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Abstract

Computationally synthesized blood vessels can be used for training and evaluation
of medical image analysis applications. We propose a deep generative model to
synthesize blood vessel geometries, with an application to coronary arteries in
cardiac CT angiography (CCTA).
In the proposed method, a Wasserstein generative adversarial network (GAN)
consisting of a generator and a discriminator network is trained. While the generator
tries to synthesize realistic blood vessel geometries, the discriminator tries to
distinguish synthesized geometries from those of real blood vessels. Both real and
synthesized blood vessel geometries are parametrized as 1D signals based on the
central vessel axis. The generator can optionally be provided with an attribute
vector to synthesize vessels with particular characteristics.
The GAN was optimized using a reference database with parametrizations of
4,412 real coronary artery geometries extracted from CCTA scans. After training,
plausible coronary artery geometries could be synthesized based on random vectors
sampled from a latent space. A qualitative analysis showed strong similarities
between real and synthesized coronary arteries. A detailed analysis of the latent
space showed that the diversity present in coronary artery anatomy was accurately
captured by the generator.
Results show that Wasserstein generative adversarial networks can be used to
synthesize blood vessel geometries.

1 Introduction

The quantitative analysis of medical images showing blood vessels has many important applications.
For example, the analysis of coronary CT angiography (CCTA) for the detection of atherosclerotic
plaque or stenosis is a clinically valuable tool for diagnosis and prognosis of coronary artery disease
[1]. Consequently, quantitative analysis methods for CCTA have long been a topic of interest in
medical image analysis. Recently, powerful but data-hungry machine learning methods for CCTA
analysis have been proposed [2, 3]. Training of such algorithms requires large and diverse training
data sets with accurate ground truths.

One commonly used technique to enlarge the amount of available training data is data augmentation,
in which predetermined transformations are applied to the already available training data. However,
this is likely to only provide machine learning algorithms with transformations of the available training
data. An alternative to data augmentation is the synthesis of completely new data. For coronary
artery stenosis detection, such data would consist of geometric models of the coronary artery lumen,
along with corresponding CCTA images. To synthesize vessel geometries, model-based methods
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Figure 1: Overview of the proposed method for coronary artery synthesis. The generative adversarial
network consists of a generator network G that transforms noise vectors z from a latent probability
distribution pz into a 4-channel 1D parametrization of a coronary artery. These representations are
compared with those of real arteries in a discriminator network D, which tries to predict a high score
for real arteries and a low score for synthesized arteries. In addition, the generator and discriminator
can be conditioned on an attribute vector y containing information about the real or synthetic samples.

have previously been proposed, in which tube-like vessel structures are synthesized based on a set of
heuristics [4]. These vessel structures could then be transformed into corresponding CT images using
standard assumptions about CT image formation. Although model-based geometry synthesis allows
for a certain amount of control over the synthesized anatomies, the underlying heuristics of such
methods may fail to capture the anatomical diversity of real coronary arteries. Hence, in this work we
propose data-driven blood vessel geometry synthesis in contrast to previously proposed model-based
approaches. We train a model that aims to accurately capture the data distribution of real coronary
arteries. For this we use a generative adversarial network (GAN) ([5], Fig. 1). GANs have previously
been used in medical image analysis for tasks such as noise reduction in CT [6], segmentation [7],
visual feature attribution [8], cross-modality image synthesis [9]. In terms of vessel structures, GANs
have mostly been used to synthesize 2D retinal vessel maps [10].

The goal of this work is to generate plausible 3D blood vessel shapes. In computer vision, volumetric
GANs have been used to synthesize meshes or voxelizations of 3D objects such as chairs and cars [11].
A drawback of this approach is that there is no guarantee that the generated object is contiguous; there
may be holes or fragments. This is undesirable for vessel shapes. In addition, the size of the generated
voxelization may be limited to e.g. 64× 64× 64 voxels as in [11]. In this work, we overcome this
problem by casting the 3D vessel shape into a 1D parametrization using a set of primitives [12].
Instead of synthesizing a 3D volume, we synthesize a 4-channel 1D sequence representing the vessel
central axis. Previously proposed GANs for sequence synthesis have used recurrent neural networks
for both the generator and discriminator [13]. In contrast, in our GAN we use convolutional neural
networks (CNNs) with large receptive fields, motivated by recent applications of CNNs to long
sequences [14, 15].

This work has the following contributions. First, we propose to use an efficient parametrization
of blood vessels for generative models. Second, we show how a GAN can be trained to obtain
a transformation between a latent space pz and the space of plausible coronary artery anatomies.
Third, we provide a detailed analysis of synthesized vessels and the latent space from which they are
sampled.

2 Data

2.1 Training Data

We use a data set consisting of 4,412 real coronary artery centerlines with radius measurements.
These centerlines were semi-automatically extracted from a data set of 50 clinically acquired cardiac
CCTA images using a deep-learning based tracking method [16]. Each centerline was extracted
based on a manually annotated seed. Seeds were placed approximately equidistantly (10 mm) in
the coronary arteries. Because multiple seeds could be placed in the same coronary artery and one
centerline was extracted from each seed, the training set can potentially contain overlapping arteries.
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Figure 2: Blood vessels are parametrized according to their central axis, which is represented as
a sequence of points v1,v2, . . . ,vN, where each point vi is a 4-channel vector of x, y and z
coordinates and a corresponding radius size r, assuming a piece-wise tubular vessel.

2.2 Blood Vessel Parametrization

While blood vessels are intrinsically three-dimensional, we here simplify the representation of
both real and synthesized vessels by using a standard 1D parametrization of the central vessel axis
[17, 18]. Each vessel V is parametrized by a central axis or centerline consisting of ordered points:
V = {v1,v2, . . . ,vN} (Fig. 2). Each point vi ∈ V is characterized by an x, y and z coordinate in
Euclidean space as well as a vessel radius r (in mm), assuming a piece-wise tubular vessel. This
substantially reduces the complexity of the synthesis task. We use the convention that the first point
v1 of a vessel is always located at the coronary ostium.

3 Method

We propose to synthesize blood vessel models using a generative adversarial network (Fig. 1). The
generative adversarial network consists of a generator network G that can transform a noise vector z
sampled from a distribution pz into a 4-channel 1D parametrization G(z) of a coronary artery. The
discriminator network D compares synthesized coronary artery geometries to real arteries sampled
from pdata and tries to predict a high score for true arteries and a low score for synthesized arteries.
The discriminator and generator can optionally take an attribute vector y as additional input, which
contains characteristics of the coronary artery that is synthesized.

3.1 Generative Adversarial Network

The GAN consists of a generator network G which is trained to synthesize blood vessels, and a
discriminator networkD which is trained to distinguish real from synthesized samples. In the original
GAN formulation [5], the generator and discriminator jointly optimize an objective function

min
G

max
D

V (D)(D,G) = E
x∼pdata

[logD(x)] + E
z∼pz

[log (1−D(G(z)))], (1)

where x is a sample drawn from the real data distribution pdata and z is a sample drawn from the
noise distribution pz . The discriminator tries to maximize this objective function, while the generator
tries to minimize it.

We here use a GAN-variant in which the generator tries to minimize the Wasserstein distance between
the real data distribution pdata and the distribution of synthesized samples, i.e. the amount of work
required to transform the synthesized sample distribution into the distribution of real samples [19].
The advantage over the loss function in Eq. 1 is that stronger gradients are provided to the generator
by the discriminator at each time step, even when the discriminator can easily distinguish synthetic
from real samples. To meet the requirement of a 1-Lipschitz discriminator function as posed in
[19], we here enforce a penalty on the gradients between the two distributions [20]. Hence, the full
objective becomes

min
G

max
D∈D

V (D)(D,G) = E
x∼pdata

[D(x)]− E
z∼pz

[D(G(z))]− λ E
x̂∼px̂

[(‖∇x̂D(x̂)‖2 − 1)2], (2)
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Figure 3: CNN architectures of the generator G and discriminator D. The generator uses transposed
convolutions in each layer to increase the length of the sequence. The input layer consists of a
unit-length sequence with m channels, intermediate layers have 64 channels, and the final layer has
four channels which represent x, y, z and r for each vessel point vi. The discriminator’s architecture
mirrors that of the generator, with strided convolutions to compress the sequence into a single scalar
prediction. The sequence length N and the number of layers l relate to each other as N = 2l − 1.
The generator and discriminator optionally take a c-channel attribute vector y as input.

where px̂ is the distribution of points along straight lines between pairs of samples in pdata and pz ,
and D is the set of 1-Lipschitz functions. The gradient penalty is weighted by a factor λ, which we
set to 10.0 as in [20].

3.2 Conditional Training

Training the GAN using the objective function in Eq. 2 allows us to sample a wide variety of vessels.
However, this provides very little control over the actual appearance and characteristics of the vessels.
In some cases, we may be interested in synthesis of only vessels with particular characteristics. For
example, given some labels in the training set, we may want to synthesize only left or right coronary
arteries, or only vessels with a particular length. We here capture these features in an attribute vector
that is provided to both the generator and discriminator network, in the form of an additional input
channel [21]. The objective then becomes

min
G

max
D∈D

V (D)(D,G) = E
x∼pdata

[D(x|y)]− E
z∼pz

[D(G(z|y)|y)]−λ E
x̂∼px̂

[(‖∇x̂D(x̂)‖2−1)2], (3)

where y is the attribute vector on which G and D are conditioned.

3.3 Network architectures

The GAN contains two neural networks: the generator network G and the discriminator or critic
network D. Both G and D are convolutional neural networks operating on sequences of points, i.e.
1D signals. Fig. 3 shows the CNN architectures used for G and D.

Instead of directly synthesizing the x, y, z-coordinates in Euclidean space, we let the generator
predict for each point the displacement with respect to the previous point. This simplifies the signal
that the generator has to synthesize, as displacements for x, y and z are arranged around 0.0. If the
length of a training sample is < N , we use zero-filling up to N for all four output channels. This
facilitates synthesis of vessels with varying lengths. The location of a vessel point vi in Euclidean
space can be easily retrieved by accumulating all displacements up to point vi.

The generator G uses transposed, or fractionally-strided, convolutions to rapidly increase the length
of a sequence from 1 to N . Each convolutional layer consists of a kernel with width 3 and stride
2. Hence, the sequence length N after layer l equals 2l − 1. The input to the generator network
is an m-channel sequence with length 1, with m being the dimensionality of the latent probability
distribution pz from which noise is sampled. In this work pz is a spherical Gaussian distribution
in m dimensions. In the case of conditioning on an attribute vector (Eq. 3), the generator G takes
c additional channels, one per attribute. Intermediate layers contain 64 channels. The output layer
contains 4 channels for the x, y and z-displacements, as well as the radius of the vessel along the
central axis.

The discriminator mirrors the generator CNN architecture and rapidly reduces the length of the
sequence representation from N to 1. The number of convolutional layers l is equal to that in G.
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(a) G(z0), l = 7, N = 255 (b) G(z1), l = 9, N = 1023 (c) G(z2), l = 11, N = 4095

(d) Closest to G(z0) (e) Closest to G(z1) (f) Closest to G(z2)

Figure 4: The top row shows volume renderings of coronary artery geometries (in red) synthesized
at random points z0, z1 and z2 sampled from the distribution pz . The bottom row shows, for each
synthesized artery, the closest real coronary artery geometry in the training data set in terms of
Hausdorff distance. Ascending aorta (in white) shown for visualization purposes.

Instead of using transposed convolutions, the discriminator CNN uses standard convolutions with
width 3 and stride 2. The number of input channels for the discriminator is 4: x, y, z and r. In
case of conditioning, the number of input channels is supplemented with one channel per condition.
The output consists of a single scalar value, while intermediate layers have 64 channels, as in the
generator.

Both the discriminator and the generator use leaky rectified linear units in all layers except for the
final layer to stimulate easier gradient flow [22]. In both networks, the final layer uses a linear
activation function.

4 Experiments and Results

The GAN was trained by alternating updates for D and G. Parameters of D were updated according
to Eq. 2 using one mini-batch of 64 real samples and one mini-batch of 64 synthetic samples.
Parameters of G were updated based on the response provided by D to a mini-batch of 64 synthetic
samples. For each update of G, we ran five updates of D to make sure that the discriminator was
strong enough. All parameters were optimized using two separate Adam optimizers, both with a with
learning rate of α = 0.0001 [23]. The method was implemented in PyTorch and all experiments were
performed on a single NVIDIA Titan Xp GPU. GANs were trained for a total of 200,000 iterations.
Training took around 5 hours, while synthesis of 5,000 vessel geometries using a trained generator
could be performed in less than a second.

The GAN was trained using the training set of 4,412 real samples described in Sec. 2. To test the
ability of the GAN to generate long sequences, we resampled the vessels in the data set to 0.1 mm,
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Figure 5: Histograms showing the distribution of vessel length (in mm), volume (in mm3) and
tortuosity (using the distance metric [24]) among real and synthesized vessels.
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Figure 6: Vessels obtained by linearly interpolating between two points z0 and z1 in the latent space
determined by pz . While traversing from z0 (α = 0) to z1 (α = 1), the vessel takes on different
orientations, shapes and lengths.

0.25 mm and 1.0 mm. For the lowest resolution, i.e. 1.0 mm, we trained a model with l = 7 layers
and a maximum sequence length N = 255. For resolution 0.25 mm we trained a deeper network
at l = 9 and N = 1023. Finally, for the highest resolution, i.e. 0.1 mm, we trained a model with
l = 11 layers and a maximum sequence length N = 4095. In all cases, the dimensionality of the
latent space pz was m = 3. Fig. 4 shows a randomly sampled coronary artery geometry for each
of these three models. For each of these generated vessels, we identified the closest real coronary
sample based on Hausdorff distance. We find that while there are real samples that are close to the
synthesized samples, there are still differences between the real and synthetic samples. This suggests
that the synthesized samples do not have an exact matches in the real data distribution, and that the
generator learns to synthesize new and unseen samples. More samples are provided online1.

To assess whether synthesized vessels have similar properties as real vessels, we synthesized 4,412
random vessels and computed their length (in mm), volume (in mm3) and tortuosity (using the
distance metric [24]). Fig. 5 shows how these statistics compare to those of real samples in the
training distribution, showing strong overlap between real and synthesized samples.

4.1 Exploring the Latent Space

The generator G samples coronary artery geometries from the m-dimensional probability distribution
pz . Different locations in the latent space determined by pz correspond to different synthesized vessel

1More images and movies are available online at: https://tinyurl.com/y99uqk8t
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Figure 7: Unseen vessel samples mapped to the latent space obtained by GAN training. (a) Marker
color indicates length of vessels. (b) Points have been manually labeled as belonging to the left or
right coronary artery tree. Marker color indicates whether the vessel belongs to the left coronary
artery tree (LCA) or the right coronary artery tree (RCA). Without supervision, the GAN has assigned
parts of the latent space to represent either short or long, or left or right coronary arteries.

geometries. To investigate the contents of this latent space, we perform an interpolation in which
we linearly interpolate between two input points z0, z1 ∈ pz . Hence, we obtain several samples
G(ẑ), where ẑ = (1−α)z0 +αz1, 0 ≤ α ≤ 1. Fig. 6 shows the generated vessels when using these
interpolated points as input for G. This example shows that while traversing the latent space, the
generator can consecutively synthesize right coronary arteries (Figs. 6a and 6b), left coronary arteries
(Figs. 6c, 6d, 6e, 6f, 6g), and again right coronary arteries (Fig. 6h and 6i). Moreover, different points
in the latent space correspond to different vessel length and tortuosity. More samples are provided
online1.

To investigate whether the learned latent space contains structure that generalizes to new data, we
trained a GAN using vessels from 45 out of 50 patients. We then mapped the vessels belonging to the
remaining 5 patients to the latent space by finding the location z for which G(z) had the smallest
Hausdorff distance to the vessel. Fig. 7a shows how vessels with different lengths are mapped to
different locations in the latent space pz . Moreover, we manually labeled vessels as belonging to
the left or right coronary artery tree and identified their location in pz . Fig. 7b shows how different
areas of the latent space correspond to left and right coronary arteries. However, during training the
generator has never been provided with artery labels, and the separation has thus been obtained in a
purely unsupervised manner. Such a mapping could potentially be used for automatic labeling of
extracted vessels.

4.2 Conditioning

While results in the previous section showed that the latent space pz contains some structure, without
knowing exactly what this structure is we can not query the trained GAN for vessels with particular
characteristics. To overcome this, we trained a conditional GAN in which the attribute vector y
contained the desired vessel length. The GAN was optimized to generate diverse and plausible
samples, while meeting the requirement that the output of the generator matches the desired length.
Fig. 8 shows the result of querying the trained generator G with attribute vectors for 50, 100, 150,
200 or 250 mm. The different rows correspond to different locations in latent space, i.e. for each row
we have fixed the latent input vector z and only varied the conditional input vector y to reflect the
desired vessel length. More samples are provided online1.

The results highlight some of the characteristics of the trained GAN. First of all, samples are quite
different for different points in latent space. Shorter vessels (50, 100, 150 mm) are in this case always
sampled from the left coronary artery tree. Vessels with length 200 mm are sampled from either the
left coronary tree (rows 1 and 2) or the right coronary tree (row 3). The model has learned that very
long vessels (250 mm) are more likely to originate at the right coronary ostium. Hence, while the
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(a) G(z0), 50 mm (b) G(z0), 100 mm (c) G(z0), 150 mm (d) G(z0), 200 mm (e) G(z0), 250 mm

(f) G(z1), 50 mm (g) G(z1), 100 mm (h) G(z1), 150 mm (i) G(z1), 200 mm (j) G(z1), 250 mm

(k) G(z2), 50 mm (l) G(z2), 100 mm (m) G(z2), 150 mm (n) G(z2), 200 mm (o) G(z2), 250 mm

Figure 8: Vessels synthesized with different lengths using a conditional GAN. The rows correspond
to different fixed points z0, z1, z2 in the latent space determined by pz . The columns correspond
to different conditional inputs y to the generator representing the desired length. Depending on the
length and the latent vector, the generator synthesizes left or right coronary arteries.

location in latent space is fixed, the generator prefers to sample a right coronary artery in all three
cases.

5 Discussion and Conclusion

We have presented a generative method for the synthesis of blood vessel geometries. The generative
model learns a low-dimensional latent space that represents the geometry of full coronary arteries.
From this low-dimensional latent space a wide range of coronary arteries can be sampled. In addition,
our experiments showed how the model can be constrained to only synthesize vessels with particular
characteristics.

We found that the synthesized coronary arteries shared statistical properties with the training data set,
but that the model also allowed us to synthesize new coronary artery geometries by sampling from
the latent space pz . Hence, the model efficiently captures the data present in the training set, yet is
able to generate samples that are different from those that is has seen during training. Synthesized
geometries could potentially be used to augment training data for discriminative machine learning
methods, e.g. those studying flow in blood vessels [25].

The results have shown that the generative method is able to synthesize realistic vessel models using
a data-driven approach. In previously published work, model-based methods have been proposed for
vessel synthesis. The proposed method could complement such model-based methods, by introducing
realistic variations to the model-based output. In the work by Hamarneh et al., synthesized vessel
geometries were transformed into corresponding CT images using assumptions about tissue densities
[4]. In future work, we will investigate if the current model can be extended to include such synthesis.
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One of the advantages of model-based over data-driven methods is increased control over the
synthesized data. However, we found that the GAN organized the latent space into different areas
depending on vessel characteristics. Furthermore, we showed that we could control characteristics of
the synthesized data using a conditional GAN. We were able to synthesize vessels having different
lengths, and to condition the generator network on vessel lengths. In future work, this generative
model can be extended to include more vessel characteristics, such as presence and severity of
stenosis, vessel location and tortuosity. This requires labeled training samples. In addition, the
generator could be encouraged to pass through (user-)indicated key points, thereby allowing more
control over the location of the synthesized vessel.

In this work, 3D volumes were synthesized using a set of primitives, namely assuming a locally
tubular model for vessels. This substantially simplifies the synthesis task, while yielding contiguous
3D volumes. A similar approach could be used for synthesis of other tubular structures, such as
other vessels or airways. In future work, we will extend the set of primitives to include trees and
bifurcations, e.g. using graph representations.

In conclusion, we have found that a Wasserstein generative adversarial network can be used to
synthesize diverse and realistic blood vessel geometries.
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H. Bogunović, C. Castro, X. Deng, et al., “Standardized evaluation methodology and reference database for
evaluating coronary artery centerline extraction algorithms,” Med Imag Anal, vol. 13, no. 5, pp. 701–714,
2009.

[18] D. Lesage, E. D. Angelini, I. Bloch, and G. Funka-Lea, “A review of 3D vessel lumen segmentation
techniques: Models, features and extraction schemes,” Med Imag Anal, vol. 13, no. 6, pp. 819–845, 2009.

[19] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” arXiv preprint arXiv:1701.07875, 2017.

[20] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved training of Wasserstein
GANs,” in Adv Neural Inf Process Syst, pp. 5769–5779, 2017.

[21] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint arXiv:1411.1784,
2014.

[22] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional
generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.

[23] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR, 2015.

[24] E. Bullitt, G. Gerig, S. M. Pizer, W. Lin, and S. R. Aylward, “Measuring tortuosity of the intracerebral
vasculature from MRA images,” IEEE Trans Med Imag, vol. 22, no. 9, pp. 1163–1171, 2003.

[25] L. Itu, S. Rapaka, T. Passerini, B. Georgescu, C. Schwemmer, M. Schoebinger, T. Flohr, P. Sharma, and
D. Comaniciu, “A machine-learning approach for computation of fractional flow reserve from coronary
computed tomography,” J Appl Physiol, vol. 121, no. 1, pp. 42–52, 2016.

10

https://dspace.library.uu.nl/bitstream/1874/349070/1/Wolterink.pdf
https://dspace.library.uu.nl/bitstream/1874/349070/1/Wolterink.pdf

	Introduction
	Data
	Training Data
	Blood Vessel Parametrization

	Method
	Generative Adversarial Network
	Conditional Training
	Network architectures

	Experiments and Results
	Exploring the Latent Space
	Conditioning

	Discussion and Conclusion

