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Abstract
The existence of adversarial examples poses a
real danger when deep neural networks are de-
ployed in the real world. The go-to strategy to
quantify this vulnerability is to evaluate the model
against specific attack algorithms. This approach
is however inherently limited, as it says little
about the robustness of the model against more
powerful attacks not included in the evaluation.
We develop a unified mathematical framework
to describe relaxation-based robustness certifica-
tion methods, which go beyond adversary-specific
robustness evaluation and instead provide prov-
able robustness guarantees against attacks by any
adversary. We discuss the fundamental limita-
tions posed by single-neuron relaxations and show
how the recent “k-ReLU” multi-neuron relaxation
framework of (Singh et al., 2019a) obtains tighter
correlation-aware activation bounds by leveraging
additional relational constraints among groups of
neurons. Specifically, we show how additional
pre-activation bounds can be mapped to corre-
sponding post-activation bounds and how they can
in turn be used to obtain tighter robustness certifi-
cates. We also present an intuitive way to visual-
ize different relaxation-based certification meth-
ods. By approximating multiple non-linearities
jointly instead of separately, the k-ReLU method
is able to bypass the convex barrier imposed by
single neuron relaxations. Full version: https:
//arxiv.org/abs/2106.03099

1. Introduction
Adversarial Examples While deep neural networks have
been used with great success for perceptual tasks such as im-
age classification or speech recognition, their performance
can deteriorate dramatically in the face of so-called adver-
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Figure 1. Adversarial Examples: (left) original image “giant panda”
(ImageNet class 339), (middle) adversarial perturbation, (right)
adversarially perturbed image causing misclassification “goldfish”
(ImageNet class 2) on a MobileNetV2 pretrained on ImageNet.

sarial examples (Biggio et al., 2013; Szegedy et al., 2013;
Goodfellow et al., 2014), i.e. small specifically crafted per-
turbations of the input signal, often imperceptible to humans,
that are sufficient to induce large changes in the model out-
put, cf. Figure 1. Ever since their discovery, there has been
a huge interest in the machine learning community to try to
understand their origin and to mitigate their consequences.

Robustness Certification The existence of adversarial ex-
amples poses a real danger when deep neural networks are
deployed in the real world. The go-to strategy to quantify
this vulnerability is to evaluate the model against specific
attack algorithms. This approach is however inherently lim-
ited, as it says little about the robustness of the model against
more powerful attacks not included in the evaluation (Car-
lini & Wagner, 2017; Athalye et al., 2018). We therefore
need to go beyond adversary-specific robustness evaluation
and instead provide provable robustness guarantees against
attacks by any adversary.

The idea of robustness certification is to find the largest
neighborhood (typically norm-bounded) that guarantees that
no perturbation inside it can change the network’s prediction,
or equivalently to find the minimum distortion required to
induce a misprediction. Unfortunately, exactly certifying the
robustness of a network is an NP-complete problem (Katz
et al., 2017; Weng et al., 2018). Consider a ReLU network:
to find the exact mimimum distortion, two branches have to
be considered for each ReLU activation where the input can
take both positive and negative values. This makes exact
verification methods computationally demanding even for
small networks (Katz et al., 2017; Weng et al., 2018; Zhang
et al., 2018).

https://arxiv.org/abs/2106.03099
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Relaxation-based certification While exact certification
is hard, providing a guaranteed certified lower bound
for the minimum adversarial perturbation, resp. an upper
bound on the robust error (i.e. the probability of mispre-
diction for a given uncertainty set), can be done efficiently
with relaxation-based certification methods (Hein & An-
driushchenko, 2017; Wong & Kolter, 2018; Raghunathan
et al., 2018; Dvijotham et al., 2018; Weng et al., 2018;
Zhang et al., 2018; Singh et al., 2018; Mirman et al., 2018;
Singh et al., 2019b; Qin et al., 2019; Salman et al., 2019).
Relaxation-based verifiers trade off precision (increased
false negative rates) with efficiency and scalability by con-
vexly relaxing the non-linearities in the network. The re-
sulting certificates are still sound: they may fail to verify
robustness for a data point that is actually robust, but they
never falsely certify a data point that is not robust.

Single-Neuron Relaxation Barrier The effectiveness of
existing single-neuron relaxation-based verifiers is inher-
ently limited by the optimal convex relaxation obtainable
by processing each non-linearity separately (Salman et al.,
2019). Relaxing the non-linearities separately comes at
the cost of losing correlations between neurons: While ex-
isting frameworks do consider correlations between units
to compute bounds for higher layers, the bounds for neu-
rons in a given layer are computed individually, i.e. without
interactions within the same layer (Salman et al., 2019).
Moreover, as the activation bounds are obtained recursively,
there is a risk that the error amplifies across layers, which is
particularly problematic for deep neural networks.

Multi-Neuron Relaxation The single-neuron relaxation
barrier can be bypassed by considering multi-neuron re-
laxations, i.e. by approximating multiple non-linearities
jointly instead of separately, as suggested in the recent LP-
solver based “k-ReLU” relaxation framework of (Singh
et al., 2019a). The “k-ReLU” relaxation framework obtains
tighter activation bounds by leveraging additional relational
constraints among groups of neurons, enabling significantly
more precise certification than existing state-of-the-art veri-
fiers while still maintaining scalability (Singh et al., 2019a).
Finally, note that there is another conceptually different
approach to bypass the single-neuron relaxation barrier:
(Tjandraatmadja et al., 2020) obtain tightened single neuron
relaxations by considering bounds in terms of the multivari-
ate post-activations preceding the affine layer.

2. Single-Neuron Relaxation
Notation. Let f : X Ă Rn0 Ñ RnL be an L-layer deep
feedforward neural network, given by the equations1

xpiq “ Wpiqσpxpi´1qq ` bpiq for i P JLK , (1)

with input xp0q “ x and output xpLq ” fpxq, where
Wpiq,bpiq denote the layer-wise weight matrix and bias
vector, and where σp¨q denotes the non-linear activation

function, with the convention that σpxp0qq “ x is the
identity activation. We use ni :“ dimpxpiqq to de-
note the number of neurons in layer i, and xJL0,L1K :“
txpL0q, . . . ,xpL1qu to denote the collection of all xpiq for
i P JL0, L1K, where JL0, L1K denotes the set of indices
JL0, L1K :“ tL0, . . . , L1u, with the shorthand notation
JLK ” J1, LK. Note that in our notation the pre-activations
xpiq have the same index as the weight matrix Wpiq

and bias vector bpiq on which they directly depend. To-
gether, the above equations1 define the mapping fp¨q “
WpLqσp ¨ ¨ ¨ Wp2qσpWp1qp¨q ` bp1qq ` bp2q ¨ ¨ ¨ q ` bpLq.

Robustness Certification. The network is considered cer-
tifiably robust with respect to input x and uncertainty set
Bpxq if there is no perturbation within Bpxq that can change
the network’s prediction, i.e. if the largest logit fk̂pxq re-
mains larger than any other logit fk within the entire uncer-
tainty set Bpxq. Formally, the network is certifiably robust
at x with respect to Bpxq if

min
x˚PBpxq

fk̂pxqpx
˚q ´ fkpx

˚q ą 0 , @ k ‰ k̂pxq , (2)

where k̂pxq “ argmaxj fjpxq.

Typical choices for Bpxq are the `p-norm balls Bppx; εq :“
tx˚ : ||x˚ ´ x||p ď εu or the non-uniform box domain
Bpx; tε´j , ε

`
j ujPJn0Kq :“ tx

˚ : xj ´ ε´j ď x˚j ď xj ` ε`j u

with ε´j , ε
`
j P R

`
0 .

The optimization domain in the above certification problem
can be narrowed down significantly if we are given lower-
and upper- pre-activation bounds, `piq ď xpiq ď upiq, for
i P JL´1K. We will see below how (approximate) pre-
activation bounds can be computed. The corresponding
optimization problem, subsequently referred to via the short-
hand notation Opc, c0, L, `JĹ 1K,uJĹ 1Kq, reads

min
xJ0,LK

cJxpLq ` c0 (3)

s.t. xpiq “ Wpiqσpxpi´1qq ` bpiq for i P JLK

xp0q P Bpxq , `piq ď xpiq ď upiq for i P JL´1K

where the vector-inequalities are considered to hold element-
wise, i.e. `piqj ď x

piq
j ď u

piq
j , @ j P JniK. For c P

tek̂pxq ´ ekuk‰k̂pxq, c0 “ 0 and `piqj “ ´8,u
piq
j “ 8,

this formulation is equivalent to Equation 2.

We denote the optimal value of Opc, c0, L, `JĹ 1K,uJĹ 1Kq

by p˚O. If p˚O ą 0 for all c P tek̂pxq ´ ekuk‰k̂pxq, with

c0 “ 0 and valid pre-activation bounds `JĹ 1K,uJĹ 1K, the
network is certifiably robust with respect to x and Bpxq.

1This formulation captures all network architectures in which
units in one layer receive inputs from units in the previous layer,
including fully-connected and convolutional networks. To capture
residual networks, in which units receive inputs from units in
multiple previous layers, the right hand side of the equation would
have to be extended to include dependencies on xpjq for j ă i´1.
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Exact pre-activation bounds `piqj and upiqj are given by the
minimization (`ej) resp. maximization (´ej) problems
Op˘ej , 0, i, `

Jí 1K,uJí 1Kq for all neurons j P JniK and lay-
ers i P JL´1K. Unfortunately, computing exact bounds is
as NP-hard as solving the exact certification problem.

Most of the existing robustness certification methods in use
today are based on a variant of one of two (pre)-activation
bound computation paradigms: (i) Interval Bound Propaga-
tion or (ii) Relaxation-based Bound Computation. The pre-
activation bounds play a crucial role in these certification
methods: the tighter they are, the lower the false-negative
rate of the method.

Relaxation-based Certification Exactly certifying the
robustness of a network via Equation 3 is an NP-complete
problem (Katz et al., 2017; Weng et al., 2018), due to
the non-convex constraints imposed by the non-linearities.
Relaxation-based verifiers trade off precision with efficiency
and scalability by convexly relaxing (over-approximating)
the non-linearities in the network.

The convex relaxation-based certification problem, sub-
sequently referred to via the short-hand notation
Cpc, c0, L, `JĹ 1K,uJĹ 1Kq, reads

min
xJ0,LK, zJ0,Ĺ 1K

cJxpLq ` c0 (4)

s.t. xpiq “ Wpiqzpi´1q ` bpiq for i P JLK

σpxpiqq ď zpiq ď σpxpiqq for i P JL´1K

xp0q P Bpxq , `piq ď xpiq ď upiq for i P JL´1K

where σpxpiqq resp. σpxpiqq are convex resp. concave bound-
ing functions satisfying σpxpiqq ď σpxpiqq ď σpxpiqq for all
`piq ď xpiq ď upiq, and where zpiq are the post-activation
variables with the convention that zp0q “ xp0q. We de-
note the optimal value of Cpc, c0, L, `JĹ 1K,uJĹ 1Kq by p˚C .
Naturally, we have that p˚C ď p˚O. Thus, if p˚C ą 0 for
all c P tek̂pxq ´ ekuk‰k̂pxq, with c0 “ 0 and valid pre-

activation bounds `JĹ 1K,uJĹ 1K, the network is certifiably
robust w.r.t. x and Bpxq.

More on single-neuron relaxation can be found in Sec-
tion 5.3 in the Appendix.

Single-Neuron Relaxation Barrier The effectiveness of
existing single-neuron relaxation-based verifiers is inher-
ently limited by the tightness of the optimal single-neuron
relaxation, defined in Section 5.3 in the Appendix. In
a series of highly compute-intense experiments, (Salman
et al., 2019) found that optimal single-neuron relaxation
based verification, i.e. solving the certification problems
Coptp˘ej , 0, i, `

Jí 1K,uJí 1Kq for all neurons j P JniK and
layers i, does not significantly improve upon the gap be-
tween verifiers that greedily compute approximate pre-

Figure 2. Multi-neuron relaxations obtain tighter correlation-
aware activation bounds by leveraging additional relational con-
straints among groups of neurons, thereby overcoming the convex
barrier imposed by the single-neuron relaxations.

activation bounds and only solve the relaxed (primal or
dual) certification problem Coptpc, 0, L, `

JĹ 1K,uJĹ 1Kq with
c P tek̂pxq ´ ekuk‰k̂pxq for the logit layer, and the exact
mixed integer linear programming (MILP) verifier from
(Tjeng et al., 2018), suggesting that there is an inherent
barrier to tight verification for single neuron relaxations.
To improve the tightness of relaxation-based certification
methods we therefore have to go beyond single-neuron re-
laxations.

3. Multi-Neuron Relaxation
The single-neuron relaxation barrier can be bypassed by
considering multi-neuron relaxations, i.e. by approximating
multiple non-linearities jointly instead of separately, as sug-
gested in the recent LP-solver based “k-ReLU” relaxation
framework of (Singh et al., 2019a). Singh et al.’s multi-
neuron relaxation framework is specific to networks with
ReLU non-linearities but can otherwise be incorporated into
any certification method (primal or dual) that operates with
pre-activation bounds, including (Weng et al., 2018; Zhang
et al., 2018; Wong & Kolter, 2018).

In this Section, we show how the “k-ReLU” relaxation
framework obtains tighter activation bounds by leveraging
additional relational constraints among groups of neurons.
In particular, we show how additional pre-activation bounds
can be mapped to corresponding post-activation bounds
and how they can in turn be used to obtain tighter bounds
in higher layers, as illustrated in Figure 2. By capturing
interactions between neurons, the k-ReLU method is able to
overcome the convex barrier imposed by the single neuron
relaxation (Salman et al., 2019).

Singh et al.’s experimental results indicate that k-ReLU en-
ables significantly more precise certification than existing
state-of-the-art verifiers while maintaining scalability. To
illustrate the precision gain, Singh et al. measure the volume
of the output bounding box computed after propagating an
`8-ball of radius ε “ 0.015 through a fully connected net-
work with 9 layers containing 200 neurons each. They find



A Primer on Multi-Neuron Relaxation-based Adversarial Robustness Certification

that the volume of the output from 2-ReLU resp. 3-ReLU re-
laxation is 7 resp. 9 orders of magnitude smaller than from
single-neuron relaxation-based DeepPoly verifier (Singh
et al., 2019a). Similarly, on the 9 ˆ 200 fully-connected
network resp. a convolutional network, k-ReLU certifies
506 resp. 347 adversarial regions whereas the single-neuron
relaxation based RefineZono verifier certifies 316 resp. 179
adversarial regions (Singh et al., 2019a).

ReLU branch polytopes Following (Singh et al., 2019a),
we consider the pre-activations xpiq and the post-activations
zpiq as separate neurons. Let Sp`q be a convex set com-
puted via some relaxation based certification method ap-
proximating the set of values that neurons pxJ0,`K, zJ0,`´1Kq,
including the pre-activations xp`q but excluding the post-
activations zp`q, can take with respect to Bpxq,

Sp`q :“
!

pxJ0,LK, zJ0,Ĺ 1Kq : (5)

xpiq “ Wpiqzpi´1q ` bpiq for i P J`K

σpxpiqq ď zpiq ď σpxpiqq for i P J`´1K

xp0q P Bpxq , `piq ď xpiq ď upiq for i P J`´1K
)

Note that, variables pxJ``1,LK, zJ`,Ĺ 1Kq that don’t appear in
the constraints, are considered to be unconstrained, i.e. they
take values in the entire real number line.

In general, pre-activations x
p`q
j can take both positive and

negative values in Sp`q. For each ReLU activation where
the input, i.e. the corresponding pre-activation, can take
both positive and negative values, two branches have to be
considered. Define the convex polytopes induced by the two
branches of the j-th ReLU unit at layer ` as

C
p`q
j` :“ tpxJ0,LK, zJ0,Ĺ 1Kq : x

p`q
j ě 0, z

p`q
j “ x

p`q
j u

C
p`q
j´ :“ tpxJ0,LK, zJ0,Ĺ 1Kq : x

p`q
j ď 0, z

p`q
j “ 0u ,

(6)

which can be written more concisely as

C
p`q
j sj

:“
!

pxJ0,LK, zJ0,Ĺ 1Kq : sjx
p`q
j ě0, z

p`q
j “

1`sj
2

x
p`q
j

)

.

(7)

Next, we introduce some notation to describe the poly-
topes representing the possible ways of selecting one ReLU
branch per neuron. Let J Ď Jn`K be some index set over
neurons, with cardinality |J |. For a specific configuration
psj1 , . . . , sj|J|q P t`,´u

|J| of individual ReLU branches,
out of all 2|J| possible configurations, let

Q
p`q
J,psj1 ,...,sj|J| q

:“
č

jPJ

C
p`q
j sj

(8)

be the convex polytope defined as the intersection of the |J |
individual ReLU branch polytopes tCp`qj sjujPJ .

Next, define Qp`qJ as the collection of all 2|J| convex poly-
topes Qp`qJ,psj1 ,...,sj|J| q

, indexed by all possible ReLU branch

configurations psj1 , . . . , sj|J|q P t`,´u
|J|,

Q
p`q
J :“

"

č

jPJ

C
p`q
j sj

ˇ

ˇ

ˇ
psj1 , . . . , sj|J|q P t`,´u

|J|

*

. (9)

Additional Relational Constraints The k-ReLU relax-
ation framework bypasses the single-neuron convex bar-
rier by leveraging additional relational constraints among
groups of neurons. Specifically, the k-ReLU framework
computes bounds on additional relational constraints of the
form

ř

jPJ ajx
p`q
j . These additional relational constraints,

together with the usual interval bounds, are captured by
the convex polytope P p`qJ,A. Formally, let P p`qJ,A Ě Sp`q
be a convex polytope containing interval constraints (for
paj1 , . . . , aj|J|q with aj P t´1, 0, 1u,

ř

jPJ |aj | “ 1)
and relational constraints (for general paj1 , . . . , aj|J|q, with

aj P R) over neurons x
p`q
j , j P J , defined as

P
p`q
J,A :“

!

pxJ0,LK, zJ0,Ĺ 1Kq :
ÿ

jPJ

ajx
p`q
j

ď cp`qpaj1 , . . . , aj|J|q
ˇ

ˇ

ˇ
paj1 , . . . , aj|J|q P A

)

,

(10)
where the set A contains the coefficient-tuples of all the
constraints defining P p`qJ,A.

In practice, the corresponding bounds cp`qpaj1 , . . . , aj|J|q on

interval and relational constraints over neurons x
p`q
j , j P J ,

can be computed using any of the existing bound compu-
tation algorithms, e.g. (Zhang et al., 2018), Algorithm 1 in
(Wong & Kolter, 2018) or DeepPoly (Singh et al., 2019a).
Using the notation for the relaxation-based certification
problem in Equation 4, the bounds are given as

cp`qpaj1 , . . . , aj|J|q “ Cp´a, 0, `, `J`́ 1K,uJ`́ 1Kq (11)

with a “
ř

jPJ ajej , where ej denotes the j-th canonical
basis vector.

Ideally, one would like P p`qJ,A to be the projection of Sp`q

onto the variables x
p`q
j indexed by J . However, com-

puting this projection is prohibitively expensive. Singh
et al. (2019a) heuristically found A “ tpaj1 , . . . , aj|J|q P

t´1, 0, 1u|J|zp0, . . . , 0qu, containing 3|J| ´ 1 constraints
(2|J | interval and 3|J| ´ 2|J | ´ 1 relational), to work well
in practice. It remains an open problem of whether there
exists a theoretically optimal arrangement of a given number
of additional relational constraints. Geometrically, P p`qJ,A is
an over-approximation of the projection of Sp`q onto the
variables x

p`q
j indexed by J .
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Optimal Convex Multi-Neuron Relaxation The opti-
mal convex relaxation of the n` ReLU assignments con-
siders all n` neurons jointly

Sp`qopt “ CH
´

ď

QPQ
p`q

Jn`K

tSp`q XQu
¯

, (12)

where Qp`qJn`K
is the collection of the 2n` convex polytopes

Q
p`q
ps1,...,sn`

q
:“

Ş

jPJn`K C
p`q
j sj

indexed by all possible ReLU
branch configurations across neurons at layer `, and where
CH denotes the Convex-Hull.

k-ReLU Relaxation The k-ReLU framework partitions
the n` neurons into n`{k disjoint sub-groups of size k, then
jointly relaxes the neurons within each sub-group, as a com-
promise between the practically infeasible joint relaxation
of all n` neurons and the single-neuron relaxation barrier
arising when relaxing each neuron individually.

Suppose that n` is divisible by k. Let J “ tJiu
n`{k
i“1 be a

partition of the set of neurons Jn`K such that each group
Ji P J contains exactly |Ji| “ k indices. (Singh et al.,
2019a) k-ReLU framework computes the following convex
relaxation

Sp`qk-ReLU “ Sp`q X
n`{k
č

i“1

CH
´

ď

QPQ
p`q
Ji

tP
p`q
Ji,Ai

XQu
¯

. (13)

Conceptually, each convex polytope P p`qJi,Ai
(containing in-

terval and relational constraints on neurons x
p`q
j , j P Ji) is

intersected with convex ReLU branch polytopes Q from
the set Qp`qJi , producing 2k convex polytopes tP p`qJi,Ai

X

Qu
QPQ

p`q
Ji

, one for each possible branch Q P Qp`qJi .

The union
Ť

QPQ
p`q
Ji

tP
p`q
Ji,Ai

XQu of all 2k convex polytopes

captures2 the uncertainty set over post-activations z
p`q
j in-

dexed by j P Ji. As the different groups of neurons are
disjoint Ji X Jj “ H, we can combine those group-specific
post-activation uncertainty sets by intersecting their con-
vex hulls Ki “ CH

`
Ť

QPQ
p`q
Ji

tP
p`q
Ji,Ai

X Qu
˘

. From this,

Sp`qk-ReLU is obtained by intersection with the convex set Sp`q.

(Singh et al., 2019a) heuristically chose the partition J “

tJiu
n`{k
i“1 such that neurons j P Jn`K are grouped according

to the area of their triangle relaxation (i.e. neurons with
similar triangle relaxation areas are grouped together). It
remains an open problem whether there exists a theoretically
optimal partitioning of the groups of neurons.

2“over-approximates” (to be more precise), since P p`qJi,Ai
is an

over-approximation of the projection of Sp`q onto the variables
indexed by Ji.

Convex Hull Computation Singh et al. use the cdd li-
brary to compute convex hulls (cdd, 2021). cdd is an imple-
mentation of the double description method by Motzkin, that
allows to compute all vertices (i.e. extreme points) of a gen-
eral convex polytope given as a system of linear inequalities.
cdd also implements the reverse operation, allowing to com-
pute the convex hull from a set of vertices. In practice, cdd
is used first to compute the vertices of the convex polytopes
tP
p`q
Ji,Ai

XQu
QPQ

p`q
Ji

and second to compute the convex hull

of the union of the vertices of all these polytopes.

Tighter bounds in higher layers Finally, we show how
the k-ReLU relaxation Sp`qk-ReLU can be used to obtain tighter
bounds in higher layers. The k-ReLU method computes
refined pre-activation bounds `pi`1q

j ,u
pi`1q
j for neurons

at layer ` ` 1, by maximizing and minimizing x
pi`1q
j “

W
p``1q
j¨¨ zp`q ` b

p``1q
j w.r.t. zp`q subject to zp`q P Sp`qk-ReLU,

`
p``1q
j “ min

zp`qPSp`qk-ReLU

W
p``1q
j¨¨ zp`q ` b

p``1q
j (14)

u
p``1q
j “ max

zp`qPSp`qk-ReLU

W
p``1q
j¨¨ zp`q ` b

p``1q
j (15)

Since all the constraints in Sp`qk-ReLU are linear, we can use an
LP-solver for the maximization and minimization. Singh et
al. use the gurobi solver (Gurobi, 2021).

Interpretation Computing bounds on the additional rela-
tional constraints corresponds to solving a bounding prob-
lem on a widened network, that is equal to the original
network up to layer `´ 1 but with a “modified” `-th layer
which includes additional neurons representing linear com-
binations of rows of the `-th layer weight matrix with coef-
ficients determined by paj1 , . . . , aj|J|q. See Figure 2.

4. Discussion
We have shown how the recent “k-ReLU” framework of
(Singh et al., 2019a) obtains tighter correlation-aware activa-
tion bounds by leveraging additional relational constraints
among groups of neurons. In particular, we have shown
how additional pre-activation constraints can be mapped to
corresponding post-activation constraints and how they can
in turn be used to obtain tighter pre-activation bounds in
higher layers. The k-ReLU framework is specific to ReLU
networks but can otherwise be incorporated into any certifi-
cation method that operates with pre-activation bounds.

The main degrees of freedom in k-ReLU are the partitioning
of the neurons into sub-groups and the choice of coefficients
aj in the additional relational constraints. We consider it to
be an interesting avenue of research to investigate whether
there is a theoretically optimal partitioning as well as choice
for the coefficients of the additiona relational constraints.
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Figure 3. Visualization of different relaxation methods. (a) Uncertainty set after the first affine layer (i.e. Sp1q projected onto xp1q)
and its ReLU projection, (b) uncertainty set, its ReLU projection, single-neuron relaxation (SNR) with same relaxation slope matrices
Σp1q “ Σ

p1q
and SNR with optimal single-neuron relaxation (note that the same slope SNR set contains the optimal SNR set which

in turn contains the ReLU projection set), (c) uncertainty set, its ReLU projection and the k-ReLU relaxation (corresponding to the
convex hull of the ReLU projection), (d) everything combined for comparison. Note that corresponding pre- and post-activation pairs are
superimposed on the same axis, i.e. both x

p1q
1 and z

p1q
1 are plotted (superimposed) on the horizontal axis while both x

p1q
2 and z

p1q
2 are

plotted (superimposed) on the vertical axis. This style of visialization, where pre- and post-activation pairs are superimposed, allows to
easily convey the effect of the non-linearities.

5. Appendix
5.1. Visualization of Relaxation Methods

5.2. Notation

We introduce the following additional notation:

Definition 1. (Row / column indexing). Let A P Rmˆn be an arbitrary real-valued matrix. We use Ai¨¨ to denote the i-th
row and A:j to denote the j-th column of A, for i P JmK and j P JnK.

Definition 2. (Positive / negative entries). Let A P Rmˆn be an arbitrary real-valued matrix. Define

r ¨ s` : A Ñ A` :“ maxpA, 0q ,

r ¨ s´ : A Ñ A´ :“ minpA, 0q ,
(16)

where the maxp¨, ¨q and minp¨, ¨q are taken entrywise. Note that by definition, A “ A` `A´.

Definition 3. (Row-wise q-norm). Let A P Rmˆn be an arbitrary real-valued matrix. Define the row-wise q-norm || ¨ ||q¨¨
as the following column vector in pR`0 qm:

||A||q¨¨ “ p||A1¨¨||q, ||A2¨¨||q, . . . , ||Am¨¨||qq
J . (17)

5.3. Single-Neuron Relaxation Continued

Optimal Single-Neuron Relaxation Under mild assumptions (non-interactivity, see below), the optimal convex relaxation
of a single non-linearity, i.e. its convex hull, is given by σoptpxq ď σpxq ď σoptpxq (Salman et al., 2019), where

σoptpxq is the greatest convex function majored by σ

σoptpxq is the smallest concave function majoring σ
(18)

In general, for vector-valued non-linearities σ : Rn Ñ Rm, the optimal convex relaxation may not have a simple analytic
form. However, if there is no interaction among the outputs σi for i P JmK, the optimal convex relaxation does admit a
simple analytic form (Salman et al., 2019):
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Definition 4. Salman et al.’s Definition B.2 (non-interactivity) Let σ : Rn Ñ Rm be a vector-valued non-linearity with
input x P r`,us Ă Rn and output σpxq P Rm. For each output σjpxq, let Ij Ă JnK be the set of x’s entries that affect
σjpxq. We call the vector-valued non-linearity non-interactive if the sets Ij for j P JmK are mutually disjoint Ij X Ik “ H
for all j ‰ k P JmK.

All element-wise non-linearities such as (leaky)-ReLU, sigmoid and tanh are non-interactive. MaxPooling is also non-
interactive if the stride is no smaller than the kernel size, i.e. if the receptive regions are non-overlapping.

For the ReLU non-linearity σpxq “ maxpx, 0q, the optimal convex relaxation with respect to pre-activation bounds `, u, is
given by the triangle relaxation (Ehlers, 2017),

σpxq “ maxp0, xq , σpxq “
u

u´ `
px´ `q (19)

see Figure 4 (middle) for an illustration.

We denote the optimal relaxation-based certification problem as Copt and the corresponding optimal value of the objec-
tive as p˚Copt

.

Optimal LP-relaxed Verification For piece-wise linear networks, including (leaky)-ReLU networks, the optimal single-
neuron relaxation-based certification problem Coptpc, c0, L, `

JĹ 1K,uJĹ 1Kq is a linear programming problem and can thus
be solved exactly with off-the-shelf LP solvers. Two steps are required (Salman et al., 2019): (a) We first need to obtain
optimal single-neuron relaxation-based pre-activation bounds for all neurons in the network except those in the logit layer.
(b) We then solve the LP-relaxed (primal or dual) certification problem exactly for the logit layer of the network.

(a) Obtaining optimal single-neuron relaxation-based pre-activation bounds. The optimal single-neuron relaxation-based
pre-activation bounds are obtained by recursively solving the minimization (`ej) resp. maximization (´ej) problems
Coptp˘ej , 0, i, `

Jí 1K,uJí 1Kq for all neurons j P JniK at increasingly higher layers i P JL´1K.

(b) Solving the LP-relaxed (primal or dual) certification problem for the logit layer. We then solve the linear program
Coptpc, 0, L, `

JĹ 1K,uJĹ 1Kq for all c P tek̂pxq´ekuk‰k̂pxq with the above pre-activation bounds. If the solutions of all linear
programs are postive, i.e. if p˚Copt

ą 0 (primal) or d˚Copt
ą 0 (dual) for all c P tek̂pxq ´ ekuk‰k̂pxq, the network is certifiably

robust w.r.t. x and Bpxq.

Note that the number of optimization sub-problems that need to be solved scales linearly with the number of neurons, which
can easily be in the millions for deep neural networks (Salman et al., 2019). For this reason, much of the literature on
certification for deep neural networks has focused on efficiently computing approximate pre-activation bounds. An efficient
and scalable alternative to solving the optimal LP-relaxed verification problem exactly is to only solve (b) exactly and
instead of (a) to greedily compute approximate but sound pre-activation bounds.

As we will see shortly, tighter pre-activation bounds also yield tighter relaxations when over-approximating the non-
linearities. Most of the existing relaxation-based certification methods in use today are based on a variant of one of two
greedy (pre)-activation bound computation paradigms: (i) interval bound propagation (Algorithm 1) or (ii) relaxation-based
backsubstitution (Algorithm 2). The pre-activation bounds play a crucial role in these certification methods: the tighter they
are, the lower the false-negative rate of the method.

Interval Bound Propagation. The simplest possible method to obtain approximate but sound pre-activation bounds
is given by the Interval Bound Propagation (IBP) algorithm (Dvijotham et al., 2018), which is based on the idea that
valid layer-wise pre-activation bounds can be obtained by considering a separate worst-case previous-layer perturbation
ξ for each row W

piq
j¨¨ , satisfying the constraint that ξ is within the previous-layer lower- and upper- pre-activation bounds

`
pi´1q
j1 ď ξj1 ď u

pi´1q
j1 ,@j1 P Jni´1K. The j1-th perturbation entry of the greedy solution is uniquely determined by the sign

of the j1-th entry of the vector W
piq
j¨¨ . The corresponding bounds are

`
piq
j ě

“

W
piq
j¨¨

‰

`
σp`pi´1q

q `
“

W
piq
j¨¨

‰

´
σpupi´1qq ` b

piq
j

u
piq
j ď

“

W
piq
j¨¨

‰

´
σp`pi´1q

q `
“

W
piq
j¨¨

‰

`
σpupi´1qq ` b

piq
j

(20)
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Figure 4. (Left) ReLU with pre-activation bounds `piqj and upiqj . (Middle) Optimal ReLU relaxation. (Right) Special relaxation where

Σpiq “ Σ
piq

. The slopes, upper- and lower- offsets are determined by Σ
piq
jj ,Σ

piq
jj and βpiq

j
,β
piq

j respectively.

The computational complexity of the Interval Bound Propagation algorithm is linear in the number of layers L. The complete
algorithm is shown in Algorithm 1.

Algorithm 1 Interval Bound Propagation

input: Parameters tWpiq,bpiquLi“1, input x, p-norm, perturbation size ε
`p1q “ Wp1qx´ ε||Wp1q||p˚¨¨ ` bp1q

up1q “ Wp1qx` ε||Wp1q||p˚¨¨ ` bp1q

for i “ 2, . . . , L do
`piq “ W

piq
` σp`pi´1q

q `W
piq
´ σpupi´1qq ` bpiq

upiq “ W
piq
´ σp`pi´1q

q `W
piq
` σpupi´1qq ` bpiq

end for
output: bounds t`piq,upiquLi“1

A more sophisticated class of approximate but sound pre-activation bounds can be obtained by greedy relaxation-based
backsubstitution.

Linear bounding functions Of particular interest is the case where each non-linear layer is bounded by exactly one linear
lower relaxation function Φpiqp¨q and one linear upper relaxation function Φ

piq
p¨q, as the corresponding relaxation-based

verification problem can be solved greedily in this case (Salman et al., 2019). For ReLU non-linearities we have the
following expressions for the linear bounding functions:

Proposition 1. (Linear ReLU relaxation functions (Weng et al., 2018)). Each ReLU layer can be bounded as follows

Φpiqpxpiqq ď σpxpiqq ď Φ
piq
pxpiqq , (21)

@ `piq ď xpiq ď upiq, with Φpiqpxpiqq :“ Σpiqxpiq ` βpiq, Φ
piq
pxpiqq :“ Σ

piq
xpiq ` β

piq
, where the (diagonal) relaxation

slope matrices Σpiq,Σ
piq

and lower- and upper- offset vectors βpiq,β
piq

are given by

Σ
piq
jj “

$

’

’

&

’

’

%

0

1
u
piq
j

u
piq
j ´`

piq
j

, Σ
piq
jj “

$

’

’

&

’

’

%

0

1

α
piq
j

, β
piq

j “

$

’

’

&

’

’

%

0

0
´u

piq
j `

piq
j

u
piq
j ´`

piq
j

, βpiq
j
“

$

’

’

&

’

’

%

0

0

0

,

if j P Ipiq´
if j P Ipiq`
if j P Ipiq

(22)

with 0 ď α
piq
j ď 1, and where Ipiq´ , Ipiq` , and Ipiq denote the sets of activations j P JniK in layer i where the lower and

upper pre-activation bounds `piqj ,u
piq
j are both negative, both positive, or span zero respectively. See Figure 4 (right) for an

illustration.

Proofs can be found in (Weng et al., 2018; Zhang et al., 2018; Salman et al., 2019). See (Zhang et al., 2018) or (Liu et al.,
2019) for how to define the relaxation slope matrices, lower- and upper- offset vectors for general activation functions.
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Note that the linear upper bound is the optimal convex relaxation for the ReLU non-linearity, cf. Equation 19. For the lower
bound, the optimal convex relaxation is not achievable as one linear function, however, and we can use any “sub-gradient”
relaxation σjpxpiqq “ α

piq
j x

piq
j with 0 ď α

piq
j ď 1, cf. Equation 19.

Choosing the same slope for the lower- and upper- relaxation functions, i.e. Σpiq “ Σ
piq

, recovers Fast-Lin (Weng et al.,
2018) and is equivalent to DeepZ (Singh et al., 2018). The same procedure is also used to compute pre-activation bounds
in (Wong et al., 2018) (Algorithm 1). The case where the slopes Σpiq ‰ Σ

piq
of the lower relaxation function Φpiqp¨q are

selected adaptively, αpiqj P t0, 1u, depending on which relaxation has the smaller volume, recovers CROWN (Zhang et al.,
2018) and is equivalent to DeepPoly (Singh et al., 2019b).

Greedy Backsubstitution The relaxation-based certification problem with linear bounding functions can be solved
greedily in a layer-by-layer fashion (Wong & Kolter, 2018; Weng et al., 2018; Zhang et al., 2018; Salman et al., 2019). For
instance, to obtain bounds on x

pi`1q
j “ W

pi`1q
j¨¨ σpxpiqq ` b

pi`1q
j , we greedily replace the non-linearities σpxpiqq with their

lower and upper relaxation functions, Φpiqpxpiqq resp. Φ
piq
pxpiqq, in such a way that we under-estimate the lower bounds

`
pi`1q
j and over-estimate the upper bounds upi`1q

j . Specifically, the bounding functions for σpxpiqq are chosen based on the

signs of the elements of the j-th row of the weight matrix, W
pi`1q
j¨¨ , i.e.

`
pi`1q
j ě

”

W
pi`1q
j¨¨

‰

`
Φpiqpxpiqq `

“

W
pi`1q
j¨¨

‰

´
Φ
piq
pxpiqq ` b

piq
j

“

´

“

W
pi`1q
j¨¨

‰

`
Σpiq `

“

W
pi`1q
j¨¨

‰

´
Σ
piq
¯

xpiq

`
“

W
pi`1q
j¨¨

‰

`
βpiq `

“

W
pi`1q
j¨¨

‰

´
β
piq
` b

piq
j

u
pi`1q
j ď

“

W
pi`1q
j¨¨

‰

´
Φpiqpxpiqq `

“

W
pi`1q
j¨¨

‰

`
Φ
piq
pxpiqq ` b

piq
j

“

´

“

W
pi`1q
j¨¨

‰

´
Σpiq `

“

W
pi`1q
j¨¨

‰

`
Σ
piq
¯

xpiq

`
“

W
pi`1q
j¨¨

‰

´
βpiq `

“

W
pi`1q
j¨¨

‰

`
β
piq
` b

piq
j

(23)

Similarly, in the expression for xpiq “ Wpiqσpxpi´1qq`bpiq in the bounds above, we can greedily replace the non-linearities

σpxpi´1qqwith their relaxation functions Φpi´1q
pxpi´1qq resp. Φ

pi´1q
pxpi´1qq depending on the signs of

´

“

W
pi`1q
j¨¨

‰

`
Σpiq`

“

W
pi`1q
j¨¨

‰

´
Σ
piq
¯

Wpiq and
´

“

W
pi`1q
j¨¨

‰

´
Σpiq `

“

W
pi`1q
j¨¨

‰

`
Σ
piq
¯

Wpiq, thus obtaining linear bounds for x
pi`1q
j in terms

of xpi´1q. By the same argument we can continue this backsubstitution process until we reach the input xp0q, thus getting
bounds on x

pi`1q
j in terms of xp0q of the following form, which holds for all xp0q P Bpxq,

Λ
pi`1q
j¨¨ xp0q ` γpi`1q

j
ď x

pi`1q
j ď Λ

pi`1q

j¨¨ xp0q ` γ
pi`1q
j (24)

where Λ
pi`1q
j¨¨ ,Λ

pi`1q

j¨¨ capture the products of weight matrices and relaxation slope matrices, while γpi`1q
j

,γ
pi`1q
j collect

products of weight matrices, relaxation matrices and bias terms. Explicit expressions for Λ
pi`1q
j¨¨ ,Λ

pi`1q

j¨¨ ,γpi`1q
j

,γ
pi`1q
j can

be found in (Weng et al., 2018; Zhang et al., 2018). The above recursion is quite remarkable, as it allows to linearly bound
the output of the non-linear mapping xpi`1q ” xpi`1qpxp0qq for all xp0q P Bpxq.

With the above expressions for the linear functions bounding x
pi`1q
j in terms of xp0q, we can compute lower and upper

bounds `pi`1q
j ,u

pi`1q
j by considering the worst-case xp0q P Bpxq. For instance, when the uncertainty set is an `p-norm ball

Bppx; εq :“ tx˚ : ||x˚ ´ x||p ď εu, the bounds are given as

`
pi`1q
j ě Λ

pi`1q
j¨¨ x´ ε||Λ

pi`1q
j¨¨ ||p˚ ` γ

pi`1q
j

u
pi`1q
j ď Λ

pi`1q

j¨¨ x` ε||Λ
pi`1q

j¨¨ ||p˚ ` γ
pi`1q
j

(25)

where p˚ dentos the Hölder conjugate of p, given by 1{p` 1{p˚ “ 1.
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In practice, in order to be able to replace all the non-linearities with their bounding functions from layer i all the way down
to the input layer, we need pre-activation bounds for all layers i1 ă i, since the expressions for the relaxation slope matrices

Σpi
1
q,Σ

pi1q
and offset vectors βpi

1
q,β

pi1q
depend on those pre-activation bounds. The full greedy solution thus proceeds in a

layer-by-layer fashion, starting from the first layer up to the last layer, where for each layer the backsubstitution to the input
is computed based on the pre-activation bounds of previous layers (computed with the same greedy approach). Hence, the
computational complexity of the full greedy solution of the relaxation-based certification problem is quadratic in the number
of layers L of the network. The complete algorithm is shown in Section 5.4 in the Appendix.

Finally, note that while the activation over-approximation introduces looseness, relaxation-based bounds admit cancellations
between positive and negative entries in weight matrices that are otherwise missed when considering the positive and
negative parts of the weight matrices separately as in the Interval Bound Propagation algorithm.

Dual formulations Instead of solving the certification problem Opc, c0, L, `JĹ 1K,uJĹ 1Kq in Equation 3 or the corre-
sponding relaxation Cpc, c0, L, `JĹ 1K,uJĹ 1Kq in Equation 4 in their primal forms, we can also solve the corresponding
dual formulations. The Lagrangian dual of the certification problem in Equation 3 is given by (Dvijotham et al., 2018;
Salman et al., 2019)

gOpµ
JLKq “ min

xJ0,LK
cJxpLq ` c0 `

L
ÿ

i“1

µpiqJ
´

xpiq ´Wpiqσpxpi´1qq ´ bpiq
¯

s.t. xp0q P Bpxq , `piq ď xpiq ď upiq for i P JL´1K

(26)

The Lagrangian dual of the relaxation-based certification problem in Equation 4 is given by (Wong & Kolter, 2018; Salman
et al., 2019)

gCpµ
JLK,λJ0,Ĺ 1K,λ

J0,Ĺ 1K
q

“ min
xJ0,LK,zJ0,Ĺ 1K

cJxpLq ` c0 `
L
ÿ

i“1

µpiqJ
´

xpiq ´Wpiqzpi´1q ´ bpiq
¯

´

L´1
ÿ

i“0

λpiqJ
´

zpiq ´ σpxpiqq
¯

`

L´1
ÿ

i“0

λ
piqJ

´

zpiq ´ σpxpiqq
¯

s.t. xp0q P Bpxq , `piq ď xpiq ď upiq for i P JL´1K

(27)

where zpiq represent the post-activation variables.

By weak duality (Boyd et al., 2004), we have for the original dual

d˚O :“ max
µJLK

gOpµ
JLKq ď p˚O (28)

respectively for the convex-relaxation based dual

d˚C :“ max
µJLK,λJ0,Ĺ 1Kě0,λ

J0,Ĺ 1K
ě0

gCpµ
JLK,λJ0,Ĺ 1K,λ

J0,Ĺ 1K
q ď p˚C (29)

Hence, if d˚O ą 0 resp. d˚C ą 0 for all c P tek̂pxq ´ ekuk‰k̂pxq, with c0 “ 0 and valid pre-activation bounds `JĹ 1K,uJĹ 1K,
the network is certifiably robust with respect to x and Bpxq.

In fact, for the convex-relaxation based certification problem, one can show that strong duality (d˚C “ p˚C) holds under
relatively mild conditions (finite Lipschitz constant for the bounding functions σp¨q, σp¨q), see Theorem 4.1 in (Salman et al.,
2019). Moreover, one can even show that the dual of the optimal single-neuron convex relaxation based certification problem
is equivalent to the dual of the original certification problem, i.e. d˚Copt

“ d˚O, see Theorem 4.2 in (Salman et al., 2019).

Despite these equivalences, there are still good reasons to solve the dual instead of the primal problem. (Salman et al., 2019)
recommend solving the dual problem because (i) the dual problem can be formulated as an unconstrained optimization
problem, whereas the primal is a constrained optimization problem and (ii) the dual optimization process can be stopped
anytime to give a valid lower bound on p˚O (thanks to weak duality).
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5.4. Single-Neuron Relaxation-based Bound Computation in the Special Case Σpiq “ Σ
piq
” Σpiq

When each non-linear layer is bounded by exactly one linear lower relaxation function and one linear upper relaxation
function, the relaxed verification problem can be solved greedily (Salman et al., 2019).

In the special case Σpiq “ Σ
piq
” Σpiq, we can derive concise closed-form expressions for the lower- and upper

pre-activation bounds. To this end, we replace the activations with their enveloping relaxation functions Φpiqpxpiqq “

Σpiqxpiq ` βpiq resp. Φ
piq
pxpiqq “ Σpiqxpiq ` β

piq
where the offsets βpiq

j1
,β
piq

j1 are for each layer i and unit j1 chosen such

that we under-estimate lower bounds `piqj and over-estimate upper bounds upiqj ,

`
piq
j ě min

ξPBp0q
min

Φ
pi´1q

j1
PtΦ

pi´1q

j1
,Φ
pi´1q

j1
u

¨ ¨ ¨ min
Φ
p1q

j1
PtΦ

p1q

j1
,Φ
p1q

j1
u

!

W
piq
j¨¨Φ

pi´1q
p ¨ ¨ ¨ Wp2qΦp1qpWp1q

px` ξq ` bp1qq ` bp2q ¨ ¨ ¨ q ` bpLq
)

“ min
ξPBp0q

min
β
pi´1q

j1
Ptβ

pi´1q

j1
,β
pi´1q

j1
u

¨ ¨ ¨ min
β
p1q

j1
Ptβ

p1q

j1
,β
p1q

j1
u

!

W
piq
j¨¨ pΣ

pi´1q
p¨ ¨ ¨Wp2q

p

Σp1qpWp1q
px` ξq ` bp1qq ` βp1qq ` bp2q ¨ ¨ ¨ q ` βpi´1q

q ` b
piq
j

)

u
piq
j ď max

ξPBp0q
max

Φ
pi´1q

j1
PtΦ

pi´1q

j1
,Φ
pi´1q

j1
u

¨ ¨ ¨ max
Φ
p1q

j1
PtΦ

p1q

j1
,Φ
p1q

j1
u

!

W
piq
j¨¨Φ

pi´1q
p ¨ ¨ ¨ Wp2qΦp1qpWp1q

px` ξq ` bp1qq ` bp2q ¨ ¨ ¨ q ` bpLq
)

“ max
ξPBp0q

max
β
pi´1q

j1
Ptβ

pi´1q

j1
,β
pi´1q

j1
u

¨ ¨ ¨ max
β
p1q

j1
Ptβ

p1q

j1
,β
p1q

j1
u

!

W
piq
j¨¨ pΣ

pi´1q
p¨ ¨ ¨Wp2q

p

Σp1qpWp1q
px` ξq ` bp1qq ` βp1qq ` bp2q ¨ ¨ ¨ q ` βpi´1q

q ` b
piq
j

)

(30)

Note that the j1 span different ranges for the different variables.

For the sake of simplicity, we introduce special notation for products over decreasing index sequences, where the index is
counted down from the product-superscript to the product-subscript

Definition 5. (Products over decreasing index sequences). Let Apkq, k P rm, . . . , ns be an arbitrary sequence of (real-
valued) matrices with matching inner dimensions. For ease of notation, define

k“n
ź

m

Apkq “

n´m
ź

k“0

Apn´kq “ ApnqApn´1q ¨ ¨ ¨Apmq where n ě m (31)

We use the usual convention that the empty product equals one, i.e.
ś

kPHp¨q “ 1. Thus,
śn
k“mp¨q “ 1 and

śk“n
m p¨q “ 1

whenever n ă m.

We also introduce the following closed-form expressions for the layer-wise activation-relaxation

Definition 6. (Closed-form expressions for layer-wise activation-relaxation).

φpiq “
`

k“i
ź

2

WpkqΣpk´1q
˘

Wp1qx`
i
ÿ

j“1

`

k“i
ź

j`1

WpkqΣpk´1q
˘

bpjq (32)

Λpjq “
`

k“i
ź

j`1

WpkqΣpk´1q
˘

Wpjq for j “ 1, . . . , i (33)
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Rewriting the above equations using the explicit expressions for the concatenation of layers,

`
piq
j ě min

ξPBp0q
min

β
pi´1q

j1
Ptβ

pi´1q

j1
,β
pi´1q

j1
u

¨ ¨ ¨ min
β
p1q

j1
Ptβ

p1q

j1
,β
p1q

j1
u

!

φ
piq
j `Λ

p1q
j¨¨ ξ `

i
ÿ

k“2

Λ
pkq
j¨¨ β

pk´1q
)

u
piq
j ď max

ξPBp0q
max

β
pi´1q

j1
Ptβ

pi´1q

j1
,β
pi´1q

j1
u

¨ ¨ ¨ max
β
p1q

j1
Ptβ

p1q

j1
,β
p1q

j1
u

!

φ
piq
j `Λ

p1q
j¨¨ ξ `

i
ÿ

k“2

Λ
pkq
j¨¨ β

pk´1q
)

(34)

we can see that the different minimizations and maximizations over optimal perturbations, lower- and upper- offset vectors
decouple, hence we can resolve them separately, e.g. for Bεpp0q:

`piq ě φpiq ´ ε||Λp1q||p˚¨¨ `
i
ÿ

j“2

`

Λ
pjq
` β

pj´1q
`Λ

pjq
´ β

pj´1q˘

upiq ď φpiq ` ε||Λp1q||p˚¨¨ `
i
ÿ

j“2

`

Λ
pjq
´ β

pj´1q
`Λ

pjq
` β

pj´1q˘
(35)

where p˚ is the Hölder conjugate 1{p` 1{p˚ “ 1 and where || ¨ ||p˚¨¨ denotes the row-wise p˚-norm.

Choosing the same slope for the lower- and upper- relaxation functions αpiqj “ u
piq
j {pu

piq
j ´ `

piq
j q, i.e. Σpiq “ Σ

piq
, recovers

Fast-Lin (Weng et al., 2018), while adaptively setting αpiqj to its boundary values depending on which relaxation has the
smaller volume recovers CROWN (Zhang et al., 2018).

Algorithm 2 Relaxation based Bound Computation (for Σpiq ” Σ
piq

, βpiq ” 0)

input: Parameters tWpiq,bpiquLi“1, input x, p-norm, perturbation size ε
Λp1q “ Wp1q

φp1q “ Wp1qx` bp1q

`p1q “ φp1q ´ ε||Λp1q||p˚¨¨
up1q “ φp1q ` ε||Λp1q||p˚¨¨
for i “ 2, . . . , L do

Compute Σpi´1q, β
pi´1q

from `pi´1q, upi´1q

Λpjq “ WpiqΣpi´1qΛpjq for j “ 1, . . . , i´ 1
Λpiq “ Wpiq

φpiq “ WpiqΣpi´1qφpi´1q
` bpiq

`piq “ φpiq ´ ε||Λp1q||p˚¨¨ `
ři
j“2

´

Λ
pjq
´ β

pj´1q
¯

upiq “ φpiq ` ε||Λp1q||p˚¨¨ `
ři
j“2

´

Λ
pjq
` β

pj´1q
¯

end for
output: bounds t`piq,upiquLi“1


