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Abstract

Histone modifications help regulate ncRNA genes, but measuring these interactions
at scale is difficult. High-throughput experimental techniques such as ChIP-seq are
costly and time-consuming, limiting their scalability for mapping histone modifica-
tions across diverse cell types and histone markers. We test whether sequence alone
can predict histone–ncRNA regulation by training a single marker-conditioned
classifier that outputs 50 histone marks. We evaluate two inputs: (i) spliced tran-
script RNA sequence and (ii) genomic context comprising the gene body plus
up to 30 kb upstream DNA. On a curated benchmark with Ensembl coordinates,
the context-based model attains a micro-AUROC of 0.95. Despite using frozen
pretrained encoders and no cell-type-specific tracks, the approach is simple and
data-efficient, providing a practical baseline for studying ncRNA–histone modifica-
tion interactions.

1 Introduction

Over the past few decades, research has revealed that epigenetic changes play an important role
both in the functioning of normal organisms and in disease progression. They are described as
mechanisms that can lead to inherited changes in phenotype or gene expression but do not involve
alterations in the DNA sequence Feinberg (2007). Among the key epigenetic regulators are DNA
methylation/ demethylation, chromatin remodeling, histone modifications, and ncRNAs Wei et al.
(2017). Moreover, it is increasingly clear that these mechanisms do not act in isolation but rather
coordinate gene expression simultaneously, combining in a wide regulatory network Bure and
Nemtsova (2021); Fuso et al. (2020).

Histone modifications are covalent post-translational changes, often occurring on the N-terminal tails
of histone proteins. These modifications can affect how tightly DNA is wrapped around histones
by altering histone–DNA interactions or by recruiting proteins that activate or repress gene expres-
sion Millán-Zambrano et al. (2022). Common types of histone modifications include acetylation,
methylation, phosphorylation, sumoylation, and ubiquitylation. They are responsible to regulate
multifarious biological processes including chromosome wrapping Bannister and Kouzarides (2011);
Brehove et al. (2015) transcriptional activation and de-activation Kouzarides (2007); Binder et al.
(2013); Cheung et al. (2000), damaging and repairing of DNA Narlikar et al. (2002); Kristeleit
et al. (2004). For instance, histone amino (N)-terminal tails modifications influence internucle-
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Figure 1 | (i) Illustration of a mechanism by which ncRNAs influence gene expression through
histone modifications and vice versa. A transcribed ncRNA recruits histone writers or erasers (such
as MLL or PRC2) to gene promoters, modulating histone marks like H3K4me3 or H3K27me3. This
represents one of several known ncRNA-mediated regulatory pathways. (ii) A schematic of our
method of predicting histone-modifications on ncRNA coding genes.

osomal exchanges and are capable to modify chromatin structures which ultimately affect gene
expression Peterson and Laniel (2004), contributing to the development of complex diseases such as
cancer. Bannister and Kouzarides (2011).

Importantly, histone modifications also regulate the transcription of non-coding RNAs (ncRNAs),
adding another layer to epigenetic control (as shown in Fig. 1 (i)). In this context, understanding
how specific histone marks correlate with ncRNA loci is essential to uncovering the mechanisms by
which chromatin state regulates gene expression Bure et al. (2022); Sati et al. (2012). While certain
histone marks are associated with active transcription, emerging evidence suggests that transcription
itself may also be necessary to establish or maintain these modifications Wang et al. (2022). This
reciprocal relationship reflects the complexity of epigenetic regulation involving non-coding RNAs.

Histone modifications are primarily profiled using high-throughput techniques such as chromatin
immunoprecipitation followed by sequencing (ChIP-seq) O’Geen et al. (2011); Park (2009). However,
as the volume of sequencing data grows, there is an increasing need for computational frameworks
capable of identifying histone modification patterns associated with ncRNA transcription.

To address this, we introduce a simple marker-conditioned framework for predicting 50 his-
tone–ncRNA interactions from sequence. We evaluate two configurations: one using RNA-FM em-
beddings of ncRNA transcripts, and another using DNABERT2 embeddings of promoter + proximal
DNA. To the best of our knowledge, this is the first systematic treatment of 50 distinct histone–ncRNA
interaction tasks in a single classifier, achieving AUROC up to 0.95 on curated human/mouse data and
outperforming baselines. The model is sequence-only, requiring no chromatin-accessibility or cell-
type-specific tracks, and is data-efficient by leveraging frozen foundation model (FM) embeddings.
This further demnstrates that adding upstream promoter context (gene + 30 kbp) improves accuracy
and related metrics over RNA-only inputs, underscoring the value of genomic context for ncRNA
regulation. Finally, we provide per-marker evaluation and analyses of learned histone-mark embed-
dings that recover known biochemical relationships, establishing a simple, interpretable baseline for
ncRNA–chromatin prediction.
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2 Method

2.1 Dataset, Model Inputs and Architecture

We start from RNAInter v4.0 and retrieve corresponding transcripts and gene coordinates from
Ensembl Harrison et al. (2024) and NCBI NA et al. (2024), labeling 50 histone marks per RNA and
defining a regulatory domain of 30 kb upstream of the TSS; unobserved pairs are treated as negatives.
Data are split by unique RNA (10 % validation, 10 % test) with no overlap.

Table 1: Test set performance for two configurations of the same model architecture using different
sequence types and pretrained embeddings. All metrics are micro-averaged across different histone
modifications. Per-marker accuracies are shown in Fig. 2.

Configuration Input Type Embedding Accuracy Precision Recall F1-score MCC AUROC
RNA-FM Spliced RNA sequence RNA-FM 0.7425 0.6496 0.9051 0.7563 0.5298 0.86
DNABERT2 Gene + 30 kbp upstream DNABERT2 0.8594 0.7837 0.9379 0.8539 0.7314 0.95

Figure 2 | Per-marker test accuracy on the two configurations. Each bar represents held-out accuracy
for one of the 50 histone modifications.

Transcripts are embedded via RNA-FM (mean-pooled over fixed-length chunks), and gene (or
promoter + gene) DNA sequences via DNABERT-2, with embeddings concatenated with a 50-
dimensional one-hot histone-mark vector for marker conditioning. The model (see Fig. 1 (ii))
accepts two inputs: a sequence embedding and a histone marker vector. For RNA-based experiments,
embeddings were generated using RNA-FM Shen et al. (2024) on spliced transcript sequences. For
DNA-based settings, DNABERT2 Zhou et al. (2023) was applied either to the gene body alone or
to the gene body plus a 30 kilobase pairs (kbp) upstream promoter region. Each of the 50 histone
modifications was represented by a one-hot encoded vector. The embedding and marker vectors
were concatenated and fed into a multilayer perceptron (MLP) with five hidden layers, totaling
approximately 5M parameters Belkin et al. (2019). Detailed preprocessing, model architecture,
hyperparameters, and compute details are provided in Appendices A, B, and C.

2.2 Evaluation Setup

We evaluated our model on a set of 27196 unique RNA sequences from Homo sapiens and Mus
musculus, derived from the RNAInter v4.0 dataset Kang et al. (2021). Each RNA is annotated with
50 distinct histone markers using genomic data sourced from Ensembl Harrison et al. (2024). The
dataset is imbalanced in terms of positive and negative class distributions across histone markers
(see Extended Data Fig. 1). To handle this, we adopted class-weighted loss using positive class
weights. To evaluate generalization, we held out 10% of the unique RNA sequences for testing.
These sequences were never seen during training or validation. The model is both taxonomically and
epigenome agnostic, relying only on raw genomic or transcript sequences. Although the dataset is
mostly dominated by ncRNA, see Extended Fig. 2 for RNA category distribution.
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3 Experimental Results

3.1 Accuracy and AUROC Across Histone Marks

We evaluated model performance across two input conditions: (1) spliced RNA sequences embed-
ded with RNA-FM, and (2) gene body plus 30 kbp upstream promoter regions, embedded with
DNABERT2. As shown in Table 1, the complete sequence DNABERT2 configuration achieved an
overall micro-AUROC of 0.95, followed by an overall test micro-AUROC of 0.86 on spliced RNA. We
report averaged scores for precision, recall, F1-score, and Matthews Correlation Coefficient (MCC),
with detailed per-marker AUROC (including baselines) shown in Extended Fig. 4, and per-marker
accuracy shown in Fig. 2. The inclusion of upstream promoter regions consistently improved all
metrics, supporting the hypothesis that distal regulatory elements contribute substantially to histone
modification patterns Shlyueva et al. (2014); Heintzman et al. (2007).

3.2 Comparison with Baselines

We evaluated our method against DeepHistone Yin et al. (2019). Since Histone-Net Asim et al. (2023)
was not open-sourced, it could not be included in our comparisons. We refer to the unmodified imple-
mentation of DeepHistone as Vanilla DeepHistone. We successfully reproduced Vanilla DeepHistone
(totaling 34.4 million trainable parameters, including 5.1M in the convolutional sequence tower and
29.4M in the fully connected classification head) on RNAInter v4.0. However, the model exhibited
significantly limited generalization performance in this setting. Replacing the flatten-then-dense
head with a global pooling head (see Appendix D) yielded a far more compact model, parameter
savings on the order of one log, and, crucially, allowed ingestion of a broader regulatory context
(11 kbp promoter + 1 kbp gene body). Restricting the model’s receptive field to 11 kbp truncated
gene window provided the best performance with the baseline. This adapted DeepHistone achieved a
macro-averaged AUROC of 0.89 and micro-averaged AUROC of 0.94 on the held-out RNAInter test
fold, outperforming the spliced-ncRNA framework evaluated under identical splits.

Table 2: Test-set macro- and micro-averaged AUROC on RNAInter v4.0 for baseline, RNA-FM and
DNA-BERT2. See Appendix F for evaluation metrics and D for architecture of adapted DeepHistone.
All values are reported on a held-out test set.

Configuration Macro-AUROC Micro-AUROC
DeepHistone (Vanilla) 0.49 0.78
DeepHistone (Adapted) 0.89 0.94
RNA-FM 0.85 0.86
DNABERT2 0.92 0.95

4 Related Work

Several deep learning frameworks have been proposed to model histone modifications and their
impact on gene regulation. DeepHistone Yin et al. (2019) introduced one of the earliest convolutional
models for predicting histone modification states from DNA sequences and chromatin accessibility
data. While effective, it relied heavily on cell-type-specific accessibility signals, which may not
always be available in practice. More recently, Histone-Net Asim et al. (2023) extended this line
of work by combining supervised sequence embeddings with multi-paradigm learning strategies to
predict histone occupancy and modification. In contrast, our model leverages transfer learning from
frozen FMs and requires significantly fewer labeled training instances while generalizing across 50
histone markers. Beyond histone-specific models, broader frameworks for epigenomic prediction
have emerged. DeepChrome Singh et al. (2016) employed convolutional neural networks to predict
gene expression from local histone modification signals.
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5 Conclusion

We presented a simple marker-conditioned framework that uses RNA-FM embeddings of ncRNA tran-
scripts and DNABERT2 embeddings from promoter + proximal DNA to predict 50 histone–ncRNA
interactions using a single model. Across curated human and mouse datasets, the model achieved
strong performance (micro-AUROC up to 0.95) and outperformed non-pretrained baselines, while
ablations showed that adding upstream promoter context (gene + 30 kbp) consistently improves
accuracy over RNA-only inputs, underscoring the regulatory value of genomic context. Leveraging
frozen FM features yields a scalable, data-efficient solution that does not depend on auxiliary epige-
nomic assays. A key limitation is the treatment of unobserved pairs as negatives, placing the task in a
positive-unlabeled regime; future work will incorporate PU-aware estimators and calibration.
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A Dataset preprocessing

Our dataset is derived from RNAInter v4.0, a curated repository of RNA interactomes that includes ex-
perimentally validated interaction pairs between RNA sequences and histone modifications. From this
resource, we extracted a total of 1,060,684 positive interaction pairs, where Interactor1.Symbol
represents the RNA and Interactor2.Symbol denotes the associated histone modification.
RNA sequences were retrieved using programmatic access to the Ensembl Harrison et al. (2024)
database. Specifically, the Ensembl subset provided 27196 unique RNA identifiers linked to 734,644
interactions.

The RNA species in the dataset span a diverse range of biotypes, including long non-coding RNAs
(lncRNAs), microRNAs (miRNAs), messenger RNAs (mRNAs), small nuclear RNAs (snRNAs),
transfer RNAs (tRNAs), small nucleolar RNAs (snoRNAs), ribosomal RNAs (rRNAs), scaRNAs,
sRNAs, ribozymes, pseudogenes, and sequences labeled as “unknown” (see Extended Data Fig. 2).

Following the dataset literature which suggests that the histone modification signals were
taken from the promoter region of the gene body Zhou et al. (2017); Lin et al. (2020), we defined
the regulatory domain of each RNA as the 30 kbp region upstream from its transcription start site
(TSS). RNAInter provides ChIP-Seq-supported interactions, which vary in confidence but are treated
uniformly in this study. To enable supervised binary classification, we constructed a complementary
set of negative samples by pairing RNAs with histone modifications not observed as interactors in the
dataset. This approach assumes that any RNA–histone pair not explicitly annotated constitutes a
negative interaction.

To promote model generalization, we partitioned the dataset such that RNA sequences in the training,
validation, and test sets are mutually exclusive. First, 10% of all RNAs were set aside as the test set.
From the remaining RNAs, an additional 10% were held out as validation data. This ensures that
both evaluation phases are conducted on RNA molecules never seen during training, and avoids any
potential data leakage through shared sequence information.

To address class imbalance, we explored two independent strategies during training. The first involved
per-histone-marker balancing, where we ensured a 50:50 ratio of positive and negative samples for
each marker by undersampling the overrepresented class. Although this reduced the total number
of samples for some markers, it standardized the training distribution and simplified the binary
classification task. In contrast, the second approach retained the full dataset and applied a pos_weight
parameter in the loss function to assign greater importance to the minority class. This weighting
strategy preserved data availability while guiding the model to better learn from underrepresented
examples. All evaluation is done under the latter scheme.

Lastly, the dataset is epigenome-agnostic. While RNAInter includes data from both Homo sapiens and
Mus musculus, our model does not stratify interactions by species, tissue, cell type, or experimental
condition. All RNA–histone interactions are pooled, thereby removing epigenomic context from
consideration. While this design decision facilitates broader generalization, it may obscure biological
variability that depends on cellular or organism-specific chromatin states.

B Encoding RNA and histone modifications

To encode RNA sequences, we split each sequence into 1,000 fixed-length segments. Each segment
is embedded using the RNA-FM model, a foundation model pretrained on large-scale RNA data.
The segment-wise embeddings are then aggregated by computing their mean, yielding a single
representation vector for the entire RNA sequence.

A similar approach is used for DNA-based models. For each RNA, we retrieve the corre-
sponding gene or gene + promoter region, and encode the DNA sequence using DNABERT-2, a
pretrained masked language model for genomic data. The sequence is likewise split into segments,
and their embeddings are averaged to form a single fixed-length representation. Despite being
trained on different molecular modalities, RNA-FM and DNABERT-2 produced comparably strong
performance in downstream histone–RNA interaction prediction tasks.
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Extended Data Fig. 1 | Distribution of interaction classes across 50 histone modifications. Each bar
represents the total number of positive and negative interaction instances for a given histone marker.
Positive samples are derived from the RNAInter v4.0 dataset, while negative samples are assumed to
be non-interacting.

Extended Data Fig. 2 | Bar chart showing the distribution of RNA categories in the dataset. Each bar
(uniform blue) represents the total number of entries for a given RNA type (y-axis), with the exact
percentage of the overall dataset printed above each bar. lncRNAs dominate the collection (64.7%
of entries), followed by pseudogenes (12.0%), miRNAs (8.9%), and “others” (8.2%); all remaining
categories each contribute less than 7% combined.
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Each histone modification is encoded as a one-hot categorical vector of length 50. This straightforward
encoding allows the model to condition predictions on the specific histone mark under consideration.
This baseline representation enables an efficient assessment of whether categorical histone features
alone, combined with learned sequence embeddings, are sufficient to capture meaningful patterns of
RNA–histone regulation.

Extended Data Fig. 3 | Each cell shows the pairwise cosine similarity between two histone embeddings
(n=50), with the diagonal fixed at 1.0. The red regions along the diagonal (mean = +0.0047, s.d. =
0.4001) indicate that the model has assigned similar embeddings to some histone modifications,
possibly utilizing the information of related histone markers that co-occur on multiple sequences, and
as a consequence, the biochemical relationships.

C Training details

The model is trained to perform binary classification on RNA–histone modification pairs, where the
objective is to predict whether a specific histone mark is likely to regulate a given RNA. Each input
consists of a concatenated representation of the RNA sequence embedding and a one-hot vector
representing the histone modification. These joint vectors are passed through a multi-layer perceptron
(MLP) composed of several fully connected layers with ReLU activations, batch normalization,
and dropout for regularization Srivastava et al. (2014); Ioffe and Szegedy (2015); Nair and Hinton
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(2010). We emphasize implementing the dropout layer after the batch normalization layer, as placing
dropout before batch normalization can disrupt the learned activation statistics and reduce training
stability. The final layer produces a single logit value, which is transformed using the sigmoid
function to yield a probability score. We denote the RNA embedding as r ∈ Rdr and the one-hot
histone vector as h ∈ {0, 1}dh . The concatenated input is x = [r;h] ∈ Rdr+dh , which is fed
into the MLP to produce a prediction ŷ = σ(f(x)), where f is the MLP and σ is the sigmoid function.

The model is trained using the binary cross-entropy (BCE) loss:

L = − 1

N

N∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)] , (1)

where yi ∈ {0, 1} denotes the ground truth label for sample i, and ŷi is the model’s predicted
probability. We use the AdamW optimizer with a learning rate of 2 × 10−4 and weight decay of
10−3. Training is performed for up to 50 epochs, with early stopping Prechelt (1998), with factor
of 0.1 and patience of 3, based on the validation loss to prevent overfitting. Specifically, training is
halted if the validation BCE loss does not improve over 5 consecutive epochs. The classifier is run
on a single NVIDIA 1080Ti GPU. The embeddings of RNA-FM and DNABERT2 are derived on a
single NVIDIA Tesla-V100 GPU. Model selection and early stopping are guided by performance
on a validation set held out from the training data. The final evaluation is performed on a disjoint
test set of RNA sequences not seen during training or validation, ensuring a strict assessment of
generalization to unseen RNAs.

Extended Data Fig. 4 | Per-marker AUROC of DNABERT2 model on gene body + 30 kbp upstream
inputs, RNA-FM model on spliced RNA, adapted DeepHistone baseline on 11 kbp promoter + 1 kbp
gene body. Macro-averaged AUROC values are also reported.
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Extended Data Fig. 5 | TF-IDF-weighted cosine similarity heatmap of histone–mark co-targeting
across RNAs. This purely data-driven relation highlights which modifications co-occur in the dataset,
with TF–IDF down-weighting ubiquitous marks.

D Baseline implementation and modification

The published DeepHistone source and default hyper-parameters were used without alteration. Inputs
comprised 1,000 bp of genomic sequence centred on each TSS, one-hot encoded, without any
chromatin-accessibility track. Only one CNN tower was retained (DNA module), the representations
were flattened, and passed through a 29-million-parameter dense block with dropout = 0.5 before the
final sigmoid. To mitigate over-parameterisation and accommodate a wider regulatory window, we
(i) substituted global max- and average-pooling for the flatten operation, concatenating the pooled
vectors, and (ii) extended the input field to 11,000 bp upstream of the annotated TSS plus 1,000 bp
into the ncRNA gene body. All convolutional filter dimensions and kernel sizes were retained, so
the only learnable parameters removed were those in the dense head. The chosen input window size
produced the best results. Both vanilla and adapted networks were trained on the RNAInter v4.0
promoter–histone pairs supplied by the original authors. Data splits, loss function, optimiser, and
regularisation schedules were kept identical across models; only the architectural change and input
length differed. Performance was assessed on the fixed test partition using macro- and micro-averaged
AUROC.
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E On learning histone representations

Because our model jointly handles all 50 histone modifications as inputs to the model, it offers
a unique opportunity to ask whether the network discovers any biochemical relationships among
the marks themselves. We inspected a 50, 32, 16, 8, 4 and 2 dimensional trainable histone-marker
embeddings after convergence. All model and training configurations were preserved. It is worthwhile
to note that the validation loss did not show degradation up to 8-dimensional histone modification
embeddings. We went on to construct a heat map of cosine similarity distance of every possible pair
of histone modifications and ordered them using hierarchical clustering. A cosine-similarity heat-map
(Extended Fig. 3) shows distinctive clusters: average off-diagonal similarity +0.0047 ± 0.4001, with
51.1 % of pairs above |0.25|. Acetylation marks are largely grouped together. Thus, the model has
pushed randomly initialized histone representation vectors of histone marks that co-occur (see Fig. 5)
to similar vectors. As a part of an ablation experiment, we observed that the histone embeddings
remain largely orthogonal if we use under-sampling of the dominant class to balance the training
dataset.

F Evaluation Metrics

We evaluate model performance using per-marker and micro-averaged metrics: area under the
receiver operating characteristic curve (AUROC), accuracy, precision, recall, F1-score, and Matthews
Correlation Coefficient (MCC).

In our single-mark framework, we train and evaluate a separate binary classifier for RNA conditioned
on each individual histone mark. As a baseline, DeepHistone operates in a multi-label regime,
predicting all 50 histone marks simultaneously for each sample. To compare these two settings on
equal footing, we use micro-averaged metrics: we pool the predictions and true labels across all
marks and samples, and compute global counts of true positives, false positives, false negatives, and
true negatives.

Let C = 50 denote the number of histone marks, and let i = 1, . . . , N index samples and
c = 1, . . . , C index classes (marks). For each sample–class pair (i, c), let yi,c ∈ {0, 1} denote the
ground-truth label and ŷi,c ∈ {0, 1} the predicted label. We then define the pooled confusion-matrix
counts:

TP =

N∑
i=1

C∑
c=1

1{yi,c = 1, ŷi,c = 1} (2)

FP =

N∑
i=1

C∑
c=1

1{yi,c = 0, ŷi,c = 1} (3)

FN =

N∑
i=1

C∑
c=1

1{yi,c = 1, ŷi,c = 0} (4)

TN =

N∑
i=1

C∑
c=1

1{yi,c = 0, ŷi,c = 0} (5)

F1micro is calculated as a harmonic mean of Precisionmicro and Recallmicro. Varying the threshold
value from 0 to 1, we were able to draw a receiver operating characteristic (ROC) curve. The
area under this curve was then calculated as a criterion called AUROC. Given the class imbalance
present in many histone markers, we highlight MCC and AUROC as key metrics. Unlike accuracy or
F1, MCC (Expression 6) accounts for all entries of the confusion matrix and provides a balanced
evaluation regardless of class distribution:

TP · TN− FP · FN√
(TP + FP)(TP + FN) ·

√
(TN + FP)(TN + FN)

(6)
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AUROCmicro = AUROC
(
{(yi,c, p̂i,c)}N,C

i=1,c=1

)
, (7)

where p̂i,c ∈ [0, 1] is the predicted score for (i, c). To binarize p̂i,c, we choose for each class c the
threshold that maximizes Youden’s J statistic,

J = Sensitivity + Specificity − 1. (8)
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