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A B S T R A C T

And sentences associated with these attributes and relationships have been neglected. in this paper We
propose an end-to-end model called Knowledge Graph Enhanced neural network (KGENet) to address the
above shortcomings. specifically We first construct a disease knowledge graph that focuses on the multi-
view disease attributes of ICD codes and the disease relationships between these codes. we also use a long
sequence encoder to get EHR document representation. most importantly KGENet leverages multi-view disease
attributes and structured disease relationships for knowledge enhancement through hybrid attention and graph
propagation Respectively. furthermore The above processes can provide attribute-aware and relationship-
augmented explainability for the model prediction results based on our disease knowledge graph. experiments
conducted on the MIMIC-III benchmark dataset show that KGENet outperforms state-of-the-art models in
both model effectiveness and explainability Electronic health record (EHR) coding assigns International
Classification of Diseases (ICD) codes to each EHR document. These standard medical codes represent diagnoses
or procedures and play a critical role in medical applications. However, EHR is a long medical text that
is difficult to represent, the ICD code label space is large, and the labels have an extremely unbalanced
distribution. These factors pose challenges to automatic EHR coding. Previous studies have not explored the
disease attributes (e.g., symptoms, tests, medications) of ICD codes and the disease relationships (e.g., causes,
risk factors, comorbidities) between them. In addition, the important roles of medical
1. Introduction

In healthcare, the electronic health record (EHR) serves as a reposi-
tory for various clinical patient information, including medical history,
vital signs, laboratory test results, and clinical notes. EHR coding
assigns International Classification of Diseases (ICD) codes to each
EHR document [1]. These ICD codes enable streamlined medical data
retrieval, billing, epidemiological assessment, and health management.
However, it has been reported that EHR coding incurs significant costs
of approximately $25 billion annually [2]. The manual process of EHR
coding is not only time-consuming but also inefficient. In light of this,
a number of recent studies have explored the use of algorithms to
automate the EHR coding process.

Automatic EHR coding is a critical task, as shown in Fig. 1. How-
ever, it presents several challenges. (1) The label space of EHR coding
is large. For instance, ICD-9 has 16,000 diagnosis codes while ICD-10
has increased five-fold [3]. (2) The labels have an extremely unbalanced
distribution. Some ICD codes are common while others are rare, thereby

∗ Corresponding author at: School of Information Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
E-mail address: lb_kmis@yzu.edu.cn (B. Li).

reducing the model’s recognition rate on rare labels. (3) EHR is difficult
to represent. EHR contains many medical terminology descriptions. Poor
representation of EHR significantly affects ICD code assignment. (4)
Weak explainability of automatic EHR coding results.

Previous studies have attempted to address the above challenges.
(1) Model based on the improved encoder. Some of these studies focus on
model encoder improvements. Research [4–6] have used Convolutional
Neural Network (CNN) and its variants as the encoder, while Recurrent
Neural Network (RNN) was employed in [7,8] as the encoder. The
transformer-based model was also used in [9–11] to encode EHR. Few-
shot learning [12] and zero-shot learning [13] frameworks for EHR
coding are employed to increase the detection rate of rare diseases.
(2) Model based on the structured labels. ICD codes have a hierarchi-
cal tree structure, therefore [7,14] use the hierarchical relationship
to solve the problem of large label space. Additionally, the RPGNet
model [15] utilizes reinforcement learning and treats EHR coding as
a path-generation task along the hierarchical structure. (3) Model based
on external knowledge. Compared with regular text, EHR has the char-
acteristics of intensive medical terms, so some recent works consider
vailable online 18 June 2024
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Fig. 1. The automatic EHR coding process.
he use of knowledge. MSATT-KG [16] employs a graph convolutional
etwork to represent ICD codes using ICD titles. The work [17] extracts
ntities associated with ICD-9 codes via Freebase and integrates them
ith medical records for prediction. However, these works still have

he following shortcomings that need to be addressed: (1) Lack of ICD
isease attributes. The EHR coding task uses ICD codes as labels, as
hown in Fig. 1. Prior studies have only considered the title of the ICD
ode and ignored other critical medical terminologies (e.g., symptoms,
ests, medications). (2) Lack of ICD disease relationships. Previous
tudies have considered the hierarchical relationship of ICD codes, but
ot the medical associations (e.g., causes, risk factors, comorbidities)
etween diseases represented by ICD codes. (3) Insufficient feature
nteraction between EHR text and ICD labels. Most previous work
gnores the interactions between EHR text, disease attributes, and
isease relationships. Therefore, keywords and phrases related to ICD
abels in the EHR cannot be well-mined. Overall, the above issues will
esult in lower model accuracy and a reduced level of explainability.

To overcome these shortcomings, we construct an innovative dis-
ase knowledge graph. We use the multi-view attributes and disease
elationships to refine the ICD code representation, enriching the se-
antic information while enhancing the medical causal relationships

etween ICD codes. To fully leverage the disease knowledge graph
or knowledge enhancement, we introduce an end-to-end model called
nowledge Graph Enhanced Neural Network (KGENet). We propose
hybrid attention module to extract features in the EHR that are

trongly associated with the multi-view disease attributes of each ICD
ode, enabling us to acquire more fine-grained explainable evidence.
oreover, a graph propagation module is devised to explore the cor-

elation among the EHR features via structured disease relationships.
ur resources and code are available at github repository.1 The main

nnovations and contributions of this work are as follows:

• We construct a disease knowledge graph with multi-view dis-
ease attributes and disease relationships. This provides richer
medical knowledge and better explainability for our model.

• We propose a novel knowledge-enhanced model named KGENet.
KGENet uses a long sequence encoder to represent EHR long
text sequences. It then leverages a hybrid attention module
and a graph propagation module to extract both label-specific
features and interactive features. In addition, the two modules
can provide both attribute-aware and relationship-augmented
explainability for automatic EHR coding.

• To evaluate the effectiveness of KGENet, we conducted extensive
experiments on a benchmark dataset. The results demonstrate
that the proposed model outperforms the state-of-the-art models
in terms of both performance metrics and explainability.

1 https://github.com/xutianhan/KGENet.
2

2. Related work

In this section, we present baseline models for EHR coding from
the three perspectives listed above. All these models are based on deep
learning.

2.1. Model based on the improved encoder

Some researchers use CNN-based models. The CAML model [4] is
a well-established CNN-based approach for EHR coding. Furthermore,
to address the issue of underrepresented codes, the authors propose a
variant of the CAML model, called Description Regularized CAML (DR-
CAML). Li et al. presented another CNN-based model MultiResCNN [5]
which leverages multi-filter convolution and a residual network for
EHR text feature extraction. In addition, Luo et al. introduce Fu-
sion [18], a model that employs an improved CNN to compress sparse
and redundant word representations into information-rich and dense
word representations as features.

Some other researchers adopt the model of RNN structure. Dong
et al. introduced the HLAN model [8] which encodes EHR text using
Bidirectional Gated Recurrent Unit (Bi-GRU) and implements a hier-
archical label-wise attention mechanism at both word and sentence
levels. The LAAT model [7], on the other hand, utilizes a bidirectional
Long Short-Term Memory (LSTM) network as the label extractor and
incorporates a label attention layer to learn label-specific vectors for
each ICD code in the EHR. Furthermore, JointLAAT [7] combines the
LAAT model with the task of predicting normalized codes and appends
an additional specific label vector to the output. Joint training is then
performed to obtain the final prediction.

In recent years, some Transformer-based models have been pro-
posed for EHR coding. One such model is TransICD [9], which utilizes
a Transformer encoder to capture contextual word representations and
implements a label-wise attention mechanism. Another study, ISD [6],
adopts a bidirectional multilayer Transformer decoder to extract in-
teractive shared representations from both clinical notes and labels.
Similarly, Malte Feucht et al. proposed the use of Longformer as an
EHR text encoder and experimented with various variant models [10].
Liu et al. introduced a Hierarchical Label-Wise Attention Transformer
(HiLAT) model [11] aimed at enhancing the explainability of ICD
coding. The model uses XL-Net as a pre-training model and uses a
token-level and chunk-level hierarchical structure to handle EHR long
text.

2.2. Model based on the structured labels

Because the ICD codes follow a hierarchical tree structure, some
researchers have used graph neural networks (GNN) to represent ICD
codes in EHR coding. For example, HyperCore [14] used a GCN [19]
to derive the code representation by calculating the co-occurrence
frequency of ICD codes in EHR texts, thereby improving the incomplete

prediction of codes. Similarly, Du et al. [20] used the tree structure
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of the ICD taxonomy to capture code dependencies. In addition, Wang
et al. [21] introduced two approaches to constructing edge weights in
the ICD code graph using the point-wise mutual information and the
TF-IDF value.

The difference with the above work is that we use a directed graph
to encode hierarchical ICD relations. The reason for using a directed
graph is twofold: First, in general, child nodes inherit all attributes
and HER features of their parent nodes. However, the reverse is not
true. For example, the node ‘heart failure’ has two child nodes: ‘left
heart failure’ and ‘right heart failure’. ‘Left heart failure’ possesses all
the attributes and HER features of ‘heart failure’, while also having
its own features that ‘right heart disease’ does not have. Therefore,
we focus more on the transmission from parent nodes to child nodes
and ignore the transmission from child nodes to parent nodes. Second,
whether it is a unidirectional or bidirectional graph, each transmission
of information generates noise, and the more transmissions, the greater
the impact of noise. By removing the transmission from child nodes to
parent nodes, we can minimize the impact of noise as much as possible.

2.3. Model based on external knowledge

The use of knowledge-enhanced models in EHR coding and med-
ical prediction tasks has become increasingly popular [22], as they
not only enhance model accuracy but also provide more logical ex-
planations, which is imperative for healthcare-oriented research. To
this end, MSATT-KG [16] employs a graph convolutional network
to represent ICD codes using ICD description knowledge. Teng and
Yang et al. [17] extracted entities associated with ICD-9 codes via
freebase and integrated them with medical records for the prediction
task, referred to as G-coder. Furthermore, Zou et al. [23] presented a
method that tackles the challenge of patient hospitalization prediction
by augmenting the vector representation of EHR with information
extracted from diverse knowledge graphs. Yuan et al. [24] proposed
to use synonyms in UMLS to learn a more comprehensive ICD code
representation and use a synonym matching network to improve code
classification performance.

Compared to the above work, we consider multi-view disease at-
tributes as well as multiple types of relationships when constructing the
disease knowledge graph. In addition, we design a more appropriate
model framework to utilize the above knowledge.

3. Disease knowledge graph

This section first introduces the disease knowledge graph. Then, we
present the steps of its construction.

3.1. Disease knowledge graph definition

3.1.1. Entity
Since the labels of the EHR coding task are ICD codes, we use

ICD codes as the entities of the disease knowledge graph. In designing
ontology, we followed the specification of the National Center for
Health Statistics (NCHS) for ICD-9-CM [25].

3.1.2. Attribute
Successful EHR coding requires the identification of key medical

terms associated with relevant ICD codes. To this end, we created
multi-view disease attributes for each ICD entity including descrip-
tions, symptoms, physical signs, tests, treatments, and medicines. The
format of the attributes is text that consists of multiple words or
phrases. These attributes were selected due to their high frequency in
EHR texts and their essential role in accurate disease diagnosis.

3.1.3. Relation
The ICD code is logically a hierarchical tree structure, and there is

a parent–child relationship between disease codes. Throughout the ICD
3

Fig. 2. Attributes and relations of the disease knowledge graph. Different dots in (a)
represent different types of attribute text. The gray solid arrows in (b) represent the
hierarchical relationships, and the colored dotted arrows represent different types of
associated relationships. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

code, different digits indicate different levels. For example, in the ICD-
9 coding system, code ‘428’ represents ‘heart failure’ and is a parent
node. Heart failure can be further subdivided into ‘left heart failure’
as ‘428.0’ and ‘right heart failure’ as ‘428.1’, which are child nodes.
Our method is based on the MIMIC-III ICD-9 code system, which has a
total of 4 layers. As the layers increase, the disease codes become more
and more detailed. We call this the ’hierarchical relationships’ between
diseases. The ancestor of each node can be determined by its code.

In addition, when constructing the disease knowledge graph, we
consider other disease relationships between multiple diseases. For
example, hypertension causes ‘heart failure’, and ‘heart failure’ com-
bines with ‘kidney failure’. We call these ‘associated relationships’. In
our knowledge graph these relationships include cause, risk factor,
complication, and pathophysiology [26,27].

Unlike previous work, the directed edges between the ontology
graphs we construct are intended to more clearly express the depen-
dencies between nodes, thus improving the explainability of the model.
For example, if it is necessary to determine whether a patient in an
EHR sample has ‘left heart failure’ or ‘right heart failure’, the EHR
features associated with the ‘heart failure’ parent node are passed to the
current node. Note that our ‘heart failure’ parent node contains its own
disease-related attributes, which ensures that even if the attributes of
the child node cannot be propagated to its parent node, the model still
has enough information to determine the classification of the parent
node.

Fig. 2 shows the attribute types and relationship types of the disease
knowledge graph. The disease knowledge graph is the foundation of our
knowledge-enhanced model and can also provide explainability.

3.2. Construction method

Entity Construction. First, we treat each ICD-9 disease code as
an entity and use authoritative medical resources such as UMLS [28],
Mayo Clinic [29], and Wikipedia [30] to obtain the attribute informa-
tion of each entity. This attribute information includes symptoms, phys-
ical signs, laboratory tests, treatments, and medications. Specifically,
we primarily obtain attribute information based on the UMLS Web
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API. We then design a web crawler to crawl data from Wikipedia and
Mayo Clinic and extract attribute information through rule templates to
provide additional information. For diseases attributes that cannot be
accurately found in authoritative resources, we will supplement them
through the ChatGPT [31] API.

Relation Construction. Next, we construct the hierarchical rela-
ionship between each ICD entity based on the number of digits of
he ICD code and the specific code value. We search for interactive
elationships between ICD codes using the UMLS Web API and use
emplates to supplement the relationships by extracting unstructured
ata from Wikipedia. These relationships include cause, complication,
isk factor, and pathophysiology.

The design of the disease knowledge graph was inspired by previous
ork [32–34], focusing on the attributes and relationships of the

CD entities. In addition, we also use human experts to verify and
upplement the results to build a complete ICD knowledge graph.

. The proposed model

.1. Formal definition

We view EHR coding as a long text, multi-label classification task.
he input of our model is the EHR text and the disease knowledge
raph. EHR text 𝑋 = [𝑥1, 𝑥2,… , 𝑥𝑛] ∈ 𝑛, where 𝑛 is the length of

the words in the EHR. The disease knowledge graph is denoted as
𝐺 = {𝑉 ,𝐷,𝑅, 𝑇 }, where 𝑉 = [𝑣1, 𝑣2,… , 𝑣𝐶 ] is a set of ICD entities (𝐶
indicates the total number of ICD entities). Each entity 𝑣𝑖 in V has a set
of text attribute descriptions 𝐷. 𝑅 denotes the relationship types, and
𝑇 is the set of triples. 𝑅 and 𝑇 form the relation graph in Fig. 2. The
output binary vector 𝑦 ∈ 𝐶 is comprised of elements representing ICD
codes, where a value of 1 signifies an assignment to the EHR, while 0
indicates the opposite.

4.2. Overview of model

A graphical representation of the proposed model architecture is
presented in Fig. 3. The proposed framework is composed of 5 parts,
including a Long sequence encoder (LSE), an attributes encoder (AE), a
hybrid attention module (HAM), a graph propagation module (GPM),
and a classification module (CM). LSE is used to obtain EHR long text
representation. AE is used to encode the multi-view text attributes of
ICD codes to obtain the attribute representation of each label. HAM
first obtains the EHR label-specific features. These features are then pro-
cessed through the GPM to derive EHR interactive features. Finally, the
label-specific features and interactive features are integrated through
CM to predict the probabilities of multiple ICD labels. Details of each
module are shown in Fig. 4.

4.3. Long Sequence Encoder (LSE)

Our input EHR text comes from discharge summaries, which may
contain text noise. So we first remove punctuation and stop words, in-
cluding words such as ‘admission’, ‘date’, ‘birth’, ‘patient’, ‘year’, ‘work’,
etc., and make all words to lowercase. To make the model pay more
attention to clinical feature words, we use en_core_sci_sm and
en_core_med7_trf models in Spacy [35] for Named Entity Recog-
nition (NER). en_core_sci_sm is a small English model specifically
used for scientific and medical texts, which has high accuracy in iden-
tifying symptoms, signs, and laboratory test entities. en_core_med7
_trf is a transformer-based model specifically used for medical entity
identification. It has high accuracy in identifying drug and treatment
entities. We merge the two sets of medical entities to form the input of
our model.

Next, we tokenize the medical entity text 𝑋 into the word sequence
𝑊 = [𝑤1, 𝑤2,… , 𝑤𝑁 ]𝑇 , where 𝑁 is the maximum length of the input
words. If the number of words in 𝑋 is greater than N, we truncate it to
4

N. On the contrary, we perform padding operations. Then, we map the
words to the pre-trained embeddings. The word embedding matrix 𝐸𝑋
btained is:

𝑋 = 𝐸𝑚𝑏𝑒𝑑 (𝑇 𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑟(𝑋)) =
[

𝑒1, 𝑒2,… , 𝑒𝑁
]𝑇 , (1)

here 𝐸𝑋 ∈ 𝑁×𝑑𝑒 , and 𝑑𝑒 is the dimension of embedding.
Then, we feed the word embedding matrix 𝐸𝑋 into a transformer

encoder to get the EHR representation.

𝐻 = 𝑇 𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝐸𝑋 ) =
[

ℎ1, ℎ2, ℎ3,… , ℎ𝑁
]𝑇 , (2)

where 𝐻 ∈ 𝑁×𝑑𝑒 , is the EHR hidden representation matrix.
We use the Clinical-Longformer [36] model as an encoder for the

EHR. Clinical-Longformer is a model based on Longformer [37] that
is specifically used to process clinical text. Its token length can reach
4096.

4.4. Attributes Encoder (AE)

In order to prevent the loss of label semantic information, we encode
the attribute texts D of multiple views in the disease knowledge graph
separately.

The acquisition of embedding for the 𝑖th label text 𝐷𝑖’s specific
view 𝑗 is performed using the ClinicalBERT model [38] pre-trained on
clinical notes.

𝐸𝑗
𝑖 = 𝐶𝑙𝑖𝑛𝑖𝑐𝑎𝑙𝐵𝐸𝑅𝑇 (𝐷𝑗

𝑖 ) =
[

𝑒1, 𝑒2,… , 𝑒𝐾
]𝑇 , (3)

where K is the length of words in 𝐷𝑗
𝑖 . Then we get the representation

of view 𝑗 of the 𝑖th label 𝑞𝑗𝑖 through max-pooling:

𝑞𝑗𝑖 = 𝑚𝑎𝑥-𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝐸𝑗
𝑖 ). (4)

We concatenate all view vectors and perform dimensionality reduc-
tion through a fully connected layer:

𝑞𝑖 = 𝐹𝐶
(

⊕𝑀
𝑗=1𝑞

𝑗
𝑖

)

, (5)

where 𝑀 denotes the number of views in the multi-view text. As
shown in Fig. 2, M = 6 in our disease knowledge graph. The obtained
result 𝑞𝑖 ∈ 𝑑𝑎 is called multi-view attributes representation, and 𝑑𝑎
is its dimension. 𝑄 = [𝑞1, 𝑞2,… , 𝑞𝐶 ]𝑇 ∈ 𝐶×𝑑𝑎 represents the attribute
representation matrix for all the labels.

4.5. Hybrid Attention Module (HAM)

Intuitively, we use label attention to capture text features associated
with specific labels in the EHR training samples. Due to the unbalanced
label distribution of the dataset, it is difficult for the model to learn the
features associated with rare labels. Therefore, a cross-attention module
is designed to provide prior knowledge to handle the assignment of rare
ICD labels.

Label Attention (LA). In the context of EHR multi-label classifica-
tion, a single EHR instance may be associated with multiple labels. To
this end, we propose to use the attention mechanism [39] on the EHR
representation 𝐻 ∈ 𝑁×𝑑𝑒 , where 𝑁 is the maximum word length in
EHR and 𝑑𝑒 is the dimension of EHR word embeddings.

𝑇 = 𝑡𝑎𝑛ℎ(𝑊1𝐻
𝑇 ), 𝐴(𝐿) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊2𝑇 ). (6)

Here 𝑊1 ∈ 𝑑𝑚×𝑑𝑒 and 𝑊2 ∈ 1×𝑑𝑚 are trainable parameters. 𝑇 ∈
𝑑𝑚×𝑁 is the middle layer, and 𝑑𝑚 is the dimensional parameters of
𝑇 . 𝐴(𝐿) ∈ 𝐶×𝑁 is the attention score matrix. Then we can obtain
the label-aware EHR features 𝐹 (𝐿) ∈ 𝐶×𝑑𝑒 under the label attention
mechanism:

𝐹 (𝐿) = 𝐴(𝐿)𝐻. (7)

Cross Attention (CA). We use the attributes representation matrix
𝑄 ∈ 𝐶×𝑑𝑎 as the query, 𝐻 ∈ 𝑁×𝑑𝑒 as the key and value to obtain the

(𝐶) 𝐶×𝑁
knowledge similarity score 𝑆 ∈  . The intuitive explanation for



Artificial Intelligence In Medicine 154 (2024) 102916T. Xu et al.
Fig. 3. Framework of the proposed model. The model framework is divided into 5 parts, namely (A) Long Sequence Encoder, (B) Attributes Encoder, (C) Hybrid Attention Module,
(D) Graph Propagation Module, and (E) Classification Module.
Fig. 4. Details of the proposed model. (A) Long Sequence Encoder, (B) Attributes Encoder, (C) Hybrid Attention Module, and (D) Graph Propagation Module.
this is that we use the attribute knowledge of each label to query the
features of the EHR that are closest to its semantics, and the higher the
similarity, the higher the matching score 𝑆(𝐶).

𝑆(𝐶) = 𝑄𝑈𝐻𝑇 , (8)

where 𝑈 ∈ 𝑑𝑎×𝑑𝑒 is a dimension transformation matrix between the
EHR representation and the multi-view attributes representation. We
then normalize the similarity score 𝑆(𝐶) ∈ 𝐶×𝑁 to the interval [0,1] to
obtain the cross attention score matrix 𝐴(𝐶) =

(

𝐴𝑗
𝑖

)

𝑖={1,…,𝑁},𝑗={1,…,𝐶}
∈

𝐶×𝑁 as follows:

𝐴𝑗
𝑖 = 𝑒𝑆

𝑗
𝑖 ∕

𝑁
∑

𝑖=1
𝑒𝑆

𝑗
𝑖 . (9)

Finally, similar to label attention, we obtain cross-attention features
𝐹 (𝐶) ∈ 𝐶×𝑑𝑒 through the following formula:

𝐹 (𝐶) = 𝐴(𝐶)𝐻. (10)

Attention Fusion. To simplify the computation, the output of label
attention is concatenated with the output of cross attention along the
𝑖th label to obtain the features of the hybrid attention module.

𝐹 (𝐻) = [𝑓 , 𝑓 ,… , 𝑓 ]𝑇 , 𝑓 (𝐻) = 𝑓 (𝐿) ⊕ 𝑓 (𝐶). (11)
5

1 2 𝐶
Here, ⊕ donates concatenate operation, 𝑖 ∈ {1, 2,… , 𝐶}, and 𝐹 (𝐻) ∈
𝐶×𝑑𝑟 , 𝑑𝑟 = 2𝑑𝑒.

4.6. Graph Propagation Module (GPM)

The disease knowledge graph showcases the interrelation between
disease labels, which can also be observed in the label-specific fea-
tures of EHR. In light of this correlation, a Graph Neural Network is
employed, leveraging the disease relation graph, to propagate the label-
specific features of EHR. We name the resultant features interactive
features.

In fact, both hierarchical and interactive relations are directional,
and the aggregated messages of neighboring nodes should decrease as
the number of hops increases. As such, the Gated Graph Neural Network
(GGNN) [40] is a suitable network for information propagation.

This study adopts the GGNN for propagating information over 𝑇
steps, utilizing a Gated Recurrent Unit (GRU) [41] based on the disease
relation graph. At step t = 0, we initialize the hidden state of the 𝑖th
node using the 𝑖th column vector 𝑓𝑖 of HAM output matrix 𝐹 (𝐻):

ℎ0𝑖 = 𝑓𝑖. (12)

During message passing, different weights should be assigned to differ-
ent nodes. For this purpose, we use the following formula to compute
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the weights:

𝑃 (𝑖, 𝑗) =
𝑁𝑖𝑗

𝑁𝑖
. (13)

et 𝑁𝑖 represent the number of occurrences of the 𝑖th label, and 𝑁𝑖𝑗
epresent the number of co-occurrences of the 𝑗th label when the 𝑖th
abel appears. However, to avoid over-smoothing, inspired by Chen
t al. [42], we formulated 𝑎𝑖𝑗 as

𝑎𝑖𝑗 =

{

0 𝑃 (𝑖, 𝑗) < 𝜃,
𝑃 (𝑖, 𝑗) 𝑃 (𝑖, 𝑗) ≥ 𝜃.

(14)

Here, 𝜃 is the threshold which is a hyper-parameter used to filter
the propagation of node information with a weaker correlation. At
timestep t, GPM aggregates messages from neighbor nodes, which can
be expressed as:

𝑎𝑡𝑖 =

[

∑

𝑗
(𝑎𝑖𝑗 )ℎ𝑡−1𝑖 ,

∑

𝑗
(𝑎𝑗𝑖)ℎ𝑡−1𝑖

]

. (15)

n this way, GPM aggregates incoming and outgoing messages by the
ssociation weights between neighbor nodes. Then GPM updates the
idden state using the aggregated feature vector 𝑎𝑡𝑖 and the hidden state
𝑡−1
𝑖 from the previous time step.

𝑧𝑡𝑖 = 𝜎(𝑊 𝑧𝑎𝑡𝑖 + 𝑈𝑧ℎ𝑡−1𝑖 ),

𝑟𝑡𝑖 = 𝜎(𝑊 𝑟𝑎𝑡𝑖 + 𝑈 𝑟ℎ𝑡−1𝑖 ),
̃ 𝑡
𝑖 = 𝑡𝑎𝑛ℎ(𝑊 𝑎𝑡𝑖 + 𝑈 (𝑟𝑡𝑖 ⊙ ℎ𝑡−1𝑖 )),
𝑡
𝑖 = (1 − 𝑧𝑡𝑖)⊙ ℎ𝑡−1𝑖 + 𝑧𝑡𝑖 ⊙ ℎ̃𝑡𝑖.

(16)

The forgotten and reset information is denoted by 𝑧𝑡𝑖 and 𝑟𝑡𝑖, respec-
tively. The logistic sigmoid function 𝜎(.) is employed to control the
gating signals. Furthermore, element-wise multiplication ⊙ is used to
integrate gating signals with hidden states. This process iterates 𝑇
times, where 𝑇 is a hyper-parameter. We obtain the features of GPM
𝐹 (𝐺) ∈ 𝐶×𝑑𝑟 of all categories:

𝐹 (𝐺) =
[

ℎ𝑇1 , ℎ
𝑇
2 ,… , ℎ𝑇𝐶

]𝑇 . (17)

In this way, we can aggregate contextual features from multi-hop
neighbors. We named the output as interactive features.

4.7. Classification Module (CM)

Weighted Fusion. The above 𝐹 (𝐻) ∈ 𝐶×𝑑𝑟 and 𝐹 (𝐺) ∈ 𝐶×𝑑𝑟 are
he label-specific and interactive features of EHR extracted by the two
odules of HAM and GPM respectively. We adaptively fuse these two
ieces through a weighted strategy to get the final representation. The
eights can be computed by:

= 𝜎
(

𝐹𝐶1(𝐹 (𝐻))
)

, 𝛽 = 𝜎
(

𝐹𝐶2(𝐹 (𝐺))
)

, (18)

here 𝜎 is the sigmoid function, 𝐹𝐶1 and 𝐹𝐶2 are two fully connected
ayers. 𝛼𝑖 and 𝛽𝑖 indicate the importance of label-specific features
nd interactive features to the final representation along the 𝑖th label
espectively. 𝛼𝑖 and 𝛽𝑖 are normalized to ensure their sum is 1. The final
epresentation is:

𝑖 = 𝛼𝑖 × 𝑓 (𝐻)
𝑖 + 𝛽𝑖 × 𝑓 (𝐺)

𝑖 . (19)

here 𝑓𝑖 ∈ 2𝑑𝑟 is the row vector of the final EHR text representation
atrix.
Classifier Layer. In order to classify an EHR based on its represen-

ation F, a linear layer is employed as the classifier. Subsequently, the
lassifier leverages a sigmoid transformation to compute the probability
𝑦̂𝑖 for label 𝑖:

𝑦̂𝑖 = 𝜎(𝛾𝑇𝑖 𝑓𝑖 + 𝑏𝑖). (20)

he 𝛾𝑖 is a weight vector and 𝑏𝑖 is a bias parameter. A binary output is
6

redicted using a threshold value of 0.5. Consistent with prior research
n multi-label classification, the binary cross-entropy loss function is
dopted during the training process:

𝐵𝐶𝐸 = −
𝐶
∑

𝑖=1

[

𝑦𝑖𝑙𝑜𝑔𝑦̂𝑖 + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑦̂𝑖)
]

. (21)

For ICD coding of full-label datasets, since its label space 𝐶 = 8686
and the average positive label is only 16, it is a typical sparse label sce-
nario. Inspired by negative sampling approach in Glove [43], for each
sample we randomly select 𝑘 labels from the remaining non-positive la-
bels as negative labels. The predicted probability of unsampled negative
labels is set to 0, which does not participate in the loss calculation, thus
reducing the amount of computation. To balance model performance
and computational burden, we choose 𝑘 = 1000, which gives the
model more opportunities to learn the differences between labels and
reduces the computational burden to some extent without losing the
performance of the result.

5. Experimental setup

5.1. Datasets

To test the performance of our method, we conduct experiments on
the MIMIC-III dataset [44], a large, open-access database that repre-
sents a real-world dataset. The dataset consists of 58,976 admission
records for 49,583 patients treated at Beth Israel Deaconess Medical
Center between 2001 and 2012. Each EHR document in the MIMIC-
III dataset consists of a clinical text that includes details on medical
history, diagnostic findings, surgical procedures, and discharge instruc-
tions. In addition, the diagnoses and procedures performed during
the patient’s stay were coded by coders in descending order of their
importance and relevance. It is important to note that the MIMIC-III
dataset is the only publicly available and commonly used benchmark
dataset for this particular task.

Consistent with previous research [5,7,17], the main objective of
our study is to examine the discharge summaries contained in the
EHR. These summaries serve as a condensed form of information that
summarizes a patient’s hospital stay. To improve the quality of the data,
we applied a data-cleaning process to the discharge summaries. This in-
volved the elimination of irrelevant information such as physician and
hospital details. We use two datasets based on MIMIC-III to evaluate
the effectiveness of our proposed approach.

• Full label dataset: We retain all the diagnostic ICD codes and
their samples that appear on discharge summaries.

• Top-50 label dataset: We predict only the 50 most common ICD
codes and filter the dataset to include cases that have at least one
of the 50 most common codes.

For both of the above datasets, we randomly divide the samples into
training, validation, and test sets. To ensure fairness, we use a simi-
lar partitioning strategy as in the previous work. Table 1 shows the
statistical results of the data for both datasets.

5.2. Evaluation matrics

In this study, the model evaluation metrics include the area under
the curve (AUC) and the F1 score. Furthermore, the evaluation of the
model encompasses the computation of the proportion of the top k
labels having the highest scores in the ground truth, denoted as P@k.
The evaluation employs two sets of metrics, namely micro and macro,
for evaluating the model’s performance. Specifically, the micro metrics
are employed to assess the model’s performance at the instance level,
while the macro metrics are used to evaluate its overall performance

at a higher level.
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Table 1
Statistics for MIMIC-III datasets.

Dataset/split Samples Tokens Average tokens Labels Unique labels Average labels

Full-label dataset
train 47,723 70,846,774 1484 758,216 8686 15.89
val 1631 2,910,870 1784 28,897 3009 17.72
test 3372 6,043,743 1792 61,579 4075 18.26

Top-50 label dataset
train 8066 12,338,529 1529 45,919 50 5.69
val 1573 2,830,895 1799 9283 50 5.90
test 1729 3,156,602 1825 10,477 50 6.06
Table 2
Experimental hyper-parameter settings. The ‘/’ symbol indicates different settings for
the label-50 and label-full datasets.

Hyper-
parameter

Value Description

𝑁 4096 Maximum word length of the input text.
ℎ𝑒𝑎𝑑_𝑛𝑢𝑚 1 Number of EHR transformer encoder attention heads.
𝑑𝑒 768 Dimension of the EHR word embeddings.
𝑑𝑎 768 Dimension of the label attribute representation.
𝑑𝑚 256 Dimension of the middle layer representation.
𝜃 0.2/0.3 A Threshold parameter for filtering neighbor

information.
𝑇 2/3 Steps for message passing in GPM.
𝑑𝑟 1536 Dimension of the label-specific feature and the

interactive feature.
𝑙𝑟 0.001 Learning rate for gradient descent optimization.
𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 16 Number of training examples per batch.
𝑒𝑝𝑜𝑐ℎ 15/35 Number of times to iterate over the training set.

5.3. Implementation details

We implement KGENet using PyTorch and train the model on RTX
3090 GPU (memory 24 GB). We use Adam optimizer and early stopping
in training. The hyper-parameter settings of our experiment are shown
in Table 2.

6. Result and analysis

Through the analysis of the experimental results, we investigated
the following research questions:

• (RQ1) Does KGENet perform best on the EHR coding task com-
pared to the baseline model?

• (RQ2) How does the knowledge enhancement of the disease
knowledge graph affect the model? What is the effect of different
modules?

• (RQ3) What is the basis for the explainability of the model? What
are the advantages of model explainability compared to previous
approaches?

.1. Overall performance (RQ1)

In response to RQ1, the present study provides an account of the
valuation metrics for the top-50 and full-label datasets, as presented
n Table 3. All KGENet results are obtained by setting random number
eeds and averaging 5 experiments.

First, the results in Table 3 show that KGENet outperforms the
ther models on most evaluation metrics. On the MIMIC-III-50 dataset,
GENet achieves 93.7(+0.2−0.3), 95.1(+0.1−0.2), 68.6(+0.1−0.2), 74.2(+0.2−0.2), 68.8(+0.3−0.2),

in terms of macro-AUC, micro-AUC, macro-F1, micro-F1, and P@5,
respectively. On the MIMIC-III-Full dataset, KGENet achieves 94.1(+0.3−0.2),
98.9(+0.2−0.1), 12.5(+0.2−0.3), 56.8(+0.3−0.3), 76.4(+0.2−0.3), 60.3(+0.3−0.4) in terms of macro-
AUC, micro-AUC, macro-F1, micro-F1, P@8, and P@15, respectively.
Positive and negative values represent the upper and lower bounds,
respectively. This result suggests that the disease knowledge graph
has significantly improved the EHR encoding task. Notably, when
7

compared to the ISD baseline, KGENet demonstrated an improvement
of approximately 1.7% and 2.5% in terms of Micro F1 and P@8, respec-
tively, on the MIMIC-III-Full dataset. This enhancement is attributed to
KGENet’s ability to represent labels using multi-view attributes, as well
as the transfer learning mechanism employed for identifying rare labels
based on EHR interactive features.

The second finding of this study is that Transformer-based models
such as TransICD [9], Longformer+DLAC [10], and HiLAT [11] do not
demonstrate superior overall performance compared to CNN-based and
RNN-based models. This result may be attributed to the sample size of
the dataset and the emphasis placed on local features of the text rather
than long-distance associations in the EHR coding task. Hence, it can be
inferred that the efficacy of an EHR coding model is not solely reliant on
the type of encoder employed. Rather, the overall framework and the
size and distribution of the benchmark dataset are the key determinants
of a model’s effectiveness.

The third observation of this study is that as the ICD code space tran-
sitions from top-50 to full, accurately predicting the corresponding ICD
encoding becomes progressively challenging. We discovered that for
all models, macro-average metrics, such as macro-F1, exhibit the most
substantial decline. For instance, CAML’s macro F1 decreased from
53.2% to 8.8%, while KGENet’s macro F1 decreased from 68.6% to
12.5%. The reason for this phenomenon is due to the severe imbalance
in ICD code distribution in the full-label dataset, where some ICD codes
appear only once or twice, rendering the amount of data available for
learning insufficient. However, it is noteworthy that KGENet, which
leverages prior knowledge enhancement, experienced a significantly
lower decrease compared to other baseline models.

6.2. Ablation study (RQ2)

In order to address RQ2, we conducted ablation experiments to
examine the effect of different modules within KGENet. The exper-
imental outcomes for the various KGENet variants are presented in
Table 4. Firstly, ‘‘w/o knowledge’’ refers to KGENet models that do not
utilize knowledge enhancement. We accomplished this by eliminating
the representation process for the attributes and relations of codes in
the disease knowledge graph and instead employing the original label-
wise attention mechanism. Additionally, we evaluated the effects of
removing attribute and relation representations through ‘‘w/o knowl-
edge attribute’’ and ‘‘w/o knowledge relation’’, respectively. Secondly,
‘‘w/o HAM’’ refers to KGENet models without the Hybrid Attention
Module. Lastly, ‘‘w/o GPM’’ denotes the removal of the Graph Inter-
active Module from KGENet. Based on these results show on Table 4,
we have obtained the following insights:

In the context of the MIMIC-III-Full dataset, we observed that the
removal of label knowledge in KGENet led to a significant drop in its
performance, with its macro-F1, micro-F1, and P@8 metrics decreas-
ing by 22.4%, 13.2%, and 7.7%, respectively. This result underscores
the crucial role of knowledge, particularly attributes knowledge, in
the KGENet framework. The ICD code knowledge helps the model to
identify medical keywords and phrase features that are relevant to the
ICD codes in the EHR, which are essential for accurate code recognition,
particularly when dealing with large label space.

The experimental results demonstrate that KGENet’s performance
is adversely affected when the HAM and GPM modules are removed.
Specifically, when the HAM module is eliminated, the micro-F1, macro-
AUC, and P@8 metrics exhibit a respective decrease of 17.6%, 8.7%,
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Table 3
Results (in %) of comparison with baselines on MIMIC-III test sets. The score values are taken from the paper on the baseline model in related work. The bold scores indicate the
best results for each metric. The results of KGENet are tested 5 times with random number seeds and the average of each metric is taken as the result.

Models MIMIC-III-50 MIMIC-III-Full

AUC F1 P@k AUC F1 P@k

Macro Micro Macro Micro P@5 Macro Micro Macro Micro P@8 P@15

CAML [4] 87.5 90.9 53.2 61.4 60.9 89.5 98.6 8.8 53.9 70.9 56.1
DR-CAML [4] 88.4 91.6 57.6 63.3 61.8 89.7 98.5 8.6 52.9 69.0 54.8
MultiResCNN [5] 89.9 92.8 60.6 67.0 64.1 91.0 98.6 8.5 55.2 73.4 58.4
G-coder [17] – 93.3 – 69.2 65.3 – – – – – –
HyperCore [14] 89.5 92.9 60.9 66.3 63.2 93.0 98.9 9.0 55.1 72.2 57.9
MSATT-KG [16] 91.4 93.6 63.8 68.4 64.4 91.0 99.2 9.0 55.3 72.8 58.1
HLAN [8] 88.4 91.9 57.1 64.1 62.5 88.5 98.1 3.6 40.7 61.4 –
LAAT [7] 92.5 94.6 66.6 71.5 67.5 91.9 98.8 9.9 57.5 73.8 59.1
JointLAAT [7] 92.5 94.6 66.1 71.6 67.1 92.1 98.8 10.7 57.5 73.5 59.0
Longformer+DLAC [10] 87.8 91.6 52.2 62.2 61.1 – – – – – –
TransICD [9] 89.4 92.3 56.2 64.4 61.7 – – – – – –
Fusion [18] 93.1 95.0 68.3 72.5 67.9 91.5 98.7 8.3 55.4 73.6 –
HiLAT [11] 92.7 95.0 69.0 73.5 68.1 – – – – – –
ISD [6] 93.5 94.9 67.9 71.7 68.2 93.8 99.0 11.9 55.9 74.5 –

KGENet(ours) 93.7 95.1 68.6 74.2 68.8 94.1 98.9 12.5 56.8 76.4 60.3
Fig. 5. Changes in P@5 relative to 𝜃 on the MIMIC-III-50 dataset.
Table 4
Average results of our model’s ablation experiments on the MIMIC-III-Full test dataset.
w/o stands for without.

Model AUC F1 P@k

Macro Micro Macro Micro P@8

KGENet 94.1 98.9 12.5 56.8 76.4
w/o knowledge 87.8 86.1 9.7 49.3 70.5
w/o attribute 89.2 90.1 10.4 53.7 73.9
w/o relation 91.5 91.7 11.3 56.1 69.8
w/o HAM 90.8 90.3 10.3 54.9 70.7
w/o GPM 90.2 96.5 10.8 52.6 65.5

and 7.5%. These findings suggest that the HAM module is instrumental
in improving model accuracy by leveraging attribute knowledge. More-
over, the removal of the GPM module causes a significant decrease in
the micro-F1, macro-F1, and P@8 metrics by 13.6%, 7.4%, and 14.3%,
respectively. These results validate the significance of the interaction
between EHR label-specific features and indirectly demonstrate the
critical role of ICD relations.

6.3. Effects of hyper-parameter

6.3.1. Effects of hyper-parameter 𝜃
Here, we test the effect of the important hyper-parameter 𝜃 through

experiments. The hyper-parameter in question serves as a threshold
parameter responsible for culling extraneous information from the
edges to avoid the issue of over-smoothing, as demonstrated in the
formula (14). The value range of the hyper-parameter 𝜃 is [0.0, 1.0],
and the interval is 0.1. The effectiveness of 𝜃 is evaluated using the
8

Table 5
Micro-F1 score for different T values on two dataset settings.

Dataset T

1 2 3

MIMIC-III-50 73.1 74.2 73.8
MIMIC-III-Full 56.3 56.6 56.8

performance metric P@5 for the MIMIC-III-50 dataset and P@8 for the
MIMIC-III-Full dataset.

Based on the analysis of the outcomes illustrated in Figs. 5 and 6,
the most favorable values of the hyper-parameter 𝜃 on the MIMIC-III-50
and MIMIC-III-Full datasets are 0.2 and 0.3, respectively. This may be
due to the fact that the MIMIC-III-Full dataset contains a larger number
of labels, making it necessary to escalate the threshold to filter out
relatively irrelevant information from neighboring nodes.

6.3.2. Effects of hyper-parameter 𝑇
The hyperparameter 𝑇 represents the steps for message passing in

GPM. We perform parameter sensitivity analyses using the Micro-F1
score, as it is more appropriate for evaluating multi-label classification.
Since the number of levels of the ICD-9 code in the MIMIC-III dataset
we used is 4, we compare and analyze the results for 𝑇 = 1, 2, 3.

The results are shown in Table 5. For the top-50 and full-label set-
tings, the optimal 𝑇 values are 2 and 3, respectively. The experimental
results reflect to some extent that as the label space increases, 𝑇 needs
to take a larger value to propagate more information from neighboring
nodes.
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Fig. 6. Changes in P@8 relative to 𝜃 on the MIMIC-III-Full dataset.
Fig. 7. Use cases for attribute-aware approach for explainability. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
6.4. Explainability (RQ3)

We propose two interpretable methods by mapping the output of
KGENet to attributes and relations in the disease knowledge graph.

Specifically, in the HAM output, for each ICD code, we compare
the words or phrases with the highest attention weights to the ICD
attributes to provide an explainable basis. We refer to this method
as the attribute-aware approach. Fig. 7 shows the explanatory result
of a case using attribute-aware as the method. ‘427.31’, ‘414.01’, and
‘518.81’ represent ‘atrial fibrillation’, ‘coronary atherosclerosis’, and
‘acute respiratory failure’, respectively, in the ICD-9 code. We used
color to display several words with the highest attention weight in
the EHR text. The experimental results show that in most of the test
samples, the attribute-aware method can effectively extract keywords
associated with ICD codes in EHR.

However, some rare diseases have no or insufficient attributes. The
attributes of other diseases are not obvious in the EHR and need to be
discovered through associated diseases such as their causes and comor-
bidities. KGENet realizes the correct identification of the above diseases
through the GPM. To this end, we propose a relationship-augmented
approach that complements the lack of explainability of the attribute-
aware method through the relationship graph between diseases. As
9

shown in Fig. 8, KGENet identified three ICD codes ‘427.31’, ‘428.0’,
‘585.9’ through HAM, and ‘518.83’ missing. However, the code can be
accurately identified by GPM. The right side of Fig. 8 shows the associ-
ation between these codes in the disease relation graph. It can be seen
that the relationship-augmented method can be a good complement to
the attribute-aware method in terms of explainability.

7. Conclusion

In this work, we present a method for constructing a disease knowl-
edge graph that incorporates multi-view attributes and disease relation-
ships. To effectively extract independent and interactive features asso-
ciated with ICD codes in EHR, we developed a model called KGENet.
KGENet comprises two innovative core modules, namely HAM and
GPM, which enable attribute-aware and relation-augmented explain-
able evidence for the prediction results. Our experiments on a bench-
mark dataset demonstrate that KGENet surpasses the state-of-the-art
methods in both accuracy and explainability.

The limitation of our method is that, compared to other baselines,
the construction of the disease knowledge graph and the preprocessing
of the EHR text require more time. However, we believe this cost
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Fig. 8. Use cases for relation-causal approach for explainability.
s worthwhile to improve the performance and explainability of the
odel.

To ensure the fairness of the comparison experiment with the
aseline model, this study uses only unstructured textual data. In
uture work, we will add structured numerical data, such as laboratory
est data and clinical monitoring information, to further improve the
erformance of the model.
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