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ABSTRACT

Modeling human preferences is crucial for aligning foundation models with human
values. Traditional reward modeling methods, such as the Bradley-Terry (BT)
reward model, fall short in expressiveness, particularly in addressing intransitive
preferences. Although supervised pair preference models and pair reward models
can express general preferences, their implementation is highly ad-hoc and cannot
guarantee a consistent preference probability of compared pairs. Additionally, they
impose high computational costs due to their quadratic query complexity when
comparing multiple responses. In this paper, we introduce preference represen-
tation learning, an approach that embeds responses into a latent space to capture
intricate preference structures efficiently, achieving linear query complexity. Ad-
ditionally, we propose preference score-based General Preference Optimization
(GPO), which generalizes reward-based reinforcement learning from human feed-
back. Experimental results show that our General Preference representation model
(GPM) outperforms the BT reward model on the RewardBench benchmark with a
margin of up to 9.1% and effectively models cyclic preferences where any BT re-
ward model behaves like a random guess. Furthermore, evaluations on downstream
tasks such as AlpacaEval2.0, following the language model post-training with GPO
and our general preference model, reveal substantial performance improvements
with margins up to 8.3%. These findings indicate that our method may enhance the
alignment of foundation models with nuanced human values.

1 INTRODUCTION

Modeling human preferences is a cornerstone in developing foundation models that interact seamlessly
with users. In natural language modeling and reinforcement learning, aligning models with human
intent and values has led to significant advancements, including improved text generation and
enhanced decision-making policies (Ouyang et al., 2022; Christiano et al., 2017). Traditional
approaches often rely on reward modeling, wherein a reward function is learned to guide the
optimization of policies. While effective in certain contexts, these methods face expressiveness and
computational efficiency challenges, particularly when addressing complex or intransitive human
preferences (Tversky, 1969; Munos et al., 2023).

Figure 1:
Intransitiveness
in real-world prefer-
ences.

Preference learning algorithms typically employ pairwise comparisons to
capture human judgments (Ibarz et al., 2018; Ziegler et al., 2019). The Bradley-
Terry (BT) model (Bradley & Terry, 1952) is popular for modeling such
pairwise preferences due to its simplicity and computational efficiency: given
K responses, a BT reward model cost O(K) inference-time compute to output
the reward dictating the preferences. The efficiency of the BT model comes
from the implicit assumption that each option can be conveniently represented
by a scalar reward, which inevitably limits the model’s capacity to capture
the richness of human judgments that may be context-dependent or exhibit
intransitivity (Gardner, 1970).

On the other hand, supervised (sequential-classification) pair preference mod-
els (PairPM) (Jiang et al., 2023; Dong et al., 2024) that predict the preference
given a concatenation of the two responses can express complex and intran-
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(a) Bradley-Terry (BT) reward model (b) PairRM / PairPM

(c) General Preference representation model (GPM)

Figure 2: Illustration of (a) Bradley Terry (BT) reward model, (b) supervised pair preference model
(PairRM, PairPM) (Jiang et al., 2023; Dong et al., 2024), and (c) our General Preference representation
model (GPM).

sitive (cyclic) structures. But to fully capture the preference relations among
K responses, it requires evaluating O(K2) pairwise preferences between all
K candidate responses (Munos et al., 2023; Wu et al., 2024b). This quadratic scaling hinders them
for applications with larger response sets especially in test-time scaling for reasoning tasks using
verifiers and ranking models (Snell et al., 2024; Wu et al., 2024a).

Aside from computational inefficiency, supervised preference models also exhibit asymmetric prefer-
ence behaviors related to positions. Also, the model’s design choice can be highly ad-hoc, varying
among different templates and different linear heads.

Based on the above observations, it is thus natural to raise the following question:

Is there a principled way to model general preference?

In this paper, we answer this question affirmatively by proposing preference representation learning,
which bridges the gap between expressiveness and efficiency in general preference modeling. Our
method embeds responses into a multi-dimensional latent space that captures the complex preference
structure beyond transitive relations while allowing for efficient querying of preferences. Notably, our
approach achieves a computational complexity of O(K), matching the efficiency of the BT model
but with enhanced expressiveness.

The main contributions of our work are summarized as follows:

• We introduce preference representation learning for general preference modeling, enabling both
efficient and expressive representation of human preferences. Our approach generalizes the Bradley-
Terry (BT) reward model by embedding responses into a latent space, capturing complex structures,
including intransitive preferences. Notably, our General Preference representation model (GPM)
achieves a query complexity of O(K) for evaluating preferences among K responses, a significant
improvement over the O(K2) complexity of traditional supervised preference models that rely on
pairwise inputs (see Section 4).

• We demonstrate GPM’s effectiveness across various tasks, including CyclicPreference (ours) and
the renowned RewardBench (Lambert et al., 2024). Specifically, GPM models intransitive (e.g.,
cyclic) preferences with 100% accuracy, whereas the BT reward model performs like random
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guessing (see Section 6.1). Additionally, GPM outperforms the BT model on RewardBench with
performance margins of up to 8.3% (see Section 6.2).

• For language model alignment, we propose General Preference Optimization (GPO), which lever-
ages the preference scores provided by GPM. The general preference score can also be integrated
as a preference signal into a wide range of RLHF and preference optimization methods, such as
(iterative) DPO (Rafailov et al., 2024), SPPO (Wu et al., 2024b), and PPO-based methods (Ouyang
et al., 2022). Experimental results on AlpacaEval-2.0 reveal that our approach may improve
reward-based language model alignment methods (see Section 6.3).

2 RELATED WORK

Reward-Based Reinforcement Learning from Human Feedback (RLHF). The earlier approaches
to modeling human preference for language model alignment usually learn a reward model from a pref-
erence dataset. The human preference is assumed to follow the Bradley-Terry (BT) model (Bradley &
Terry, 1952) or the Thurstone model (Thurstone, 2017). LLM policies then are fine-tuned to maximize
these scalar reward signals for better alignment (Christiano et al., 2017; Ziegler et al., 2019; Ouyang
et al., 2022). Later, the direct preference optimization (DPO) methods are proposed by Rafailov et al.
(2024) to only implicitly learn a reward model represented by an LLM. The human preference is
still assumed to follow the Bradley-Terry model. However, the reliance on scalar rewards imposes a
total ordering on preferences, which may not reflect the intransitive or stochastic nature of human
judgments (Tversky, 1969; Agranov & Ortoleva, 2017).

Preference-Based Reinforcement Learning from Human Feedback. Recently, there emerged a
line of works that directly estimates the preference probability without imposing a reward-based
preference model or any transitivity assumptions (Lou et al., 2022; Wu et al., 2023; Wang et al.,
2023) either for preference-based RL or in the context of RLHF. Efforts have been made to optimize
policies directly from pair-wise preference comparisons, thereby mitigating the limitations of scalar
reward functions (Munos et al., 2023; Swamy et al., 2024; Rosset et al., 2024; Wu et al., 2024b).

3 BACKGROUND

In this section, we present preliminaries on reward modeling, preference modeling, and reinforcement
learning from human feedback (RLHF) for language model alignment. We consider an autoregressive
language model that generates responses to the given prompts. Let x = [x1, x2, . . .] denote a prompt,
a sequence of tokens. The language model π generates a response y = [y1, y2, . . . , yN ] based on
the conditional probability distribution: π(y | x) =

∏N
i=1 π (yi | x,y<i), where y<i represents the

sequence of tokens generated before position i. In this paper, we assume a general-preference oracle.
Given two responses y and y′ to the same prompt x, the oracle provides the feedback indicating
which response is preferred.

P (y ≻ y′ | x) := E [o (y ≻ y′ | x)] .

3.1 REWARD-BASED REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

The most prevalent approach to aligning language models with human preferences is to consider
a scalar reward function r(y;x) that assigns a numerical score to each response. The preference
between two responses is then determined solely by the reward scores for the two responses. For
example, the Bradley-Terry (BT) model (Bradley & Terry, 1952) is a widely used method for
modeling pairwise preferences in this context. However, the BT model can not capture intransitive
(e.g. cyclic) preferences effectively (Bertrand et al., 2023). Under the BT model, the probability that
response y is preferred over y′ is given by:

P(y ≻ y′ | x) = σ
(
r(y;x)− r(y′;x)

)
,

where σ(z) = 1/(1 + e−z) is the logistic (sigmoid) function.

In practice, the reward function r(y;x) is learned by maximizing the likelihood of the observed
preference data. Once the reward function is established, policy optimization techniques, such as
Proximal Policy Optimization (PPO) (Schulman et al., 2017), can be applied to adjust the language
model to generate responses that maximize expected rewards. The optimization problem can be
formulated as:

max
θ

Ex∼X , y∼πθ(·|x) [r(y;x)]− βEx∼X [KL (πθ(· | x) ∥πref(· | x))] , (1)
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where θ are the parameters of the policy πθ, πref is a reference policy (often the pre-trained or
supervised-fine-tuned language model), β is a scaling parameter that controls the strength of regular-
ization, and KL denotes the Kullback-Leibler divergence.

3.2 GENERAL PREFERENCE MODELING

We consider the scenario where given a prompt x, a set of responses {yi} is generated, and human
preferences over these responses are represented as pairwise probabilities P(yi ≻ yj | x) ∈ (0, 1),
indicating the likelihood that response yi is preferred over yj given the prompt x.

To model these preferences, we define a (pairwise) preference score function:

s(yi ≻ yj | x) := log
P(yi ≻ yj | x)

1− P(yi ≻ yj | x)
, (2)

which represents the log-odds of yi being preferred over yj . This score function allows us to express
the preference probability as:

P(yi ≻ yj | x) = σ (s(yi ≻ yj | x)) , (3)

where σ(z) = 1/(1 + e−z) is the logistic function. One can see that the BT model is a special case:
s(yi ≻ yj | x) = r(yi;x)− r(yj ;x).

3.2.1 SUPERVISED PAIR PREFERENCE MODELS

Existing approaches often involve concatenating the prompt and responses with a template and
training an LLM-based sequential classifier in a supervised learning manner. For example, Jiang
et al. (2023) simply concatenate the three segments (x,y1,y2) sequentially and form a single input
sequence with special tokens as separators:
‘<s> <source> x </s> <candidate1> y1 </s> <candidate2> y2 </s>’

Then a sequential classification head on the last token is trained to predict the preference. Another
example is Munos et al. (2023), which uses the following template for text summarization:
‘You are an expert summary rater. Given a piece of text and two of
its possible summaries, output 1 or 2 to indicate which summary
is better.
Text - 〈text〉, Summary 1 - 〈summary1〉, Summary 2 - 〈summary2〉.
Preferred Summary -’
Then use the last logit for an arbitrarily chosen token as s(y1 ≻ y2|x) for training.

However, due to the language model’s position encoding (Press et al., 2021; Su et al., 2024) and the
causal attention (Radford et al., 2018; 2019) mechanism not being symmetric, the candidate’s order
in the concatenation will affect the final prediction results. It is mitigated by randomly shuffling the
two responses in the training dataset but the output is still highly asymmetric. Another limitation is
that how to represent the preference score can be highly ad-hoc. The two examples above already use
different templates and different linear heads (sequential classification v.s. language modeling).

3.3 PREFERENCE-BASED REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

To address the potential intransitive human preference, the preference-based LLM alignment al-
gorithms (Munos et al., 2023; Azar et al., 2023; Wu et al., 2024b; Rosset et al., 2024) have been
proposed to directly work on the preference pairs instead of assuming a reward function.

Given a preference oracle P (y ≻ y′ | x). The objective is to find a policy π that performs well
against another competing policy π′ in terms of these preference probabilities. For example, Azar et al.
(2023) consider competing with another fixed policy µ (X denotes the distribution over prompts):

max
π

Ex∼X
[
Ey∼π(·|x), y′∼µ(·|x) [P (y ≻ y′ | x)]− βKL(π∥πref)

]
, (4)

Other works (Munos et al., 2023; Wu et al., 2024b; Rosset et al., 2024) consider solving the two-player
constant-sum game:

max
π

min
π′

Ex∼X
[
Ey∼π(·|x), y′∼π′(·|x) [P (y ≻ y′ | x)]

]
. (5)

To simplify notation, we define the winning probability of a policy π over another policy π′ as:

P (π ≻ π′ | x) = Ey∼π(·|x), y′∼π′(·|x) [P (y ≻ y′ | x)] . (6)
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The optimization problem then becomes:

max
π

min
π′

Ex∼X [P (π ≻ π′ | x)] . (7)

4 GENERAL PREFERENCE MODELING WITH PREFERENCE REPRESENTATIONS

In this section, we propose a general preference representation learning framework that can model
human preferences efficiently and expressively. Each response is embedded as a vector in a latent
space, and the preferences are modeled through interactions between these representations (embed-
dings) using a skew-symmetric operator. We first define preference representations, which serve as
the foundation for modeling the relationships between responses.
Definition 4.1 (Preference Representations). Given a prompt x, we assign to each response y a
preference representation vector vy|x ∈ R2k. These representations are designed to capture the
features relevant to human preferences beyond what can be represented by scalar rewards.

Next, to model the directional nature of preferences, we introduce the skew-symmetric preference
operator, which ensures that the model respects the skew-symmetry (anti-symmetry) in preference
modeling.
Definition 4.2 (Skew-symmetric Preference Operator). To capture the directional nature of prefer-
ences, we define a skew-symmetric (anti-symmetric) preference operator R≻ ∈ R2k×2k. Specifically,
R≻ is a block-diagonal matrix consisting of k skew-symmetric blocks of the form (for more discus-
sion, please see Appendix A):

Rl =

[
0 −1
1 0

]
, l = 1, . . . , k. (8)

An example of R≻ for k = 2 is:

R≻ =

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 .

Finally, we define the preference score, which quantifies the degree to which one response is preferred
over another. This score is calculated based on the interaction between the preference representations,
mediated by the skew-symmetric operator.
Definition 4.3 (Preference Score). The preference score between two responses yi and yj using
preference representations is defined as:

s(yi ≻ yj | x) =
〈
R≻vyi|x,vyj |x

〉
, (9)

where ⟨·, ·⟩ denotes the inner product in R2k. This score captures the anti-symmetric relationship
between responses induced by human preferences.

We model the preference probability using the logistic function as defined in Equation (3). Our
general preference representation model (GPM) exhibits two desirable properties:

1. Skew-symmetry. The preference score function is skew-symmetric, satisfying:

s(yi ≻ yj | x) = −s(yj ≻ yi | x).

This reflects the fact that the preference relation is naturally skew-symmetric: if yi is preferred
over yj with probability pi,j , then yj is preferred over yi with probability 1− pi,j .
Specifically,

s(y ≻ y | x) =
〈
R≻vy|x,vy|x

〉
= 0.

This means that a response is neither superior nor inferior to itself.
2. Magnitude preserving. The skew-symmetric preference operator does not change the representa-

tion vector’s magnitude, which makes this operation stable for training and inference.〈
R≻vy|x,R

≻vy|x
〉
=

〈
vy|x,vy|x

〉
.
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Relation to Bradley-Terry Model. If we set k = 1, vy = [r(y | x), c]⊤, where c is a constant and

c ̸= 0 (e.g., c = 1), and R≻ =

[
0 −1
1 0

]
, then the preference score reduces to:

s(yi ≻ yj | x) = c
(
r(yi | x)− r(yj | x)

)
,

and the preference probability becomes:

P(yi ≻ yj | x) = σ
[
c
(
r(yi | x)− r(yj | x)

)]
,

which is exactly the Bradley-Terry (BT) model as a disk game (Balduzzi et al., 2019).

4.1 EXPRESSIVENESS OF THE MODEL

Our general preference representation model is fully expressive for any real skew-symmetric prefer-
ence matrix (see Appendix A.1 for complex representations interpretation). Specifically, we establish
the following theorem (similar results have been proved in Balduzzi et al. (2018)):

Theorem 4.4 (Expressiveness of Preference Representation Model). Let P ∈ Rk×k be a real skew-
symmetric matrix (i.e., P = −P⊤). Then there exist vectors {vi}ki=1 ⊂ R2k and a block-diagonal
skew-symmetric matrix R≻ ∈ R2k×2k, with R≻ consisting of k blocks of the form:

Rl =

[
0 −1
1 0

]
, l = 1, . . . , k,

such that:
Pij = v⊤

i R
≻vj , ∀ i, j.

Moreover, the vectors {vi} can be constructed explicitly from P.

Theorem 4.4 suggests that our preference representation framework can theoretically model arbitrary
complex and potentially intransitive (e.g., cyclic) preference structures (see Appendix A.3 for proofs).

4.2 IMPLEMENTING GENERAL PREFERENCE REPRESENTATION MODEL

When the preference score matrix P has an even dimension, i.e., P ∈ R2k×2k, we have a more
interesting interpretation based on spectral decomposition.

Theorem 4.5 (Expressiveness of Preference Representation Model). Let P ∈ R2k×2k be a real skew-
symmetric matrix (i.e., P = −P⊤). Then there exist representations (embeddings) {vi}2ki=1 ⊂ R2k

and a block-diagonal skew-symmetric matrix R≻ ∈ R2k×2k, such that:

Pij = v⊤
i R

≻vj , ∀ i, j.

Moreover, the representations {vi} can be constructed from the orthogonal matrix U in the decom-
position of P, scaled by the square roots of the positive eigenvalues of P.

To effectively capture general preferences while maintaining computational efficiency, we implement
our preference representation model by augmenting an existing language model with two additional
components: an eigenvalue scale gate and an eigenvector embedding head.

Eigenvalue Scale Gate. The eigenvalue scale gate Gλ computes context-dependent scaling factors
{λl(x)}, where λl(x) ≥ 0, based solely on the prompt x:

{λl(x)} = Gλ(x).

This component models how different preference dimensions are weighted in the context of the
given prompt, effectively adjusting the importance of various aspects such as helpfulness, instruction-
following, and creativity.

Eigenvector Embedding Head. The eigenvector embedding head Ev generates embeddings vy|x for
each response y in the context of the prompt x:

vy|x = Ev(x,y).

These embeddings capture the nuanced characteristics of the responses relevant to human preferences.

6
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Preference Score. The preference score between two responses is computed as:

s(yi ≻ yj | x) = v⊤
yi|xD(x)R≻D(x)vyj |x.

where D(x) is a block-diagonal matrix with blocks
√
λl(x)I2, and R≻ is the skew-symmetric

operator defined previously. We normalize the embeddings vy to have unit length to ensure stability
in training.

Automatic Subspace Discovery. The use of multiple dimensions in the embeddings allows the
model to discover different subspaces corresponding to various preference dimensions automatically.
Each pair of dimensions can capture distinct aspects of preferences, such as helpfulness, correctness,
or stylistic elements. The context-dependent eigenvalues λl(x) modulate the contributions of these
subspaces based on the prompt, enabling the model to adapt to varying user preferences dynamically.

We have conducted ablation studies on the architecture of the general preference representation
model—specifically, evaluating the inclusion of the eigenvalue scale gate and L2 normalization in the
eigenvector embedding head. These results are detailed in Table 7 of Appendix B.1.

5 EFFICIENT PREFERENCE OPTIMIZATION WITH GENERAL PREFERENCE

The previous general preference models require O(K2) inference-time compute to evaluate all
pairwise preferences among K responses (Munos et al., 2023; Swamy et al., 2024). In contrast,
computing the preference representation for K responses requires only O(K) forward passes: we first
calculate the representation vi for each yi, and then use them to calculate the preference probability
between any two responses using formula s(yi ≻ yj) = ⟨R≻vi,vj⟩. In this way, our model is as
efficient as a (Bradley-Terry) reward model while being way more expressive.

Policy Optimization with Preference Score. Once we have a general preference model that outputs
the preference score s(yi ≻ yj |x) at hand, we aim to find a policy π that performs well against an
opponent policy µ in terms of expected preference scores. The optimization problem is formulated
as:

max
θ

Ex

[
Ey∼πθ(·|x), y′∼µ(·|x) [s(y ≻ y′ | x)]

]
− βEx [KL (πθ(· | x)∥πref(· | x))] , (10)

where πref is a reference policy (e.g., the initial language model), µ is the opponent policy (usually
the same as πref), and β > 0 is a regularization parameter controlling the divergence from the
reference policy. We would like to point out that this formulation is different from the many
previous works (Wu et al., 2024b; Swamy et al., 2024; Rosset et al., 2024; Munos et al., 2023; Azar
et al., 2023) as they consider maximizing the win rate P(y ≻ y′|x), while our formulation is to
maximize s(y ≻ y′|x) = log P(y≻y′|x)

P(y≺y′|x) . Note that P(y ≻ y′|x) only varies between 0 and 1, while
s(y ≻ y′|x), similar to the reward r(y;x) in RLHF or DPO, can take arbitrary values. The flexibility
in its value range might benefit fine-tuning.

General Preference Optimization (GPO). We consider the SPPO loss used by Wu et al. (2024b) for
iterative preference optimization, except that we use preference score instead of preference probability
in the loss form. SPPO used K responses for each prompt x and calculated the empirical win rate of
each response yk. Instead, we calculate ŝ (yi ≻ µ | x) to estimate the empirical win rate over the
distribution µ as below:

ŝ (yi ≻ µ | x) = 1

K

K∑
k=1

s (yi ≻ yk | x) ,∀i ∈ [K], (11)

At each iteration t, GPO has the following learning objective:

θt+1 = argmin
θ

Ex∼X ,y∼πθt (·|x)

[(
log

(
πθ(y | x)
πθt(y | x)

)
− 1

β

(
ŝ (y ≻ πθt | x)− logZπθt

(x)
))2

]
,

(12)
where the normalizing factor Zπθt

(x) :=
∑

y πθt(y|x) exp (ŝ (y ≻ πθt | x)).

7
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In practice, we directly replace logZπθt
(x) with 01. Intuitively, if a response y receives a high

average score, GPO will increase its log probability. We report the empirical performance of GPO in
Section 6.3 (we present convergence analysis of GPO in Appendix C).
Remark 5.1. Notice that the GPO learning objective can be seen as an offline policy gradient algorithm
(see Appendix C) for the optimization problem defined in Equation (12), similar results have been
discussed in Munos et al. (2023); Wu et al. (2024b).
Remark 5.2. Note that the general preference score given by our GPM in Equation (10) can also
be integrated as preference (reward) signal for any off-the-shelf RLHF and preference optimization
methods, including (iterative) DPO (Rafailov et al., 2024), IPO (Azar et al., 2023), NLHF (Munos
et al., 2023), SPPO (Wu et al., 2024b) and REBEL (Gao et al., 2024), as well as PPO-based
methods (Ouyang et al., 2022) by directly optimizing Equation (10).

6 EXPERIMENTS

We conducted several experiments to evaluate the effectiveness of the proposed General Preference
representation model (GPM) in comparison to traditional reward-based models, particularly focusing
on its ability to model cyclic preferences and improve language model alignment. Our experiments
are designed to address the following questions:

• Q1: Can the GPM effectively capture and model cyclic and intransitive preferences, where
traditional models like the Bradley-Terry (BT) reward model struggle?

• Q2: How does the GPM perform on standard preference modeling benchmarks (RewardBench)
compared to the BT model?

• Q3: How does using the GPM for downstream policy optimization impact language model
performance on real-world tasks such as AlpacaEval compared to reward-based approaches?

6.1 CYCLIC PREFERENCE MODELING

To address Q1, we evaluate the ability of the GPM to capture intransitive, cyclic preferences that
traditional transitive models (like the BT model) struggle to represent.

Cyclic Preference Dataset. We constructed a dataset by inducing cyclic preferences from the
Ultrafeedback dataset Cui et al. (2024). The dataset includes responses evaluated across four key
metrics: instruction following, honesty, truthfulness, and helpfulness. We created preference cycles
such as: instruction following ≻ honesty ≻ truthfulness ≻ helpfulness ≻
instruction following, ensuring the presence of intransitive cycles. We further generated
four sub-datasets by omitting one metric from each cycle, resulting in datasets of varying complexity
with 216 to 363 instances.

Training and Evaluation. We trained the GPM using the Gemma-2B-it language model as the base
and evaluated the models based on their ability to predict the human-provided preferences in these
datasets. For the Bradley-Terry (BT) model, the loss function is L = − log σ(rw − rl) (Ouyang et al.,
2022). Since cyclic preferences are inherently intransitive, we measure accuracy as the percentage of
correctly predicted human preferences, where higher scores indicate better handling of non-transitive
preferences. As shown in Table 1, the GP representation model achieves near-perfect accuracy across
all datasets, significantly outperforming the BT model (we report the test accuracy on the training
dataset but with different comparison pairs used in the training dataset). These results validate the
GP representation model’s ability to capture complex, cyclic preferences, confirming the theoretical
advantages of using a preference representation-based approach over traditional reward models that
assume transitivity (more on implementation details are presented in Appendix B.2).

6.2 EXPERIMENTS ON REWARDBENCH

To address Q2, we compare the GP representation model and the BT reward model on the Reward-
Bench benchmark (Lambert et al., 2024), which covers diverse preference modeling tasks, including
Chat, Chat-Hard, Safety, and Reasoning.

1In late stages of the iterative training, πθt is close to equilibrium so the preference model can not distin-
guish between policy πθ and the opponent policy πθt ( meaning ŝ (y ≻ πθt | x) ≈ 0). Therefore, we have
logZπθt

(x) ≈ 0.
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Table 1: Comparison of Bradley-Terry (BT) reward model and General Preference representation
models (GPM) on cyclic preference datasets.

Model Dataset Acc. (%)

Random Guess 50.0

BT RM w.o. instruction following 62.4
GPM w.o. instruction following 100.0 (+37.6)

BT RM w.o. honesty 61.6
GPM w.o. honesty 100.0 (+38.4)

BT RM w.o. truthfulness 50.0
GPM w.o. truthfulness 100.0 (+50.0)

BT RM w.o. helpfulness 62.9
GPM w.o. helpfulness 100.0 (+37.1)

Datasets and Experimental Setup. We train both the BT and GPMs using the decontaminated
version of Skywork Reward Data Collection (Liu & Zeng, 2024), which contains around 80 thou-
sand pairwise preference examples from tasks in various domains. We evaluate both models on
RewardBench, using two different base models: Gemma-2B-it (Team et al., 2024) (2B parame-
ters) and Llama-3.1-8B-Instruct (Dubey et al., 2024) (8B parameters), which are well-suited for
instruction-following tasks (please refer to Appendix B.2 for the implementation details).

Results and Analysis. Table 2 presents the results. The GPM consistently outperforms the BT
model for both base models on RewardBench, with notable improvements in tasks involving complex
reasoning (e.g., Chat-Hard and Reasoning). These results highlight the superior expressiveness of the
GPM in preference modeling.

Table 2: Comparison between the Bradley-Terry (BT) models and the General Preference representa-
tion models (GPM) with varying embedding head dimensions on RewardBench. The highest scores
are in bold and the second highest are underlined.

Model Embed Dim. Chat Chat-Hard Safety Reasoning Average

Base Model: Gemma-2B-it

BT RM 1 71.51 64.69 75.00 61.90 68.27
GPM 2 78.49 65.35 78.92 72.64 73.85

4 76.54 64.91 78.51 79.80 74.94
6 76.82 64.04 73.24 77.02 72.78
8 78.49 66.23 84.32 80.47 77.38 (+9.11)

Base Model: Llama-3.1-8B-Instruct

BT RM 1 88.55 85.75 91.49 96.47 90.56
GPM 2 93.30 86.40 91.22 94.01 91.23

4 93.30 86.18 91.22 95.69 91.60 (+1.04)
6 91.90 86.40 90.95 94.06 90.83
8 92.18 87.06 91.76 94.49 91.37

Base Model: Gemma-2-9B-it

BT RM 1 91.62 85.96 92.70 95.55 91.46
GPM 2 92.46 85.96 92.30 94.56 91.32

4 93.58 87.72 92.30 95.71 92.33 (+0.87)
6 92.46 86.18 92.43 95.67 91.69
8 91.62 85.96 92.43 95.89 91.48

Other state-of-the-art models

GPT-4 - 95.3 74.3 87.6 86.9 86.0
GPT-4o - 96.1 76.1 88.1 86.6 86.7
Gemini-1.5 - 92.3 80.6 87.9 92.0 88.2
RLHFlow/pair-pm-8B 1 92.3 80.6 89.7 94.7 87.1
ArmoRM-8B 5 98.3 65.8 90.5 97.3 90.4
Nemotron-4-340B 5 95.8 87.1 91.5 93.6 92.0
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Ablation Studies. We further conducted ablation studies to assess the impact of varying the represen-
tation (embedding) dimension in the GPM. Table 2 shows that increasing the embedding dimension
generally improves performance.

6.3 DOWNSTREAM PERFORMANCE ON ALIGNING LANGUAGE MODELS WITH HUMAN
PREFERENCES

To address Q3, we investigate the effectiveness of the GPM in language model for alignment using
Self-Play Policy Optimization (SPPO) (Wu et al., 2024b) and our proposed General Preference
Optimization (GPO), integrating preference scores provided by our GP representation model (GPM).
We evaluated the models on AlpacaEval 2.0 (Dubois et al., 2024), MT-Bench (Zheng et al., 2023),
GSM8K, MMLU, etc., several widely used benchmarks for evaluating LLM alignment.

Results and Analysis. The evaluation results on the benchmarks are as follows. For AlpacaEval 2.0,
we compared the generated responses of the aligned models with those of GPT-4-turbo. To avoid the
preference bias when using GPT-4-turbo as the evaluator, we also used DeepSeek-V2 (DeepSeek-
AI, 2024) and GPT-4o-mini as the evaluators besides GPT-4-turbo itself. Notice that the Length
Controlled (LC) Win Rate results are using a generalized linear model fitted using default evaluator
GPT-4-turbo, so it does not apply to other evaluators. The results of the three evaluators are
presented in Tables 3,4 and 5. From Table 3, we observe that both SPPO and GPO demonstrate
improved win rates with successive iterations, highlighting the iterative nature of these optimization
methods, and GPO consistently outperforms SPPO. In addition, the bolded entries indicate that
GPM-integrated SPPO/GPO consistently outperforms the BT RM-based SPPO/GPO under the same
settings, underscoring the superior expressiveness and flexibility of the GPM in modeling human
preferences (for additional experimental results on MT-Bench, GSM8K, MMLU, etc., please see
Appendix B.1).
Table 3: AlpacaEval 2.0 evaluation results. Base model: LLama3-8B-it, Evaluator: GPT-4-turbo. The
results are grouped by the size and type of the RM or PM, and the number of iterations. Bold entries
indicate that the GPM outperforms the corresponding BT RM under the same training settings.

Size Type Iter SPPO GPO
LC. WR WR Avg. Len LC. WR WR Avg. Len

base 23.07 23.34 1959 23.07 23.34 1959

2B BT RM 1 31.95 31.59 1939 34.01 33.08 1929
2 36.00 36.77 2032 38.90 39.90 2049
3 40.01 42.12 2136 42.21 44.20 2151

GPM 1 30.87 32.48 (+0.89) 2066 35.27 37.95 (+4.87) 2102
2 34.54 40.76 (+3.99) 2301 36.77 42.96 (+3.06) 2343
3 36.06 45.61 (+3.49) 2498 37.74 48.25 (+4.05) 2582

8B BT RM 1 32.20 27.83 1740 36.32 30.37 1702
2 39.75 36.95 1868 41.79 40.11 1933
3 42.55 40.92 1948 40.37 38.56 1969

GPM 1 33.48 30.85 (+3.02) 1861 36.00 33.19 (+2.82) 1850
2 37.93 38.38 (+1.43) 2029 40.81 42.80 (+2.69) 2115
3 39.45 41.64 (+0.72) 2385 38.98 41.54 (+2.98) 3249

7 CONCLUSION

In this work, we introduce preference representation learning, a framework for modeling human
preferences that can capture complex, intransitive structures like cyclic preferences. Our General
Preference representation model (GPM) achieves linear complexity while maintaining the ability to
model intricate preference relationships. It consistently outperforms traditional models like Bradley-
Terry reward models across various benchmarks, including cyclic preference datasets and real-world
tasks from RewardBench. Additionally, incorporating preference scores from GPM into policy
optimization methods, such as SPPO and the newly introduced General Preference Optimization
(GPO), led to significant performance improvements in downstream tasks that require alignment with
intricate human preferences, as demonstrated in benchmarks like AlpacaEval 2.0 and MT-Bench.
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Ethics Statement. This research introduces a new approach to modeling human preferences for
aligning language models with nuanced human values. We utilized publicly available datasets such as
the Ultrafeedback dataset, Skywork Reward Data Collection, AlpacaEval 2.0, and MT-Bench. These
datasets comprise anonymized human-generated text and are used under their respective licenses. No
personally identifiable information is included, and we did not collect any new data involving human
subjects.

We recognize that enhancing language models’ ability to align with human preferences can have
both beneficial and unintended consequences. While we aim to improve the positive interactions
between AI systems and users, there is a potential risk that such models could be misused to generate
misleading or biased content. To mitigate this, we advocate for the responsible deployment of our
methods and encourage further research into safeguarding against misuse.

Reproducibility Statement. We have taken several measures to ensure the reproducibility of our
results. The architecture and implementation details of the General Preference representation model
(GPM) and General Preference Optimization (GPO) are thoroughly described in Sections 4 and 5 of
the main text and Appendix A. Hyperparameters, training procedures, and experimental setups are
detailed in Section 6 and Appendix B.2.

All datasets used in our experiments are publicly accessible, with proper citations provided. We
employed open-source language models, specifically Gemma-2B-it and Llama-3.1-8B-Instruct, to
facilitate replication. Our source codes are included in the supplementary files submitted with this
paper. This package contains all scripts and instructions necessary to reproduce the experiments and
results presented in the paper.
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A MORE ON GENERAL PREFERENCE REPRESENTATION LEARNING

In this section, we present additional discussion on general preference modeling with preference
representations.
Proposition A.1. For any two vectors vi ∈ R2k and vj ∈ R2k, if R ∈ R2k×2k satisfies the following
two properties:

1. Skew-symmetry: ⟨Rvi,vj⟩ = −⟨Rvj ,vi⟩.
2. Magnitude preserving: ⟨Rvi,Rvi⟩ = ⟨vi,vi⟩.
Then R must be in the form R = UJU⊤, where U ∈ R2k×2k is an orthonormal matrix (e.g. identity
matrix I2k) and J is a block-diagonal matrix consisting of k skew-symmetric blocks of the form:

Jl =

[
0 −1
1 0

]
, l = 1, . . . , k.

A.1 COMPLEX REPRESENTATIONS INTERPRETATION

Our model can also be interpreted using complex representations. By representing the representations
as complex vectors vy ∈ Ck, we can express the preference score as:

s(yi ≻ yj | x) = Im
(
⟨vyi ,vyj ⟩

)
,

where Im(·) denotes the imaginary part, and ⟨·, ·⟩ is the Hermitian inner product. This formulation
captures cyclic and intransitive preferences through the angular relationships between complex
presentations.
Theorem A.2 (Expressiveness of Complex Preference Representations). Let P ∈ Rk×k be a real
skew-symmetric matrix (i.e., P = −P⊤). Then, there exist complex vectors {vi}ki=1 ⊂ Ck such that:

Pij = Im (⟨vi,vj⟩) , ∀ i, j.

Example. For k = 1, let vy = eiθy , then:
s(yi ≻ yj | x) = sin(θyi

− θyj
).

(a) Cyclic 3 (b) Cyclic 4 (c) Cyclic 5

Figure 3: Visualization of learned preference embedding vectors for cyclic preferences with sizes 3,
4, and 5, e.g., A ≻ B ≻ C ≻ A.

A.2 TRAINING OBJECTIVE

The preference embedding can thus be obtained by minimizing the cross-entropy loss over observed
preference data. Given a dataset (x,yw,yl) ∼ D of preference comparisons, we denote P(yw ≻
yl|x) as the probability of the winner yw being chosen over the loser yl (1 if hard preference is
given). The cross-entropy loss function is:

LCE = −
∑

(x,yw,yl)∈D

[
PD(yw ≻ yl | x) log σ

(
1

β
s(yw ≻ yl | x)

)

+(1− PD(yw ≻ yl | x)) log σ
(
− 1

β
s(yw ≻ yl | x)

)]
.
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Alternatively, if there is an oracle providing continuous scores, we can use a regression loss:

LMSE =
∑

(x,yw,yl)∈D

(
1

β
s(yw ≻ yl | x)− sD(yw ≻ yl | x)

)2

,

where sD(yw ≻ yl | x) is the dataset-provided score satisfying σ (sD(yw ≻ yl | x)) = PD(yw ≻
yl | x).

A.3 APPENDIX FOR PROOFS

Proof of the Proposition A.1.

Proof. Let R ∈ R2k×2k be a real matrix satisfying the following properties:

1. Skew-symmetry with respect to the inner product:

⟨Rv,w⟩ = −⟨Rw,v⟩, ∀v,w ∈ R2k.

2. Magnitude preserving:
⟨Rv,Rv⟩ = ⟨v,v⟩, ∀v ∈ R2k.

Recall that the standard inner product in R2k is given by ⟨v,w⟩ = v⊤w, which is symmetric:
⟨v,w⟩ = ⟨w,v⟩.
From the skew-symmetry condition, we have:

⟨Rv,w⟩+ ⟨Rw,v⟩ = 0, ∀v,w ∈ R2k.

Since ⟨Rw,v⟩ = (Rw)⊤v = w⊤R⊤v, the above condition becomes:

v⊤R⊤w +w⊤R⊤v = 0, ∀v,w ∈ R2k.

This implies that R⊤ is skew-symmetric:

R⊤ = −R.

From the magnitude-preserving property, we have:

⟨Rv,Rv⟩ = (Rv)⊤Rv = v⊤R⊤Rv = v⊤v, ∀v ∈ R2k.

Therefore,
R⊤R = I2k.

Using R⊤ = −R, we obtain:

(−R)R = I2k ⇒ R2 = −I2k.

This shows that R satisfies the equation R2 = −I2k.

The characteristic polynomial of R is then:

det(R− λI2k) = 0.

Since R2 = −I2k, it follows that the eigenvalues λ satisfy:

λ2 = −1 ⇒ λ = ±i.

Thus, R has eigenvalues ±i, each with algebraic multiplicity k.

Because R is real and skew-symmetric, it can be brought into block-diagonal form via an orthogonal
transformation. Specifically, there exists an orthogonal matrix U ∈ R2k×2k such that:

R = UJU⊤,

where
J = blockdiag(J1,J2, . . . ,Jk),

17
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and each block Jl is a 2× 2 skew-symmetric matrix of the form:

Jl =

[
0 −1
1 0

]
, l = 1, . . . , k.

This decomposition leverages the standard canonical form for real skew-symmetric matrices, which
states that any such matrix can be orthogonally diagonalized into blocks of this type.

Therefore, R can be expressed as:
R = UJU⊤,

where U ∈ R2k×2k is an orthogonal matrix, and J is the block-diagonal matrix consisting of k blocks
Jl.

This completes the proof.

Proof of the Theorem 4.4.

Proof. We aim to represent the entries of the skew-symmetric matrix P ∈ Rk×k using vectors in
R2k and a block-diagonal skew-symmetric matrix R≻ ∈ R2k×2k.

For each i = 1, . . . , k, define the vector vi ∈ R2k as:

vi =

[
ai
bi

]
,

where ai,bi ∈ Rk are real vectors to be specified.

Set ai = ei, the i-th standard basis vector in Rk, and define bi as:

bi =
1

2
pi,

where pi is the i-th row of P. Thus, the j-th component of bi is (bi)j =
1
2Pij .

Define the block-diagonal matrix R≻ ∈ R2k×2k as:

R≻ = blockdiag(R1, . . . ,Rk),

where each block Rl is the 2× 2 skew-symmetric matrix:

Rl =

[
0 −1
1 0

]
, l = 1, . . . , k.

Now, compute the inner product v⊤
i R

≻vj :

v⊤
i R

≻vj =
[
a⊤i b⊤

i

] [0k×k −Ik
Ik 0k×k

] [
aj
bj

]
= −a⊤i bj + b⊤

i aj .

Since ai = ei, we have:

a⊤i bj = e⊤i bj = (bj)i =
1

2
Pji = −1

2
Pij , (13)

b⊤
i aj = b⊤

i ej = (bi)j =
1

2
Pij . (14)

Therefore,

v⊤
i R

≻vj = −
(
−1

2
Pij

)
+

1

2
Pij = Pij .

Thus, for all i, j,
Pij = v⊤

i R
≻vj .

This construction shows that any real skew-symmetric matrix P can be represented in terms of vectors
{vi} ⊂ R2k and the block-diagonal skew-symmetric matrix R≻.

This completes the proof.
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Proof of the Theorem A.2.

Proof. We aim to represent any real skew-symmetric matrix P ∈ Rk×k using the imaginary parts of
inner products of complex vectors.

For each i = 1, . . . , k, define the complex vector vi = ai + ibi, where ai,bi ∈ Rk. Let ai = ei,
the i-th standard basis vector in Rk, and set

bi =
1

2

k∑
j=1

Pijej .

This implies that the j-th component of bi is (bi)j =
1
2Pij .

The Hermitian inner product of vi and vj is

⟨vi,vj⟩ = (a⊤i − ib⊤
i )(aj + ibj) = a⊤i aj + b⊤

i bj + i (b⊤
i aj − a⊤i bj).

Therefore,
Im (⟨vi,vj⟩) = b⊤

i aj − a⊤i bj .

Compute b⊤
i aj and a⊤i bj :

b⊤
i aj = (bi)j =

1

2
Pij ,

a⊤i bj = (bj)i =
1

2
Pji = −1

2
Pij ,

since Pji = −Pij due to skew-symmetry.

Thus,

Im (⟨vi,vj⟩) =
1

2
Pij −

(
−1

2
Pij

)
= Pij .

Therefore, we have constructed complex vectors vi such that
Pij = Im (⟨vi,vj⟩) , ∀ i, j.

This completes the proof.

Proof of the Theorem 4.5.

Proof. Since P is real and skew-symmetric with even dimension 2k, it can be brought into block-
diagonal form via an orthogonal transformation. Specifically, there exists an orthogonal matrix
U ∈ R2k×2k such that:

P = UΛU⊤,

where Λ is a block-diagonal matrix composed of k blocks λlJ, with λl ≥ 0 and

J =

[
0 −1
1 0

]
.

This decomposition leverages the fact that the eigenvalues of P are purely imaginary and occur in
conjugate pairs ±iλl.

Define the block-diagonal matrix R≻ = blockdiag(J, . . . ,J) ∈ R2k×2k, and let

D = blockdiag(
√
λ1I2, . . . ,

√
λkI2) ∈ R2k×2k, where I2 is the 2× 2 identity matrix.

Observe that Λ = DR≻D.

Set V = UD. Then,
P = UΛU⊤ = UDR≻DU⊤ = VR≻V⊤.

Therefore,
Pij = v⊤

i R
≻vj , ∀ i, j,

where vi is the i-th row of V.

This construction shows that any real skew-symmetric matrix P can be represented in terms of em-
beddings {vi} and the asymmetric operator R≻, confirming the full expressiveness of our preference
representation model.
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B MORE ON EXPERIMENTS

B.1 ADDITIONAL EXPERIMENTAL RESULTS

More Results on Evaluating Language Model Alignment. We further conduct a rigorous evaluation
of our downstream task-specific models using various benchmarks. AlpacaEval 2.0 evaluation results
are listed in Table 4 and Table 5, using GPT-4o-mini and Deepseek-V2 as evaluators respectively.
For MT-Bench, we used the default mode to let GPT-4 grade and give a score to the model’s answer,
and the MT-Bench scores of aligned models are presented in Table 6.

For LM-Harness, we chose Arc-Challenge, TruthfulQA, WinoGrande, GSM8k, HellaSwag, and
MMLU as the evaluation tasks, and used the default rule-based evaluator of lm-evaluation-harness
for accuracy calculation. These tasks are the same as those evaluated by Open LLM Leaderboard
v1 (Beeching et al., 2023), which no longer provides service. To facilitate direct comparison with
current state-of-the-art models, we adhere to the evaluation protocol established by the Open LLM
Leaderboard v1. Our models are evaluated locally using this standardized framework. The resultant
performance metrics are presented in Tables 8 and Table 9.
Table 4: AlpacaEval 2.0 evaluation results. Base model: LLama3-8B-it, Evaluator: GPT-4o-mini.
The results are grouped by the size and type of the RM or PM, and the number of iterations. Bold
entries indicate that the GPM outperforms the corresponding BT RM under the same training settings.

Size Type Iter SPPO GPO
Win Rate Avg. Len Win Rate Avg. Len

base 32.26 1959 32.26 1959

2B BT RM 1 46.09 1939 49.94 1929
2 58.41 2032 64.88 2049
3 67.14 2136 71.68 2151

GPM 1 49.15 (+3.06) 2066 57.12 (+7.18) 2102
2 63.53 (+5.12) 2301 67.78 (+2.90) 2343
3 70.91 (+3.77) 2498 74.78 (+3.10) 2582

8B BT RM 1 36.95 1740 40.26 1702
2 50.36 1868 56.30 1933
3 58.38 1948 59.17 1969

GPM 1 41.42 (+4.47) 1861 46.64 (+6.38) 1850
2 56.07 (+5.71) 2029 60.37 (+4.07) 2115
3 63.42 (+5.04) 2385 67.48 (+8.31) 3249

Table 5: AlpacaEval 2.0 evaluation results. Base model: LLama3-8B-it, Evaluator: DeepSeek-V2.
The results are grouped by the size and type of the RM or PM, and the number of iterations. Bold
entries indicate that the GPM outperforms the corresponding BT RM under the same training settings.

Size Type Iter SPPO GPO
Win Rate Avg. Len Win Rate Avg. Len

base 36.64 1959 36.64 1959

2B BT RM 1 44.15 1939 45.94 1929
2 53.42 2032 55.46 2049
3 59.46 2136 60.83 2151

GPM 1 46.96 (+2.81) 2066 51.04 (+5.10) 2102
2 54.66 (+1.24) 2301 59.19 (+3.73) 2343
3 62.62 (+3.16) 2498 63.25 (+2.42) 2582

8B BT RM 1 39.19 1740 40.83 1702
2 48.89 1868 53.05 1933
3 52.06 1948 52.22 1969

GPM 1 43.07 (+3.88) 1861 45.16 (+4.33) 1850
2 51.81 (+2.92) 2029 56.54 (+3.49) 2115
3 56.83 (+4.77) 2385 60.59 (+8.37) 3249
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Table 6: MT-Bench evaluation results. Base model: LLama3-8B-it, Evaluator: GPT-4. Bold entries
indicate that the GPM outperforms the corresponding BT RM under the same training settings.

Size Type Iter SPPO GPO
1st 2nd Avg. 1st 2nd Avg.

base 8.31 7.77 8.03 8.31 7.77 8.03

2B BT RM 1 8.42 7.57 8.00 8.33 7.85 8.09
2 8.20 7.73 7.96 8.30 7.66 7.98
3 8.44 7.66 8.05 8.41 8.09 8.25

GPM 1 8.23 7.65 7.94 8.70 7.95 8.33
2 8.53 8.24 8.38 8.69 8.01 8.35
3 8.39 7.84 8.12 8.48 7.76 8.12

8B BT RM 1 8.44 8.10 8.27 8.41 7.85 8.13
2 8.75 7.85 8.30 8.73 7.83 8.28
3 8.34 7.99 8.17 8.68 7.83 8.26

GPM 1 8.43 7.94 8.18 8.29 7.90 8.10
2 8.51 8.05 8.28 8.26 7.99 8.13
3 8.47 7.76 8.12 7.57 7.51 7.54

Ablations on Scale Gate and Embedding head. We investigate the effects of scale gates and
embedding head dimensions, with and without L2 normalization, on model performance. As
shown in Table 7, for Gemma-2B-it models, incorporating a scale gate generally enhances GPM
performance across various embedding dimensions. L2 normalization on the embedding head output
consistently improves models with scale gates. Interestingly, Gemma-2B-it-based models without
L2 normalization or scale gates outperform those with L2 normalization but no scale gates. A
plausible explanation for this phenomenon is that removing L2 normalization introduces additional
degrees of freedom, particularly beneficial for models with smaller parameter spaces and high-
dimensional embedding layers. This increased flexibility may allow the model to better utilize
its limited parametric capacity, potentially leading to enhanced expressiveness and task-specific
adaptability.

For larger models, such as those based on Llama3.1-8B-Instruct, the impact of scale gates becomes
less pronounced. This diminished effect may be attributed to the inherently stronger representational
capacity of the 8B parameter model, which can likely capture complex patterns more effectively
without additional architectural modifications.

These observations suggest a nuanced relationship between model size, normalization techniques,
and architectural enhancements like scale gates, highlighting the importance of considering these
factors in model design and optimization.

B.2 IMPLEMENTATION DETAILS

Details on Training Setup. Our experiments on RewardBench and Cyclic Preference Dataset were
implemented using the HuggingFace Transformers library (Wolf et al., 2020) and the OpenRLHF
framework (Hu et al., 2024). For reward model training on Skywork Reward Data Collection, we
employed the following settings (in Table 10):

• Gemma-2B-it: Trained with a learning rate of 1× 10−5.
• Llama-3.1-8B-Instruct: Trained with a learning rate of 2× 10−6.
• Training Configuration: Both models were trained for two epochs with a global batch size of

32. We used a cosine learning rate scheduler with a warm-up ratio of 0.03. Input sequences were
truncated to a maximum length of 2048 tokens.

• Hyperparameters: For our General Preference (GP) model, we set β = 0.1, determined via
hyperparameter tuning on a validation set.

• Hardware: All experiments were conducted on machines equipped with NVIDIA A800 80GB
GPUs, utilizing 8 GPUs per experiment.
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Table 7: Impact of the embedding head and the scale gate on the GPM’s performance on RewardBench.
Dim. represents the dimension of the embedding head. The highest average scores for each base
model are in bold and the second highest are underlined.

Embedding Type Dim. Chat Chat-Hard Safety Reasoning Average
Base Model: Gemma-2B-it

w. scale gate w. l2 2 78.49 65.35 78.92 72.64 73.85
w. scale gate w.o. l2 2 76.82 67.76 79.19 75.12 74.72
w. o. scale gate w. l2 2 77.65 66.45 76.89 77.30 74.57
w. o. scale gate w.o. l2 2 79.61 65.13 80.27 78.98 76.00
w. scale gate w. l2 4 76.54 64.91 78.51 79.80 74.94
w. scale gate w.o. l2 4 78.49 66.89 77.70 78.14 75.30
w. o. scale gate w. l2 4 72.91 65.57 73.51 74.10 71.52
w. o. scale gate w.o. l2 4 76.54 69.30 79.46 77.19 75.62
w. scale gate w. l2 6 76.82 64.04 73.24 77.02 72.78
w. scale gate w.o. l2 6 75.98 68.64 75.54 76.36 74.13
w. o. scale gate w. l2 6 75.14 61.62 81.35 69.45 71.89
w. o. scale gate w.o. l2 6 80.73 66.45 77.30 81.24 76.43
w. scale gate w. l2 8 78.49 66.23 84.32 80.47 77.38
w. scale gate w.o. l2 8 74.58 68.20 80.00 78.11 75.22
w. o. scale gate w. l2 8 75.14 65.79 81.08 77.18 74.80
w. o. scale gate w.o. l2 8 75.14 65.57 79.19 80.77 75.17

Base Model: Llama-3.1-8B-Instruct
w. scale gate w. l2 2 93.30 86.40 91.22 94.01 91.23
w. scale gate w.o. l2 2 93.85 86.84 90.68 91.60 90.74
w. o. scale gate w. l2 2 92.18 86.18 91.89 94.05 91.08
w. o. scale gate w.o. l2 2 93.30 87.94 91.22 93.55 91.50
w. scale gate w. l2 4 93.30 86.18 91.22 95.69 91.60
w. scale gate w.o. l2 4 94.13 86.18 89.86 90.55 90.18
w. o. scale gate w. l2 4 92.46 87.28 91.76 93.19 91.17
w. o. scale gate w.o. l2 4 93.58 86.40 90.95 95.33 91.56

w. scale gate w. l2 6 91.90 86.40 90.95 94.06 90.83
w. scale gate w.o. l2 6 93.02 85.75 91.08 91.31 90.29
w. o. scale gate w. l2 6 92.18 85.53 90.81 94.20 90.68
w. o. scale gate w.o. l2 6 93.30 87.94 90.95 90.90 90.77

w. scale gate w. l2 8 92.18 87.06 91.76 94.49 91.37
w. scale gate w.o. l2 8 93.02 87.06 90.81 92.20 90.77
w. o. scale gate w. l2 8 91.90 86.62 91.22 92.63 90.59
w. o. scale gate w.o. l2 8 93.02 87.72 90.68 90.16 90.39

For cyclic preference experiments, the training settings are as follows, except for the parameters spec-
ified below; all other experimental parameters remain consistent with experiments on RewardBench
(in Table 11):

• Gemma-2B-it: Trained with a learning rate of 1× 10−6.
• Training Configuration: Models were trained for 50 epochs with a global batch size of 1.
• Hardware: Experiments were conducted on machines equipped with NVIDIA A800 80GB GPUs,

utilizing a single GPU per experiment.

Details on Evaluation Dataset RewardBench. RewardBench is divided into four core sections:

• Chat: Evaluates the ability to differentiate between thorough and correct responses in open-ended
conversations, using data from AlpacaEval (Li et al., 2023) and MT Bench (Zheng et al., 2023).

• Chat-Hard: Tests the handling of trick questions and subtle instruction differences, using adver-
sarial examples from MT Bench and LLMBar (Zeng et al., 2024).
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Table 8: Open LLM Leaderboard v1 evaluation results of LLama3-8B-it model fine-tuned using
SPPO with BT reward model and our GPM.

Size Type Iter SPPO
Arc TruthfulQA WinoGrande GSM8k HellaSwag MMLU Average

base 62.03 51.65 75.53 75.28 78.77 65.67 68.16

2B BT RM 1 62.63 53.16 75.06 75.82 78.83 65.99 68.58
2 63.05 53.23 74.43 77.63 78.85 66.06 68.88
3 62.37 52.95 74.19 77.33 78.66 65.97 68.58

GPM 1 63.14 53.09 74.98 75.44 78.99 65.74 68.56
2 62.88 52.67 74.82 75.21 78.89 65.62 68.35
3 63.23 53.06 74.90 75.51 78.88 65.59 68.53

8B BT RM 1 64.59 56.30 75.30 76.80 79.42 65.72 69.69
2 65.02 56.04 75.45 76.88 79.67 65.88 69.82
3 65.44 56.13 74.98 76.35 79.50 66.15 69.76

GPM 1 64.85 55.65 75.06 78.09 79.55 65.83 69.84
2 64.51 55.66 74.98 76.42 79.41 65.77 69.46
3 64.93 55.59 75.22 76.5 79.3 65.54 69.51

Table 9: Open LLM Leaderboard v1 evaluation results of LLama3-8B-it model fine-tuned using GPO
with BT reward model and our GPM.

Size Type Iter GPO
Arc TruthfulQA WinoGrande GSM8k HellaSwag MMLU Average

base 62.03 51.65 75.53 75.28 78.77 65.67 68.16

2B BT RM 1 63.31 54.01 74.19 77.41 78.65 65.83 68.90
2 62.71 54.18 73.88 75.44 78.50 65.87 68.43
3 62.03 54.54 73.16 76.57 78.58 65.87 68.46

GPM 1 63.74 53.28 74.82 76.65 78.70 65.87 68.84
2 62.80 52.98 74.66 76.19 78.74 65.69 68.51
3 62.71 52.78 74.74 75.59 78.61 65.67 68.35

8B BT RM 1 64.51 57.36 75.06 76.27 79.46 65.56 69.70
2 64.85 56.25 74.90 76.35 79.35 65.71 69.57
3 64.76 56.22 74.03 76.80 78.78 65.89 69.41

GPM 1 64.51 56.01 74.82 78.47 79.17 65.64 69.77
2 64.16 54.57 73.95 76.88 78.67 65.82 69.01
3 63.40 54.46 73.56 77.63 78.19 65.51 68.79

• Safety: Assesses the capacity to refuse harmful content appropriately, using data from
XSTest (Röttger et al., 2024), Do-Not-Answer (Wang et al., 2024), and a custom AI2 dataset.

• Reasoning: Measures code generation and reasoning abilities, with prompts from HumanEval-
Pack (Muennighoff et al., 2023) and PRM800k (Lightman et al., 2023).

C MORE ON GENERAL PREFERENCE OPTIMIZATION

The von Neumann winner represents a fundamental concept in social choice theory (Sen, 1986) that
has found significant applications in preference-based reinforcement learning (Owen, 2013; Dudı́k
et al., 2015). It corresponds to the Nash equilibrium of a two-player symmetric game (Equation 7),
representing a mixed strategy—a probability distribution over possible responses—that performs
optimally against any opponent in the worst-case scenario.

For notational clarity, we define the preference score of a policy π over another policy π′ as:

s (π ≻ π′ | x) = Ey∼π(·|x), y′∼π′(·|x) [s (y ≻ y′ | x)] . (15)

A distribution π∗ is formally defined as a von Neumann winner when it satisfies:

min
π′∈∆

Ex∼X [s (π∗ ≻ π′ | x)] ≥ 0. (16)
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Table 10: Implementation details for experiments on RewardBench.

General Settings
Base models Gemma-2b-it and Llama3.1-8B-Instruct
Batch size 32
Quantization for training bf16
Learning Rate 1× 10−5 for Gemma and 2× 10−6 for Llama3.1
Learning Rate Scheduler cosine
Warmup Ratio 0.03
Max training epochs 2
Gradient accumulation step 1
Max input length 2048
Zero stage 3
Flash attention enabled True

General Preference Model
β for loss function 0.1

Bradly Terry Model
β for loss function 1

Table 11: Implementation details for experiments on Cyclic Preference Dataset.

General Settings
Base models Gemma-2b-it
Batch size 1
Quantization for training bf16
Learning Rate 1× 10−6

Learning Rate Scheduler cosine
Warmup Ratio 0.03
Max training epochs 50
Gradient accumulation step 1
Max input length 2048
Zero stage 3
Flash attention enabled True

General Preference Model
β for loss function 0.1

Bradly Terry Model
β for loss function 1

This condition ensures that π∗ is, on average, at least as preferred as any other policy π′. The
symmetric nature of the two-player game (Equation 7) guarantees the existence of such a winner.

General Preference Optimization (GPO) employs an iterative framework inspired by the multiplicative
weights update (MWU) algorithm (Freund & Schapire, 1999). The update rule is formulated as:

πt+1(y | x) ∝ πt(y | x) exp (η · s (y ≻ πt | x)) , t = 1, 2, . . . , (17)

where η denotes the learning rate and s (y ≻ πt | x) represents the preference score of response
y over the current policy πt given prompt x. The following theorem establishes the convergence
properties of GPO (analogous to Theorem 4.1 in Wu et al. (2024b)):

Theorem C.1. Consider the optimization problem defined by the GPO loss (Equation 12) and
assume it is realizable. Let {πθt

}Tt=1 denote the sequence of policies generated by GPO, and define
π̄T = 1

T

∑T
t=1 πθt as the average policy. Given that the preference score s is bounded within [−ρ, ρ],
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by setting β = Θ
(√

T
)

, we have:

max
π

s (π ≻ π̄T )−min
π

s (π ≺ π̄T ) = O

(
1√
T

)
.

Proof. First, since the preference score s is bounded in [−ρ, ρ], we can normalize it to [0, 1] by the
transformation:

s̃(y ≻ y′ | x) = s(y ≻ y′ | x)
2ρ

+
1

2

By Theorem 1 in Freund & Schapire (1999), for any sequence of mixed policies µ1, µ2, . . . , µT , the
sequence of policies π1, π2, . . . , πT produced by GPO satisfies:

T∑
t=1

s̃(πt ≺ µt) ≤ min
π

[
η

1− e−η

T∑
t=1

s̃(π ≺ µt) +
KL(π∥π0)

1− e−η

]

Setting µt = πt, note that s̃(πt ≺ πt) =
1
2 due to the normalization and symmetry. Thus:

T

2
≤ min

π

[
ηT

1− e−η
s̃(π ≺ π̄T ) +

KL(π∥π0)

1− e−η

]
where π̄T = 1

T

∑T
t=1 πt is the mixture policy.

Rearranging terms:
1− e−η

2η
≤ min

π

[
s̃(π ≺ π̄T ) +

KL(π∥π0)

ηT

]
Since π0 is an autoregressive model with finite vocabulary support, | log π0(·)| is bounded from above.
Thus:

KL(π∥π0) ≤ ∥ log π0(·)∥∞

Setting η = ∥ log π0(·)∥∞√
T

and using Taylor expansion 1−e−η

2η = 1
2 − η

4 +O(η2):

1

2
− ∥ log π0(·)∥∞

4
√
T

+O(T−1) ≤ min
π

[s̃(π ≺ π̄T )] +

√
∥ log π0(·)∥∞

T

Converting back to the original preference score scale:

min
π

[s(π ≺ π̄T )] ≥ −ρ

2
−O

(
ρ√
T

)
By symmetry:

max
π

[s(π ≻ π̄T )] ≤
ρ

2
+O

(
ρ√
T

)
Therefore, the duality gap is:

max
π

s(π ≻ π̄T )−min
π

s(π ≺ π̄T )

= max
π

s(π ≻ π̄T )−min
π

s(π ≺ π̄T )

= O

(
1√
T

)

Connection to Policy Gradient. Applying policy gradient theorem on Equation (10) gives:

∇θEx∼X ,y∼πθ

[
ŝ(y ≻ πθt

)− β log
πθ(y|x)
πθt

(y|x)

]
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= Ex∼X ,y∼πθ

[(
ŝ(y ≻ πθt)− β log

πθ(y|x)
πθt(y|x)

)
∇θ log πθ(y|x)

]
= Ex∼X ,y∼πθ

[
−∇θ

(
ŝ(y ≻ πθt)− β log

πθ(y|x)
πθt

(y|x)

)2]
.

So Equation (12) can also be seen as an offline policy gradient method for the optimization problem
(10).

D MORE RELATED WORK

Intransitivity in Game Theory. The symmetric zero-sum game and its intransitivity have also been
frequently studied in the context of game theory. Balduzzi et al. (2018) was motivated by evaluation
among different agents, showing that any symmetric zero-sum game can be decomposed into a
“transitive” game and a “cyclic” game, and proposed Nash averaging for better agent/task evaluation.
Balduzzi et al. (2019) generalized the results from matrix games to functional-form games and
propose new algorithms to construct diverse populations of effective agents. Czarnecki et al. (2020)
investigated the geometrical properties of real-world games (e.g., Tic-Tac-Toe, Go, StarCraft II) and
proposed that real-world games have a “spinning top” geometry, with a strong transitive dimension
and gradually diminishing non-transitive cyclic dimensions. Very recently, Bertrand et al. (2023)
examined the limitations of the Elo rating system and proposed an alternative “disc decomposition”
method that can better handle both transitive and cyclic game dynamics.

Representation Learning and Embedding. Representation learning and embedding techniques have
successfully captured relational structures across various domains (Mikolov et al., 2013; Chen et al.,
2020; Radford et al., 2021), yet their application in preference modeling and RLHF remains limited.
Our work introduces preference representation learning, an approach that enhances expressiveness
while maintaining computational efficiency, bridging the gap left by traditional approaches.
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