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ABSTRACT
Vision-and-language pretraining (VLP) aims to learn generic multi-
modal representations frommassive image-text pairs.While various
successful attempts have been proposed, learning fine-grained se-
mantic alignments between image-text pairs plays a key role in their
approaches. Nevertheless, most existing VLP approaches have not
fully utilized the intrinsic knowledge within the image-text pairs,
which limits the effectiveness of the learned alignments and further
restricts the performance of their models. To this end, we introduce
a newVLPmethod called ROSITA, which integrates the cROSs- and
InTrA-modal knowledge in a unified scene graph to enhance the
semantic alignments. Specifically, we introduce a novel structural
knowledge masking (SKM) strategy to use the scene graph structure
as a priori to perform masked language (region) modeling, which
enhances the semantic alignments by eliminating the interference
informationwithin and acrossmodalities. Extensive ablation studies
and comprehensive analysis verifies the effectiveness of ROSITA in
semantic alignments. Pretrained with both in-domain and out-of-
domain datasets, ROSITA significantly outperforms existing state-
of-the-art VLP methods on three typical vision-and-language tasks
over six benchmark datasets.
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Figure 1: Schematic of the knowledge integration strategies
of three VLP methods, i.e., OSCAR [23], ERNIE-ViL [45],
and our ROSITA. OSCAR and ERNIE-ViL only exploit the
intra-modal knowledge from the image and text modalities,
respectively. In contrast, ROSITA simultaneously encodes
the cross-modal knowledge (pink line) and intra-modal
knowledge (blue line) in a unified scene graph centered at
specific anchor objects, which is used to enhance the learn-
ing of fine-grained semantic alignments across modalities.

1 INTRODUCTION
Motivated by the success of the pretrain-then-finetune paradigm
of BERT in natural language understanding [8], there has been an
increasing interest in developing vision-and-language pretraining
(VLP) models [7, 23, 27, 38] to address a wide range of vision-and-
language (V+L) tasks. In particular, these approaches first pretrain
transformer-based models on large image-text corpus to learn task-
agnostic representations, and then finetune the models on down-
streamV+L tasks, e.g., visual question answering [50, 51], image text
retrieval [18, 31], and referring expression comprehension [16, 52].
Compared to earlier methods that are only adapted to one V+L task
[46, 47, 49], VLP models is generalizable across multiple tasks and
also achieves significantly better performance on respective tasks.

Learning fine-grained semantic alignments between image re-
gions and text words plays a key role in V+L tasks. However,
manually annotating such dense alignment between regions and
words is expensive and is unrealistic under the large-scale scenario.
Therefore, most existing VLP approaches [7, 21, 27] use a weakly-
supervised learning strategy to model the alignments implicitly.
Taking the image regions and text words as inputs, they adopt multi-
layer Transformers [39] as their backbones to learn fine-grained

Poster Session 1 MM ’21, October 20–24, 2021, Virtual Event, China

797

https://doi.org/10.1145/3474085.3475251
https://doi.org/10.1145/3474085.3475251


semantic alignments from coarse-grained image-text matching su-
pervision. Moreover, the interference within and across modalities
makes the learning of semantic alignments even more challenging.

To facilitate the learning of semantic alignments, two recent VLP
approaches OSCAR [23] and ERNIE-ViL [45] introduce extra knowl-
edge in different ways. Specifically, OSCAR additionally extracts
the predicted region tags from images and uses these tags as anchor
points to align with text words implicitly. ERNIE-ViL explicitly
constructs a scene graph from text and puts more emphasis on the
keywords (e.g., objects along with their attributes and relations) in
the scene graph in its pretraining objectives. In terms of knowledge
source, both of them use the intra-modal knowledge from a single
modality to enhance the semantic alignments: OSCAR models the
intra-modal knowledge in the image modality while ERNIE-ViL
models the intra-modal knowledge in the text modality. The success
of the two methods above raises a question: Is it possible to utilize
the intra-modal knowledge from both modalities along with the cross-
modal knowledge to further enhance the semantic alignments?

In this paper, we present a new VLP method called ROSITA,
which encodes the cROSs- and InTrA-modal knowledge simulta-
neously in a unified scene graph. As shown in Figure 1, the graph
consists of a set of knowledge entries, where each entry corresponds
to an anchor object along with its associated cross- and intra-modal
knowledge. The intra-modal knowledge refers to the relationships
between the anchor object and its intra-modal contexts (e.g.,
spatially related regions or contextually related words). The cross-
modal knowledge corresponds to the relationships between the
anchor object and its semantically similar objects from the opposite
modality (e.g., the region predicted as “grass” and the word “steppe”).

Although we have obtained a set of knowledge entries, how to ef-
fectively use them to enhance semantic alignments is still nontrivial.
We propose a novel structural knowledge masking (SKM) strategy
that can be seamlessly integrated with themasked language (region)
modeling tasks, which are commonly used in existing VLP methods
[7, 27]. In principle, SKM determinately masks the anchor object
while selectively masking its cross- and intra-modal contexts
in a knowledge entry. This strategy effectively eliminates the
interference informationwithin and across modalities and enhances
the semantic alignments by enforcing the model to acquire accurate
information from the opposite modality.

The contributions of this work are three-fold:

(1) We present a new VLP method ROSITA, which incorpo-
rates cross- and intra-modal knowledge simultaneously to
enhance the semantic alignments across different modalities.

(2) We introduce a novel structural knowledge masking strategy
to use the scene graph structure as a priori to be integrated
with the commonly used masked language (region) modeling
tasks in existing VLP methods.

(3) We achieve the best results on three typical V+L tasks over
six benchmark datasets, outperforming existing state-of-the-
art VLP methods.

2 RELATEDWORK
We briefly review previous studies on unimodal pretraining and
vision-and-language pretraining, especially those studies on knowl-
edge enhanced pretraining.

Unimodal Pretraining. The pretraining technique has been
widely used in computer vision (CV) tasks. Deep convolutional
neural networks like VGGNet [35] or ResNet [12] pretrained
on ImageNet can well generalize to various downstream tasks
[11, 26, 33]. In contrast to CV tasks, the popularization of pretraining
in the natural language processing (NLP) community is relatively
late. Based on the multi-layer Transformer architecture [39], many
famous pretraining approaches (e.g., BERT [8], GPT [32], and
XLNet [42]) have been put forward. Different from the supervised
pretraining paradigm in CV tasks, the pretraining paradigm in NLP
tasks is self-supervised that aims to train a model to predict words
based on their contexts without introducing human annotations.
In particular, BERT introduces a novel masking language modeling
(MLM) task that randomly masks the input words and predicts
these masked words based on their contexts. This MLM strategy is
naturally inherited by the VLP methods.

Vision-and-Language Pretraining (VLP). Different from the
purely self-supervised paradigm in NLP tasks, VLP models are
pretrained on large-scale paired image-text corpus, e.g., image
captioning datasets like [6, 29, 34]. Mirroring the success of BERT,
recent studies naturally extend its framework to the vision-and-
language domain to pretrain VLP models for a wide range of
V+L tasks [7, 13, 23, 27, 38, 45, 53]. ViLBERT [27] and LXMERT
[38] are two pioneering works in this field, where the two-
stream architectures are adopted to encode the image features
and textual features with two separate Transformers and then
perform multimodal fusion via a third Transformer. Recent works
tend to use the single-stream architectures, where the multimodal
features are directly fused using one Transformer [7, 19, 21, 36].
Moreover, other techniques like knowledge integration [23, 45],
multilingual enhancement [55], contrastive learning [22], and
adversarial training [9] are introduced to further improve the
performance of the pretrained models.

Knowledge-Enhanced Pretraining. Incorporating prior knowl-
edge (e.g., external knowledge graph) to enhance model pretraining
has been investigated earlier by two ERNIE methods [37, 54] and
widely explored in recent years [25, 40, 41]. The introduced prior
knowledge enables the model to better understand the syntactic and
semantic structure of the text, thus facilitating model pretraining by
an improved structural MLM task. In the VLP task, prior knowledge
can be acquired from both the image and text modalities. ERNIE-
ViL constructs a scene graph from text and puts more emphasis
on the discovered keywords [45]. OSCAR exploits the predicted
tags of image regions to enhance the semantic alignment across the
two modalities [23]. A concurrent work UC2 utilizes off-the-shelf
machine translation model to construct aligned multilingual dataset
for texts and regard this extra information as prior knowledge
to enhance the learning of cross-modal semantic alignment [55].
Despite the success of these knowledge-enhanced VLP methods,
they only utilize the intra-modal knowledge from a single modality,
which restricts their effectiveness in learning semantic alignments.

To the best of our knowledge, our ROSITA is the first VLP
method to integrate the cross-modal and intra-modal knowledge
simultaneously in order to enhance the learning of semantic
alignments across different modalities.
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Figure 2: The flowchart of knowledge extraction given an image-text pair. It consists of two main stages, namely the unified
scene graph construction and knowledge representation.

3 KNOWLEDGE EXTRACTION
In this section, we introduce the procedure of extracting knowledge
entries from an image-text pair. We first construct a unified graph
to model the intra- and cross-modal knowledge from an image-
text pair. On top of the established graph, we select anchor objects
to obtain a set of knowledge entries. The process of knowledge
extraction is illustrated in Figure 2.

Unified Scene Graph Construction. Given an image-text pair,
we resort to a unified scene graph structure G =< V ,E, S > to
encode its intra- and cross-modal knowledge simultaneously [48].
The vertex set V includes the words and regions from the text and
image, respectively. The edge set E and similarity set S contain
pairwise relationships and their corresponding similarities between
vertices (i.e., edge weights), respectively.

The intra-modal knowledge within the image and text are first
represented as an image scene graph and a text scene graph,
respectively. For the image scene graph, regions extracted from
a pretrained object detector are considered as the vertices in V .
Inspired by [14, 20, 43], we calculate the similarity between each
paired regions by their Intersection over Union (IoU) score. The
region pairs with IoU scores larger than zero are considered to have
edges in E and their IoU scores are regarded as their similarities
in S . For the text graph, we use an off-the-shelf scene graph
parser provided by [1] to obtain a text scene graph from a text.
The text scene graph explicitly encodes the keywords of objects,
attributes, and relations found in the text while discarding the
rest of uninformative words. These mentioned keywords in the
scene graph are regarded as the vertices in V . The word-word
relationships in the scene graph (i.e., object-attribute or object-
relation) correspond to the edges in E. The similarity between
two vertices is the co-occurrence frequencies of the referred
object-attribute (or object-relation) pair calculated on the whole

dataset. Since the similarity distributions of the image and text
modalities may vary widely, we normalize the similarities within
each modality, respectively.

As we have modeled the intra-modal knowledge in the graph,
we further integrate cross-modal knowledge to align the image
regions to their semantically related words. Since such cross-
modal alignment supervision is not available, we establish pseudo
semantic alignments between region-word pairs as follows. For the
image regions, the predicted region tags are aligned to the object
words with respect to their semantic similarities on words. We
adopt a pretrained word embedding model [30] to calculate the
pairwise similarities between object tags and object words1. We
set a minimum confidence threshold of 0.5 to the similarity scores
to make a trade-off between precision and recall. The region-word
pairs surpass the threshold will form cross-modal edges in E and
their corresponding scores represent the similarities in S .

Knowledge Representation. Based on the constructed unified
scene graphG , we illustrate the procedure of extracting knowledge
entries from the scene graph in detail. Note that each knowledge
entry is associated with an anchor object, we first select all possible
anchor objects from the graph. We define an anchor object as the
vertex (an image region or a text word) in the graph that is referred
to by at least one cross-modal edge. Since the attribute and relation
words are not directly connected to any image region, they cannot
be anchor objects according to our definition.

After obtaining the anchor objects, we integrate the intra-modal
knowledge and cross-modal knowledge inG to obtain a knowledge
entry. Given an anchor object v ∈ V , its corresponding knowledge
entry is represented as a subgraph д(v ) ⊆ G and is obtained by the

1We have tried to establish more fine-grained alignments to include the attribute
words. However, the predicted attributes from image regions are too diverse that often
fail to match the attribute words in the text.
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Figure 3: The flowchart of our ROSITA framework with the
structural knowledge masking (SKM) strategy.

union of three subgraphs of G as follows:
д(v ) = Gcross (v ) ∪Gintra (v ) ∪Gintra (Gcross (v )) (1)

where Gcross (v ) contains the relationships between v and its
directly connected contexts by cross-modal edges.Gintra (v ) models
the relationships between v and its directly connected contexts
by intra-modal edges.Gintra (Gcross (v )) includes the relationships
between the vertices in Gcross (v ) and their corresponding intra-
modal contexts. It is worth noting that the anchor object v can
reach every vertex in д(v ) within two hops.

4 THE ROSITA FRAMEWORK
Based on the extracted knowledge entries from image-text pairs,
we introduce the ROSITA framework in this section. We first
describe the image and text feature representations and the network
architecture. Then, we introduce a structural knowledge masking
(SKM) strategy, which takes the knowledge entries as a priori
to perform the masked language (region) modeling. Finally, we
describe the whole pretraining objective with multi-task learning.
The overall framework is illustrated in Figure 3.
Image and Text Feature Representations. Following the com-
monly used strategy in existing VLP methods [6, 23], the input
image is represented as a set of regional features, which are
extracted from a Faster R-CNNmodel pretrained on Visual Genome
[2]. More specifically, we extract m regions with the highest
confidence probabilities from the image. For the i-th region, it is
represented as a visual feature fi ∈ R

2048 and a positional feature
pi ∈ R

5 [45]. The two features are fused into a d-dimensional image
representation xi ∈ R

d using two linear projections as follows:

xi =W
T
f fi +W

T
p pi (2)

where Wf ∈ R
2048×d and Wp ∈ R

5×d . Finally, the image is
represented as a feature matrix X ∈ Rm×d .

For its paired text, we adopt the word processing method similar
to [8]. The input text is first tokenized into words and trimmed (or
padded) to a maximum of n words. Each wordwi and its index i (i.e.,
the absolute position ofwi in the text) are projected to vectors by
two individual embedding layers, then added to obtain the position-
aware text representation yi as follows:

yi =WordEmbed(wi ) + IdxEmbed(i ) (3)

where yi is d-dimensional to match the image representation. The
text is finally represented as a feature matrix Y ∈ Rn×d .

Network Architecture. The image features X = [x1, ...,xm] and
text features Y = [y1, ...,yn] are first concatenated before feeding
to the network. We insert two special tokens to the concatenated
features to obtain the multimodal input features Z :

Z = [x1,x2, ...,xm , [SEP],y1,y2, ...,yn , [CLS]] (4)

where the [SEP] token marks the boundary between the image and
text features. The [CLS] token is used to predict whether the given
image and text are paired or not.

The multimodal features Z are fed into a single-stream Trans-
former with L layers [8]. Each layer consists of a multi-head self-
attention (MSA) block and a feed-forward networks (FFN) block.

Ẑ ℓ = LN(MSA(Z ℓ−1) + Z ℓ−1), ℓ = 1, 2, ...,L

Z ℓ = LN(FFN(Ẑ ℓ ) + Ẑ ℓ ), ℓ = 1, 2, ...,L
(5)

where Z 0 = Z . Layer normalization [4] and residual connection
[12] are applied after every block, respectively.

Structural KnowledgeMasking.Themasked languagemodeling
(MLM) [8] and masked region modeling (MRM) [7] tasks are
commonly used in almost all the VLP methods [7, 27, 45]. They
randomly mask the input tokens (i.e., words or regions) and predict
these masked tokens based on their contextual tokens. Since the
random masking based MLM and MRM tasks are not aware of
the keywords and key regions to be aligned, their efficacy in the
alignment learning is weak. To this end, we present an alternative
structural knowledge masking (SKM) strategy to selectivelymask the
tokens referred to by the extracted knowledge entry. Accordingly,
the MLM and MRM tasks are respectively modified to the SKMLM
and SKMRM tasks to adapt to the SKM strategy.

Let an image be represented as a set of regions R = {r1, ..., rm }
and a text be represented as a sequence of wordsW = {w1, ...,wn },
we construct a unified scene graph G on top of R andW , and
extract a set of knowledge entries from G. Let д(vi ) =< V̂ , Ê, Ŝ >
be one of the knowledge entries, where vi ∈ V̂ is the anchor object.
The vertices are represented as V̂ = {v1, ...,vN } and the similarities
between the vertices are represented as Ŝ ∈ RN×N , where N is the
number of vertices in this entry.

The strategy of SKM is to determinately mask the anchor object
vi while probabilistically masking its intra-modal contexts and
cross-modal contexts with respect to the graph structure of the
knowledge entry. Since the similarities between vi and its contexts
are different, we assign independent masking probabilities to each
of the contexts with respect to their similarities to vi , rather than
simply using an identical masking probability for all the contexts.
To obtain the masking probabilities for the contexts, we introduce a
masking strategy that satisfies the following principles: for the intra-
modal contexts, a larger similarity score refers to a higher masking
probability. For the cross-modal contexts, a larger score leads to
a lower masking probability. The reasons behind this masking
strategy will be explained hereinafter.

Note that not all contexts have direct connections to the anchor
object. Therefore, we calculate the transmission probabilities T =
[t1, ..., tN ] ∈ [0, 1]N from the anchor object vi to its contexts in
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V̂ based on the normalized similarities defined in Ŝ . Since vi can
reach all the vertices in V̂ within two hops, T is defined as follows:

T =
1
2 Ŝπ (i ) +

1
2 ŜŜπ (i ) (6)

where π (i ) ∈ {0, 1}N is a one-hot vector with the i-th element to
be 1. The two terms correspond to the transmission probabilities
between the anchor objectvi and its one-hop and two-hop contexts,
respectively. After that, we convert the transmission probabilities
T to the masking probabilities P = [p1, ...,pN ] ∈ [0, 1]N using the
following rules to satisfy our masking strategy above:

pj =




1, if vj is the anchor object
αtj , if vj is within the intra-modal contexts
(1 − α ) (1 − tj ), if vj is within the cross-modal contexts

(7)
where α is a hyper-parameter to balance the masking probabilities
of the intra-modal and cross-modal contexts. tj and pj denote the
transmission and masking probability of the vertex vj , respectively.

Given a knowledge entry, we use the calculated masking
probabilities to obtain two groups of mask indices Mw and Mr ,
indicating the words and regions to be masked, respectively. The
partially masked input features are passed through the network
and then fed into the SKMLM and SKMRM tasks.

In particular, if the anchor point vi refers to an object word in
the text, we resort to the SKMLM task to reconstruct the masked
wordsWMw as follows:
LSKMLM (θ ) = −E(W,R )∼D log Pθ (WMw |W\Mw ,R\Mr ) (8)

where θ is the trainable parameters. Each pair (W,R ) is sampled
from the whole training set D. W\Mw and R\Mr refer to the
remaining words in W and the remaining regions in R with
excluding the masked tokens from their modalities, respectively.

Analogously, ifvi refers to a region in the image, we resort to the
SKMRM task to reconstruct the masked regions RMr as follows:

LSKMRM (θ ) = −E(W,R )∼D fθ (RMr |W\Mw ,R\Mr ) (9)
where fθ (·) refers to some loss functions. Similar to [7], we use the
regression-based loss and classification-based loss jointly.

The motivations of SKM can be explained as follows: (i) The
intra-modal contexts may contain interference information (e.g.,
the word “sky” is frequently associated with an attribute “blue”
and a visual object of “wheel” is usually within an object of
“car”). Such interference information may leak out the semantics
of the anchor object and reduce the difficulty of anchor object
reconstruction, leading to a degradation of the pretrained model.
Therefore, when masking an anchor object, its intra-modal contexts
with high similarities will have high probabilities to be masked
simultaneously. This operation reduces the risk of information
leakage and enforces the model to acquire precise information
from the opposite modality, which implicitly enhance the semantic
alignments; (ii) The cross-modal contexts with low similarities may
contain irrelevant or noisy information. Therefore, when masking
an anchor object, its cross-modal contexts with high similarities
will have low probabilities to be masked at the same time, which
explicitly excludes potential noise thus benefiting the semantic
alignments. As a result, the synergy of the masking operations
above significantly facilitates the semantic alignments.

Table 1: The detailed statistics of the used datasets. Follow-
ing the strategies in [6], we split them into in-domain and
out-of-domain splits based on the image sources. Each cell
shows the number of image-text pairs.

in-domain out-of-domain
totalCOCO[6] VG[17] CC[34] SBU [29]

train 533K 5.1M 3.0M 869K 9.5M
val 25K 106K 14K 10K 155K

Multi-task Learning. Similar to [7], we adopt a multi-task learn-
ing objective to pretrain our model. Besides the proposed SKMLM
and SKMRM tasks, we also include the image-text matching (ITM)
task. Moreover, since the SKMLM and SKMRM tasks only focus on
the key tokens included in the knowledge entry, we still retain the
original random masking-based MLM and MRM tasks to guarantee
a good coverage of the remaining tokens in the image and text2.

5 EXPERIMENTS
We evaluate ROSITA on three V+L tasks and perform thorough
comparative analysis to the state-of-the-art VLP methods on
six datasets. Furthermore, we conduct comprehensive ablation
experiments to explore its effectiveness in learning fine-grained
semantic alignments.

5.1 Pretraining Setup
Datasets. Following the strategy in [7], we construct the pretrain-
ing dataset consisting of 9.5M train and 155K validation image-text
pairs from four existing datasets, namely the COCO Captions [6],
Visual Genome Captions[17], Conceptual Captions [34], and SBU
Captions [29]. The four datasets are categorized into the in-domain
and out-of-domain datasets based on whether they share the same
images with the downstream tasks. The statistics of the pretraining
dataset are shown in Table 1.

Implementation Details. For the input image-text pairs, we
extract a fixed number of 36 region features from a pre-trained
Faster R-CNN model [2] and adopt the BPE strategy to tokenize the
sentence into a maximum of 50 words following [8]. Our ROSITA
model adopts a 12-layer Transformer encoder architecture with
768 hidden units and 12 attention heads. The hyper-parameter α in
Eq.(7) is set to 0.9. The masking probabilities in the original MRM
and MLM tasks are set to 15% [45]. The model is initialized with
the parameters from a pretrained BERT-base model [8], and then
trained up to 40 epochs with a batch size of 512.

5.2 Downstream Tasks
After obtaining the pretrained ROSITA model, we finetune it on
three downstream V+L tasks as follows.

Visual Question Answering (VQA) is a task that requires the
model to answer natural language questions about an image. We
adopt thewidely used VQAv2 dataset [3, 10], which ismanually built
on the images from the MSCOCO dataset [24]. The dataset is split
2We have made such an experiment that removes the MRM&MLM tasks. The resulting
model reports slight performance drop (∼0.3 points) on the downstream tasks.
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Table 2: Results on downstream V+L tasks to compare with the state-of-the-art VLP methods. For a fair comparison, all the
results are archived by the base models. Most of the models are trained on the in-domain+out-of-domain datasets, except for
thosemodelsmarkedwith † are trained on the out-of-domain datasets. IR and TR denote the image retrieval and text Retrieval,
respectively. For the REC task, all the results are achieved based on the detected region features from images. Dark and light
grey colors highlight the top and second best results on each evaluation metric.

task dataset ViLBERT†
[27]

VLBERT†
[36]

Unicoder-VL
[19]

LXMERT
[38]

UNITER
[7]

ERNIE-ViL†
[45]

VILLA
[9]

OSCAR
[23]

ROSITA
(ours)

VQA VQAv2 test-dev 70.55 71.16 - 72.42 72.70 72.62 73.59 73.16 73.91
test-std 70.92 - - 72.54 72.91 72.85 73.67 73.44 73.97

REC

Ref-
COCO

vald - - - - 81.24 - 81.65 - 84.33
testAd - - - - 86.48 - 87.40 - 87.52
testBd - - - - 73.94 - 74.48 - 77.98

Ref-
COCO+

vald 72.34 71.60 - - 75.31 74.02 76.05 - 76.06
testAd 78.52 77.72 - - 81.30 80.33 81.65 - 82.01
testBd 62.61 60.99 - - 65.68 64.74 65.70 - 67.40

Ref-
COCOg

vald - - - - 74.31 - 75.90 - 77.82
testd - - - - 74.51 - 75.93 - 77.64

ITR

IR-
COCO

R@1 - - 46.70 - 50.33 - - 54.00 54.40
R@5 - - 76.00 - 78.52 - - 80.80 80.92
R@10 - - 85.30 - 87.16 - - 88.50 88.60

TR-
COCO

R@1 - - 62.30 - 64.40 - - 70.00 71.26
R@5 - - 87.10 - 87.40 - - 91.10 91.62
R@10 - - 92.80 - 93.08 - - 95.50 95.58

IR-
Flickr

R@1 58.20 - 71.50 - 72.52 74.44 74.74 - 74.08
R@5 84.90 - 90.90 - 92.36 92.72 92.86 - 92.44
R@10 91.52 - 94.90 - 96.08 95.94 95.82 - 96.08

TR-
Flickr

R@1 - - 86.20 - 85.90 86.70 86.60 - 88.90
R@5 - - 96.30 - 97.10 97.80 97.90 - 98.10
R@10 - - 99.00 - 98.80 99.00 99.20 - 99.30

into train (83k images and 444k questions), validation (41k images
and 214k questions), and test (81k images and 448k questions)
sets. Following the strategy in [7], we feed the representation of
the [CLS] token to a linear classifier to predict the corresponding
answer from a vocabulary of size 3129 [49].

Referring Expression Comprehension (REC) is a task that
requires to localize an image region referred to by a natural
language query. We evaluate the performance on RefCOCO [16],
RefCOCO+ [16] and RefCOCOg [28] datasets. All the three datasets
are collected fromCOCO images [31]. RefCOCO and RefCOCO+ are
split into four subsets, including train (120k queries), validation (11k
queries), testA (6k queries about people), and testB (6k queries about
objects), while RefCOCOg is split into three subsets, including train
(81k queries), validation (5k queries), and test (10k queries). The
representation for each image region is used to predict a ranking
score and a refined bounding box.

Image-Text Retrieval (ITR) is a task that requires the model to
calculate a similarity score between an image and a sentence and
then perform cross-modal retrieval. We conduct experiments on
the COCO Captions [6] and Flickr30K [44] datasets, respectively.
Following the partition strategy by [15], the COCO dataset is split

into 82k/5k/5k train/validation/test images, while the Flickr30K
dataset is split into 29k/1k/1k train/validation/test images. Similar
to [7], we use an offline hard sample mining strategy to obtain
128 negative samples per each positive sample, and use the
representation of the [CLS] token to predict a matching score.

5.3 Main Results
We compare the proposed ROSITA model against existing state-
of-the-art VLP methods. As shown in Table 2, ROSITA achieves
the overall best performance on all downstream tasks, which
verifies the effectiveness of the integrated cross- and intra-modal
knowledge and the corresponding SKM strategy3.

It is worth noting that some methods like ViLBERT, LXMERT,
and ERNIE-ViL adopt the two-stream architecture, which have
much more parameters (ROSITA: 116M, VilBERT: 221M, LXMERT:
183M, ERNIE-ViL: 228M). Some methods like UNITER and VILLA
use a larger number of image features (up to 100 regions), which
has been verified to benefit the performance at the expense of much
higher computational cost. In contrast, ROSITA uses a fixed number
3We have conduct such an experiment that pretrains ROSITA on the out-of-domain
datasets only. The resulting model consistently outperforms the counterparts [27, 36,
45], verifying the generalization capability of our approach.
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Table 3: Ablations of ROSITA variants without the cross- and intra-modal knowledge. All models are pretrained on the in-
domain datasets and then finetuned on specific downstream tasks. For eachmodel, we report the accuracies on the pretraining
tasks an downstream tasks, respectively. As we only have positive image-text pairs in the pretraining datasets, we use the
offline hard sample mining strategy to generate an equal number of negative samples for the evaluation of the ITM task.

# model

pretraining tasks downstream tasks

ITM SKMLM SKMRM VQAv2
(dev)

RefCOCO
(val)

IR-Flickr
(test)

TR-Flickr
(test)

1 ROSITA (full) 84.34 67.16 76.50 73.19 84.22 85.09 94.33
2 -w/o cross-modal knowledge 83.54 63.69 72.56 72.86 83.85 84.23 93.63
3 -w/o intra-modal knowledge 83.30 63.75 73.90 72.98 83.31 84.79 93.90
4 -w/o both types of knowledge 82.22 61.19 68.58 72.47 82.12 82.11 92.57

Table 4: Ablations of four ROSITA variants with two alterna-
tivemasking strategy in SKM (i.e., independent probabilities
and identical probability). All models are pretrained on the
in-domain datasets and finetuned on the downstream tasks.

masking prob. VQAv2 RefCOCO IR-Flickr TR-Flickr
(dev) (val) (test) (test)

independent 73.19 84.22 85.09 94.33
identical (p=45%) 72.79 83.18 83.70 93.20
identical (p=30%) 72.93 83.29 84.36 93.63
identical (p=15%) 72.75 82.96 83.75 93.53

of 36 image features. We believe the performance of ROSITA can
be further improved by taking these advanced strategies above.

5.4 Ablation Studies
We run a number of ablations to investigate the reasons of ROSITA’s
effectiveness. The results show in Table 3-4 and Figure 4-5 are
discussed in detail below.

Cross- and Intra-modal Knowledge. In Table 3, we show the
effects of the intra-modal knowledge and cross-modal knowledge
based on the performance on the pretraining and downstream tasks.
Taking the full ROSITA as the reference model (Line #1), we obtain
the different variants by removing the cross-modal knowledge
or the intra-modal knowledge. The variant without cross-modal
knowledge (Line #2) indicates that the model is not aware of the
anchor objects and the SKM strategy is performed only on a single
modality using the intra-modal knowledge. In contrast, the variant
without intra-modal knowledge (Line #3) indicates that the model
is aware of the anchor objects but is not aware of the intra-modal
contexts. Finally, by removing both the cross- and intra-modal
knowledge, we obtain a baseline variant nearly identical to UNITER
[7] (Line #4)4.

Given the pretrained models of the four variants above (i.e.,
without finetuning on downstream tasks), we evaluate their per-
formance on three pretraining tasks. The ITM task examines the
ability of semantic alignment between image-text pairs. From the
results, we can see that both types of knowledge bring performance
improvement to the ITM task (#4 vs. #3 and #2). Moreover, the two
types of knowledge are complementary that their synergy brings
4Our model has slight performance deviations compared with the original UNITER
model since we use different visual features and pretraining hyper-parameters.

2.1 points improvement compared to the baseline model without
any knowledge (#4 vs. #1). Although the ITM task is the most
straightforward metric for semantic alignment, it only measures the
coarse-grained alignments on the image-text level, thus cannot fully
reveal the capability of ROSITA. As a complement, we resort to the
SKMLM and SKMRM tasks to evaluate the fine-grained alignments
on the region-word level. Compared with the baseline model in
#4, the full ROSITA model improves the accuracies by 7.0 and 7.9
points on the SKMLM and SKMRM tasks, respectively.

Next, we report the performance of these variants on different
downstream tasks. From the demonstrated results, we obtain similar
observations to those on the pretraining tasks. The full ROSITA
model consistently outperforms all the counterparts, verifying the
effectiveness of the cross- and intra-modal knowledge.

SKM Strategy. After extracting knowledge entries from image-
text pairs, we have two alternative masking strategies in SKM,
i.e., the independent probabilities and the identical probability.
For the masking strategy with identical probability, we evaluate
the choices of different probabilities within {15%, 30%, 45%}. The
results in Table 4 show that the model pretrained with independent
probabilities steadily outperforms all the counterparts with the
identical probability. For the models pretrained with the identical
probability strategy, their performance is sensitive to the choices
of the predefined probability. A small masking probability (e.g.,
15%) may degrade the model towards the baseline without any
knowledge. A large masking probability (e.g., 45%) may shield
the essential information that is necessary to learn the semantic
alignments. In comparison, the masking strategy with independent
probabilities provides a more fine-grained understanding of the
knowledge structure, leading to a more robust pretrained model.

Cross-modal Semantic Alignments. The effect of fine-grained
semantic alignments across modalities can be inferred from the
attention maps of the learned Transformer model [5]. We visualize
the learned cross-modal attentions (i.e., region-to-words and word-
to-regions attentions) from the pretrained UNITER [7] and our
ROSITA models, as shown in Figure 4. Taking the image-text pair
as inputs with exactly one token (a region or a word) being masked
at a time, we pass the multimodal features through the pretrained
model and extract the attention map from the last MSA block5.
The region-to-words and word-to-regions attentions of the masked
5We perform element-wise addition over the attention maps from different heads
followed by row-wise softmax normalization to obtain one aggregated attention map.
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Figure 4: Visualizations of the learned cross-modal attentions (i.e., region-to-words attentions on the left and word-to-regions
on the right) from UNITER [7] and ROSITA. Taking the image-text pair as inputs with exactly one region (or word) being
masked at a time, we extract the attention map from the last MSA block of the pretrained model. The region-to-words (word-
to-regions) attentions correspond to one specific row in the bottom-left (top-right) area of the attention map, respectively.
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Figure 5: Visualizations of the region-to-words attentions (left) and word-to-regions attentions (right) from a pretrained
ROSITA model with masking multiple regions (or words) at one time.

token correspond to one specific row in the bottom-left and top-
right area of the attention map, respectively.

From the visualized cross-modal attentions, we can see that
ROSITA learns significantly better semantic alignments than
UNITER. ROSITA can precisely align the masked object to its
reference object in the opposite modality while UNITER fails to
establish such cross-modal alignments. For example, when the
region of “ramp” is masked, ROSITA activates the word “ramp”
precisely while UNITER obtains the largest attention value on the
word “skate”. When another region of “person” is masked, ROSITA
precisely activates the word “person” while UNITER still activates
the incorrect word “skate”. Similar phenomena are observed in the
opposite direction. ROSITA activates the accurate regions to the
masked words while UNITER fails to do it.

To step further, we conduct a more challenging task as follows.
We mask multiple regions (or words) at the same time to examine
whether the semantic alignments can still be achieved. The visual-
ized results in Figure 5 show that ROSITA works surprisingly well
to establish accurate semantic alignment for each masked token.
For example, when the regions of “bowl” and “bowl & carrots” are
masked simultaneously, the region of “carrot” is precisely aligned
to the word “carrots”, and the region of “bowl & carrots” is aligned
to the two words “bowl” and “carrots” uniformly. In the opposite

direction, when the words “man”, “candles”, and “cake” are masked
at the same time, their corresponding regions are highlighted in
the learned attentions, respectively.

6 CONCLUSION
In this paper, we present a new VLP method called ROSITA, which
integrates the cross- and intra-modal knowledge in a unified scene
graph to enhance the learning of cross-modal semantic alignment.
We introduce a novel structural knowledge masking (SKM) strategy
to perform masked language (region) modeling with respect to the
knowledge entries extracted from the unified scene graph. Extensive
ablations, comparative experiments, and comprehensive analysis
show that ROSITA significantly outperforms existing state-of-the-
art VLP approaches on three typical V+L tasks over six benchmark
datasets.We hope our studywill be helpful to inspire future research
in the vision-and-language community and beyond.
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