
Published as a conference paper at ICLR 2017

THE NEURAL NOISY CHANNEL

Lei Yu1∗, Phil Blunsom1,2, Chris Dyer2, Edward Grefenstette2, and Tomáš Kočiský1,2

1University of Oxford and 2DeepMind
lei.yu@cs.ox.ac.uk, {pblunsom,cdyer,etg,tkocisky}@google.com

ABSTRACT

We formulate sequence to sequence transduction as a noisy channel decoding
problem and use recurrent neural networks to parameterise the source and channel
models. Unlike direct models which can suffer from explaining-away effects dur-
ing training, noisy channel models must produce outputs that explain their inputs,
and their component models can be trained with not only paired training samples
but also unpaired samples from the marginal output distribution. Using a latent
variable to control how much of the conditioning sequence the channel model
needs to read in order to generate a subsequent symbol, we obtain a tractable
and effective beam search decoder. Experimental results on abstractive sentence
summarisation, morphological inflection, and machine translation show that noisy
channel models outperform direct models, and that they significantly benefit from
increased amounts of unpaired output data that direct models cannot easily use.

1 INTRODUCTION

Recurrent neural network sequence to sequence models (Kalchbrenner & Blunsom, 2013; Sutskever
et al., 2014; Bahdanau et al., 2015) are excellent models of p(output sequence y | input sequence x),
provided sufficient input–output (x,y) pairs are available for estimating their parameters. However,
in many domains, vastly more unpaired output examples are available than input–output pairs (e.g.,
transcribed speech is relatively rare although non-spoken texts are abundant; Swahili–English trans-
lations are rare although English texts are abundant; etc.). A classic strategy for exploiting both
kinds of data is to use Bayes’ rule to rewrite p(y | x) as p(x | y)p(y)/p(x), a factorisation which is
called a noisy channel model (Shannon, 1948). A noisy channel model thus consists of two compo-
nent models: the conditional channel model, p(x | y), which characterizes the reverse transduction
problem and whose parameters are estimated from the paired (x,y) samples, and the unconditional
source model, p(y), whose parameters are estimated from both the paired and (usually much more
numerous) unpaired samples.1

Beyond their data omnivorousness, noisy channel models have other benefits. First, the two com-
ponent models mean that two different aspects of the transduction problem can be addressed inde-
pendently. For example, in many applications, source models are language models and innovations
in these can be leveraged to obtain improvements in any system that uses them as a component.
Second, the component models can have complementary strengths, since inference is carried out
in the product space; this simplifies design because a single model does not have to get everything
perfectly right. Third, the noisy channel operates by selecting outputs that both are a priori likely
and that explain the input well. This addresses a failure mode that can occur in conditional models
in which inputs are “explained away” by highly predictive output prefixes, resulting in poor training
(Klein & Manning, 2001). Since the noisy channel formulation requires its outputs to explain the
observed input, this problem is avoided.

In principle, the noisy channel decomposition is straightforward; however, in practice, decoding
(i.e., computing argmaxy p(x | y)p(y)) is a significant computational challenge, and tractability
concerns impose restrictions on the form the component models can take. To illustrate, an appealing
parameterization would be to use an attentional seq2seq network (Bahdanau et al., 2015) to model
∗Work completed at DeepMind.
1We do not model p(x) since, in general, we will be interested in finding argmaxy p(y | x), and

argmaxy p(y | x) = argmaxy
p(x|y)p(y)

p(x)
= argmaxy p(x | y)p(y).

1

Published as a conference paper at ICLR 2017

the channel probability p(x | y). However, seq2seq models are designed under the assumption
that the complete conditioning sequence is available before any prefix probabilities of the output
sequence can be computed. This assumption is problematic for channel models since it means that
a complete output sequence must be constructed before the channel model can be evaluated (since
the channel model conditions on the output). Therefore, to be practical, the channel probability
must decompose in terms of prefixes of the conditioning variable, y. While the chain rule justifies
decomposing output variable probabilities in terms of successive extensions of a partial prefix, no
such convenience exists for conditioning variables, and approximations must be introduced.

In this work, we use a variant of the newly proposed online seq2seq model of Yu et al. (2016)
which uses a latent alignment variable to enable its probabilities to factorize in terms of prefixes
of both the input and output, making it an appropriate channel model (§2). Using this channel
model, the decoding problem then becomes similar to the problem faced when decoding with direct
models (§3). Experiments on abstractive summarization, machine translation, and morphological
inflection show that the noisy channel can significantly improve performance and exploit unpaired
output training samples and that models that combine the direct model and a noisy channel model
offer further improvements still (§4).

2 BACKGROUND: SEGMENT TO SEGMENT NEURAL TRANSDUCTION

Our model is based on the Segment to Segment Neural Transduction model (SSNT) of Yu et al.,
2016. At a high level, the model alternates between encoding more of the input sequence and
decoding output tokens from the encoded representation. This presentation deviates from the Yu et
al.’s presentation so as to emphasize the incremental construction of the conditioning context that is
enabled by the latent variable.

2.1 MODEL DESCRIPTION

Similar to other neural sequence to sequence models, SSNT models the conditional probability
p(y | x) of a output sequence y given a input sequence x.

To avoid having to observe the complete input sequence x before making a prediction of the begin-
ning of the output sequence, we introduce a latent alignment variable z which indicates when each
token of the output sequence is to be generated as the input sequence is being read. Since we as-
sume that the input is read just once from left to right, we restrict z to be a monotonically increasing
alignment (i.e., zj+1 ≥ zj is true with probability 1), where zj = i denotes that the output token at
position j (yj) is generated when the input sequence up through position i has been read. The SSNT
model is:

p(y | x) =
∑
z

p(y, z | x)

p(y, z | x) ≈
|y|∏
j=1

p(zj | zj−1,x
zj
1 ,y

j−1
1)︸ ︷︷ ︸

alignment probability

p(yj | x
zj
1 ,y

j−1
1)︸ ︷︷ ︸

word probability

.
(1)

We explain the model in terms of its two components, starting with the word generation term. In
the SSNT, the input and output sequences x, y are encoded with two separate LSTMs (Hochre-
iter & Schmidhuber, 1997), resulting in sequences of hidden states representing prefixes of these
sequences. In Yu et al.’s formulation, the input sequence encoder (i.e., the conditioning context
encoder) can either be a unidirectional or bidirectional LSTM, but here we assume that it is a uni-
directional LSTM, which ensures that it will function well as a channel model that can compute
probabilities with incomplete conditioning contexts (this is necessary since, at decoding time, we
will be constructing the conditioning context incrementally). Let hi represent the input sequence
encoding for the prefix xi

1. Since the final action at timestep j will be to predict yj , it is convenient
to let sj denote the hidden state that excludes yj , i.e., the encoding of the prefix yj−1

1 .

The probability of the next token yj is calculated by concatenating the aligned hidden state vectors
sj and hzj followed by a softmax layer,

p(yj | x
zj
1 ,y

j−1
1) ∝ exp(Ww[hzj ; sj] + bw).

2

Published as a conference paper at ICLR 2017

The model thus depends on the current alignment position zj , which determines how far into x it
has read.

We now discuss how the sequence of zj’s are generated. First, we remark that modelling this distri-
bution requires some care so as to avoid conditioning on the entire input sequence. To illustrate why
one might induce a dependency on the entire input sequence in this model, it is useful to compare to
a standard attention model. Attention models operate by computing a score using a representation
of alignment candidate (in our case, the candidates would be every unread token remaining in the
input). If we followed this strategy, it would be necessary to observe the full input sequence when
making the first alignment decision.

We instead model the alignment transition from timestep j to j+1 by decomposing it into a sequence
of conditionally independent SHIFT and EMIT operations that progressively decide whether to read
another token or stop reading. That is, at input position i, the model decides to EMIT, i.e., to
set zj = i and predict the next output token yj from the word model, or it decides to SHIFT,
i.e., to read one more input token and increment the input position i ← i + 1. The probability
p(ai,j = EMIT | xi

1,y
j−1
1) is calculated using the encoder and decoder states defined above as:

p(ai,j = EMIT | xi
1,y

j−1
1) = σ(MLP(Wt[hi; sj] + bt)).

The probability of SHIFT is simply 1 − p(ai,j = EMIT). In this formulation, the probabilities of
aligning zj to each alignment candidate i can be computed by reading just xi

1 (rather than the entire
sequence). The probabilities are also independent of the contents of the suffix x|x|i+1.

Using the probabilities of the auxiliary ai,j variables, the alignment probabilities needed in Eq. 1
are computed as:

p(zj = i | zj−1,yj−1
1 ,xi

1) =

0 if i < zj−1
p(ai,j = EMIT) if i = zj−1(∏i−1

i′=zj−1
p(ai′,j = SHIFT)

)
p(ai,j = EMIT) if i > zj−1

2.2 INFERENCE ALGORITHMS

In SSNT, the probability of generating each yj depends only on the current output position’s align-
ment (zj), the current output prefix (yj−1

1), the input prefix up to the current alignment (xzj
1). It does

not depend on the history of the alignment decisions. Likewise, the alignment decisions at each po-
sition are also conditionally independent of the history of alignment decisions. Because of these
independence assumptions, z can be marginalised using a O(|x|2 · |y|) time dynamic programming
algorithm where each fill in a chart with computing the following marginal probabilities:

α(i, j) = p(zj = i,yj
1 | x

zj
1) =

i∑
i′=1

α(i′, j − 1) p(zj | zj−1,x
zj
1 ,y

j−1
1)︸ ︷︷ ︸

alignment probability

p(yj | x
zj
1 ,y

j−1
1)︸ ︷︷ ︸

word probability

.

The model is trained to minimize the negative log likelihood of the parallel corpus S:

L(θ) = −
∑

(x,y)∈S

log p(y | x;θ)

= −
∑

(x,y)∈S

logα(|x|, |y|).
(2)

The gradients of this objective with respect to the component probability models can be computed
using automatic differentiation or using a secondary dynamic program that computes ‘backward’
probabilities. We refer the reader to Section 3.1 of Yu et al. (2016) for details.

In this paper, we use a slightly different objective from the one described in Yu et al. (2016). Rather
than marginalizing over the paths that end in any possible input positions

∑I
i=1 α(i, |y|), we require

that the full input be consumed when the final output symbol is generated. This constraint biases
away from predicting outputs without explaining them using the input sequence.

3

Published as a conference paper at ICLR 2017

3 DECODING

We now turn to the problem of decoding, that is, of computing

ŷ = argmax
y

p(x | y)p(y),

where we are using the SSNT model described in the previous section as the channel model and
a language model that delivers prior probabilities of the output sequence in left-to-right order, i.e.,
p(yi | yi−1).

Marginalizing the latent variable during search is computationally hard (Sima’an, 1996), and so we
approximate the search problem as

ŷ = argmax
y

max
z

p(x, z | y)p(y).

However, even with this simplification, the search problem remains nontrivial. On one hand, we
must search over the space of all possible outputs with a model that makes no Markovian assump-
tions. This is similar to the decoding problem faced in standard seq2seq transducers. On the other
hand, our model computes the probability of the given input conditional on the predicted output
hypothesis. Therefore, instead of just relying on a single softmax to provide a probability for every
output word type (as we conveniently can in the direct model), we must loop over each output word
type, and run a softmax over the input vocabulary—a computational expense that is quadratic in the
size of the vocabulary!

To reduce this computational effort, we make use of an auxiliary direct model q(y, z | x) to explore
probable extensions of partial hypotheses, rather than trying to perform an exhaustive search over
the vocabulary each time we extend an item on the beam.

Algorithm 1, in Appendix A, describes the decoding algorithm based on a formulation by Tillmann
et al. (1997). The idea is to create a matrix Q of partial hypotheses. Each hypothesis in cell (i, j)
covers the first i words of the input (xi

1) and corresponds to an output hypothesis prefix of length
j (yj

1). The hypothesis is associated with a model score. For each cell (i, j), the direct proposal
model first calculates the scores of possible extensions of previous cells that could then reach (i, j)
by considering every token in the output vocabulary, from all previous candidate cells (i− 1,≤ j).
That gives the top K1 partial output sequences. These partial output sequences are subsequently
rescored by the noisy channel model, and the K2 best candidates are kept in the beam and used for
further extension. The beam size K1 and K2 are hyperparameters to be tuned in the experiments.

3.1 MODEL COMBINATION

The decoder we have just described makes use of an auxiliary decoding model. This means that,
as a generalisation, it is capable of decoding under an objective that is a linear combination of the
direct model, channel model, language model and a bias for the output length2,

Oxi
1,y

j
1
= λ1 log p(y

j
1 | xi

1) + λ2 log p(x
i
1 | y

j
1) + λ3 log p(y

j
1) + λ4|yj

1|. (3)

The bias is used to penalize the noisy channel model for generating too-short (or long) sequences.
The λ’s are hyperparameters to be tuned using on a small amount of held-out development data.

4 EXPERIMENTS

We evaluate our model on three natural language processing tasks, abstractive sentence summarisa-
tion, machine translation and morphological inflection generation. For each task, we compare the
performance of the direct model, noisy channel model, and the interpolation of the two models.

2In the experiments, we did not marginalize the probability of the direct model when calculating the general
search objective. We found that marginalizing the probability does not give better performance and makes
decoding extremely slow.

4

Published as a conference paper at ICLR 2017

Model # Parallel data # Data for LM RG-1 RG-2 RG-L

direct (uni)∗ 1.0m - 30.94 14.20 28.72
direct (bi) 1.0m - 31.25 14.52 29.03
direct (bi) 3.8m - 33.82 16.66 31.50

channel + LM + bias (uni)∗ 1.0m 1.0m 31.92 14.75 29.58
channel + LM + bias (bi) 1.0m 1.0m 31.96 14.89 29.51
direct + channel + LM + bias (uni) 1.0m 1.0m 33.07 15.21 30.29
direct + channel + LM + bias (bi) 1.0m 1.0m 33.18 15.65 30.45
channel + LM + bias (uni)∗ 1.0m 3.8m 32.59 15.05 30.06
channel + LM + bias (bi) 1.0m 3.8m 32.65 14.95 30.23
direct + LM + bias (bi) 1.0m 3.8m 31.25 14.52 29.03
direct + channel + LM + bias (uni) 1.0m 3.8m 33.16 15.63 30.53
direct + channel + LM + bias (bi) 1.0m 3.8m 33.21 15.65 30.60
chanel + LM + bias (bi) 3.8m 3.8m 34.12 16.41 31.38
direct + LM + bias (bi) 3.8m 3.8m 33.82 16.66 31.50
direct + channel + LM + bias (bi) 3.8m 3.8m 34.41 16.86 31.83

Table 1: ROUGE F1 scores on the sentence summarisation test set. The ‘uni’ and ‘bi’ in the paren-
theses denote the encoder for the model proposing candidates is a unidirectional LSTM or bidirec-
tional LSTM. Those rows marked with an ∗ denote models that process their input online.

4.1 ABSTRACTIVE SENTENCE SUMMARISATION

Sentence summarisation is the problem of constructing a shortened version of a sentence while
preserving the majority of its meaning. In contrast to extractive summarisation, which can only
copy words from the original sentence, abstractive summarisation permits arbitrary rewording of the
sentence. The dataset (Rush et al., 2015) that we use is constructed by pairing the first sentence
and the headline of each article from the annotated Gigaword corpus (Graff et al., 2003; Napoles
et al., 2012). There are 3.8m, 190k and 381k sentence pairs in the training, validation and test sets,
respectively. Yu et al. (2016) filtered the dataset by restricting the lengths of the input and output
sentences to be no greater than 50 and 25 tokens, respectively. From the filtered data, they further
sampled 1 million sentence pairs for training. We experimented on training the direct model and
channel model with both the sampled 1 million and the full 3.8 million parallel data. The language
model is trained on the target side of the parallel data, i.e. the headlines. We evaluated the generated
summaries of 2000 randomly sampled sentence pairs using full length ROUGE F1. This setup is
in line with the previous work on this task (Rush et al., 2015; Chopra et al., 2016; Gülçehre et al.,
2016; Yu et al., 2016).

The same configuration is used to train the direct model and the channel model. The loss (Equation
2) is optimized by Adam (Kingma & Ba, 2015), with initial learning rate of 0.001. We use LSTMs
with 1 layer for both the encoder and decoders, with hidden units of 256. The mini-batch size is
32, and dropout of 0.2 is applied to the input and output of LSTMs. For the language model, we
use a 2-layer LSTM with 1024 hidden units and 0.5 dropout. The learning rate is 0.0001. All
the hyperparameters are optimised via grid search on the perplexity of the validation set. During
decoding, beam search is employed with the number of proposals generated by the direct model
K1 = 20, and the number of best candidates selected by the noisy channel model K2 = 10.

Table 1 presents the ROUGE-F1 scores of the test set from the direct model, noisy channel model
(channel + LM + bias), the interpolation of the direct model and the noisy channel model (direct +
channel + LM + bias), and the interpolation of the direct model and language model (direct + LM
+ bias) trained on different sizes of data. The noisy channel model with the language model trained
on the target side of the 1 million parallel data outperforms the direct model by approximately 1
point. Such improvement indicates that the language model helps improve the quality of the output
sequence when no extra unlabelled data is available. Training the language model with all the
headlines in the dataset, i.e. 3.8 million sentences, gives a further boost to the ROUGE score. This
is in line with our expectation that the model benefits from adding large amounts of unlabelled data.
The interpolation of the direct model, channel model, language model and bias of the output length
achieves the best results — the ROUGE score is close to the direct model trained on all the parallel

5

Published as a conference paper at ICLR 2017

Model # Parallel data # Unpaired data RG-1 RG-2 RG-L

ABS+ 3.8m - 29.55 11.32 26.42
RAS-LSTM 3.8m - 32.55 14.70 30.03
RAS-Elman 3.8m - 33.78 15.97 31.15
Pointing unkown words 3.8m - 35.19 16.66 32.51
ASC + FSC 1.0m 3.8m 31.09 12.79 28.97
ASC + FSC 3.8m 3.8m 34.17 15.94 31.92

direct + channel + LM + bias (bi) 1.0m 3.8m 33.21 15.65 30.60
direct + channel + LM + bias (bi) 3.8m 3.8m 34.41 16.86 31.83

Table 2: Overview of results on the abstractive sentence summarisation task. ABS+ (Rush et al.,
2015) is the attentive model with bag-of-words as the encoder. RAS-LSTM and RAS-Elman
(Chopra et al., 2016) are the sequence to sequence models with attention with the RNN cell im-
plemented as LSTMs and an Elman architecture (Elman, 1990), respectively. Pointing the unknown
words (Gülçehre et al., 2016) uses pointer networks (Vinyals et al., 2015) to select the output to-
ken from the input sequence in order to avoid generating unknown tokens. ASC + FSC (Miao &
Blunsom, 2016) is the semi-supervised model based on a variational autoencoder.

data. Although there is still improvement, when the direct model is trained with more data, the
gap between the direct model and the noisy channel model is smaller. No gains is observed if the
language model is combined with the direct model. We find that as we increase the weight of the
language model, the result is getting worse.

Table 2 surveys published results on this task, and places our best models in the context of the
current state-of-the-art results. ABS+ (Rush et al., 2015), RAS-LSTM and RAS-Elman (Chopra
et al., 2016) are different variations of the attentive models. Pointing the unkown words uses pointer
networks (Vinyals et al., 2015) to select the output token from the input sequence in order to avoid
generating unknown tokens. ASC + FSC (Miao & Blunsom, 2016) is a semi-supervised model
based on a variational autoencoder. Trained on 1m paired samples and 3.8m unpaired samples, the
noisy channel achieves comparable or better results than (direct) models trained with 3.8m paired
samples. Compared to Miao & Blunsom (2016), whose ASC + FSC models is an alternative strategy
for using unpaired data, the noisy channel is significantly more effective — 33.21 versus 31.09 in
ROUGE-1.

Finally, motivated by the qualitative observation that noisy channel model outputs were quite fluent
and often used reformulations of the input rather than a strict compression (which would be poorly
scored by ROUGE), we carried out a human preference evaluation whose results are summarised in
Table 3. This confirms that noisy channel summaries are strongly preferred over those of the direct
model.

Model count

both bad 188
both good 106
direct > noisy channel 135
noisy channel > direct 212

Table 3: Preference ratings for 641 segments from the test set (each segment had ratings from at
least 2 raters with ≥ 50% agreement on the label and where one label had a plurality of the votes).

4.2 MACHINE TRANSLATION

We next evaluate our models on a Chinese–English machine translation task. We used parallel
data with 184k sentence pairs (from the FBIS corpus, LDC2003E14) and monolingual data with 4.3
million of English sentences (selected from the English Gigaword). The training data is preprocessed
by lowercasing the English sentences, replacing digits with ‘#’ token, and replacing tokens appearing

6

Published as a conference paper at ICLR 2017

Model BLEU

seq2seq w/o attention 11.19
seq2seq w/ attention 25.27
direct (bi) 23.33

direct + LM + bias (bi) 23.33
channel + LM + bias (bi) 26.28
direct + channel + LM + bias (bi) 26.44

Table 4: BLEU scores from different models for the Chinese to English machine translation task.

less than 5 times with an UNK token. This results in vocabulary sizes of 30k and 20k for Chinese
sentences and English sentences, respectively.

The models are trained using Adam (Kingma & Ba, 2015) with initial learning rate of 0.001 for the
direct model and the channel model, and 0.0001 for the language model. The LSTMs for the direct
and channel models have 512 hidden units and 1 layer, and 2 layers with 1024 hidden units per layer
for the language model. Dropout of 0.5 on the input and output of LSTMs is set for all the model
training. The noisy channel decoding uses K1 = 20 and K2 = 10 as the beam sizes.

Table 4 lists the translation performance of different models in BLEU scores. To set benchmarks,
we train the vanilla and attentional sequence to sequence models (Sutskever et al., 2014; Bahdanau
et al., 2015) using the same parallel data. For direct models, we leverage bidirectional LSTMs as the
encoder for this task. We can see that the vanilla sequence to sequence model behaves poorly due to
the small amounts of parallel data. By contrast, the direct model (SSNT) and the attentional model
work relatively well, with the attentional model outperforming the SSNT direct model. Although
these models both directly model p(y | x), this result is unsurprising because the SSNT direct model
is most effective when the alignment between sequences is largely monotonic, and Chinese–English
translation word orders diverge considerably. However, despite this limitation, the noisy channel
model is approximately 3 points higher in BLEU than the direct model, and the combination of
noisy channel and direct model gives extra boost. Confirming the empirical findings of prior work
(and in line with theoretical predictions), the interpolation of the direct model and language model
is not effective.

4.3 MORPHOLOGICAL INFLECTION GENERATION

Morphological inflection is the task of generating a target (inflected form) word from a source word
(base form), given a morphological attribute, e.g. number, tense, and person etc.. It is useful for
reducing data sparsity issues in translating morphologically rich languages. The transformation from
the base form to the inflected form is usually to add prefix or suffix, or to do character replacement.
The dataset (Durrett & DeNero, 2013) that we use in the experiments is created from Wiktionary,
including inflections for German nouns, German verbs, Spanish Verbs, Finnish noun and adjective,
and Finnish verbs. We only experimented on German nouns and German verbs, as German nouns
is the most difficult task3, and the direct model does not perform as well as other state-of-the-
art systems on German verbs. The train/dev/test split for German nouns is 2364/200/200, and for
German verbs is 1617/200/200. There are 8 and 27 inflection types in German nouns and German
verbs, respectively. Following previous work, we learn a separate model for each type of inflection
independent of the other inflections. We report results on the average accuracy across different
inflections. Our language models were trained on word types extracted by running a morphological
analysis tool on the WMT 2016 monolingual data and extracting examples of appropriately inflected
word forms.4 After annotation the number of instances for training the language model ranged from
300k to 3.8m for different inflection types in German nouns, and from 200 to 54k in German verbs.

The experimental setup that we use on this task is K1 = 60, K2 = 30,

• direct and channel model: 1 layer LSTM with 128 hidden, η = 0.001, dropout = 0.5.
3While state-of-the-art systems can achieve 99% accuracies on Spanish verbs and Finnish verbs, they can

only get 89% accuracy on German nouns.
4http://www.statmt.org/wmt16/translation-task.html

7

http://www.statmt.org/wmt16/translation-task.html

Published as a conference paper at ICLR 2017

Model Acc.

NCK15 88.60
FTND16 88.12
NCK15+ 89.90
FTND16+ 89.31

direct (uni) 82.25
direct (bi) 87.68

channel + LM + bias (uni) 78.38
channel + LM + bias (bi) 78.13
direct + LM + bias (bi) 90.31
direct + channel + LM + bias (uni) 88.44
direct + channel + LM + bias (bi) 90.94

(a)

Model Acc.

NCK15 97.50
FTND16 97.92
NCK15+ 97.90
FTND16+ 97.11

direct (uni) 87.85
direct (bi) 94.83

channel + LM + bias (uni) 84.42
channel + LM + bias (bi) 92.13
direct + LM + bias (bi) 94.83
direct + channel + LM + bias (uni) 92.20
direct + channel + LM + bias (bi) 97.15

(b)

Figure 1: Accuracy on morphological inflection of German nouns (a), and German verbs (b).
NCK15 (Nicolai et al., 2015) and FTND16 (Faruqui et al., 2016) are previous state-of-the-art on this
task, with NCK15 based on feature engineering, and FTND16 based on neural networks. NCK15+
and FTND16+ are the semi-supervised setups of these models.

• language model: 2 layer LSTM with 512 hidden, η = 0.0001, dropout = 0.5.

Table 1 summarises the results from our models. On both datasets, the noisy channel model (channel
+ LM + bias) does not perform as well as the direct model, but the interpolation of the direct model
and noisy channel model (direct + channel + LM + bias) significantly outperforms the direct model.
The interpolation of the direct model and language model (direct + LM + bias) achieves better
results than the direct model and the noisy channel model on German nouns, but not on German
verbs. For further comparison, we also included the state-of-the-art results as benchmarks. NCK15
(Nicolai et al., 2015) tackles the task based on the three-stage approach: (1) align the source and
target word, (2) extract inflection rules, (3) apply the rule to new examples. FTND16 (Faruqui et al.,
2016) is based on neural sequence to sequence models. Both models (NCK15+ and FTND16+)
rerank the candidate outputs by the scores predicted from n-gram language models, together with
other features.

5 ANALYSIS

By observing the output generated by the direct model and noisy channel model, we find (in line
with theoretical critiques of conditional models) that the direct model may leave out key information.
By contrast, the noisy channel model does seem to avoid this issue. To illustrate, in Example 1
(see Appendix B) in Table 5, the direct model ignores the key phrase ‘coping with’, resulting in
incomplete meaning, but the noisy channel model covers it. Similarly, in Example 6, the direct
model does not translate the Chinese word corresponding to ‘investigation’. We also observe that
while the direct model mostly copies words from the source sentence, the noisy channel model
prefers generating paraphrases. For instance, in Example 2, while the direct model copies the word
‘accelerate’ in the generated output, the noisy channel model generate ‘speed up’ instead. While
one might argue that copying is a preferable compression technique than paraphrasing (as long as it
produces grammatical outputs), it does show the power of these models.

6 RELATED WORK

Noisy channel decompositions have been successfully used in a variety of problems, including
speech recognition (Jelinek, 1998), machine translation (Brown et al., 1993), spelling correc-
tion (Brill & Moore, 2000), and question answering (Echihabi & Marcu, 2003). The idea of adding
language models and monolingual data in machine translation has been explored in earlier work.
Gülçehre et al. (2015) propose two strategies of combining a language model with a neural se-
quence to sequence model. In shallow fusion, during decoding the sequence to sequence model

8

Published as a conference paper at ICLR 2017

(direct model) proposes candidate outputs and these candidates are reranked based on the scores
calculated by a weighted sum of the probability of the translation model and that of the language
model. In deep fusion, the language model is integrated into the decoder of the sequence to sequence
model by concatenating their hidden state at each time step. Sennrich et al. (2016) incorporate target
language unpaired training data by doing back-translation to create synthetic parallel training data.
While this technique is quite effective, its practicality seems limited to problems where the inputs
and outputs contain roughly the same information (such as translation). Cheng et al. (2016) lever-
ages the abundant monolingual data by doing multitask learning with an autoencoding objective.

A number of papers have remarked on the tendency for content to get dropped (or repeated) in
translation. Liu et al. (2016) propose translating in both a left-to-right and a left-to-right direction
and seeking a consensus. Tu et al. (2016) propose augmenting a direct model’s decoding objective
with a reverse translation model (similar to our channel model except it conditions on the direct
model’s output RNN’s hidden states rather than the words); however, that work just reranks complete
translation hypotheses rather than developing a model that permits an incremental search.

Another trend of work that is related to our model is the investigation of making online prediction
for machine translation (Gu et al., 2016; Grissom II et al., 2014; Sankaran et al., 2010) and speech
recognition (Hwang & Sung, 2016; Jaitly et al., 2016).

Our direct model (and channel model) shares the idea of introducing stochastic latent variables to
neural networks with several papers and marginalising these during training. Examples include
connectionist temporal classification (CTC) (Graves et al., 2006) and the more recent segmental
recurrent neural networks (SRNN) (Kong et al., 2016). Compared to these models, our direct model
has the advantage of capturing unbounded dependencies of output words. The direct model is closely
related to the sequence transduction model (Graves, 2012) in the way of modeling the probability of
predicting output tokens and marginalizing latent variables using dynamic programming. However,
rather than modeling the joint distribution over outputs and alignments by inserting null symbols into
the output sequence, our direct model defines a separate latent alignment variable, with alignment
distribution defined with neural networks. Similar to our work, the model in (Alkhouli et al., 2016)
is decomposed into the alignment model and the model of word predictions. The two models are
trained separately and combined during decoding, with subsequent refinements using a Viterbi-EM
approximation. By contrast, in our direct and channel models, the latent and observed components
of the models are trained jointly using a dynamic program to exactly marginalise the unobserved
variables.

7 CONCLUSION

We have presented and empirically validated a noisy channel transduction model that uses compo-
nent models based on recurrent neural networks. This formulation lets us use unpaired outputs to
estimate the parameters of the source model and input-output pairs to train the channel model. De-
spite the channel model’s ability to condition on long sequences, we are able to maintain tractable
decoding by using a latent segmentation variable that breaks the conditioning context up into a series
of monotonically growing segments. Our experiments show that this model makes excellent use of
unpaired training data.

REFERENCES

Tamer Alkhouli, Gabriel Bretschner, Jan-Thorsten Peter, Mohammed Hethnawi, Andreas Guta, and
Hermann Ney. Alignment-based neural machine translation. In Proc. Machine Translation, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Proc. ICLR, 2015.

Eric Brill and Robert C. Moore. An improved error model for noisy channel spelling correction. In
Proc. ACL, 2000.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert. L. Mercer. The math-
ematics of statistical machine translation: Parameter estimation. Computational Linguistics, 19:
263–311, 1993.

9

Published as a conference paper at ICLR 2017

Yong Cheng, Wei Xu, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and Yang Liu. Semi-
supervised learning for neural machine translation. In Proc. ACL, 2016.

Sumit Chopra, Michael Auli, and Alexander M. Rush. Abstractive sentence summarization with
attentive recurrent neural networks. In Proc. NAACL, 2016.

Greg Durrett and John DeNero. Supervised learning of complete morphological paradigms. In
HLT-NAACL, 2013.

Abdessamad Echihabi and Daniel Marcu. A noisy-channel approach to question answering. In Proc.
ACL, 2003.

Jeffrey L. Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and Chris Dyer. Morphological inflection gener-
ation using character sequence to sequence learning. In Proc. HLT-NAACL, 2016.

David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda. English gigaword. Linguistic Data Con-
sortium, Philadelphia, 2003.

Alex Graves. Sequence transduction with recurrent neural networks. arXiv preprint
arXiv:1211.3711, 2012.

Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist tempo-
ral classification: labelling unsegmented sequence data with recurrent neural networks. In ICML,
2006.

Alvin Grissom II, Jordan Boyd-Graber, He He, John Morgan, and Hal Daumé III. Don’t until
the final verb wait: Reinforcement learning for simultaneous machine translation. In Empirical
Methods in Natural Language Processing, 2014.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Victor O.K. Li. Learning to translate in real-time
with neural machine translation. CoRR, abs/1610.00388, 2016.

Çaglar Gülçehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Loı̈c Barrault, Huei-Chi Lin, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. On using monolingual corpora in neural ma-
chine translation. CoRR, abs/1503.03535, 2015.

Çaglar Gülçehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, and Yoshua Bengio. Pointing the
unknown words. CoRR, abs/1603.08148, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Kyuyeon Hwang and Wonyong Sung. Character-level incremental speech recognition with recurrent
neural networks. In Proc. ICASSP, 2016.

Navdeep Jaitly, David Sussillo, Quoc V Le, Oriol Vinyals, Ilya Sutskever, and Samy Bengio. A
neural transducer. Proc. NIPS, 2016.

Frederick Jelinek. Statistical Methods for Speech Recognition. MIT, 1998.

Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. In Proc. EMNLP,
2013.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. ICIR,
2015.

Dan Klein and Christopher D. Manning. Conditional structure versus conditional estimation in nlp
models. In Proc. EMNLP, 2001.

Lingpeng Kong, Chris Dyer, and Noah A Smith. Segmental recurrent neural networks. Proc. ICLR,
2016.

10

Published as a conference paper at ICLR 2017

Lemao Liu, Masao Utiyama, Andrew Finch, and Eiichiro Sumita. Agreement on target-bidirectional
neural machine translation. In Proc. NAACL, 2016.

Yishu Miao and Phil Blunsom. Language as a latent variable: Discrete generative models for sen-
tence compression. In Proc. EMNLP, 2016.

Courtney Napoles, Matthew Gormley, and Benjamin Van Durme. Annotated gigaword. In Proceed-
ings of the Joint Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge
Extraction, 2012.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak. Inflection generation as discriminative string
transduction. In Proc. HLT-NAACL, 2015.

Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive
sentence summarization. In Proc. EMNLP, 2015.

Baskaran Sankaran, Ajeet Grewal, and Anoop Sarkar. Incremental decoding for phrase-based sta-
tistical machine translation. In Proc. WMT, 2010.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine translation models
with monolingual data. In Proc. ACL, 2016.

Claude Shannon. A mathematical theory of communication. Bell System Technical Journal, 27(3):
379–423, 1948.

Khalil Sima’an. Computational complexity of probabilistic disambiguation by means of tree-
grammars. In Proc. COLING, 1996.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks.
In Proc. NIPS, 2014.

Christoph Tillmann, Stephan Vogel, Hermann Ney, and Alex Zubiaga. A DP-based search using
monotone alignments in statistical translation. In Proc. EACL, 1997.

Zhaopeng Tu, Yang Liu, Lifeng Shang, Xiaohua Liu, and Hang Li. Neural machine translation with
reconstruction. CoRR, abs/1611.01874, 2016.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Proc. NIPS, 2015.

Lei Yu, Jan Buys, and Phil Blunsom. Online segment to segment neural transduction. In Proc.
EMNLP, 2016.

11

Published as a conference paper at ICLR 2017

A ALGORITHM

Algorithm 1 Noisy Channel Decoding

Notation: Q is the Viterbi matrix, bp is the backpointer, W stores the predicted tokens, V refers
to the vocabulary, I = |x|, and Jmax denotes the maximum number of output tokens that can be
predicted.
Input: source sequence x
Output: best output sequence y∗

Initialisation: Q ∈ RI×Jmax×K1 , bp ∈ NI×Jmax×K1 , W ∈ NI×Jmax×K1 ,
Qtemp ∈ RK1 , bptemp ∈ NK1 , Wtemp ∈ NK1

for i ∈ [1, I] do
Qtemp ← topk(K1)y∈Vq(z1 = i) q(y | START, z1,x

z1
1) . Candidates generated by q(y | x).

bptemp ← 0
Wtemp ← arg topk(K1)y∈Vq(z1 = i) q(y | START, z1,x

z1
1)

Q[i, 1]← topk(K2)y∈Wtemp
Oxi

1,y
. Rerank the candidates by objective (O).

W [i, 1]← arg topk(K2)y∈WtempOxi
1,y

end for
for j ∈ [2, Jmax] do

for i ∈ [1, I] do
Qtemp ← topk(K1)y∈V,k∈[1,i]Q[k, j − 1]· q(zj = i | zj−1 = k)q(y | yj−1

1 , zj ,x
zj
1)

bptemp,Wtemp ← arg topk(K1)y∈V,k∈[1,i] Q[k, j − 1]q(zj = i | zj−1 = k)·
q(y | yj−1

1 , zj ,x)

Y ← getCandidateOutputs(bptemp,Wtemp) . Get partial candidate yj
1.

Q[i, j]← topk(K2)yj∈YOxi
1,y

j
1

bp[i, j],W [i, j]← arg topk(K2)yj
1∈Y

Oxi
1,y

j
1

end for
end for
return a sequence of words stored in W by following backpointers starting from
(I, argmaxj Q[I, j]).

B EXAMPLE OUTPUTS

12

Published as a conference paper at ICLR 2017

Summarisation
Example 1:
source: the european commission on health and consumers protection −lrb− unk −rrb−

has offered cooperation to indonesia in coping with the spread of avian influenza in
the country , official news agency antara said wednesday .

reference: eu offers indonesia cooperation in avian flu eradication
direct: eu offers cooperation to indonesia in avian flu
nc: eu offers cooperation to indonesia in coping with bird flu

Example 2:
source: vietnam will accelerate the export of industrial goods mainly by developing auxil-

iary industries , and helping enterprises sharpen competitive edges , according to the
ministry of industry on thursday .

reference: vietnam to boost industrial goods export
direct: vietnam to accelerate export of industrial goods
nc: vietnam to speed up export of industrial goods

Example 3:
source: japan ’s toyota team europe were banned from the world rally championship for one

year here on friday in a crushing ruling by the world council of the international auto-
mobile federation -lrb- fia -

reference: toyota are banned for a year
direct: toyota banned from world rally championship
nc: toyota europe banned from world rally championship for one year

Example 4:
source: oil prices roared higher towards ## dollars on monday as equity markets surged on

government action aimed at tackling a severe economic downturn .
reference: oil prices soar towards ## dollars
direct: oil prices jump towards ## dollars
nc: oil prices climb towards ## dollars

Translation
Example 5:
source: 欧盟和美国都表示可以接受这一妥协方案。
reference: both the eu and the us indicated that they can accept this plan for a compromise .
direct: the eu and the united states indicated that it can accept this compromise .
nc: the european union and the united states have said that they can accept such a com-

promise plan .

Example 6:
source: 那么这些这个方面呢是现在警方调查重点。
reference: well , this is the current focus of police investigation .
direct: these are present at the current police .
nc: then these are the key to the current police investigation .

Example 7:
source: 双方有可能就此问题在下周进行磋商。
reference: the two sides may conduct negotiations on this issue next week .
direct: the two sides may hold consultations on next week .
nc: the two sides are likely to hold consultations on this issue next week .

Example 8:
source: 那么在这个问题上 ,伊朗现在态度比较强硬 ,而美国的态度更为强硬。
reference: well , iran ’s attitude is now quite firm on this issue , while the us takes an even firmer

attitude .
direct: on this issue , iran ’s attitude is quite hard and the attitude of the united states is still

tougher .
nc: then , on this issue , iran has now taken a tougher attitude toward it . however , the

attitude of the united states is even harder .

Table 5: Example outputs on the test set from the direct model and noisy channel model for the
summarisation task and machine translation.

13

	Introduction
	Background: Segment to Segment Neural Transduction
	Model description
	Inference algorithms

	Decoding
	Model combination

	Experiments
	Abstractive Sentence Summarisation
	Machine Translation
	Morphological Inflection Generation

	Analysis
	Related work
	Conclusion
	Algorithm
	Example outputs

