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ABSTRACT

Recommender systems play a crucial role in internet economies by connecting
users with relevant products or services. However, designing effective recom-
mender systems faces two key challenges: (1) the exploration-exploitation trade-
off in balancing new product exploration against exploiting known preferences,
and (2) context-aware Bayesian incentive compatibility in accounting for users’
heterogeneous preferences and self-interested behaviors. This paper formalizes
these challenges into a Context-aware Bayesian Incentive-Compatible Recom-
mendation Problem (CBICRP). To address the CBICRP, we propose a two-stage
algorithm (RCB) that integrates incentivized exploration with an efficient offline
learning component for exploitation. In the first stage, our algorithm explores
available products while maintaining context-aware Bayesian incentive compat-
ibility to determine sufficient sample sizes. The second stage employs inverse
proportional gap sampling integrated with arbitrary efficient machine learning
method to ensure sublinear regret. Theoretically, we prove that RCB achieves
O(
√
KdT ) regret and satisfies Bayesian incentive compatibility (BIC). Empiri-

cally, we validate RCB’s strong incentive gain, sublinear regret, and robustness
through simulations and a real-world application on personalized warfarin dosing.
Our work provides a principled approach for incentive-aware recommendation in
online preference learning settings.

1 INTRODUCTION

In the current era of the internet economy, recommender systems have been widely adopted across
various domains such as advertising, consumer goods, music, videos, news, job markets, and travel
routes (Koren et al., 2009; Li et al., 2010; Covington et al., 2016; Wang et al., 2017; Zheng et al.,
2018; McInerney et al., 2018; Naumov et al., 2019; Lewis et al., 2020; Bao et al., 2023). Modern
recommendation markets typically involve three key stakeholders: products, users, and the plat-
form (which acts as a principal). The platform collects and analyzes user data to enhance future
distribution services and to respond effectively and promptly to user feedback. In these context-
aware markets, the platform serves as the planner and fulfills a dual role: recommending the best
available product (i.e., exploitation) and experimenting with lesser-known products to gather more
information (i.e., exploration). This exploration is crucial because users often have heterogeneous
preferences, and many products may initially seem unappealing. However, exploration feedback can
be valuable it provides critical insights into the products and helps determine whether they might
be worthwhile for future users with similar interests. Unlike in service-oriented scenarios, these are
marketplaces where choices are ultimately made by users rather than imposed by the platform.

The key challenge arises from the fact that heterogeneous users exhibit various interests to explo-
ration and are usually lack incentives to adhere to the platform’s recommendations due to varying
interests. A myopic user is likely to choose products based solely on immediate benefits, demonstrat-
ing a bias toward exploitation over exploration. How can the platform effectively keep a balance be-
tween exploration and exploitation while taking individualized incentive compatibility into account?
In other words, recommender systems commonly face two significant obstacles: (1) exploration-
exploitation tradeoff : How can the platform design recommender systems that maximize rewards
but also consider that failing to sufficiently explore all available products initially may lead to sub-
optimal decisions? (2) context-aware incentive compatibility: How can we strategically address the
tendency of heterogeneous users to behave myopically?
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In this paper, we first formalize those challenges into a Context-aware Bayesian Incentive-
Compatible Recommendation Problem (CBICRP). This protocol assumes that the platform can com-
municate directly with users, for example, by sending individualized product recommendations, and
then observing the user’s actions and the outcomes. The key difference between this protocol and
standard bandit algorithm is that user’s actions incorporate not only their personalized interests and
a common public prior over all products but also the individualized message sent by the platform.
That is, users will continuously evaluate the difference between products after receiving the mes-
sage/recommendation sent by the platform which is formalized in a Bayesian way.

The basic multi-armed bandit (MAB) model of incentivized exploration has been examined in (Kre-
mer et al., 2014; Che & Hörner, 2018; Mansour et al., 2020; Sellke & Slivkins, 2023), which model
the recommendation policy within the framework of MAB problems and incorporating incentive
compatibility constraints by agents’ Bayesian priors, but these models assume independent prior
preference over products but in reality, these products share correlated prior beliefs. Subsequently,
Hu et al. (2022); Sellke (2023) propose BIC recommendation policies for customers with dependent
priors with Thompson sampling algorithm. However, Hu et al. (2022) considered the combinatorial
semi-bandits which didn’t consider the users’ contextual information and corresponding personal-
ized preferences over products. Similarly, Sellke (2023); Kalvit et al. (2024) considered the fixed
design setting where feature xi are product-owned and fixed rather than our setting that feature xi,t

is user-possessed and online sampled which introduces more technical difficulty since fixed design
of x can be transformed into the MAB setting and randomized design of x can not. In addition, their
settings only need to learn one parameter and our setting needs to learn K arms’ parameters (Latti-
more & Szepesvári, 2020; Bastani & Bayati, 2020). Besides, our framework can easily incorporate
any efficient offline marching learning methods, which greatly strengthens its applicability.

Recommendation context bandit algorithm (RCB) is composed of a two-stage design’s algorithm. In
the first stage, the platform explores all available products, taking into account context-aware incen-
tive compatibility, and determines the minimal amount of information (sample size) that needs be
collected for the subsequent stage. The second stage employs an inverse proportional gap sampling
bandit integrated with any efficient plug-in offline machine learning method. This approach aims to
simultaneously ensure sublinear regret and maintain context-aware BIC.

Our main contributions can be delineated into three parts:

1. We formalize the context-aware online recommendation problem under BIC constraints in §3.
This formulation accommodates context-aware user preferences and incorporates BIC con-
straints.

2. We introduce a two-stage context-aware BIC bandit algorithm (RCB) for addressing CBICRP (see
Algorithms 1 and 2). This algorithm adapts to any efficient offline machine learning algorithm as
a component of the exploitation stage. RCB is also a decision length T -free algorithm, as long as
T is greater than a constant. Moreover, we demonstrate that RCB achieves an O(

√
KdT ) regret

bound (Theorem 2), where K is the number of products and d is the feature dimension. It also
maintains the BIC constraints (Theorem 1).

3. Lastly, we validate the effectiveness of RCB through its performance in terms of incentive gain
and sublinear regret, and its robustness across various environmental and hyperparameter settings
in §6.1. Additionally, we apply our algorithm to real-world data (personalized warfarin dose
allocation) and compare it with other methods to demonstrate its efficacy in §6.2.

In §2, we provide related works. In §3, we introduce the heterogeneous recommendation protocol
featuring BIC and the associated challenges. §4 details the design of our algorithm. In §5, we
demonstrate that RCB upholds the BIC constraint and suffers sublinear regret. §6 showcases the
effectiveness and robustness of RCB through simulations and real-data studies.

Notations. We denote [N ] = [1, 2, ..., N ] where N is a positive integer. Define x ∈ Rd be a d-
dimensional random vector. The capital X ∈ Rd×d represents a d × d real-valued matrix. Let Id
represent a d × d diagonal identity matrix. We use O(·) to denote the asymptotic complexity. We
denote T as the time horizon.
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2 RELATED WORKS

Incentivized Exploration. There is a growing literature about a three-way interplay of exploration,
exploitation, and incentives, comprising a variety of scenarios. The study of mechanisms to in-
centivized exploration has been initiated by (Kremer et al., 2014). They mainly focus on deriv-
ing the Bayesian-optimal policy for the case of only two actions and deterministic rewards, where
Che & Horner (2015) also propose a model to derive a BIC policy to this setting. Frazier et al.
(2014) considers a different setting with monetary transfers between the platform and agents. Later,
exploration-exploitation problems with multiple self-interested agents have also been studied: mul-
tiple agents engaging in exploration without a planner to coordinate them e.g., (Keller et al., 2005),
context-aware pricing with model uncertainty e.g., (Besbes & Zeevi, 2009; Badanidiyuru et al.,
2018), dynamic auctions e.g., (Ostrovsky & Schwarz, 2023; Han & Dai, 2023), pay-per-click ad
auctions with unknown click probabilities e.g., (Babaioff et al., 2015), as well as human computa-
tion e.g., (Ho et al., 2014).

Bandit Algorithms. There are various strategies and algorithms to solve the sequential decision
making problem (Bubeck et al., 2012; Slivkins et al., 2019; Maillard, 2019; Lattimore & Szepesvári,
2020), such as the ϵ-greedy (Auer et al., 2002; Chen et al., 2021; Han et al., 2022; Shi et al., 2022),
explore-then-commit (Robbins, 1952; Abbasi-Yadkori et al., 2009; Li et al., 2022), upper confidence
bound (UCB) (Lai & Robbins, 1985; Auer, 2002; Li et al., 2021; Wang et al., 2023), Thompson sam-
pling (Thompson, 1933; Russo & Van Roy, 2014; Li et al., 2023), boostrap sampling (Kveton et al.,
2019; Wang et al., 2020; Wu et al., 2022; Ramprasad et al., 2023), information directed sampling
(Russo & Van Roy, 2014; Hao & Lattimore, 2022), inversely proportional to the gap sampling (Abe
& Long, 1999; Foster & Rakhlin, 2020; Simchi-Levi & Xu, 2022), and betting (Waudby-Smith et al.,
2022; Li et al., 2024). Additional related works can be found in Appendix §A.

3 RECOMMENDATION PROTOCOL

We first illustrate the basic Context-aware Bayesian Incentive-Compatible Recommendation Prob-
lem (CBICRP). Assume a sequence of T streaming users arrive sequentially to the platform and each
user pt with covariates (features) xt such as age, race, and location where these observed covariates
{xt}t≥1 are drawn independently from distribution DX over a deterministic set X ⊂ Rd. The plat-
form has a set of products A, e.g., ads/music/video/medicine, where |A| = K. Each product (also
called as arms in bandit literature) is represented as the unknown vector βi ∈ Rd. At time t, user
pt arrives at the platform and the platform need to recommend arms to the user which follows the
following protocol:

1. The platform recommends the user with a best arm It based on user’s covariates xt.

2. User myopically chooses an action at ∈ A and receives a stochastic reward yt(at) ⊂ Y where
Y ∈ [0, 1], and leaves.

3. We assume the user provides reward yt(at) following the linear model yt(at) = µ(xt, at)+ηt,at ,
where µ(xt, at) = xT

t βat .1

and {ηt,at}t≥1 are σ-subgaussian random variables if E[etη] ≤ eσ
2t2/2 for every t ∈ R, and inde-

pendent of the covariates {xt}t≥1. Besides, for notation simplicity, let yt denote the vector potential
reward in [0, 1]K , µ(xt) as the vector true personalized reward in [0, 1]K , and ηt as the vector noise
in Rd. Without loss of generality, we assume X and β are bounded which means that it exists pos-
itive constants xmax and b such that ∥x∥2 ≤ L, ∀xt ∈ X and ∥βi∥2 ≤ b for all i ∈ [K], which is
a common assumption in literature (Abbasi-Yadkori et al., 2011; Bastani & Bayati, 2020; Li et al.,
2021) and usually assume L = b = 1. It’s important to note that the reward function contains
two stochastic sources: the covariate vector xt and the noise ηt, which is general harder than the
fixed design {xt}t≥1 in bandit (Lattimore & Szepesvári, 2020). Besides, we define the data domain
Z = X × Y and denote DZ as the probability distribution over set Z .

The key difference between the above recommendation protocol with previous literature in sequen-
tial decision making (Sutton & Barto, 2018; Lattimore & Szepesvári, 2020) is that the user pt may
not follow the (best) recommendation arm It, that is, It ̸= at. Users can switch to other recom-
mended options rather than simply click or not click the best recommended product provided by

1The discussion of the nonlinear is available in Appendix §F.
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the algorithm. However, in CBICRP, the platform performs as a principal to recommend It and the
decision at is made by the user based on prior knowledge over arms, and the user have the option
to other products recommended by the platform. We assume the platform and all users share a
prior belief over arms P0 = P1,0 × ... × PK,0 where product prior parameter βi ∼ Pi,0 with the
mean βi,0 = E[βi] and covariance matrix var(βi) = Σi,0. Additionally, given covariate xt, denote
µ0(xt, i) = E[µ(xt, i)] as the prior mean reward for arm i. It’s important to note that this setting is
different from the bandit setup whose arm parameter βi is unknown and fixed.

Ideally, we hope users follow the (best) recommended arm It even it is not the greedy option for
them given that the goal of each user is to maximize her expected reward conditional on her priors
over products. Here we define the event that best recommendations have been followed in the
past before time t with prior knowledge P0 as Γt−1 = {Is = as : s ∈ [t − 1]} ∪ P0, which
works as a public information. Then we can formally define the ϵ-Context-aware Bayesian-Incentive
Compatible (CBIC) for users as follows.

Definition 1 (ϵ-CBIC). Given an incentive budget ϵ ≥ 0, a recommendation algorithm is ϵ-Context-
aware Bayesian Incentive-Compatible (ϵ-CBIC) if

E[µ(xt, i)− µ(xt, j)|It = i,Γt−1] ≥ −ϵ, ∀t ∈ [T ], i ∈ [K]. (1)

If ϵ = 0, we call it Context-aware Bayesian Incentive-Compatible (CBIC). For brevity, we use the
term CBIC to denote both CBIC and ϵ-CBIC throughout the following paper, unless emphasized.

This definition implies that after receiving additional information, such as the recommended arm It
and the historical information Γt−1, the user always follow the recommended arm or at most with
expected reward (informally speaking, utility) loss less than ϵ. Specifically, the user selects the arm
i that maximizes the posterior mean reward, which is either the best recommended arm It or another
arm whose posterior mean reward is within an ϵ budget of the maximum. From the perspective of
the principal, it needs to contextually determine which arm to be recommended based on the current
covariate xt and all historical feedback S1:t−1 at time t, where S1:t = {(xt, yt, at)}1:t denotes the
sigma-algebra generated by the history up to round t. The objective for the platform is to design
a sequential decision-making policy π = {πt(·)}t≥1 that maximizes the expected reward for each
user while adhering to the CBIC constraint, where πt(xt|S1:t−1) : X → A denote the arm chosen
at time t. Finally, let’s define the regret with respect to CBIC constraint when following the policy
π. The regret λ[T ](π) is defined as follows:

Reg[T ](π) =
T∑

t=1

E
[
µ(xt,π

∗
t (xt))− µ(xt,πt(xt))

]
(2)

where π∗
t (xt) is the posterior optimal arm given all information up to t − 1, covariate xt, and

prior knowledge P0. The Reg[T ](π) is taken over the randomness in the realized rewards and the
randomness inherent in the algorithm. Finally, we summarize the key challenge in the CBICRP:

Key challenge:
In CBICRP, users exhibit context-aware prior preferences over arms, requiring that recommended
products be more valuable than those selected myopically even still within an ϵ margin of the max-
imum reward. Concurrently, the platform aims to maximize long-term expected rewards. There-
fore, the principal challenge lies in designing an algorithm that can simultaneously balance the
users’ incentive, the platform’s requirement for maximizing expected rewards, and the exploration.

4 ALGORITHMS

In this section, we introduce the Recommendation Contextual Bandit (RCB) algorithm, which is
structure into two stages, the cold start stage and the exploitation stage. The objective during the
cold start stage is to develop an algorithm that not only maintains CBIC for users to gain trust but
also fulfills the minimal sample size requirement necessary for the subsequent algorithm require-
ment for the platform with minimal budget and time cost. In the second stage, the design of RCB
focuses on constructing a sampling bandit algorithm that incorporate any efficient offline machine
learning methods for the long term goal of the balance of freshness and exploitation. This goal is
fulfilled by balancing the ϵ-budget allocation strategically and a carefully designed of sequential
spread parameter {γm}m over algorithm’s batches m.
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4.1 COLD START STAGE

During the cold start stage, it needs to determine two important quantities, minimum sample size N
for each arm and exploration probability L. In addition, denote Ni(t) as the current number of pulls
of arm i at time t, and Bt = {i | Ni(t) = N, ∀i ∈ [K]} as the set of arms that have been pulled N
times. Additionally, Si represents the set collecting historical rewards and covariates for arm i, and
S = {Sk}k∈[K] encompasses the historical information for all arms.

The cold start stage’s process comprises two steps: (1) identify the most popular arm based on the
context-aware preference priors, and (2) recommend the remaining arms in a manner that economi-
cally allocates the incentive budget.

(1) The Most Popular Arm’s Sample Collection (MPASC). If no arm has collected N samples,
meaning Bt is empty, the platform recommends arm i to agent pt, where arm i has the highest prior
mean reward with respect to agent pt. Subsequently, agent pt provides feedback yt,i according to
reward model. Afterwards, the platform updates the number of pulls Ni(t) and the data Si respec-
tively: Ni(t) = Ni(t − 1) + 1, Si = Si ∪ (xt, yt,i). Once an arm has been pulled N times, it is
removed from further consideration and added to Bt. The principle initially verifies whether any
arm has accumulated N samples. This step determines which arm is prior optimal, indicating the
most popular among heterogeneous users.

(2) Rest Arm Sample’s Collection (RASC). The platform initially samples a Bernoulli random
variable qt ∼ Ber(1/L) to determine the recommendation strategy for the current user. With a prob-
ability of 1/L, the platform recommends exploring promoted (sample-poor) products, while with an
exploitation probability of 1 − 1/L, it suggests exploiting organic (sample-efficient) products. The
optimal value of L is determined based on prior information and the incentive budget ϵ, as specified
in Theorem 1 in §5.

a) Promoted Recommendation. If qt = 1, the platform recommends agent pt to explore with a
promoted arm which is the highest prior mean reward arm within the set of [K]/Bt, representing
that arms have not been pulled N times,

ãt = argmax
i∈[K]/Bt

E[µ(xt, i)]. (3)

Then agent pt receives reward yt,ãt and the platform updates the number of pulls and samples of
pair of the covariate and reward respectively: Nãt(t) ← Nãt(t − 1) + 1, Sãt ← Sãt ∪ (xt, yt,ãt).
When arm ãt has been pulled N times, arm ãt is added to set Bt.

b) Organic Recommendation. If qt = 0, the platform recommends the agent pt to exploit with the
organic arm a∗t , which is the highest expected mean reward arm conditional on SBt .

a∗t = argmax
i∈[K]

E[µ(xt, i)|SBt ]. (4)

That is, arms in Bt’s expected rewards are evaluated through posterior mean rewards and arms not in
Bt’s expected rewards are evaluated through prior mean rewards. Then the agent pt receives reward
yt,a∗

t
, but in this case, the principal will not update Na∗

t
(t) and Sa∗

t
.

4.2 EXPLOITATION STAGE

Given the data S (defined in §4.1) collected during the cold start stage, where each arm accumulates
N samples, the platform’s objective in the exploitation stage is to recommend arms with higher pos-
terior means while satisfying the CBIC constraint. Thus, the key challenge of the bandit algorithm’s
design lies in balancing exploitation efficiency with the allocation of the incentive budget ϵ. The
general principle of the bandit algorithm involves first strategically dividing the decision points into
a series of epochs of increasing length. At the beginning of each epoch, samples collected in the
previous epoch are used to update the spread parameter γm to control the balance of exploration and
exploitation tradeoff at epoch m, thereby informing the decisions for the current epoch. Here we
first denote the mth epoch’s rounds as Tm = {t ∈ [2m−1, 2m),m ≥ m0} and m(t) representing the
epoch where the current t belongs to. The cold start stage’s epoch is demoted as m0 = ⌈2+ log2 N⌉
and the final stage is denoted as m1. The principal collected data at the mth epoch denoted as
WTm = {xt, at, yt(at)}t∈Tm .

At epoch m ∈ [m0,m1], the platform then obtains the posterior mean estimator β̂i =
Eβi∼p(βi|WTm−1 )

[βi], where p(βi|WTm−1) represents the posterior distribution based on data from

5
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Algorithm 1: Cold Start Stage

Input : K,N, L,B, S, {Ni(t)}i∈[K], t = 1.
1 STEP 1 - THE MOST POPULAR ARM SAMPLE COLLECTION (MPASC)
2 while there is no arm been pulled N times do
3 Agent pt is recommended with arm i = argmaxj∈[K] E[µ(xt, j)] and receives reward yt,i.
4 The platform updates pulls and rewards: Ni(t)← Ni(t− 1) + 1, Si ← Si ∪ (xt, yt,i).
5 If Ni(t) = N, add i to Bt. t← t+ 1. STEP 1 stopped.
6 Update t← t+ 1.
7 STEP 2 - REST ARM SAMPLE COLLECTION (RASC)
8 while there exists an arm i such that the number of pulled Ni(t) has not reached N do
9 Samples qt ∼ Ber(1/L).

10 if qt = 1 then
11 pt is recommended to explore with the arm ãt based on Eq.3 and receives yt,ãt .
12 Updates Nãt(t)← Nãt(t− 1) + 1 and dataset Sãt ← Sãt ∪ (xt, yt,ãt).
13 If Nãt(t) = N, add ãt to Bt.
14 else
15 pt is recommended to exploit with the arm a∗t based on Eq.4 and receives yt,a∗

t
.

16 Update t← t+ 1.

Algorithm 2: Exploitation Stage
Input : S, epochs m0,m1, function class F , learning algorithm OffF , confidence level δ.

1 for epoch m ∈ [m0,m1] do
2 Set γm = 4

√
K/EF,δ(|Tm−1|).

3 Feed m− 1 epoch’s data WTm−1 into the OffPos and get {β̂m,i}i∈[K].
4 for t ∈ Tm do
5 Agent pt arrives with covariate xt. Compute estimate µ̂m(t)(xt, i) = xT

t β̂m,i, ∀i ∈ [K].
6 Obtain the optimal arm bt = argmaxi∈[K] µ̂m(t)(xt, i).
7 Sample at ∼ pm(i) according to Eq.5 and observe reward yt(at).

WTm−1). Subsequently, the platform computes the predictive estimate reward µ̂t(xt, i) = x⊤
t β̂i

for all arms. We denote bt = argmaxi∈[K] µ̂t(xt, i) as the best predictive arm. The platform then
randomly selects arm at according to the distribution pt(i), for t ∈ Tm:

pm(i) =

{
1−

∑
i ̸=bt

pt(i), if i = bt.

1/[K + γm(µ̂t(xt, bt)− µ̂t(xt, i))], if i ̸= bt.
(5)

where the spread parameter γm = 4
√

K/EF,δ(|Tm−1|) regulates the balance between exploration
and exploitation, and EF,δ(|Tm−1|) denotes the mean squared prediction error (MSPE) at epoch
m− 1. A smaller γm results in a more dispersed pt, enhancing exploration. Conversely, a larger γm
leads to a more concentrated pt, focusing recommendations on the best predictive arm bt. As the
epoch progresses, γm increases and is inversely proportional to the square root of the MSPE. The
MSPE is typically derived via cross-validation using an efficient offline statistical learning method.
Below, we present the formal definition of EF,δ(n) with n i.i.d. training samples.

Definition 2. Let p be an arbitrary action selection kernel. Given a sample size of n data of the
format (xi, ai, yi,ai), which are i.i.d. according to (xi, yi) ∼ D, ai ∼ p(·|xi), the offline learning
algorithm OffF based on the data and a general function class F returns a predictor µ̂t(x, a) :
X × A → R. For any δ > 0, with probability at least 1 − δ, we have Ex∼PX ,a∼p(·|x)[µ̂t(x, a) −
µ(xt, at)]2 ≤ EF,δ(n).

Computational Cost: The cold start stage’s computational cost is O(KLN) in expectation and
the exploitation stage’s computational cost are mainly based on the offline sample efficient machine
learning method. Usually it needs O(K/ϵ′2) samples in expectation for non-parametric methods
and O(Kd/ϵ′) samples in expectation for parametric methods to get the desired offline error ϵ′.
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5 THEORY

In this section, we first provide necessary assumptions in §5.1 to get the N, L, and the analytical
regret upper bound. Then we demonstrate that RCB simultaneously satisfies the CBIC constraints
in the whole decision process in §5.2 when sample size N and probability L are well designed. In
§5.3, we show RCB achieves a O(

√
KdT ) regret.

5.1 REGULARITY CONDITIONS

In order to satisfy the CBIC constraint, we list two assumptions over the prior distribution.

Assumption 1 (Prior-Posterior Distribution Assumption). Denote Gt(i) =
minj∈Bt,i∈[K]/Bt

E[µ(xt, i) − µ(xt, j)|SBt ] as the minimum prior-posterior gap when we
have N samples of arm j ∈ Bt and zero sample of arm i in the cold start stage. There ex-
ists time-independent prior constants nP , τP , ρP > 0 such that ∀n ≥ nP0 , i ∈ [K], then
Pr(Gt(i) ≥ τP0) ≥ ρP0 .

Any given arm i can be a posteriori best arm by margin τP0 with probability at least ρP0 after
seeing sufficiently many samples from Bt. The platform provides a fighting chance for those arms
from [K]/Bt with a low prioriori mean, which means after seeing sufficiently many samples of arm
j ∈ Bt there is a positive probability that arm i ∈ [K]/Bt (zero sample collected) is better. What’s
more, we assume the gap between arms are at least greater than τP∗ with at least probability ρP∗
after we have nP∗ data.

Assumption 2 (Posterior Distribution Assumption). Denote Gt(bt) = minj ̸=bt E[µ(xt, bt) −
µ(xt, j)|S] as the minimum posterior gap when we have N samples of each arms in the exploita-
tion stage. There exist a uniform time-independent posterior constants nP∗ , τP∗ , ρP∗ > 0 such that
∀n ≥ nP∗ , i ∈ [K], then Pr(Gt(bt) ≥ τP∗) ≥ ρP∗ .

The we provide the regularity conditions over covariates PX as follows to avoid the singularity.

Assumption 3 (Minimum Eigenvalue of Σ). Define the minimum eigenvalue of the covariance
matrix of X as λmin(Σ) = λmin(Ex∼PX [xxT]). There exists such a φ0 > 0 satisfying that
λmin(Σ) ≥ φ0.

Assumption 4 (Prior Covariance Matrix Minimum Eigenvalue Assumption). For each arm i, the
minimum eigenvalue of prior covariance matrix Σi,0 satisfying: (1) Σi,0 ≽ λi,0Id. (2) {λi,t}t≥0 is
increasing with order O(t).

This assumption assumes that with more interaction and feedback occurred in the platform, users
have a context-aware prior belief and this prior becomes weaker and weaker since users tend to trust
the platform’s recommendation rather than have strong belief for specific arms. And these minimum
eigenvalues of the covariance matrix become larger which means that users are more open to those
products rather than with strong opinion towards specific products. We also explore when this
assumption is violated in Appendix §E.

5.2 CONTEXT-AWARE BAYESIAN INCENTIVE COMPATIBLE CONSTRAINT

Next we provide the requirements for the minimum sample size N(ϵ) and the exploration probability
L to efficiently allocate the budget ϵ and effectively recommend the optimal arms to users.

Theorem 1. With Assumptions 1 - 3, and the prior follows the normal distribution, if the parameters
N, L are larger than some prior-dependent constant and the platform follows the RCB algorithm,
then it preservers the ϵ-CBIC property with probability at least ρP0ρP∗ . More precisely, it suffices
to take

N(ϵ) ≥ (σ2d+ 1)K3

φ0(τP∗ + ϵ)2
and L ≥ 1 +

1− ϵ

τP0ρP0 + ϵ
. (6)

And the exploitation stage starts at m0(ϵ) ≥ ⌈2 + log2 N(ϵ)⌉.
This theorem demonstrates that RCB maintains ϵ-CBIC throughout the entire recommendation pro-
cess given the lower bound of N and L. We provide that the minimum sample size N(ϵ) is cubic with
respect to the number of arms K, linear in relation to the covariate dimension d, inversely quadratic
to the sum of budget ϵ and the minimal optimal posterior gap τP∗ , and inversely linear to the mini-
mum eigenvalue of the covariance matrix of our features φ0. This critically shows the tradeoff that
a relatively larger budget ϵ significantly reduces the minimal sample size needed. Additionally, the
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Figure 1: Incentive gain (left) and cumulative regret (right) of Setting 1 (upper) and Setting 2 (lower).

determination of the spread parameter γm is based on the pivot of the functionality of ϵ in N(ϵ).
In RCB, given N(ϵ) in the cold start stage, γm for each epoch is entirely determined by the offline
learning method and is independent of ϵ due to the increasing length of the epochs.

5.3 REGRET UPPER BOUND

In the following theorem, we show the regret upper bound of RCB.

Theorem 2. Given N(ϵ) and L from Theorem 1, and Assumption 4, for any T ≥ τm0−1 + 1, with
probability at least 1− δ, the regret upper bound of RCB is τm0−1(ϵ) +O(

√
Kd(T − τm0−1(ϵ))).

The total regret is partitioned into two components: the cold start stage’s regret τm0−1 and the
exploitation stage O(

√
KdT ), where the latter depends only on the square root of the number of

arms K, the covariate dimension d, and the decision horizon T . This square root dependency on T ,
d, and K underscores the efficiency of the approach, as detailed in (Lattimore & Szepesvári, 2020).
Moreover, the effect of the ϵ budget is predominantly observed in the regret of the cold start stage,
especially when T is small.

6 EXPERIMENTS

In this section, we apply RCB to synthetic data (§6.1) and real data (§6.2) to demonstrate its effec-
tiveness by illustrating how RCB ensures sublinear regret, maintains CBIC, and exhibits robustness
across various hyperparameters. Our code is available to ensure reproducibility of the results.

6.1 SIMULATION STUDIES

The goal of this section is to demonstrate that RCB algorithm can satisfy the ϵ-CBIC constraint
and simutaneously secure the sublinear regret. For all settings, the following parameters need to be
specified (a) environment parameters: time horizon T , number of arms K, feature dimension d, and
noise level σ; (b) ϵ-CBIC parameters: budget ϵ, prior-posterior minimum gap constants τP0 and ρP0 ;
(c) prior belief parameters: prior P0, where we assume the prior follows the normal distribution.

Setting 1 (Environment Effects): We consider RCB’s robustness in terms of different K =
[2, 5, 10], d = [3, 5, 10]. For rest parameters, we set T = 105, σ = 0.05, ϵ = 0.05, τP0 = 0.01, and
ρP0 = 0.95. The prior are set to be βi,0 = 0d and Σi,0 = 1/5Id.

Setting 2 (Ad-hoc Design): This scenario demonstrates the results when the platform adopts
an ad-hoc approach to N(ϵ) without following the guidelines of Theorem 1. Here, N is set to
{10, 100, 1000}. All other parameters remain consistent with those specified in Setting 1.

Analysis of Setting 1 (Upper part of Figure 1): Different columns in the figure represent various
dimensions d, with the first three columns illustrating the ϵ-CBIC gain and the last three columns
detailing the regrets observed. Our findings indicate that RCB satisfies the ϵ-CBIC property, as evi-
denced by the gain consistently exceeding -0.05 (dashed line), or budget not been used up. During
the exploitation stage, there is an observable upward trend in the instantaneous ϵ-CBIC gain, sug-
gesting that the recommendation system increasingly gains trust from customers (larger ϵ gain). The
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right segment of the figure explores the relationship between regret, d, and K. It was observed that
the regret for K = 10 significantly exceeds that for K = 3 and K = 5. This discrepancy arises
because, to maintain the ϵ-CBIC property, the duration of the cold start stage increases cubically
with K, representing a substantial cost during this initial phase. In contrast, the impact of d on cost
is relatively minimal, as articulated in Theorem 1.

Analysis of Setting 2 (Lower part of Figure 1): This setting mirrors Setting 1 in terms of overall
configuration. However, in this scenario, the platform does not adhere to the sample size require-
ments needed to satisfy the ϵ-CBIC property, opting instead for an arbitrary fixed cold start length of
N(ϵ) = {10, 100, 1000}. The simulation results for N(ϵ) = {100, 1000} are detailed in Appendix
§E. When compared with the regret observed in Setting 1, which is at the level of 105, the regret in
Setting 2 is considerably lower, at approximately 103. However, in terms of ϵ-CBIC gain, Setting
1 consistently shows positive gains, fully complying with the ϵ-CBIC property, whereas Setting 2
experiences periods of negative gains, particularly when the number of arms is high (K = 10). This
negative trend is more pronounced as d increases, making it increasingly challenging to estimate an
appropriate cold start length, as further discussed in Appendix §E. Notably, even with N(ϵ) = 1000,
the ϵ-CBIC gain remains negative for most instances when d = 5 or 10.

6.2 REAL DATA

We utilize a publicly available dataset from the Pharmacogenomics Knowledge Base (PharmGKB)
that includes medical records of 5,700 patients treated with warfarin across various global research
groups (Consortium, 2009). In the U.S., inappropriate warfarin dosing leads to about 43,000 emer-
gency department visits annually. Traditional fixed-dose strategies can result in severe adverse ef-
fects due to initial dosing inaccuracies. Our study aims to optimize initial dosages by leveraging
patient-specific factors from the cleaned data of 5,528 patients. Detailed data information and pre-
proc are provided in Appendix E.2.

Arms Construction: We follow the arm construction as it in (Bastani & Bayati, 2020) and formulate
the problem as a K-armed bandit with covariates (K = 3). We bucket the optimal dosages using
the “clinically relevant” dosage differences: (1) Low: under 3mg/day (33% of cases), (2) Medium:
3-7mg/day (54% of cases), and (3) High: over 7mg/day (13% of cases). In particular, patients who
require a low (high) dose would be at risk for excessive (inadequate) anti-coagulation under the
physicians medium starting dose.

Reward Construction: For each patient, the reward is set to 1 if the dosing algorithm selects the arm
corresponding to the patient’s true optimal dose; otherwise, the reward is 0. This straightforward
reward function allows the regret to directly quantify the number of incorrect dosing decisions.
Additionally, it is important to note that while we employ a binary reward for simplicity, we model
the reward as a linear function. Despite this, RCB demonstrates robust performance in this setting,
indicating its applicability for scenarios involving discrete outcomes.

Ground Truth: We estimate the true arm parameters βi using the linear regression with the entire
dataset for specific group. Besides, we scale the optimal warfarin dosing into [0, 1] with minimum
dosing as 0, and maximum dosing as 1. The true mean warfarin dosage is obtained from the inner
production of βi (based on the optimal arm) multiples the covariate of this patient. Besides, for the
counterfactual arm, the true mean dosage are set to be 0.

RCB Setup: The total number of trials is set at T = 5528, with reward noise σ̂ = 0.054 estimated
from the true optimal dosing of warfarin after scaling. To create an online decision-making scenario,
we simulate the process across 10 random permutations of patient arrivals, averaging the results over
these permutations. The exploration budget ϵ is varied among [0.025, 0.035, 0.045]. The minimum
gap τP0 is set at 0.005. The prior variance is defined as Σ = [0.4, 0.6, 0.8]Id, and the prior means
are β2,0 = 0.05× Id, β1,0 = β3,0 = 0d. Further details on hyperparameters are available in §E.2.

Evaluation Criteria: We apply four criteria to evaluate the warfarin dose decision. (1) Regret:
The regret is optimal mean dose minus 0. (2) ϵ-CBIC Gain. (3) Fraction of Incorrect Decision:
the fraction of incorrect decision. (4) Weighted Risk Score: the correct decision deserves 1 point
and incorrect decision loss 1 point and multiple the true dosage sample proportion, which is newly
proposed by us.

Result Analysis: In Table 1, we exhibits the RCB’s true dosage correction ratio and physician
assigned dosage correction ratio (always choose medium) and the weighted risk score.
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Table 1: Comparison RCB and physician algorithm and distribution of patients

RCB Algo
Assigned Dosage

Physician Algo
Assigned Dosage

% of
Patients

Low Medium High Low Medium High

Tr
ue

D
os

ag
e Low 50% 48% 2% 0% 100% 0% 27%

Medium 14% 84% 2% 0% 100% 0% 60%
High 2% 93% 5% 0% 100% 0% 13%

Figure 2: Left to right: fraction of incorrect decision under different setup of budgets (ϵ)
[2.5, 3.5, 4.5]× 10−2. Dotted line represents the lasso bandit’s error rate (Bastani & Bayati, 2020).

Fraction of Incorrect Decision: In Figure 2, we present the fraction of incorrect decisions, a newly
metric, which is particularly relevant in the field that the non-optimal arm has high cost and the
optimal arm often remains unknown and difficult to ascertain. Our findings indicate varying levels
of incorrect decisions based on the size of ϵ and different prior variances. At ϵ = 0.025, three
prior variances show a similar fraction of incorrect decisions, with all variations approximately at
a 0.35 decision error rate, which is considered state of the art when compared to the lasso bandit
described in (Bastani & Bayati, 2020), which utilizes prior knowledge of non-zero feature counts.
At ϵ = 0.035, only Σ = 0.4I achieves the lowest fraction of incorrect decisions, approximately
0.37. When ϵ is increased to 0.045, the fraction of incorrect decisions for all three beliefs exceeds
0.4. These observations suggest that with strong prior knowledge of the optimal dosage, a smaller
ϵ improves correction rates. This highlights that RCB may require an extended cold start phase to
reach optimal performance and build sufficient confidence in its recommendations.

Weighted Risk Score: In Table 1, we present the dosages assigned by RCB, the true dosages, the
dosages assigned by a typical physician, and the true percentage of patients for each dosage. Notably,
60% of patients require a medium dosage, while 27% should receive a low dosage, and 13% a high
dosage. We use blue percentages to indicate the correction rate of dosages assigned by RCB within
each true dosage, and red percentages to denote extremely incorrect decisions across these levels.
The physician algorithm, which consistently prescribes a medium level dosage, achieves a 100%
correctness rate at the low dosage level. Conversely, RCB attains correction rates of 50%, 84%, and
5% for the low, medium, and high dosage levels, respectively, with an extremely incorrect rate of 2%
for the low and high levels. With respect to the weighted risk score, we find that at ϵ = 0.025, the
three prior beliefs achieve scores of 0.291, 0.289, and 0.274, respectively, indicating higher scores
are better. When ϵ = 0.035 and Σ = 0.4I, the score is 0.265. The physician policy, evaluated
under the metric of the weighted risk score, calculates as −1× 0.27 + 1× 0.60− 1× 0.13 = 0.20,
significantly lower than the scores provided by RCB (0.291).

7 CONCLUSION

We propose a new RCB framework to address the context-aware BIC problem, where the informa-
tion about the arms needs to be learned. This approach can leverage any sample-efficient machine
learning method. We theoretically prove that RCB is regret-optimal in terms of the number of arms
K, dimension d, and horizon length T , all in square root order, and satisfies the ϵ-BIC constraints.
Furthermore, we experimentally demonstrate that our algorithm achieves sublinear regret, is robust
to different priors, dimensions, and budgets, and outperforms the state-of-the-art bandit algorithms.
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