
Under review as a conference paper at ICLR 2018

TRAINING WITH GROWING SETS:
A SIMPLE ALTERNATIVE TO CURRICULUM LEARNING
AND SELF PACED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Curriculum learning and Self paced learning are popular topics in the machine
learning that suggest to put the training samples in order by considering their dif-
ficulty levels. Studies in these topics show that starting with a small training set
and adding new samples according to difficulty levels improves the learning per-
formance. In this paper we experimented that we can also obtain good results
by adding the samples randomly without a meaningful order. We compared our
method with classical training, Curriculum learning, Self paced learning and their
reverse ordered versions. Results of the statistical tests show that the proposed
method is better than classical method and similar with the others. These results
point a new training regime that removes the process of difficulty level determina-
tion in Curriculum and Self paced learning and as successful as these methods.

1 INTRODUCTION

Bengio et al. (2009) named Curriculum learning the idea of following an order related with difficulty
of the samples during training which provides an optimization for non convex objectives. After this
many researchers tried to find the most efficient curriculum to get the best yield with this approach.
In Zaremba & Sutskever (2014)’s study conventional curriculum learning did not work so well and
they developed a new version. Shi et al. (2015) proposed three different curriculum strategies for
language model adaptation of recurrent neural networks. In the field of computer vision Pentina
et al. (2015) looked for the best order of tasks to learn. Although these models have better gen-
eralization performance with the proposed curriculum methods it is not known whether the tried
methods ensures the best curriculum.

A curriculum is work-specific so could not be applicable for another work. In order to use the
curriculum logic in different applications Kumar et al. (2010) suggested a method that the learner
decides itself which samples are easy or difficult at every stage. This method called Self paced
learning was combined with Curriculum learning which provides prior information by Jiang et al.
(2015). In another work Graves et al. (2017) introduced a method to automatically select the syllabus
to follow for the neural networks. Matiisen et al. (2017) also proposed a way to learn simple sub-
tasks before the complex tasks and achieved better results than using manually designed curriculum.

In some cases higher learning performance could be obtainable by adding some noises to easy-to-
hard ordering of the samples. Jiang et al. (2014) gave preference to both easy and diverse samples
and outperform the conventional Self paced learning (Kumar et al. (2010)) algorithm. Emphasiz-
ing the uncertain samples suggested by Chang et al. (2017) lead to more accurate and robust SGD
training. Avramova (2015) explored the inversed versions of the Self paced learning and Self paced
learning with diversity (Jiang et al. (2014)) and demonstrated that these methods performed slightly
better than their standard variants. Consistent with the literature we have showed in our previous
work () that using both curriculum and anti-curriculum strategies improving generalization perfor-
mance in a wide application area. These researches brings a question to minds: While it is natural
and logical to obtain better results by sorting the samples from easy-to-hard why it is also better to
sort the samples from hard-to-easy?

In this study we point that to start with a small training set and add new samples in both curriculum
and anti-curriculum learning makes these methods better. So we claim that it is possible to have

1

Under review as a conference paper at ICLR 2018

Table 1: Training sets at each stage of CL

Stage Training set

1st stage 1st group
2nd stage 1st group + 2nd group
... 1st group + 2nd group + ...
nth stage 1st group + 2nd group + ... + nth group

better results only by adding new samples stage-by-stage without a meaningful order. We experi-
mented two ordering types related with difficulty (easy-to-hard and hard-to-easy) and our method
without a meaningful order. Training was carried out by adding a new group to the training set at
every stage. We compared the proposed method with two strategies. First one is Curriculum learn-
ing which we give the difficulty levels of the samples as pre-information. Second one is Self paced
learning which the trained network determines the difficulty levels of the samples at each stage. All
methods including usual baseline training have been compared by using paired T-test and the results
are examined.

2 METHODS

We explored 2 ordering types determined by 2 different strategies and our method without ordering.

2.1 CURRICULUM LEARNING

In the Curriculum learning(CL) learner follows a pre-determined curriculum during training. For
this reason it is necessary to know the difficulty of the samples. This information can be given by
defining the specific curriculum of the task or labeling the samples at the beginning. Even though
labeling with difficulty levels is easy for artificial data sets, it is costly and demanding for real world
data sets. Besides that, a sample which is easy for humans may not be easy for machines. In this
study, we used an ensemble method to automatically determine the difficulty of the samples. We
created an ensemble with Bagging method(Breiman (1996)) and calculated decision consistency for
each training sample accordingly the difficulty levels are determined. Then, the ordered training set
which is easy-to-hard was grouped for Curriculum learning and hard-to-easy ordered training set
was grouped for Anti-curriculum learning(ACL).

For CL, the samples are sorted firstly then separated into same sized groups by dividing the number
of training samples into the number of stages. Remainings are added to the first stage so that the
number of new samples to add at each stage is equal. Training starts from the easiest group and
continues by adding the groups one-by-one according to the easiness. Hardest group is given with
the entire training set at the last stage and training is completed in stages same number as groups.

For ACL, the training set is sorted by difficulty in descending order and then separated into groups.
Training starts with the group that is the most difficult. At the last stage of the training, the group
includes the easiest samples with the entire training set. The groups given at each stage are shown
in Table 1 when the training set considered as sorted according to the difficulty levels.

At each step a new group of samples are given together with the previous samples for both methods.
In the last stage the entire training set is given like the baseline training. The path for CL is given in
Algorithm 1. The same algorithm is applied for ACL with reverse order training set.

Curriculum learning starts with random initialized weights in the first stage. The optimum weights
found at each stage taken as the initial weights of the next stage. In other words, next stage of the
optimization starts from the minimum found in the previous stage.

2.2 SELF PACED LEARNING

Self paced learning(SPL) is a solution for finding the difficulty levels in Curriculum learning. In this
method learner determines the instances to learn according to the current situation of the objective

2

Under review as a conference paper at ICLR 2018

Algorithm 1 Curriculum learning
1: D ← training set sorted by easiness
2: n← number of stages
3: s← number of samples to add at each stage
4: f ← non-convex objective function of neural network with parameters θ
5: procedure CL(D,n, s, f)
6: Randomly initialize the parameters θ0
7: D0 = first s sample of D
8: θ1 = argminθf(D0, θ0)
9: for t = 1 to n− 1 do

10: Dt = first (t+ 1) ∗ s sample of D
11: θt+1 = argminθf(Dt, θt)
12: end for
13: return θn
14: end procedure

function. Training starts with a group of random samples and the samples that best fit the current
model space are labeled as easy at each step. Weights are updated by easy labeled examples at the
next step. The network is trained with more examples in the next step and all training set is given
in the final step. This is realized by annealing the self pace parameter. Same number of samples at
each stage can be added to the training set to make the training progress homogeneous.

In this work the only parameter to set for SPL is the number of stages. The number of samples to
add at each stage is equal like as CL. Training starts with randomly selected samples. At the end of
each stage, the samples are sorted by ascending order according to the losses calculated with MSE.
The samples to give in the next stage are selected from this order. The most consistent samples with
the model space are selected for the next stage.

For the Self paced learning-Inversed(SPLI), the most outlying samples have priority. Same as SPL,
training starts with random samples. Training samples in the next stage are selected by considering
the incompatibility with the model space. All training set is sorted by loss in descending order, sam-
ples with the highest loss are selected for the next stage. The path for SPL is given in Algorithm 2.
The same algorithm is applied for SPLI, only training set is sorted by reverse order at each stage.

Training in the next stage is started with using previous solutions in SPL also as in CL. SPL does
not guarantee that the all samples from previous stage will be taken again in the next stage. The
samples best adapted with the objective function are taken among all training samples and some of
the samples used in the previous stage may not be inside these samples. For example, if there is
noisy samples in the first stage these probably will not be in the training set at the second stage.

Algorithm 2 Self paced learning
1: T ← random ordered training set
2: n← number of stages
3: s← number of samples to add at each stage
4: f ← non-convex objective function of neural network with parameters θ
5: procedure SPL(T, n, s, f)
6: Randomly initialize the parameters θ0
7: T0 = randomly chosen s sample from T
8: θ1 = argminθf(T0, θ0)
9: for t = 1 to n− 1 do

10: Dt = training set sorted by loss of f(T, θt) ascending order
11: Tt = first (t+ 1) ∗ s sample of Dt

12: θt+1 = argminθf(Tt, θt)
13: end for
14: return θn
15: end procedure

3

Under review as a conference paper at ICLR 2018

2.3 RANDOM ORDERED GROWING SETS

CL, SPL and their inverse versions have a common point: At each next step the number of training
samples is increasing with addition of a new group. Due to the both versions (easy-to-hard and
hard-to-easy) have better performance than the classical method it is considered that this common
feature may provide an optimization. We investigated the total weight change in each iteration for
all methods in the Appendix A. In this case, it is important to train with accumulating groups rather
than giving the samples with a meaningful order. Therefore, dividing the unordered training set into
the groups and adding a new group at each stage could also raise the generalization performance.

In the Random ordered growing sets(ROGS) method unsorted training set is divided into groups
with equal number of samples. Training is carried out in the same fashion as starting with the first
group then adding a new group at each stage without a meaningful order. Algorithm 3 shows the
way of training with Random ordered growing sets. Same as the other methods, ROGS uses the
found solutions in the previous stages as initial weights in the next stage.

Algorithm 3 Random ordered growing sets
1: T ← random ordered training set
2: n← number of stages
3: s← number of samples to add at each stage
4: f ← non-convex objective function of neural network with parameters θ
5: procedure ROGS(T, n, s, f)
6: Randomly initialize the parameters θ0
7: T0 = randomly chosen s sample from T
8: θ1 = argminθf(T0, θ0)
9: for t = 1 to n− 1 do

10: Tt = randomly choose (t+ 1) ∗ s sample from T
11: θt+1 = argminθf(Tt, θt)
12: end for
13: return θn
14: end procedure

Examined 5 methods find the optimum weights with the same objective:

θt+1 = argmin
θ∈Rd

(t+1)∗s∑
i=1

(f(xi, θt)− yi)2 (1)

where s denotes the number of samples to add at each stage, parameters at each stage determined by
same amount of samples for all methods. xi, yi are taken from pre-sorted easy-to-hard training set
for CL, from pre-sorted hard-to-easy training set for ACL, from the training set that sorted easy-to-
hard at each stage for SPL and from the training set that sorted hard-to-easy at each stage for SPLI.
In ROGS method samples are selected from non-ordered training set.

3 A THEORETICAL EXPLANATION ABOUT TRAINING WITH GROWING SETS

Definitions: (a) The loss function `(θ) with one parameter θ ∈ R is given as in (2) where N is the
number of training instances and the loss function for each individual instance `i(θ) is given as in
(3).

`(θ) =
1

N

N∑
i=1

(f(xi, θ)− yi)2 (2)

`i(θ) = (f(xi, θ)− yi)2 (3)

(b) The point θB is a definite local minimum of `(θ). Geometric representation of a definite local
minimum point is shown in Figure 1(a) with the loss functions. We show the loss functions for 10

4

Under review as a conference paper at ICLR 2018

instances with thin lines and their average with the bold line. If we denote the expected value of `(θ)
as E[`(θ)], expected values of the loss function in the given points can be ordered as in (4).

E[`(θA)] > E[`(θC)] > E[`(θB)] > E[`(θD)] (4)

Expected values of the derivatives of the loss function in the given points can be written as in (5)
and the derivatives are given in Figure 1(b).

`′(θA) = E[
1

N

N∑
i=1

`′i(θA)] < 0

`′(θB) = E[
1

N

N∑
i=1

`′i(θB)] = 0

`′(θC) = E[
1

N

N∑
i=1

`′i(θC)] = 0

`′(θD) = E[
1

N

N∑
i=1

`′i(θD)] < 0

(5)

Figure 1: Loss functions of individual instances vs. all instances(a) and derivatives(b)

(c) We define the complexity as the number of critical points and denote with κ. Complexity of the
`(θ) is κ(`(θ)).

Assumptions: (a) Complexity of the loss functions of each individual instance can be as much as
the complexity of the loss function of all instances.

κ[`i(θ)] <= κ[`(θ)] ∀i ∈ {1, 2, ..., N} (6)

(b) More than half of the individual instances are less complex than average of all instances.

κ[`i(θ)] < κ[`(θ)] (m >
N

2
) (7)

Lemma 1: Probability density function of the derivatives in the θB point has a skewed distribution
with zero mean.
Proof: Derivatives of the loss functions is under the point θB in Figure 1(b) for more than half of
the individual instances. However `′i(θB) values are high for the above instances. If we denote the
probability density function of the derivatives in the θB as Pr(`′i(θB)),

5

Under review as a conference paper at ICLR 2018

1) Definition (c) gives that θB is a local minimum therefore Pr(`′i(θB)) has zero mean.
2) If κ(`(θ)) = 2 as in Figure 1(b) then κ(`i(θ)) <= 2 from Assumption (a) and κ(`i(θ)) < 2
for more than half of the instances from Assumption (b). `′i(θB) < 0 for the instances that has
κ(`i(θ)) < 2. `′i(θB) < 0 for more than half of the instances therefore Pr(`′i(θB)) has a skewed
distribution.

Corollary 1: If we take a subset with k instances from the training set we can denote:

`s(θB) =
1

k

k∑
i=1

`i(θB) (8)

Expected value for the derivative of the loss function of the subset at the point θB is less than zero.

E[`′s(θB)] < 0 (9)

Proof: Probability of being negative for E[`′s(θB)] depends on k and always high from Lemma 1.

Theorem 1: If we take a subset with k instances and train with batch gradient descent, we obtain a
better local minimum for this subset.
Proof: Optimization in the `(θ) surface which starts from θA will probably end at θB . However in
the `s(θ) surface optimization will be continue to find a better minimum for the current set according
to Corollary 1.

Theorem 2: To continue the optimization with all samples provides a better local minimum for all
training set than stopping at the minimum of the subset.
Proof: Error surface for all instances (`(θ)) and some subsample instances (`sx(θ), `sy(θ), `sz(θ),
`sw(θ)) are given in Figure 2. These examples shows all possible situations for the stopping points
by considering θA, θB and θC .

Figure 2: Loss functions of subsample instances vs. all instances

We suppose to start the optimization from θA.
- If we use `(θ) it will be stop at θB .
- If we use `sx(θ) it will be stop at θsx in the range θB < θsx < θC . If we finish the optimization
here, error on the surface for all instances will be high (E[`(θsx)] > E[`(θB)]). Therefore optimiz-
ing in the `(θ) subsequently prevents to stay at a worse point.
- If we use `(θsy) it will be stop at θsy in the range θA < θsy < θB . Here E[`(θsy)] > E[`(θB)]
therefore optimization for all instances is necessary.
- If we use `(θsz) it will be stop at θsz in the range θC < θsz and it is possible to obtain a better
local minimum with optimization on `(θ) surface by starting from the local minimum of the subset.
- If we use `(θsw) it will be stop at θsw in the range θA > θsw. Here the stopping point can be
worse for all instances. Therefore it is possible to avoid from worse point by optimization on the
`(θ) surface.

6

Under review as a conference paper at ICLR 2018

Table 2: T-test results
Baseline CL ACL SPL SPLI ROGS

Baseline - 0/24/12 6/17/13 0/29/7 3/13/20 3/16/17
CL 12/24/0 - 11/20/5 4/32/0 4/20/12 7/24/5

ACL 13/17/6 5/20/11 - 7/18/11 0/24/12 1/30/5
SPL 7/29/0 0/32/4 11/18/7 - 3/18/15 5/24/7
SPLI 20/13/3 12/20/4 12/24/0 15/18/3 - 7/29/0

ROGS 17/16/3 5/24/7 5/30/1 7/24/5 0/29/7 -

Theorem 3: We can obtain a better local minimum with training with growing sets.
Proof: Subset of the training set provides to get a better local minimum as in Theorem 1. By the
same way subset of the subset surface can be provide a better local minimum for the subset. To
optimize the surface of the whole training set first optimize the following surfaces respectively:

`S1
(θ), `S2

(θ), ..., `(θ) s(S1) < s(S2) < ... < N (10)

4 IMPLEMENTATION

We trained 3-layer artificial neural network which has 10 neurons in the hidden layer with stochastic
gradient descent with momentum for all methods. Stop condition is the rising validation error series
for 6 times during the training. Baseline and all other methods applied with incremental training.
We set the number of stages as 25 for all methods with growing sets. The network must provide the
stopping condition at each stage to pass the next stage. Optimized weights in the previous stage are
given as initial weights in the next stage.

We have tested the suggested methods in 36 data sets retrieved from UCI repository1 with the sam-
ple number range from 57 to 20000. We divide each data set 5 folds, 3 for training, 1 for validation
and 1 for testing at each experiment. For each data set 20 error rates (MSE) obtained with 4x5 fold
cross validation are compared by 0.95 significance level paired T-test. Results of the comparisons
are in Table 2. (Abbreviations are as follows: Curriculum learning=CL, Anti-curriculum learn-
ing=ACL, Self paced Learning=SPL, Self paced learning-Inversed=SPLI, Random ordered growing
sets=ROGS) Each cell contains the win/tie/loss information for corresponding row against corre-
sponding column. For example, Curriculum learning wins versus Baseline in 12 data sets, ties in 24
data sets, not loses in any data set. Results of the comparisons with Baseline for all data sets are
given in the Appendix B with the number of samples, number of features, number of classes and
average Baseline MSE. If the comparison result of the corresponding method against Baseline is
win it is marked with W, tie marked with T and loss marked with L.

It is seen that training with ROGS is better than Baseline method in 17 data sets. Considering
the comparisons with the Baseline, ROGS method wins in more data sets than CL, ACL and SPL.
Obtaining good results without a meaningful order shows that only giving the training set as growing
subsets provides an optimization. Additionally, SPLI method wins against Baseline in more than half
of the data sets. This method seems as the best method in terms of total number of wins.

It is striking that CL and SPL methods did not lose against Baseline in any data set. This shows the
robustness of these methods in noisy data sets. It is possible to give priority to noises with hard-to-
easy and random ordered methods so training may be misdirected in the data sets with high error
rates. In such data sets giving priority to easy examples provides a safer training.

5 DISCUSSION AND FUTURE WORK

We drew our attention that both versions of training with easy-to-hard ordered and hard-to easy
ordered samples have better performance. That led us to investigate what common issues they have.
We considered that their common point is growing the training sets during training. Therefore,
instead of ordering the samples according to difficulty we only added some samples randomly at

1http://archive.ics.uci.edu/ml/datasets

7

http://archive.ics.uci.edu/ml/datasets

Under review as a conference paper at ICLR 2018

each stage. In these experiments we obtained similar results with Curriculum, Anti-curriculum, Self
Paced and Self Paced-Inversed methods which are related to difficulty levels. According to these
results, we can claim that the success of Curriculum learning and Self paced learning approaches
not comes from the fact that they follow a meaningful order but trained by growing training sets.

In Figure 1(a) we showed some examples for the individual instances. We started the optimization
from θA, instances under this point are considered as easy and above are difficult. If we take an easy
instance it is possible or not to guide the optimization to a better minimum. It will be stop at the
local minimum θB in the worst case. Similarly if we take a difficult instance it is possible or not to
obtain a better result. Implementation results also showed that both easy-to-hard and hard-to-easy
ordered methods can be successful. Therefore ordering of the samples are not so important to guide
the optimization.

It is a better situation to shorten the distance between θB and θC in Figure 2 to bypass the local
minimum. When the points are same for a saddle point, training with growing sets will probably
overcome this point and find a better minimum. This is a good condition when considering saddle
points are so much than local minimums in high dimensional functions as mentioned in Dauphin
et al. (2014).

On many data sets with different distributions we used ensemble method to automatically determine
the difficulty of the samples for curriculum learning. Pre-processing for difficulty level determina-
tion can be thought to caused slowdown. However it has provided a faster neural network training
than SPL. Also it could be said that ensemble method set a better ordering than SPL by considering
their number of wins against Baseline.

ACL and SPLI, which are the inverse versions of the CL and SPL methods, has performed poorly in
some high error rated data sets. The effect of giving the samples at different points during the training
has been studied in Erhan et al. (2010). In these methods, noisy examples may be effecting the output
more because of giving at the beginning. Nevertheless, the inverse versions of the approaches have
better performance than their standard versions. However, CL and SPL methods did not lose in
any data set so this shows they have a robust aspect. It is thought that these methods must have a
theoretical explanation about ensuring resistance to noises. Gong et al. (2016) studied on why these
methods are effectiveness especially on big and noisy data.

SPLI method has the most winning against Baseline. In this method strategy of selecting the samples
to learn at each stage reminds pool-based active learning(Lewis & Gale (1994)) in which the learner
wants to learn the uncertain samples of the unlabeled data pool. Also non-loss of CL and SPL,
and more wins of ACL and SPLI shows the necessity of determining the valuable-example-based
curriculum instead of easiness-based-curriculum for the future work.

Our contributions:

• Previous work on CL and SPL has made experiments on specific domains. In this study,
the performance of these methods on various data sets has been shown.

• We proposed a new method that need not to determine the difficulty levels as in CL and
SPL, so faster and as successful as these methods.

• We explained the theoretical perspective of the training with growing sets.

• We recommend to use the ROGS method as a benchmark in subsequent CL and SPL stud-
ies. Only if there is a success up beyond the growing training sets, it can be said that this is
the effect of the right ordering.

REFERENCES

Vanya Avramova. Curriculum learning with deep convolutional neural networks, 2015.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48. ACM,
2009.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

8

Under review as a conference paper at ICLR 2018

Haw-Shiuan Chang, Erik Learned-Miller, and Andrew McCallum. Active bias: Training a more
accurate neural network by emphasizing high variance samples. arXiv preprint arXiv:1704.07433,
2017.

Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex op-
timization. In Advances in neural information processing systems, pp. 2933–2941, 2014.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and
Samy Bengio. Why does unsupervised pre-training help deep learning? Journal of Machine
Learning Research, 11(Feb):625–660, 2010.

Tieliang Gong, Qian Zhao, Deyu Meng, and Zongben Xu. Why curriculum learning & self-paced
learning work in big/noisy data: A theoretical perspective. American Institute of Mathematical
Sciences Big Data and Information Analytics, 1(1):111–127, 2016.

Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Automated
curriculum learning for neural networks. arXiv preprint arXiv:1704.03003, 2017.

Lu Jiang, Deyu Meng, Shoou-I Yu, Zhenzhong Lan, Shiguang Shan, and Alexander Hauptmann.
Self-paced learning with diversity. In Advances in Neural Information Processing Systems, pp.
2078–2086, 2014.

Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G. Hauptmann. Self-paced cur-
riculum learning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
volume 2, pp. 2694–2700, 2015.

M Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable
models. In Advances in Neural Information Processing Systems, pp. 1189–1197, 2010.

David D. Lewis and William A. Gale. A sequential algorithm for training text classifiers. In Pro-
ceedings of the 17th annual international ACM SIGIR conference on Research and development
in information retrieval, pp. 3–12. Springer-Verlag New York, Inc., 1994.

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-student curriculum learn-
ing. arXiv preprint arXiv:1707.00183, 2017.

Anastasia Pentina, Viktoriia Sharmanska, and Christoph H. Lampert. Curriculum learning of multi-
ple tasks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 5492–5500, 2015.

Yangyang Shi, Martha Larson, and Catholijn M. Jonker. Recurrent neural network language model
adaptation with curriculum learning. Computer Speech & Language, 33(1):136–154, 2015.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615, 2014.

9

Under review as a conference paper at ICLR 2018

A EXPLORING THE TOTAL WEIGHT CHANGES AT EACH ITERATION

In order to find the common feature of CL, SPL and their reverse versions, we examined the total
weight change in each iteration during training. Graphs of each method for vehicle data set are given
in the Figure 3. In these graphs, total weight change is increasing and decreasing during stages. This
may be indicates a feature that provides avoidance from the local minimum. By adding a new group
at each stage, it is possible to continue with a larger step from the minimum of the previous stage.

Iterations of the last stage which we give the all training set is marked with orange. When the whole
training set is given it reaches the minimum in a shorter time than baseline in all methods. This
implies the whole training set has been started from a better minimum in the methods with growing
sets than random initializing in the baseline.

The common feature of the methods are not related to the ordering of the samples. Only the growth
of the training set at each stage with the addition of a new group made to continue the optimization
with avoiding local minimum. In this case training with growing sets without ordering can be also
provide a better minimum.

Figure 3: Total weight changes at each iteration

10

Under review as a conference paper at ICLR 2018

B COMPARISONS WITH BASELINE

ID Data set # of
Samp.

of
Feat.

of
Clas.

Avg.
MSE CL ACL SPL SPLI ROGS

1 labor 57 26 2 0,15 W T W W W
2 zoo 84 16 4 0,02 T T T W T
3 lymph 142 37 2 0,14 T T T T T
4 iris 150 4 3 0,03 T W T W W
5 hepatitis 155 19 2 0,15 T T T T T
6 audiology 169 69 5 0,08 T W T W W
7 autos 202 71 5 0,13 W W T W W
8 glass 205 9 5 0,12 T T T T T
9 sonar 208 61 2 0,17 T T T W T

10 heart-statlog 270 13 2 0,14 T L T T T
11 breast-cancer 286 38 2 0,21 T L T L L
12 primary-tumor 302 23 11 0,08 W T W W W
13 ionosphere 351 33 2 0,10 T T T T T
14 colic 368 60 2 0,15 T L T L L
15 vote 435 16 2 0,04 W T T T T
16 balance-scale 625 4 3 0,06 T T T W T
17 soybean 675 83 18 0,03 W T W W W
18 credit-a 690 42 2 0,12 T T T T T
19 breast-w 699 9 2 0,03 T T T T T
20 diabetes 768 8 2 0,16 T T T T T
21 vehicle 846 18 4 0,09 W W W W W
22 anneal 890 62 4 0,01 T W T W W
23 vowel 990 11 11 0,06 W W W W W
24 credit-g 1000 59 2 0,20 T L T L L
25 col10 2019 7 10 0,05 W T T W W
26 segment 2310 18 7 0,02 W W T W W
27 splice 3190 287 3 0,03 T L T T T
28 kr-vs-kp 3199 39 2 0,02 T W T W W
29 hypothyroid 3770 31 3 0,04 T W T T W
30 sick 3772 31 2 0,04 T W T W W
31 abalone 4153 10 19 0,04 W W W W W
32 waveform 5000 40 3 0,07 T L T T T
33 d159 7182 32 2 3e-5 W W W W W
34 ringnorm 7400 20 2 0,10 T T T T T
35 mushroom 8124 112 2 3e-5 T W T W T
36 letter 20000 16 26 0,03 W T T W W

11

	Introduction
	Methods
	Curriculum learning
	Self paced learning
	Random ordered growing sets

	A theoretical explanation about training with growing sets
	Implementation
	Discussion and future work

