge team efficiency (Gong et al.,527

2023). DEPS further extended this closed-loop in-528

teraction by introducing description, explainer and529

selector (Wang et al., 2023c). AgentVerse struc-530

tures its system into recruitment, decision-making,531

execution, and evaluation, optimizing group per-532

formance (Chen et al., 2023). MetaGPT adopts an533

assembly line method, assigning roles to stream-534

line task completion (Hong et al., 2023). However,535

these frameworks often face limitations in task flex-536

ibility and scalability(Gong et al., 2023; Chen et al.,537

2023; Hong et al., 2023). Our DAGENT framework538

improves collaborative efficiency for complex tasks539

by modeling task graphs.540

LLM-as-Agent Benchmarks. Recent studies541

highlight the potential of Large Language Models542

(LLMs) as agents capable of tool use (Wang et al.,543

2023b; Xi et al., 2023). Emerging benchmarks544

aim to rigorously evaluate these models’ perfor-545

mance (Liu et al., 2023; Xu et al., 2023; Carroll546

et al., 2020; Huang et al., 2023; Wu et al., 2023b; 547

Ruan et al., 2023). The Overcooked environment 548

is notable for coordination experiments (Carroll 549

et al., 2020), while MAgIC focuses on assessing 550

LLMs’ cognitive and collaborative abilities in text- 551

based multi-agent settings (Xu et al., 2023).Exist- 552

ing benchmarks, however, may not fully capture 553

the capabilities of LLMs as multi-agents. Inspired 554

by multiple single-agent studies conducted within 555

Minecraft.(Huang et al., 2022b; Yuan et al., 2023; 556

Wang et al., 2023c,a; Zhu et al., 2023) Our Villager- 557

Bench leverages Minecraft’s API to create domains 558

that mimic real-world tasks, facilitating multi-agent 559

system evaluation and research advancement. 560

6 Conclusion 561

In this study, we introduce VillagerBench, a 562

Minecraft multi-agent benchmark platform. We de- 563

sign three distinct scenarios within VillagerBench 564

to evaluate collaborative tasks, aiming to assess the 565

performance of our DAGENT framework. we pro- 566

pose three metrics: Cooperation (C), Balance (B), 567

and Efficiency (E). Our framework employs Di- 568

rected Acyclic Graphs (DAG) to decompose tasks, 569

enabling efficient and coordinated execution by 570

agents. We benchmark the coordination skills of 571

three LLMs using these metrics and demonstrate 572

that our DAGENT framework outperforms Agent- 573

Verse. We also explore how agent count and capa- 574

bility diversity impact framework performance. 575
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Limitations576

Our DAGENT framework, while improving perfor-577

mance within the Minecraft multi-agent benchmark578

(VillagerBench), encounters a low overall task com-579

pletion rate. This is partly due to the inherent com-580

plexity of the benchmark, which necessitates the581

use of a wide array of APIs, thereby enlarging the582

exploration space and complicating the execution583

of tasks, especially when agents have varied abili-584

ties.585

One of the primary challenges is managing agents586

with varying capabilities, as it necessitates ad-587

vanced coordination and balancing strategies to588

ensure effective teamwork. Our framework’s per-589

formance diminishes when scaling beyond eight590

agents, suggesting issues with resource allocation591

and inter-agent communication efficiency. This592

decline could be attributed to the increased con-593

text length and the complexity of generating task594

graphs for a larger number of agents, analogous to595

a leader struggling to manage an excessive number596

of workers.597

Additionally, there exists a certain discrepancy be-598

tween the world knowledge of large language mod-599

els (LLMs) and the specific task environment of600

Minecraft. For example, LLMs may not accurately601

grasp the nuances of in-game actions, such as the602

difference between placing an iron block instantly603

by hand and the actual in-game requirement to604

mine it with an axe. While we have attempted to605

bridge this gap by providing a specialized knowl-606

edge base for Minecraft, the issue persists and607

could pose a significant obstacle when adapting608

our framework to different scenarios.609
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A Metrics 747

A.1 Task Node Graph relevant algorithm 748

Convert subtask node set to Graph. Since 749

LLMs are autoregressive, their outputs for subtasks 750

often exhibit causal relationships. Leveraging this, 751

we can assume that a given prompt suggests subse- 752

quent subtasks depend on or run concurrently with 753

earlier ones, forming the basis for transforming 754

them into a graph. 755

Task Decomposer construct graph using algo- 756

rithm 1 to connect nodes representing subtasks: 757

758

1. Initialize the graph G with an empty set of 759

vertices V , an empty set of edges E and 760

the input list of subtask nodes L containing 761

N1, N2, . . . , Nn. 762

2. Iterate over each node Ni in the list L, where 763

i ranges from 1 to n. Then add the current 764

node Ni to the vertex set V . 765

3. Check if the current node Ni has predecessor 766

nodes P (Ni): 767

• If Ni has predecessors, for each prede- 768

cessor node pj , add an edge from pj to 769

Ni to the edge set E. 770

• If Ni does not have predecessors and i > 771

1, implying it may share predecessors 772

with the previous node Ni−1, for each 773

predecessor of Ni−1, pk, add an edge 774

from pk to Ni to the edge set E. 775

4. Repeat steps 2 and 3 until all nodes in the list 776

have been processed. 777
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Figure 6: Live demonstration of agents performing tasks in VillagerBench scenarios.

Algorithm 1 Convert Task List to Graph

1: G← (V,E) with V ← ∅, E ← ∅
2: L← [N1, N2, . . . , Nn] ▷ Input list
3: for i← 1 to n do
4: V ← V ∪ {Ni} ▷ Add element as a node
5: if P (Ni) ̸= ∅ then
6: for all pj ∈ P (Ni) do
7: E ← E ∪ {(pj , Ni)} ▷ Add edges

from predecessors
8: end for
9: else if i > 1 then

10: for all pk ∈ P (Ni−1) do
11: E ← E ∪ {(pk, Ni)} ▷ Share

predecessors with previous element
12: end for
13: end if
14: end for

Algorithm 2 Find Ready-to-Execute Tasks

Require: G = (V,E) ▷ Task graph with nodes
and edges

Require: S ⊆ V ▷ Set of successfully executed
tasks

Require: U ⊆ V ▷ Set of unexecuted tasks
1: R← ∅ ▷ Result set of ready-to-execute tasks
2: for all Ni ∈ U do
3: P (Ni)← {pj | (pj , Ni) ∈ E} ▷ Find

predecessors of Ni

4: if P (Ni) = ∅ or P (Ni) ⊆ S then
5: R← R ∪ {Ni} ▷ Add if no

predecessors or all predecessors executed
6: end if
7: end for
8: return R

A.2 Construction Task Complete Rate (C) 778

Construction Task Complete Rate quantifies 779

the alignment of the constructed structure with the 780

provided blueprint. It is defined as the ratio of cor- 781

rectly placed blocks to the total number of blocks 782

specified by the blueprint. A higher C indicates a 783

closer match to the intended design, reflecting the 784

agents’ ability to accurately interpret and execute 785

the construction plan. 786

C =
|P(x,y,z,θ,ϕ) ∩B(x,y,z,θ,ϕ)|

|B(x,y,z,θ,ϕ)|
(4) 787

Here, P represents the set of placed blocks, and 788

B represents the set of blocks in the blueprint. θ 789

denotes facing and ϕ denotes axis. 790

A.3 Construction Dependency Complexity (D) 791
792

D =

B∑
i=1

(
1

EPi
+Wh(Hi −G)

)
+Di (5) 793

Here, EP represents the effective path of one block 794

to place through the nearby blocks, B is the number 795

of blocks, H is the height of the block, G is the 796

ground height, and D is the block dig score if this 797

block needs to be dug from the factory. 798

A.4 Farm-to-Table Cooking Completion Rate 799

Completion Rate (C) quantifies the level of task 800

completion based on the materials acquired and the 801

actions performed: 802

C =

n∑
i=1

Srawi +

m∑
j=1

Sactionj (6) 803

Here, Srawi is the score of the i-th raw material 804

and Sactionj is the score for the j-th action that 805

contributes to task progress. 806
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A.5 Farm-to-Table Agent Contribution Rate807

Agent Contribution Rate (ACR). The contribu-808

tion score for each agent with respect to a specific809

material is defined as follows:810

The overall ACR for the task is then calculated by811

aggregating the contributions of all agents for all812

required materials:813

σ =

√√√√ 1

n

n∑
i=1

(Ii − Iavg)2 (7)814

The cooperation level can then be calculated as:815

Scc =

(
1− σ − σmin

σmax − σmin

)
(8)816

Here, n is the number of agents, I ∈ Rn, Ii is the817

contribution of item agent i provides, and then we818

standardize the score.819

A.6 Farm-to-Table Dependency Complexity820

Farm-to-Table Cooking Dependency Complex-821

ity (D).822

D =
n∑

i=1

mi × di (9)823

where mi represents the direct materials required824

for crafting the target food item, and di denotes the825

number of processing steps required to obtain or826

synthesize the material mi within the context of827

the task.828

In this formulation, mi is the quantity of each di-829

rect material, and di reflects the depth of the de-830

pendency chain for each material, indicating the831

complexity of the process needed to acquire it. The832

product of mi and di for each material is summed833

to yield the overall dependency complexity of the834

cooking task.835

A.7 Escape Room Challenge Completion Rate836

Completion Rate (C).837

C =

∑n
i=1

(
ci
m × Si

)∑n
i=1 Si

(10)838

Here, n is the number of tasks, ci is the number of839

conditions that have been met for task i, and Si is840

the score obtained for task i.841

A.8 Escape Room Challenge Dependency842

Complexity (D)843

The Escape Room Challenge Dependency Com-844

plexity (D) is calculated recursively using a breadth-845

first search approach, starting from the exit. The846

complexity of each room is determined by the num- 847

ber of conditions that must be met to pass through 848

it. The complexity for the entire challenge is the 849

cumulative sum of the complexities of all rooms 850

encountered during the search. The formula for 851

calculating the dependency complexity (D) is as 852

follows: 853

D =
n∑

i=1

ci (11) 854

where ci represents the complexity of room i, 855

which is the number of conditions required to pass 856

that room. The sum is taken over all rooms n that 857

are encountered in the breadth-first search from the 858

exit to the entrance of the escape room challenge. 859

This approach ensures that the overall complexity 860

reflects the dependencies and requirements of each 861

room within the context of the escape scenario. 862

B Task Illustrations 863

B.1 Construction with Blueprints 864

Task Description. In this task, participants are re- 865

quired to work collaboratively to construct a struc- 866

ture in the game Minecraft, following the provided 867

blueprint. The participants have access to two 868

chests: one chest contains a variety of building 869

materials, while the other chest, located within the 870

factory, contains tools. However, the tools are not 871

necessary for the completion of this task. The ob- 872

jective is to accurately replicate the blueprint in 873

the game environment, and the task is considered 874

complete once the structure matches the blueprint 875

specifications. 876

Given APIs. The following APIs are provided 877

to facilitate the construction process within the 878

game. These functions allow the agent to interact 879

with the game world, such as placing and fetch- 880

ing blocks, navigating to specific locations, and 881

handling items: 882

Agent.placeBlock 883

Agent.fetchContainerContents 884

Agent.MineBlock 885

Agent.scanNearbyEntities 886

Agent.equipItem 887

Agent.navigateTo 888

Agent.withdrawItem 889

Agent.dismantleDirtLadder 890

Agent.erectDirtLadder 891

Agent.handoverBlock 892

12



Blueprint. The blueprint specifies the exact ma-893

terials and their respective positions required to894

construct the structure. Each line in the blueprint895

represents a different component of the structure,896

detailing the type of material, its orientation, and897

the coordinates where it should be placed. The898

following is the blueprint that must be followed to899

complete the task:900

"task_24": [901

"[material:grass_block facing: None902

positions:[start:[-9 -60 -1] end:...",903

"[material:oak_trapdoor facing:E904

positions:[[-8 -60 -1] [-8 -60 0]]905

material:oak_trapdoor facing:S ...]",906

"[material:oak_trapdoor facing:W907

positions:[[-10 -60 -1] [-10 -60 0]]",908

"[material:oak_trapdoor facing:N909

position:[-9 -60 -2]]",910

"[material:oxeye_daisy facing: None911

position:[-9 -59 0]]",912

"[material:poppy facing: None913

position:[-9 -59 -1]]",914

"[material:dandelion facing: None915

position:[-9 -59 1]]"916

],917

B.2 Farm-to-Table Cooking918

Given APIs. The following APIs are available to919

assist participants in interacting with the virtual en-920

vironment, which includes fetching contents from921

containers, mining blocks, scanning nearby entities,922

equipping items, cooking, navigating, withdrawing923

items, crafting, attacking targets, using items on924

entities, and transferring blocks:925

Agent.fetchContainerContents926

Agent.MineBlock927

Agent.scanNearbyEntities928

Agent.equipItem929

Agent.SmeltingCooking930

Agent.navigateTo931

Agent.withdrawItem932

Agent.craftBlock933

Agent.attackTarget934

Agent.UseItemOnEntity935

Agent.handoverBlock936

Recipes. The recipes detail the specific ingredi-937

ents and quantities needed to craft the food items.938

Below is the recipe for crafting rabbit stew, which939

requires a combination of baked potato, cooked940

rabbit, a bowl, a carrot, and a brown mushroom:941

{ 942

"result": { 943

"name": "rabbit_stew", 944

"count": 1 945

}, 946

"ingredients": [ 947

{ 948

"name": "baked_potato", 949

"count": 1 950

}, 951

{ 952

"name": "cooked_rabbit", 953

"count": 1 954

}, 955

{ 956

"name": "bowl", 957

"count": 1 958

}, 959

{ 960

"name": "carrot", 961

"count": 1 962

}, 963

{ 964

"name": "brown_mushroom", 965

"count": 1 966

} 967

] 968

} 969

B.3 Escape Room 970

Task Description. Agents, you are presented 971

with a cooperative multi-stage escape challenge. 972

Each room, measuring 10x10, demands teamwork 973

to decipher puzzles and navigate through impedi- 974

ments. It is important to note that agents may find 975

themselves in separate rooms, where direct collabo- 976

ration is not feasible. Despite these circumstances, 977

it is imperative to utilize individual strengths and 978

work collectively to advance. Successful comple- 979

tion of a task in one room will result in transporta- 980

tion to the subsequent room or will clear the path to 981

proceed by foot. The rooms are arranged along the 982

z-axis, with their centers spaced 10 units apart. The 983

ultimate goal is to reach the exit located at coordi- 984

nates (130, -60, -140). Communication, adaptation, 985

and teamwork are essential to escape. We wish you 986

the best of luck! 987

Given APIs. The following APIs are provided to 988

assist agents in interacting with the environment, 989

which includes placing and fetching blocks, min- 990

ing, scanning nearby entities, equipping items, nav- 991
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igating, withdrawing items, toggling actions, and992

transferring blocks:993

Agent.placeBlock994

Agent.fetchContainerContents995

Agent.MineBlock996

Agent.scanNearbyEntities997

Agent.equipItem998

Agent.navigateTo999

Agent.withdrawItem1000

Agent.ToggleAction1001

Agent.handoverBlock1002

Room Sign Hints. The escape room challenge1003

provides hints through signs placed within each1004

room. Agents can read the nearby sign text to gain1005

clues for solving the room’s puzzle. One such hint1006

is as follows:1007

Step on all the pressure plates at the1008

same time to clear the stone blocks and1009

open the trapdoors for escape.1010

1011

In each room the agent can get nearby1012

sign text. Around you, the key activated1013

blocks are: a oak_pressure_plate block1014

set at position [130, -60, 131] powered.1015

You have done the task in this room.1016

1017

Move to x=130, y=-60, z=137 to continue.1018

You are at task room [130, -60, 131].1019

C Experiment Configuration1020

C.1 Context Length1021

Throughout the testing process, the total length1022

of context tokens does not exceed 4,000, and the1023

length of the subsequent text does not exceed 1,0241024

tokens. The configurations for the tests are as (Ta-1025

ble 5)1026

D Qualitative Analysis1027

Within the AgentVerse framework, during the dis-1028

cussion phase, Alice exhibits clear hallucinations1029

in the first round, mistakenly believing that she1030

has already searched the chest and generated ficti-1031

tious feedback. Based on this fabricated feedback,1032

our provided BaseAgent Alice infers that she can1033

hand over the bucket to Bob to complete the subse-1034

quent tasks. However, the bucket has not actually1035

been collected. This process illustrates how hallu-1036

cinations in AgentVerse can gradually escalate and1037

impact the stability of the entire decision-making1038

process. (Figure 7)1039

Our approach, DAGENT, employs centralized deci- 1040

sion control and correctly generates sub-tasks such 1041

as collecting wheat and finding sugar during the 1042

Task Graph generation process by the Task Decom- 1043

poser, issuing instructions for parallel execution. 1044

E VillagerBench API Library 1045

E.1 Movement and Navigation 1046

scanNearbyEntities: Search for specific items or 1047

creatures within a radius. 1048

navigateTo: Move to a specific coordinate 1049

location. 1050

navigateToPlayer: Move to another player’s 1051

location. 1052

erectDirtLadder: Build a dirt ladder at a specified 1053

location to reach higher places. 1054

dismantleDirtLadder: Dismantle a dirt ladder at 1055

a specified location. 1056

layDirtBeam: Place a dirt beam from one position 1057

to another. 1058

removeDirtBeam: Remove a dirt beam. 1059

1060

E.2 Combat and Interaction 1061

attackTarget: Attack the nearest entity with a 1062

specific name. 1063

UseItemOnEntity: Use a specific item on a 1064

specific entity. 1065

talkTo: Talk to an entity. 1066

handoverBlock: Hand over an item to another 1067

player. 1068

1069

E.3 Item Management 1070

equipItem: Equip a specific item to a designated 1071

slot. 1072

tossItem: Toss a specific amount of items. 1073

withdrawItem: Withdraw items from a container. 1074

storeItem: Store items in a container. 1075

openContainer: Open the nearest container. 1076

closeContainer: Close a container. 1077

fetchContainerContents: Fetch details of specific 1078

items in a container. 1079

1080

E.4 Production and Crafting 1081

MineBlock: Mine a block at a specific location. 1082

placeBlock: Place a block at a specific location. 1083

craftBlock: Craft items at a crafting table. 1084

SmeltingCooking: Cook or smelt items in a 1085

furnace. 1086
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Model Total Tokens Output Tokens Temperature Other Defaults

GPT-4-1106-preview 128,000 4,096 0 Default
Gemini-Pro 30,720 2,048 0 Default
GLM-4 128,000 > 1,024 0.01 Default

Table 5: Configuration of models used in the experiment.

enchantItem: Enchant items at an enchanting1087

table.1088

repairItem: Repair items at an anvil.1089

trade: Trade items with a villager.1090

1091

E.5 Life Skills1092

sleep: Go to sleep.1093

wake: Wake up.1094

eat: Eat food.1095

drink: Drink a beverage.1096

wear: Wear an item in a specific slot.1097

1098

E.6 Other Actions1099

ToggleAction: Operate a door, lever, or button.1100

get_entity_info: Get information about an entity.1101

get_environment_info: Get information about the1102

environment.1103

performMovement: Perform actions like jump,1104

move forward, move backward, turn left, turn1105

right.1106

lookAt: Look at someone or something.1107

startFishing: Start fishing.1108

stopFishing: Stop fishing.1109

read: Read a book or sign.1110

readPage: Read a specific page of a book.1111

write: Write on a writable book or sign.1112

1113

F VillagerBench Scenario Examples1114

Here we present live demonstrations of two agents1115

performing an escape room challenge, three agents1116

executing a farm-to-table cooking task, and four1117

agents engaged in a construction task. (Figure 6)1118

G Prompts1119

G.1 Task Decomposer1120

The Task Decomposer template 8 and template 9.1121

G.2 Agent Controller1122

The Agent Controller template 10.1123

G.3 State Manager 1124

The State Manager Agent State Summary template 1125

11 and Environment Summary template 12. 1126

G.4 Base Agent 1127

The Base Agent Execution template 13 and Reflect 1128

template 14. 1129

G.5 AgentVerse Prompt 1130

The AgentVerse config template 15. 1131
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DAGENT v.s. AgentVerse

Task: Farming_20
Environment: bucket and egg in chest, wheat and sugarcane in farm
Agent num: 2

DAGENT

Plan:
[
  {
    "id": 1,
    "description": "Harvest wheat and craft into
wheat blocks if necessary",
    "milestones": [
      "Navigate to wheat at [45, -59, 129] and [45,
-59, 131]",
      "Harvest a total of 3 wheat",
      "Craft wheat into wheat blocks if less than 3
wheat is harvested"
    ],
    "retrieval paths": [
      "~/meta-data/ingredients/3"
    ],
    "required subtasks": [],
    "assigned agents": ["Alice"]
  },
  {
    "id": 2,
    "description": "Find sugar cane or honey bottles
to craft sugar",
    "milestones": [
      "Scan for sugar cane or honey bottles in the
environment or chests",
      "Navigate to the location of sugar cane or honey
bottles",
      "Collect or withdraw 2 sugar canes or honey
bottles",
      "Craft 2 sugars from the collected items"
    ],
    "retrieval paths": [
      "~/meta-data/ingredients/1",
      "~/meta-data/ingredients/2"
    ],
    "required subtasks": [],
    "assigned agents": ["Bob"]
  }
]

Action:
[...]

✅

✅

AgentVerse

Discussion:
[Alice]: Hey Bob, to make a cake we need 3 buckets of milk, 2 sugar, 1 egg, and 3 wheat.
Let's check the chests for these ingredients first. If we don't find them, we'll need to gather
them. How about I focus on getting the milk and wheat, and you focus on finding sugar
and an egg? If we find extra ingredients in the chests, we can adjust our plan accordingly.
What do you think?
[Bob]: Sounds good, Alice. I'll start by checking the chests for sugar and an egg. If I don't find
them there, I'll go look for sugarcane to make sugar and search for chickens to get an egg.
Let's meet back here with the ingredients we've gathered. If we both end up finding some of
the same ingredients, we can share them to make sure we have everything we need. Let's
get to it!
[Alice]: Bob, I've managed to get the 3 buckets of milk and found 2 wheat in the chests.
How did your search go? Do you have the sugar and egg? If not, we should split up to find
the remaining wheat, sugar, and egg. I can go harvest or find another wheat, and if you
haven't found sugar and egg yet, you could continue searching for those. Let's update each
other on what we still need.
[Bob]: ...

Action:
[...]

Discussion:
[Alice]: Bob, great work on finding the sugar cane and the egg. Since you've got the sugar
cane, could you please craft the 2 additional sugar we need? Also, since you found iron
ingots, please craft the third bucket. I'll go ahead and collect the 3 wheat from the farm now.
Once we have all the ingredients, we can start making the cake. Let me know once you've
crafted the sugar and the bucket.
[Bob]: Alice, I'm on it. I'll craft the 2 additional sugar from the sugar cane and then use the
iron ingots to craft the third bucket. After that, I'll have all the items we need from my side. I'll
wait for you to collect the wheat, and then we can combine our ingredients to make the cake.
I'll let you know as soon as I've finished crafting. Let's keep up the good work!
[Alice]: ...
[Bob]: ...

Action:
[...]
{
    "action": "handoverBlock",
    "action_input": {
    "item_name": "milk_bucket",
    "item_count": 3,
    ...
  }
}
Observation: {'message': "Bob don't have enough milk_bucket in inventory", 'status':
False}

❌hallucination: Alice hasn't done it

❌hallucination: no iron ingots in chest

✅

✅

Figure 7: DAGENT v.s. AgentVerse: The hallucination in AgentVerse began at the discussion stage and eventually
extended its influence to the execution stage.
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Task Decmpose Prompt

USER

This is not the first time you are handling the task, so you should give part of decompose subtask-structure json feedback. Here is the query:
"""
the environment information around:
{env}

The high-level task:
{task}

Agent ability: (This is just telling you what the agent can do in one step, subtask should be harder than one step)
{agent_ability}
"""
Your response should exclusively include the identified sub-task or the next step intended for the agent to execute.
So, {num} subtasks is the maximum number of subtasks you can give.
Response should contain a list of subtask-structure JSON.

SYSTEM

Your current mission is to leader all the players and execute a set of specified tasks within the Minecraft environment.
--- Background Information ---
Our system manages the task as a Directed Acyclic Graph (DAG).
In this turn, you need to decompose the tasks and arrange them in chronological order. Next turn we will analyse your result json to a graph.

A subtask-structure has the following json component:
{

"id": int, id of the subtask start from 1,
"description": string, description of the subtask, more detail than a name, for example, place block need position and facing, craft or collect items need

the number of items.
"milestones": list[string]. Make it detailed and specific,
"retrieval paths": list[string], [~/...] task data is a dict or list, please give the relative path to the data, for example, if the data useful is {"c": 1} dict is

{"meta-data": {"blueprint": [{"c": 1}, ]}}, the retrieval path is "~/meta-data/blueprint/0",
"required subtasks": list[int], if this subtask is directly prerequisite for other subtasks before it, list the subtask id here.
"candidate agents": list[string], name of agents. dispatch the subtask to the agents.

}

*** Important Notice ***
- The system do not allow agents communicate with each other, so you need to make sure the subtasks are independent.
- Sub-task Dispatch: Post decomposition, the next step is to distribute the sub-tasks amongst yourselves. This will require further communication, where you
consider each player's skills, resources, and availability. Ensure the dispatch facilitates smooth, ** parallel ** execution.
- Task Decomposition: These sub-tasks should be small, specific, and executable with MineFlayer code, as you will be using MineFlayer to play MineCraft.
The task decomposition will not be a one-time process but an iterative one. At regular intervals during playing the game, agents will be paused and you will
plan again based on their progress. You'll propose new sub-tasks that respond to the current circumstances. So you don't need to plan far ahead, but make
sure your proposed sub-tasks are small, simple and achievable, to ensure smooth progression. Each sub-task should contribute to the completion of the
overall task. That means, the number of sub-tasks should no more than numbers of agents. When necessary, the sub-tasks can be identical for faster task
accomplishment. Be specific for the sub-tasks, for example, make sure to specify how many materials are needed.
- In Minecraft, item can be put in agent's inventory, chest, or on the ground. You can use the item in agent's inventory or chest, but you can not use the item
on the ground unless you dig it up first.
- The block at lower place should be placed first, and the block at higher place should be placed later. [x,-60,z] is the lowest place. For example, if a task is
placing block at x -57 z, then y  -60, -59 and -58 should be placed first and in order.
- Integration and Finalization: In some tasks, you will need to integrate your individual efforts. For example, when crafting complicated stuff that require
various materials, after collecting them, you need to consolidate all the materials with one of players.
- You can stop to generate the subtask-structure json if you think the task need the information from the environment, and you can not get the information
from the environment now.

Figure 8: Task Decomposer Prompt Template
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Redecmpose Prompt

USER

This is not the first time you are handling the task, so you should give a decompose subtask-structure json feedback. Here is the query:
"""
the environment information around:
{env}

agent state:
{agent_state}

success previous subtask tracking:
{success_previous_subtask}

failure previous subtask tracking:
{failure_previous_subtask}

Agent ability: (This is just telling you what the agent can do in one step, subtask should be harder than one step)
{agent_ability}

The high-level task
{task}
"""
Your response should exclusively include the identified sub-task or the next step intended for the agent to execute.
So, {num} subtasks is the maximum number of subtasks you can give.
Response should contain a list of subtask-structure JSON.

SYSTEM

Your current mission is to leader all the players and execute a set of specified tasks within the Minecraft environment.
--- Background Information ---
Our system manages the task as a Directed Acyclic Graph (DAG).
In this turn, you need to decompose the tasks and arrange them in chronological order. Next turn we will analyse your result json to a graph.

A subtask-structure has the following json component:
{

"id": int, id of the subtask start from 1,
"description": string, description of the subtask, more detail than a name, for example, place block need position and facing, craft or collect items need

the number of items.
"milestones": list[string]. Make it detailed and specific,
"retrieval paths": list[string], [~/...] task data is a dict or list, please give the relative path to the data, for example, if the data useful is {"c": 1} dict is

{"meta-data": {"blueprint": [{"c": 1}, ]}}, the retrieval path is "~/meta-data/blueprint/0",
"required subtasks": list[int], if this subtask is directly prerequisite for other subtasks before it, list the subtask id here.
"candidate agents": list[string], name of agents. dispatch the subtask to the agents.

}

*** Important Notice ***
- The system do not allow agents communicate with each other, so you need to make sure the subtasks are independent.
- Sub-task Dispatch: Post decomposition, the next step is to distribute the sub-tasks amongst yourselves. This will require further communication, where you
consider each player's skills, resources, and availability. Ensure the dispatch facilitates smooth, ** parallel ** execution.
- Task Decomposition: These sub-tasks should be small, specific, and executable with MineFlayer code, as you will be using MineFlayer to play MineCraft.
The task decomposition will not be a one-time process but an iterative one. At regular intervals during playing the game, agents will be paused and you will
plan again based on their progress. You'll propose new sub-tasks that respond to the current circumstances. So you don't need to plan far ahead, but make
sure your proposed sub-tasks are small, simple and achievable, to ensure smooth progression. Each sub-task should contribute to the completion of the
overall task. That means, the number of sub-tasks should no more than numbers of agents. When necessary, the sub-tasks can be identical for faster task
accomplishment. Be specific for the sub-tasks, for example, make sure to specify how many materials are needed.
- In Minecraft, item can be put in agent's inventory, chest, or on the ground. You can use the item in agent's inventory or chest, but you can not use the item
on the ground unless you dig it up first.
- The block at lower place should be placed first, and the block at higher place should be placed later. [x,-60,z] is the lowest place. For example, if a task is
placing block at x -57 z, then y  -60, -59 and -58 should be placed first and in order.
- Integration and Finalization: In some tasks, you will need to integrate your individual efforts. For example, when crafting complicated stuff that require
various materials, after collecting them, you need to consolidate all the materials with one of players.
- You can stop to generate the subtask-structure json if you think the task need the information from the environment, and you can not get the information
from the environment now.

Figure 9: Task REDecompose Prompt Template
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Controller Prompt

SYSTEM

You are the Global Controller for Minecraft game agents. Your task is to assign tasks to agents. Create a plan that assigns tasks to suitable agents and
return a list of task-assignment JSON objects.

USER

**Background Information:**

Your objective is to select tasks and allocate them to appropriate agents based on specific criteria. Each task requires a set number of agents for
completion, as indicated by the task's "number." Only agents listed as candidates for a task are eligible to perform it. It's crucial to ensure that no agent is
assigned to more than one task at any given time.

When assigning tasks, consider the following factors:

1. **Agent's Current State:** This includes the agent's location, items in possession, health status, etc.
2. **Task Requirements:** Necessary items, task location, and other specific needs.
3. **Agent's Experience:** Previous tasks completed and overall performance history.
4. **Agent's Abilities:** Skills and capabilities relevant to the task.

**Resources Provided:**

- **Minecraft Game Environment:** `{env}`
- **Agent Experience Records:** `{experience}`
- **Current Agent States:** `{agent state}`
- **List of Available Agents:** `{free agent}`
- **List of Tasks:** `{tasks}`

**Assignment Objective:**

You are to match tasks with suitable agents from the available list and produce a series of task-assignment JSON objects. The JSON format should be as
follows:

```json
{
 "reason": "Explanation of the selection process, detailing why the agent is fit for the task based on their current state and held items.",
 "task_id": "The ID of the selected task.",
 "agent": "Names of agents assigned to the task."
}
```

**Key Instructions:**

- Provide a step-by-step reasoning for each task assignment.
- Ensure each task is assigned to the exact number of agents required, with all agents being from the task's candidate list.
- Aim to minimize the number of unassigned agents, adhering to the rules stated above.

**Response Format:**

Submit your response as a list of task-assignment JSON objects.

Figure 10: Agent Controller Prompt Template
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Agent State Update Prompt

SYSTEM

You are a helpful assistant in Minecraft.

USER

You are {name}. Your task is to create a concise running summary of actions and information results in the provided text, focusing on key and potentially
important information to remember.

You will receive the current summary and the your latest actions. Combine them, adding relevant key information from the latest development in 1st person
past tense and keeping the summary concise.
The subject of the sentence should be {name}.

Summary So Far:
{summary_so_far}

Latest Development:
{latest_development}

Your Summary:

Figure 11: State Manager Agent State Update Prompt

Environment Summary Prompt(one shot)

SYSTEM

You are a helpful assistant in Minecraft.
Based on the environment info and the task, extract the key information and summarize the environment info in a concise and informative way.
You should focus on the entities, blocks, and creatures in the environment, and provide a summary of the environment info.

USER

The environment info:
{"person_info": [{"name": "Tom", "position": [-1, -59, 1], "held_items": {"spruce_planks": 1}}], "blocks_info": [{"spruce_planks": [-3, -60, 0]}, {"grass_block": [-2,
-61, 0]}, {"chest": [-4, -60, 0], "facing": "W"}, {"oak Log": [-3, -61, 0]}, {"birch_slab": [-3, -60, -1]}, {"birch_slab": [-3, -60, 1]}, {"dirt": [-2, -62, 0]}, {"grass_block":
[-2, -61, -1]}, {"grass_block": [-2, -61, 1]}, {"crafting_table": [-4, -60, -1]}, {"facing": "W", "furnace": [-4, -60, 1]}, {"stone_pressure_plate": [-3, -60, 2]}],
{"juggle_button": [-3, -60, 3]}], "time": "sunrise"},
nearby_entities': [{'Alice': [42, -59, 125], 'other_entity': 'Alice'}, {'pig': [-3, -59, 0]}, {'pig': [-3, -59, 2]}]
*** The task *** : cook meat in the Minecraft.

The summary of the environment info:
Entity: Tom is located at position [-1, -59, 1] and is holding one spruce plank, Alice is located at position [42, -59, 125].
Blocks: a chest at [-4, -60, 0] facing west, a furnace at [-4, -60, 1] and other bloces.
Creatures: two pigs at [-3, -59, 0] and [-3, -59, 2].
Interactive-Items: a stone pressure plate at [-3, -60, 2], a juggle button at [-3, -60, 3].

The environment info:
{environment_info}
*** The task *** : {task}.
Return with Entity, Blocks, Creatures and Interactive-Items, and give all these position of these blocks and entities like chest, crafting table, furnace, animals,
and plants.

Figure 12: State Manager Environment Summary Prompt
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Agent Prompt

*** The relevant data of task(not environment data)***
{relevant_data}
*** Other agents team with you ***
{other_agents}
*** {agent_name}'s state ***
{agent_state}
*** The agent's actions in the last time segment partially ***
{agent_action_list}
*** environment ***
{env}
*** The minecraft knowledge card ***
{minecraft_knowledge_card}
*** The task description *** 
=====================
*** Task ***
{task_description}
*** milestone ***
{milestone_description}

At least two Action before the Final Answer.

Figure 13: Base Agent Execution Prompt

Reflect Prompt

SYSTEM

You are in a Minecraft world. You are a agent player. You need to use the action history compared with the task description and the milestone description to
check whether the task is completed.
The check-strucutre
{

"reasoning": str, # the reasoning process
"summary": str, # the summary of the vital information of action history with detailed position number and other parameters, which not included in task

description.
"task_status": bool, # whether the task is completed

}

USER

Now you have tried to complete the task. 
The task description is:
{task_description}

The milestone description is:
{milestone_description}

The action history is:
{state}
{action_history}

Please check whether the task is completed and return a check-strucutre json.

Figure 14: Base Agent Reflect Prompt
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AgentVerse Config

YAML TEMPLATE

prompts:
  prompt: &prompt |-
    # Role Description
    You are an experienced MineCraft player. ${role_description}

    Your current mission is to team up with other players and execute a set of specified tasks within the Minecraft environment.

    # Requirements
    It is essential that you effectively coordinate with other players to ensure the successful completion of tasks in a highly efficient manner. This collaboration
should be achieved through the following steps:

    - Communication: Engage in open dialogue, discussing the specifics of the high-level task to make the goal more specific.

    - Task Decomposition: After understanding the task in its entirety, you guys need to decompose the high-level task into smaller, manageable sub-tasks.
These sub-tasks should be small, specific, and executable with MineFlayer code, as you will be using MineFlayer to play MineCraft. The task decomposition
will not be a one-time process but an iterative one. At regular intervals during playing the game, you'll be paused and should discuss with others again based
on your progress. You'll propose new sub-tasks that respond to the current circumstances. So you don't need to plan far ahead, but make sure your
proposed sub-tasks are small, simple and achievable, to ensure smooth progression. Each sub-task should contribute to the completion of the overall task,
and each of you should take one subtask. That means, the number of sub-tasks should be 2. When necessary, the two sub-tasks can be identical for faster
task accomplishment. You don't need to always agree with the decomposition proposed by other players. You can propose a more reasonable one when you
find the decomposition not good. Be specific for the sub-tasks, for example, make sure to specify how many materials are needed.

    - Sub-task Dispatch: Post decomposition, the next step is to distribute the sub-tasks amongst yourselves. This will require further communication, where
you consider each player's skills, resources, and availability. Ensure the dispatch facilitates smooth, ** parallel ** execution.

    - Integration and Finalization: In some tasks, you will need to integrate your individual efforts. For example, when crafting complicated stuff that require
various materials, after collecting them, you need to consolidate all the materials with one of you. For these specific tasks, it is essential to discuss who
should drop their items in inventory and who should collect them to reach the final goal. For other tasks that can be done completely parallal, this step can
be ignored.

    # Task Description
    The high-level task: ${goal}

    # Relevant Recipes
    {{recipe}}

    # Reminder
    Remember, the key to achieving high efficiency as a group is maintaining a constant line of communication, cooperation, and coordination throughout the
entire process. Now you should discuss with the other player. There will be 4 rounds for you guys to discuss the sub-tasks and the assignment at discussion
phase. ** DO NOT imagine that you have achieved anything that is not mentioned in the chat history or have obtained anything that does not in your
inventory. ** What will you, ${agent_name}, say now? Your response should only contain the words of ${agent_name}.

    # Chat History
    Below is the chat history among players:
    [Before Game Start. Discussion Phase.]
    ${chat_history}

    ${env_description}
    [${agent_name}]:
  # - Progress Monitoring and Sub-task Update: After you have made some progress, you can inform other players what you have achieved, and discuss
whether there's a need for sub-task re-assignment or update based on the changing circumstances. Do not imagine that you have achieved something that
is not mentioned in the chat history before game start.
  summarization_prompt: &sum_prompt |-
    Please review the following chat conversation and identify the specific latest sub-task or the next step that ${agent_name} needs to accomplish.

    # Chat Conversation
    ${chat_history}

    # Response Guidelines
    Your response should exclusively include the identified sub-task or the next step intended for ${agent_name}. Ensure that you are only extracting the sub-
task or next step designated to ${agent_name}, excluding tasks assigned to other participants. Keep your response succinct and to the point. 
    For instance, "Gather 3 wood for making pickaxes", "Kill 3 cows", "Drop 4 sticks", "Pickup 4 sticks dropped by xxx". Remember to add the quantifier and
other important information discussed in the conversation.
...

Figure 15: AgentVerse Config
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