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Abstract

Modern work on the cross-linguistic compu-
tational modeling of morphological inflection
has typically employed language-independent
data splitting algorithms. In this paper, we sup-
plement that approach with language-specific
probes designed to test aspects of morpholog-
ical generalization. Testing these probes on
three morphologically distinct languages, En-
glish, Spanish, and Swahili, we find evidence
that three leading morphological inflection sys-
tems employ distinct generalization strategies
over conjugational classes and feature sets
on both orthographic and phonologically tran-
scribed inputs.

1 Introduction

The current practice in the evaluation of computa-
tional morphological inflection models, such as
that employed in the SIGMORPHON, CoNLL-
SIGMORPHON and SIGMORPHON-UniMorph
shared tasks (Cotterell et al., 2016, 2017, 2018;
McCarthy et al., 2019; Vylomova et al., 2020; Pi-
mentel et al., 2021; Kodner et al., 2022) as well
as in more targeted studies focused on specific lan-
guages or the generalization behavior of computa-
tional models (Goldman et al., 2022; Wiemerslage
et al., 2022; Kodner et al., 2023b; Guriel et al.,
2023; Kodner et al., 2023a), is to train on (lemma,
inflection, features) triples and predict in-
flected forms from held-out (lemma, features)
pairs. The algorithm for generating train-test splits
is both random and language-independent, which
has proven successful in distinguishing morpho-
logical inflection models at the gross quantitative
level. Models differ in their performance across
languages and in their ability to generalize across
lemmas or feature sets.

In this paper, we both replicate this type of anal-
ysis and contrast it with new language-specific
probes for testing models’ generalization abilities
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in a more controlled fashion. We examine 13
probes in three languages – English, Spanish, and
Swahili – chosen for data availability and their dis-
tinct morphological characteristics. In addition,
we investigate the effect of presentation style on
performance: that is, whether the choice between
phonological transcription or orthography has a
substantial effect on outcomes. We report on three
systems which differ widely in their behavior. They
often – but not always – make reasonable linguistic
generalizations, even in their incorrect predictions.
In addition, we find no statistical effect for presen-
tation style, even on English. This has implications
for research that attempts to use neural networks for
cognitive modeling and evaluates on orthographic
data rather than more domain-appropriate phono-
logical transcriptions.

2 Languages

Three languages were chosen whose inflectional
morphologies range from entirely fusional (En-
glish), to mixed (Spanish), to mostly agglutinative
(Swahili). In highly agglutinative languages, indi-
vidual features in a set tend to correspond to distinct
morphological patterns, so a model may general-
ize to unseen feature sets by mapping component
features to their corresponding patterns. This is
exemplified by the Swahili example (1), in which
most features correspond to individual morphemes;
only the person/number prefix maps to more than
one feature. On the other hand, highly fusional
languages map entire feature sets to single patterns.
This is shown by the Spanish example (2), in which
all features map together onto a single suffix.

(1) Swahili ulipika ‘you (singular) cooked’

u-
2.SG-

li-
PST-

pik-
cook-

a
IND

(2) Spanish cocinaste ‘you (singular) cooked’

cocina-
cook-

ste
2.SG.PST.IND



All data was adapted from Kodner et al.
(2023b),1 which was in turn extracted from Uni-
Morph 3 and 4 (McCarthy et al., 2020; Batsuren
et al., 2022). The data was subjected to additional
processing as described below. For each language,
only verbs were extracted, and multi-word expres-
sions were excluded.2 Importantly, no morpheme
segmentation is provided in the UniMorph data
unlike our illustrative examples, so agglutinativity
must be discovered by each system.

English (Germanic): English triples were tran-
scribed using an IPA translation of the CMU Pro-
nouncing Dictionary.3 Triples without available
transliterations were discarded. When the dictio-
nary provided multiple transcriptions, the lemma
and inflection transcriptions which minimized Lev-
enshtein distance between them were chosen.

Spanish (Romance): Spanish triples were tran-
scribed using the Epitran package (Mortensen et al.,
2018), which does not include stress information.
UniMorph treats the infinitive as the lemma and
includes the 2nd person plural in its paradigms.

Swahili (Bantu): Swahili triples were tran-
scribed using Epitran. UniMorph treats the bare
stem as the lemma. The Swahili data set is much
smaller than the others and does not contain any
forms with negative marking. We found many in-
consistencies in the UniMorph 4 feature tags which
we normalized. Most importantly, PFV and PRF,
which both indicate perfect aspect, were mapped
to PFV and tag order was made consistent. Triples
in swc.sm with tags which could not be clearly
mapped to tag sets in swc were excluded.

3 Data Splits

We created several random data splits to study di-
mensions of morphological generalization. As in
prior work, BLIND splits were made without re-
gard to specific linguistic properties of the triples.
PROBE splits were sensitive to the properties of
the triples: they were divided into relevant and ir-
relevant sets according to properties of the feature
sets or lemmas. The irrelevant triples were split
as in BLIND in order to pad training to the same
length as BLIND, but irrelevant test triples were
discarded. The relevant triples were split in a way
specific to each probe, controlling which occurred
in train+fine-tuning. For both BLIND and PROBE,

1https://github.com/jkodner05/ACL2023_RealityCheck.
2https://github.com/jkodner05/EMNLP2023_LingProbes

with summaries provided in the Appendix.
3https://github.com/menelik3/cmudict-ipa.

each split was performed five times with unique
random seeds, and each seed was used to produce
parallel orthographic and transcription versions of
the splits for evaluating presentation style, yield-
ing ten samples in total. Data sets contained 1600
training items + 400 for fine-tuning. BLIND splits
contained 1000 test items.

BLIND: Following Kodner et al. (2023b), this
splitting strategy ensures that approximately 50%
of test items contain OOV feature sets but is other-
wise blind to the identity of those feature sets. This
was shown in the 2022 SIGMORPHON-UniMorph
shared task to create more opportunities for testing
dimensions of generalization across feature sets
than more traditional uniform random sampling
(Kodner et al., 2022).

English PROBE Splits
en-NFIN: This probe is designed to test what the
system does when it knows nothing about the rele-
vant tag. The NFIN tag, which maps to no change,
only appears in the infinitive and non-3rd singular
present. Triples with the NFIN tag were excluded
from training and presented during test. No system
can know what inflection the NFIN corresponds to,
so it can only succeed if it defaults to the lemma.
en-PRS: This probe tests the implications of

UniMorph’s design choice of annotating the non-
3rd singular present with NFIN rather than PRS.
We used identical splits to en-NFIN, but replaced
the NFIN tag with PRS. Since this is shared with
the present 3rd singular (PRS;3;SG) and participle
(V.PTCP;PRS), a system should be reasonably ex-
pected to generalize either the -s or -ing endings to
PRS items in test.
en-PRS3SG:. This probe also replaces NFIN with

PRS but instead withholds PRS;3;SG from training
and presents it during test. Success on this probe is
impossible, since systems cannot learn to map this
tag set to -s during training, but a system should
generalize either the bare lemma or the -ing of the
present participle.

Spanish PROBE Splits
es-FUT: This probe tests the ability of systems to
learn a basic agglutinative suffixing pattern: the fu-
ture tense (IND;FUT) is formed by suffixing regular
person/number marking onto the infinitive (correr
‘to run,’ correr-ás ‘you will run’). There are six
possible person/number combinations attested in
the future indicative paradigm. For each split/seed,
two feature sets with IND;FUT were randomly cho-

https://github.com/jkodner05/ACL2023_RealityCheck
https://github.com/jkodner05/EMNLP2023_LingProbes
https://github.com/menelik3/cmudict-ipa


sen, and then triples with these features were ran-
domly sampled to appear in training for models to
learn the pattern. All other feature sets containing
IND;FUT were withheld from training, and triples
containing them were sampled to appear in test.4

es-AGGL: The conditional (COND) and imperfect
(IND;PST;IPFV) are also agglutinative. Two each
of conditional, imperfect, and future feature sets
were independently selected to appear in the train-
ing split, and the rest were withheld for evaluation.
This is a more challenging version of the es-FUT
probe because a system has to learn three aggluti-
native patterns at once.
es-PSTPFV: This probe tests what a system does

when it is forced to predict missing parts of a
fusional paradigm. As shown in (2), preterite
(IND;PST;PFV) person/number forms are fusional,
because they manifest distinctly from the mark-
ing for all other tense/aspects (except for the 1st
person plural) and are not decomposable into a
preterite part and a person/number part. Since a
system cannot predict these forms from their com-
ponent person/number features matched with other
tenses, it should perform poorly even if it succeeds
at es-FUT and es-AGGL. A system should general-
ize person/number marking from the other tenses.
es-IR: This probe tests generalization across

conjugational classes rather than across feature sets.
Spanish verbs fall into three classes clearly indi-
cated by their infinitive suffix: -ar, -er, and -ir. -ir
shares many, but not all, of its inflections with -er.
For this probe, all but 50 randomly chosen -ir lem-
mas are banned from train sampling, which results
in 10-18 -ir training triples sampled per seed. A
system should predict the appropriate -er form or
one with -i- for each -ir evaluation item or overap-
ply the majority -ar ending.

es-IRAR: This probe is similar to es-IR but
much more challenging because all -ar and -ir
verbs are withheld from training. We predict that
a system should produce the -er inflected form or
replace -e- in forms with the appropriate -a- or -i-.

Swahili PROBE Splits
sw-1PL: As in (1), person/number and tense/aspect
marking is marked agglutinatively before the stem
in Swahili. The 1st person plural (1;PL) is marked
with a tu- prefix. Two feature sets containing 1;PL
were randomly selected by seed and allowed to
appear in train, and the rest were withheld for eval-

4Illustrations for two seeds are provided in the Appendix.

uation. This test is similar to es-FUT and es-AGGL.
sw-NON3: Swahili manifests four non-3rd person

subject marking prefixes as well as a 3rd person
prefix for each of its many noun classes. This is
a more challenging version of sw-1PL which with-
holds all but one independently selected feature
set containing each of 1;SG, 1;PL, 2;SG, and 2;PL
from training and evaluates on the rest.
sw-FUT: Tense is marked with an affix imme-

diately following subject marking. The future is
marked with -ta-. This probe is set up like sw-1PL
except it requires a system to produce a string infix
rather than string prefix.
sw-PST: The simple past (PST) is marked with

-li-. This probe is similar to sw-FUT but with a
distractor: the past perfective (PST;PFV) is actually
fusional, and is expressed as -me- without -li-. A
system could thus produce -me- forms instead of
the expected -li-.
sw-PSTPFV: This probe is similar to sw-PST ex-

cept it tests the past perfective (PST;PFV), while
the simple past (PST) serves a distractor.

4 Systems

CHR-TRM (Wu et al., 2021) is a character-level
transformer that was used as a baseline in the 2021
and 2022 SIGMORPHON shared tasks. We use
default hyper-parameters for low-resource settings.

CLUZH (Wehrli et al., 2022) is a character-level
transducer which performs well but showed some
weakness in feature set generalization in the 2022
shared task. We used beam decoding, size = 4.

ENC-DEC (Kirov and Cotterell, 2018) is an
LSTM-based encoder-decoder which was argued
to provide evidence for the cognitive plausibility
of connectionist models as a follow-up to the Past
Tense Debate.

5 Results

5.1 Orthography and Transcription

This section analyzes the effect of presentation
style on performance. In addition to visual inspec-
tion of Figure 1, which shows little difference be-
tween orthography and phonological transcription,
there are at most moderate differences in mean ac-
curacy between the two. Differences range from
+4.07 points in favor of orthography for English, to
-2.80 for Spanish, to only -0.45 for Swahili.

English may favor orthography because it re-
moves the three-way allomorphy of past -(e)d and



Figure 1: Accuracy on each split (color) for each seed by language (major column), system (minor column/shape),
and presentation style (row).

3rd singular present -(e)s which is indicated in tran-
scription. However, it is also possible that the differ-
ence is due to the choice of transcription dictionary
or how we processed it. For Spanish, a transcrip-
tion scheme that retained stress may have proven
more challenging than Epitran’s which lacks it.

Variable F-statistic p-value
system 68.093 <2e-16
seed 0.223 0.925
presentation 0.014 0.906
language 76.588 <2e-16
presentation * lang 1.061 0.351

Table 1: ANOVA analysis on BLIND showing signifi-
cant effect for system and language but not presentation.

We follow this with an ANOVA analysis of five
variables: the system, seed, presentation style, lan-
guage, and the interaction between presentation
and language, to determine which differences in
mean accuracy are unlikely to be due to chance.
Summarized in Table 1, we find that only the choice
of system and the language are significant, not pre-
sentation style. This is consistent with visual in-
spection. The conclusion is the same on BLIND,
PROBE, and both combined.

5.2 Generalization and Linguistic Analysis

Feature Set Generalization in BLIND

A breakdown of BLIND test triple by type in Ta-
ble 2 replicates prior work (Kodner et al., 2022,
2023b) demonstrating that generalization to unseen
feature sets is particularly challenging. All sys-
tems showed lower accuracy on OOV feature sets
(fsOOV & bothOOV) than on other triples. ENC-
DEC shows virtually no ability to do this.5

5A complete breakdown is provided in the Appendix.

System noOOV lmOOV fsOOV bothOOV
CHR-TRM 94.40% 82.68% 52.90% 36.46%
CLUZH 93.93 95.43 47.12 48.93
ENC-DEC 93.79 86.01 2.53 1.43

Table 2: Average performance on BLIND orthography
across seeds and languages. noOOV = triples where both
lemma and feat. set were observed; lmOOV = lemma is
OOV; fsOOV = feature set is OOV. bothOOV = lemma
and feature set are OOV.

For CHR-TRM and CLUZH, we observe a much
smaller performance gap on OOV feature sets for
the more agglutinative languages (Swahili -9.5
points < Spanish -49.76 < English -81.38), which
indicates that these systems can perform some de-
gree of generalization across feature sets. This
contradicts the prior work, which uncovered no
substantial difference between fusional and aggluti-
native languages, indicating an inability to perform
this kind of generalization.

This discrepancy may be explained by how we
processed the Swahili data. The published Uni-
Morph data contains several inconsistencies, sum-
marized in Section 2, in its feature tags which made
the task of generalization unfairly challenging in
prior work. We corrected this by normalizing the
feature sets and removing triples which we could
not adequately fix. However, this would only ex-
plain the middling reported performance on other
agglutinative languages if their UniMorph data sets
turn out to be highly inconsistent as well. This
question is left for future work.

Generalization on Swahili PROBE Splits

CHR-TRM is very successful at generalizing the pre-
fix in sw-1PL and string infix in sw-FUT. CLUZH

sometimes applies the 1st singular prefix instead



of the plural in sw-1PL, but is less consistent for
sw-FUT, where it produces many infixes belong-
ing to other tenses in addition to nonsense outputs.
sw-NON3 was developed as a more challenging ver-
sion of sw-1PL, and performance was indeed lower.
However, instead of “near-miss” errors suggesting
linguistic generalization, both systems produced a
range of person/number, tense, and nonsense errors
not clearly related to the probe.
sw-PST was designed to be similar to sw-FUT

but with a distractor fusional string infix. As
expected, performance was lower, especially for
CLUZH, which often substituted the distractor past
perfect, other tense marking, or omitted tense al-
together similar to its errors on sw-FUT. Its errors
in sw-PSTPFV were overwhelmingly application of
the simple past, which can be explained as a gener-
alization of PST while ignoring the PFV tag. These
are mostly reasonable errors that point to some de-
gree of generalization. ENC-DEC showed no ability
to generalize according to component morphologi-
cal features even this highly agglutinative setting.

Generalization on Spanish PROBE Splits

For es-FUT, CHR-TRM and CLUZH identified the
correct pattern of infinitive + person/number mark-
ing but often produced slightly incorrect forms.
In the orthographic tests, many of these errors in-
volved incorrect stress marking. These could be
considered reasonable “near-misses” that point to
generalization. However, for the more challenging
es-AGGL, both produced less interpretable errors.
es-PSTPFV was designed to be impossible but in-
sightful, since preterite person/number marking
cannot be predicted from the person/number mark-
ing of other tenses. Indeed, CLUZH generalized
the person/number marking from the other tenses
as well as the few preterite person/number mark-
ings presented during training, indicating that it
can employ the relevant generalization. However,
CHR-TRM and ENC-DEC were less interpretable.
es-IR and es-IRAR differ from the other probes

in that they require generalization across conjuga-
tional classes indicated by the form of the lemma
rather than generalization across feature sets. This
proved appropriately challenging for all systems,
which all produced many nonsense errors and some
near-miss overuse of -er endings or combined
-a+er and -i+er endings. Notably, these were also
the only probes for which ENC-DEC showed some
success. The tasks that the system was asked to

perform in (Kirov and Cotterell, 2018) rewarded
analogy across lemma forms rather than unseen fea-
ture sets. This is similar to the es-IR and es-IRAR
probes but distinct from all the other probes which
were focused on feature generalization.

Generalization on English PROBE Splits

Accuracy was near-zero on every English PROBE.
This was expected, because the tasks were effec-
tively impossible, however, qualitative analysis is
insightful. For en-NFIN and en-PRS, a system
would succeed if it defaulted to the bare lemma
as an inflection of last resort. However, no sys-
tem took that approach. For en-NFIN, CHR-TRM

consistently outputted -ing forms with other errors,
CLUZH produced -(e)d forms, and ENC-DEC pro-
duced mostly -(e)s forms with other errors.

The replacement of UniMorph’s NFIN with PRS
did indeed have an effect, indicating that some
behavior on English can be attributed to this corpus
design choice: Both CHR-TRM and CLUZH now
consistently produced present participle -ing forms,
while ENC-DEC instead produced -(e)d or -(e)s.
This indicates generalization over the PRS feature.
For en-PRS3SG, CLUZH always produced the bare
lemma form, showing clear generalization of PRS.
CHR-TRM only produced nonsense errors, while
ENC-DEC produced nonsense errors suffixed with
-(e)d or -ing.

6 Conclusions

In this work, we present language-specific probes
to evaluate the ability of computational systems
to perform morphological generalizations as a
complement to prior work relying on large-scale
language-independent data-splitting. Systems dif-
fer substantially both in their ability to perform
generalizations and in their problem-solving strate-
gies. Of the two systems showing generalization
ability, both perform well on the simplest probes
but struggle on more complex but feasible probes.
On probes designed to be impossible but insight-
ful, both systems show some degree of reasonable
generalization. In addition to this, we find no sig-
nificant effect of presentation style on the behavior
of the three systems. While we maintain that the
choice of presentation style should be driven by
application when possible (usually orthography for
NLP or transcription for cognitive modeling), our
results suggest that it can be reasonable to use or-
thography when transcription is impractical.



Limitations

The main limitation of the the language-specific
splitting approach compared to the traditional
language-independent splitting approach is the
language-specific and domain-specific expertise
needed to design the probes themselves. Never-
theless, this work successfully demonstrates the
utility of such probes. Future work with a larger
group of experts in a wider range of languages
could extend this approach to more test cases. We
believe that this could be implemented on a larger
scale such as for a complementary shared task in
the future.
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A Appendix

# Lemmas # Feature Sets # Triples
English 9188 5 27836
Spanish 7326 152 1077655
Swahili 131 169 10925

Table 3: Type frequencies for lemmas, feature sets, and
triples for each language data set before splitting.

Ortho noOOV lmOOV fsOOV bothOOV Total
CHR-TRM 95.83% 14.32% 95.32% 7.67% 52.22%

(11.76) (39.60) (7.34) (20.30) (11.60)
CLUZH 96.60% 20.43% 95.28% 12.85% 54.96%

(7.84) (39.60) (7.83) (24.00) (10.60)
ENC-DEC 97.22% 8.58% 95.37% 5.24% 50.76%

(7.84) (31.68) (7.59) (15.79) (8.50)
Transcr noOOV lmOOV fsOOV bothOOV Total
CHR-TRM 83.44% 14.08% 89.86% 7.04% 48.86%

(25.72) (38.38) (11.67) (17.23) (10.30)
CLUZH 85.77% 18.10% 90.59% 11.44% 51.48%

(13.77) (38.38) (14.38) (20.12) (6.00)
ENC-DEC 85.44% 4.12% 89.22% 2.37% 45.82%

(26.03) (12.12) (13.64) (6.08) (6.00)

Table 4: Average percent accuracy and (accuracy range)
on BLIND English across seeds for each system and
presentation style. noOOV = triples where both lemma
and feature set were observed; lmOOV = lemma is OOV;
fsOOV = feature set is OOV. bothOOV = lemma and
feature set are OOV.

Ortho noOOV lmOOV fsOOV bothOOV Total
CHR-TRM 93.38% 48.14% 91.92% 47.98% 70.16%

(6.87) (18.41) (1.67) (5.43) (4.90)
CLUZH 91.96% 33.14% 93.38% 32.05% 62.74%

(9.63) (21.45) (2.45) (13.06) (7.80)
ENC-DEC 90.54% 0.59% 90.27% 0.25% 45.34%

(9.56) (2.97) (5.55) (0.51) (3.30)
Transcr noOOV lmOOV fsOOV bothOOV Total
CHR-TRM 95.55% 56.40% 93.97% 56.08% 75.26%

(7.27) (29.78) (3.03) (7.44) (6.70)
CLUZH 92.22% 38.37% 93.37% 37.21% 65.32%

(10.41) (29.89) (3.35) (25.79) (13.50)
ENC-DEC 92.01% 0.39% 91.20% 0.71% 46.04%

(7.46) (1.96) (3.54) (2.78) (1.20)

Table 5: Average percent accuracy and (accuracy range)
on BLIND Spanish across seeds for each system and
presentation style. noOOV = triples where both lemma
and feature set were observed; lmOOV = lemma is OOV;
fsOOV = feature set is OOV. bothOOV = lemma and
feature set are OOV.

Ortho noOOV lmOOV fsOOV bothOOV Total
CHR-TRM 99.16% 92.75% 75% 50.00% 95.92%

(1.40) (3.40) (50.00) (100) (1.60)
CLUZH 98.48% 84.14% 100% 100% 91.32%

(0.99) (6.35) (0.00) (0.00) (3.50)
ENC-DEC 98.80% 1.00% 75.00% 0.00% 49.88%

(2.20) (3.20) (50.00) (0.00) (2.30)
Transcr noOOV lmOOV fsOOV bothOOV Total
CHR-TRM 99.04% 91.71% 50.00% 50.00% 95.32%

(1.60) (3.22) (100) (100) (1.10)
CLUZH 98.56% 88.55% 100% 100% 93.56%

(1.20) (6.78) (0.00) (1.20) (3.70)
ENC-DEC 98.76% 0.48% 75.00% 0.00% 49.60%

(1.80) (1.60) (50.00) (0.00) (0.60)

Table 6: Average percent accuracy and (accuracy range)
on BLIND Swahili across seeds for each system and
presentation style. noOOV = triples where both lemma
and feature set were observed; lmOOV = lemma is OOV;
fsOOV = feature set is OOV. bothOOV = lemma and
feature set are OOV.

Ortho en-NFIN en-PRS en-PRS3SG
CHR-TRM 0.06% 0.18% 0.00%

(0.29) (0.60) (0.00)
CLUZH 1.11% 0% 0.09%

(1.24) (0.00) (0.47)
ENC-DEC 0.35% 0.23% 0.00%

(1.17) (1.15) (0.00)
Transcr en-NFIN en-PRS en-PRS3SG
CHR-TRM 0.00% 0.00% 0.00%

(0.00) (0.00) (0.00)
CLUZH 0.92% 0.00% 0.09%

(2.05) (0.00) (0.47)
ENC-DEC 0.63% 0.67% 0.00%

(1.69) (2.79) (0.00)

Table 7: Percent accuracy and (accuracy range) on
English PROBE splits by system and presentation style.

Ortho es-AGGL es-FUT es-PSTPFV es-IR es-IRAR
CHR-TRM 57.47% 38.93% 8.31% 48.61% 6.32%

(3.54) (56.41) (27.27) (11.13) (5.42)
CLUZH 24.99% 5.19% 3.94% 32.39% 37.05%

(16.64) (12.50) (10.26) (13.57) (12.09)
ENC-DEC 0.00% 0.00% 0.00% 20.52% 5.95%

(0.00) (0.00) (0.00) (28.01) (8.76)
Transcr es-AGGL es-FUT es-PSTPFV es-IR es-IRAR
CHR-TRM 57.61% 44.57% 5.45% 51.12% 7.86%

(28.98) (72.62) (27.27) (12.25) (6.05)
CLUZH 30.05% 36.41% 7.95% 35.13% 40.36%

(15.12) (46.15) (19.05) (10.59) (12.08)
ENC-DEC 0.19% 0.00% 0.00% 21.08% 8.55%

(0.96) (0.00) (0.00) (8.57) (6.69)

Table 8: Percent accuracy and (accuracy range) on
Spanish PROBE splits by system and presentation style.

Ortho sw-1PL sw-NON3 sw-FUT sw-PST sw-PSTPFV
CHR-TRM 99.37% 85.90% 98.35% 60.48% 98.19%

(1.14) (11.71) (3.60) (40.12) (9.03)
CLUZH 66.71% 53.89% 37.10% 12.56% 37.66%

(29.70) (23.52) (66.49) (35.44) (73.24)
ENC-DEC 0.00% 0.05% 0.00% 0.00% 0.00%

(0.00) (0.24) (0.00) (0.00) (0.00)
Transcr sw-1PL sw-NON3 sw-FUT sw-PST sw-PSTPFV
CHR-TRM 99.39% 85.56% 96.94% 70.56% 96.24%

(1.14) (8.70) (5.38) (25.74) (9.79)
CLUZH 68.00% 47.94% 36.24% 21.68% 37.61%

(26.82) (15.57) (46.83) (55.85) (77.64)
ENC-DEC 0.00% 0.81% 0.00% 0.00% 0.00%

(0.00) (2.16) (0.00) (0.00) (0.00)

Table 9: Percent accuracy and (accuracy range) on
Swahili PROBE splits by system and presentation style.
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es-FUT Seed 0
Train/FTune-Only Feature Sets V;IND;FUT;2;SG;FORM

V;IND;FUT;3;SG
Test-Only Feature Sets V;IND;FUT;1;PL

V;IND;FUT;1;SG
V;IND;FUT;2;SG;INFM
V;IND;FUT;2;PL;INFM

V;IND;FUT;3;PL

# Train-Only Triples Sampled 38
# Other Train/FTune Triples Sampled 1962
# Test-Only Triples Sampled 46
# Unique Train/FT-Only F. Sets Sampled 2
# Unique Other Train/FT F. Sets Sampled 145
# Unique Test-Only F. Sets Sampled 5

es-FUT Seed 4
Train/FTune-Only Feature Sets V;IND;FUT;1;SG

V;IND;FUT;2;PL;INFM
Test-Only Feature Sets V;IND;FUT;1;PL

V;IND;FUT;2;SG;INFM
V;IND;FUT;2;SG;FORM

V;IND;FUT;3;SG
V;IND;FUT;3;PL

# Train/FTune-Only Triples Sampled 34
# Other Train/FTune Triples Sampled 1966
# Test-Only Triples Sampled 42
# Unique Train/FT-Only F. Sets Sampled 2
# Unique Other Train/FT F. Sets Sampled 145
# Unique Test-Only F. Sets Sampled 5

Table 10: Description of es-FUT train and test feature
sets for seeds 0 and 4. Seeds 1-3 provide similar results,
and similar splitting logic applies to the other PROBE
splits. Triples with feature sets containing FUT are par-
titioned at random by seed into those that can only be
sampled for train+finetune and those that can only be
sampled for test. Otherwise, data is split uniformly at
random as in most SIGMORPHON shared tasks. No
relevant PROBE feature set appears in both train and
test, but all other feature sets may. Evaluation is only
performed on sampled triples with the relevant PROBE
feature set. This approach allows us to test the specific
impact of the PROBE in an otherwise typical setting.


