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ABSTRACT

We introduce Dynamic Planning Networks (DPN), a novel architecture for deep
reinforcement learning, that combines model-based and model-free aspects for
online planning. Our architecture learns to dynamically construct plans using a
learned state-transition model by selecting and traversing between simulated states
and actions to maximize valuable information before acting. In contrast to model-
free methods, model-based planning lets the agent efficiently test action hypothe-
ses without performing costly trial-and-error in the environment. DPN learns to
efficiently form plans by expanding a single action-conditional state transition at a
time instead of exhaustively evaluating each action, reducing the required number
of state-transitions during planning by up to 96%. We observe various emergent
planning patterns used to solve environments, including classical search methods
such as breadth-first and depth-first search. DPN shows improved data efficiency,
performance, and generalization to new and unseen domains in comparison to
several baselines.

1 INTRODUCTION

The central focus of reinforcement learning (RL) is the selection of optimal actions to maximize the
expected reward in an environment where the agent must rapidly adapt to new and varied scenarios.
Various avenues of research have spent considerable efforts improving core axes of RL algorithms
such as performance, stability, and sample efficiency. Significant progress on all fronts has been
achieved by developing agents using deep neural networks with model-free RL (Mnih et al., 2015;
2016; Schulman et al., 2015; 2017; OpenAI, 2018); showing model-free methods efficiently scale to
high-dimensional state space and complex domains with increased compute. Unfortunately, model-
free policies are often unable to generalize to variances within an environment as the agent learns a
policy which directly maps environment states to actions.

A favorable approach to improving generalization is to combine an agent with a learned environ-
ment model, enabling it to reason about its environment. This approach, referred to as model-
based RL learns a model from past experience, where the model usually captures state-transitions,
p(st+1|st, at), and might also learn reward predictions p(rt+1|st, at). Usage of learned state-
transition models is especially valuable for planning, where the model predicts the outcome of
proposed actions, avoiding expensive trial-and-error in the actual environment – improving per-
formance and generalization. This contrasts with model-free methods which are explicitly trial-and-
error learners (Sutton & Barto, 2017). Historically, applications have primarily focused on domains
where a state-transition model can be easily learned, such as low dimensional observation spaces
(Peng & Williams, 1993; Deisenroth & Rasmussen, 2011; Levine & Abbeel, 2014), or where a
perfect model was provided (Coulom, 2006; Silver et al., 2016a) – limiting usage. Furthermore,
application to environments with complex dynamics and high dimensional observation spaces has
proven difficult as state-transition models must learn from agent experience, suffer from compound-
ing function approximation errors, and require significant amounts of samples and compute (Oh
et al., 2015; Chiappa et al., 2017; Guzdial et al., 2017). Fortunately, recent work has overcome the
aforementioned difficulties by learning to interpret imperfect model predictions (Weber et al., 2017)
and learning in a lower dimensional state space (Farquhar et al., 2017a).

Planning in RL has used state-transition models to perform simulated trials with various styles of
state traversal such as: recursively expanding all available actions per state for a fixed depth (Far-
quhar et al., 2017a), expanding all actions of the initial state and simulating forward for a fixed
number of steps with a secondary policy (Weber et al., 2017), or performing many simulated roll-
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Figure 1: Dynamic Planning Network Architecture. Encoder is comprised of several convolutional
layers and a fully-connected layer. Planning occurs for τ = 1, ..., T steps using the IA and state-
transition model. The result of planning is sent to the outer agent before an action at is chosen. The
fully-connected layer within the outer agent, outlined in blue, is used by the planning process.

outs with each stopping when a terminal state is encountered (Silver et al., 2016a). An issue arises
within simulated trials when correcting errors in action selection, as actions can either be undone
by wasting a simulation step, using the opposing action, or are irreversible, causing the remaining
rollout steps to be sub-optimal in value. Ideally, the agent can step the rollout backwards in time
thereby undoing the poor action and choosing a better one in its place. Additionally, during rollouts
the agent is forced to either perform a fixed number of steps or continue until a terminal state has
been reached; when ideally a rollout can terminate early if the agent decides the path forward is of
low value.

In this paper, we propose an architecture that learns to dynamically control a state-transition model
of the environment for planning. By doing so, our model has greater flexibility during planning
allowing it to efficiently adjust previously simulated actions. We demonstrate improved performance
against both model-free and planning baselines on varied environments.

The paper is organized as follows: Section 2 covers our architecture and training procedure, Section
3 covers related work, Section 4 details the experimental design used to evaluate our architecture,
and in Section 5 we analyze the experimental results of our architecture.

2 DYNAMIC PLANNING NETWORK

In this section, we describe DPN, a novel planning architecture for deep reinforcement learning
(DRL). We first discuss the architecture overview followed by the training procedure. Steps taken
in the environment use subscript t and steps taken during planning use subscript τ . We provide
additional motivation behind the architecture in Appendix A.1.

2.1 DPN ARCHITECTURE

The architecture is comprised of an inner agent, an outer agent, a shared encoder, and a learned
state-transition model. Figure 1 illustrates a high-level diagram of the DPN architecture. The outer
agent (OA) is a feed-forward network and the inner agent (IA) is based on a recurrent neural network
(RNN). The architecture interacts with the environment by observing raw environment states st ∈ S
and outputting actions at ∈ A via OA. However, before OA outputs an action at the IA performs
τ = 1, ..., T steps of planning by interacting with an internal simulated environment; where this
simulated environment is defined by the state-transition model and sub-section of OA’s network.
Selection of an action at by OA uses the final hidden state hIT ∈ R1×hi

of IA and an embedding of
the current state zt ∈ R1×z . The objective of IA is to maximize the total utility provided to the OA;
where utility, given in Equation 1, measures the “value of information” provided to OA if it were to
have undergone a state transition from zτ to zτ+1.

Uτ (hOτ+1, h
O
τ , aτ , zτ ) = Q̂(zτ , aτ )DKL(hOτ+1||hOτ )

Q̂(zτ , aτ ) = π(aτ |zτ ; θI)Q(zτ , aτ ; θO)
(1)
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where zτ+1 is the state transitioned to after performing an action aτ in state zτ , hOτ ∈ R1×ho

and
hOτ+1 are the hidden states of OA after perceiving the current state zτ and state transitioned to zτ+1

respectively, DKL is the KullbackLeibler (KL) distance measure, Q(zτ , aτ ; θO) is the value OA
assigns to taking action aτ in the current state zτ , and π(aτ |zτ ; θI) is the learned policy of IA. The
DKL is used to measure the distance in bits between hidden states of the OA. Computation of DKL

between hidden states is provided in the Appendix B.

The utility function captures the tension between choosing a state with high value, as described
by the Q-function component, and a state that provides maximal information, described by the KL
component. To maximize the utility the IA provides to the OA it must select states and actions that
have both high value and provide information to the OA – maximizing the “value of information”.
States with high value but low information or low value and high information will have low utility
and therefore be less desirable.

Therefore, to maximize utility for OA during each planning step τ , IA must select appropriate
simulated-states z∗τ and actions a∗τ . A simulated-state z∗τ is selected from one of three embedded
states tracked during planning: the previous zpτ , current zcτ , and root states zrτ ; with the triplet writ-
ten as z{p,c,r}τ for convenience. Initially, z{p,c,r}τ=0 is set to an embedding zt produced by the encoder
of the initial raw state st as zτ=0 = encoder(st). The encoder is comprised of a series of convolu-
tional layers specific to each environment and provided in the Appendix B. Before planning begins,
OA’s hidden state is updated using zτ=0:

hOτ = W zhzτ (2)

where W zh ∈ Rz×ho

is a learnable parameter of OA with biases omitted. Within this work, we
consider the intermediate activation from the OA, a feed-forward network, as a hidden state. The
simulated-action a∗τ mirrors those available to OA in the environment, such that a∗τ ∈ A.

2.2 A PLANNING STEP
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Figure 2: A single planning step τ . Inner Agent, shown as the blue box with a recursive arrow,
performs a step of planning using the state-transition model. Circles containing × indicate multipli-
cation and circles with ∼ indicate sampling from the Gumbel Softmax distribution.

At each planning step τ , shown in Figure 2, the IA selects a simulated-state z∗τ and action a∗τ by con-
sidering the previous hidden state hIτ−1, the triplet of embedded states z{p,c,r}τ , a scalar representing
the current planning step τ/T , and OA’s hidden state hOτ given zcτ . The information is concatenated
together forming a context and is fed into IA, a recurrent network producing an updated hidden state
hIτ ∈ R1xhi

. The updated hidden state is used to select the simulated-state z∗τ by multiplying z{p,c,r}τ

with a 1-hot encoded weight wτ ∈ {0, 1}1×3 sampled from the Gumbel-Softmax distribution, G:

wτ ∼ G(W h3hIτ )

z∗τ = wτ [zpτ , z
c
τ , z

r
τ ]

(3)

where W h3 ∈ Rhi×3 is a learnable parameter belonging to IA and G is the Gumbel-Softmax dis-
tribution (GSD). Where the GSD is a continuous relaxation of the discrete categorical distribution
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giving access to differentiable discrete variables (Jang et al., 2016; Maddison et al., 2016). Empir-
ically, we found that using a 1-hot encoding for the weight wτ gives greater performance than a
softmax activation. Therefore, we used GSD in place of softmax activations throughout our archi-
tecture. Next, the simulated-action a∗τ ∈ {0, 1}1×A, is sampled as follows:

a∗τ ∼ G(W azh[z∗τ , h
I
τ ]) (4)

where W azh ∈ Ra×z+hi

is a learnable parameter of IA. In Equation 4 the selected simulated-state
z∗τ and IA’s hidden state hIτ are concatenated, passed through a linear layer, and used as logits for
GSD. Then, with the selected simulated-state z∗τ and simulated-action a∗τ , we produce the next state
zτ+1 using the state-transition model, defined as:

z′ = zτ + tanh(W zzz∗τ )

z′′ = z′ + tanh((a∗τW
azz)z′)

z∗τ+1 = zτ + z′′
(5)

where W zz ∈ Rz×z and W azz ∈ RA×z×z are learnable parameters of the state-transition model.
We parameterize each available action in A with a learned weight matrix that carries information
about the effect of taking an action a∗τ ∈ R1×A. We use the same state-transition model presented by
Farquhar et al. (2017a). Finally, the three embedded states are updated as: zpτ+1 = zcτ , zrτ+1 = zτ=0,
and zcτ+1 = z∗τ+1.

2.3 ACTION SELECTION

The IA repeats the process defined in Section 2.2 of selecting z∗τ and a∗τ for T steps before finally
emitting a final hidden state hIT summarizing the result of planning. The OA uses IA’s final hidden
state hIT and its initial hidden state hOτ=0 to select an action at:

at = W ahtanh(W hhhIT + hOτ=0) (6)

where W hh ∈ Rho×hi

and W ah ∈ RA×ho

are learnable parameters of OA. Finally, the hidden
state of the IA is reset.

2.4 TREE INTERPRETATION

The planning process can be interpreted as dynamically expanding a state-action tree, illustrated in
Figure 3, where all edges and vertexes are chosen by IA to maximize the total utility provided to
OA.
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Figure 3: Example of dynamic tree construction dur-
ing planning.

With simulated-state selection z∗τ , using wτ ,
IA controls which node in the tree is ex-
panded further: the parent node (zp), the root
node (zr), or the current node (zc). While
action selection a∗ chooses the branching di-
rection, exploring the embedded state space
using the state-transition model.

The illustration of a constructed tree in a
fictional environment is shown in Figure 3.
State selections are shown in light purple,
and state transitions with an action, using
the state-transition model, are shown as blue.
The source state is shown as a grey circle
with a blue outline and the transitioned state is shown as a fully blue circle. In this example, there are
three actions, each corresponding to their graphical representation: left, right, and down. The root
state is marked with an “R”. An example of a possible tree construction for T=3 steps of planning:
a) step τ = 1, IA selects the current state zc and transitions to a new state with action “left”; b) step
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τ = 2, the IA selects the current state zc and “down” action; and step τ = 3 c) IA selects the root
state zc and “down” action.

2.5 TRAINING PROCEDURE

Our architecture is trained to maximize the expected rewards within the environment. The OA
is trained to maximize the expected discounted sum of rewards, Rt =

∑∞
t=0 γ

trt, while the IA
maximizes the utility it provides to OA. The OA learns a deterministic policy π(aτ , zτ ) that directly
maps states s ∈ S to actions a ∈ A, while IA learns a stochastic policy π(aτ |zτ ). Empirically, we
found that using the same policy for planning and acting caused poor performance. We hypothesize
that the optimal policy for planning is inherently different from the one required for optimal control
in the environment; as during planning, a bias toward exploration might be optimal.

OA uses an identical training procedure and loss to that of DQN used in Mnih et al. (2015) with the
loss denoted as LO. We used the Huber loss to perform state-grounding of the state-transition model
between the current state zt, action at, and zt+1 which we denoted with LZ . IA is trained using a
policy gradient method, given in Equation 7, defined over a planning episode τ = 1, ...T :

∇θIJ(θI) = EπI [∇θI logπI(zτ , aτ )Rτ ] (7)

where Rτ is defined as the discounted utility
∑T
τ=1 Uτ + γIUτ+1 for planning step τ . The IA

can be interpreted as an actor-critic algorithm but where the value function is learned by the OA.
Combining our losses, the architecture is trained using the following gradient:

∆θ = ∇θLO + λ∇θLZ +
1

T

T∑
τ=0

∇θI logπI(at|zt)Rτ − βA∇θIH[π(zτ )]− βw∇θIH[wτ ] (8)

where λ controls the state-grounding loss and β{A,w} are hyperparameters tuning entropy maxi-
mization of IA’s policy. The losses LO and LZ are computed over all parameters; while the policy
gradient and entropy maximization losses are with respect to only IA’s parameters. We perform
updates to IA in this way as to stop IA from cheating by modifying the parameters of the OA that
define its reward via DKL and Q(z, a; θO) within the utility.

3 RELATED WORK

Various efforts have been made to combine model-free and model-based methods, such as the Dyna-
Q algorithm (Sutton, 1991) that learns a model of the environment and uses this model to train a
model-free policy. Originally applied in the discrete setting, Gu et al. (2016) extended Dyna-Q to
continuous control. In a similar spirit to the Dyna algorithm, recent work by Ha & Schmidhuber
(2018) combined data generated from a pre-trained unsupervised model with evolutionary strategies
to train a policy. However, none of the aforementioned algorithms use the learned model to improve
the online performance of the policy and instead use the model for offline training. Therefore, the
learned models are typically trained with a tangential objective to that of the policy such as a high-
dimensional reconstruction. In contrast, our work learns a model in an end-to-end manner, such that
the model is optimized for its actual use in planning.

Guez et al. (2018) proposed MCTSnets, an approach for learning to search where they replicate the
process used by MCTS. MCTSnets replaces the traditional MCTS components by neural network
analogs. The modified procedure evaluates, expands, and back-ups a vector embedding instead of a
scalar value. The entire architecture is end-to-end differentiable.

Tamar et al. (2016) trained a model-free agent with an explicit differentiable planning structure,
implemented with convolutions, to perform approximate on-the-fly value iteration. As their planning
structure relies on convolutions, the range of applicable environments is restricted to those where
state-transitions can be expressed spatially.

Pascanu et al. (2017) implemented a model-based architecture comprised of several individually
trained components that learn to construct and execute plans. Their work supports varied modes of
planning such as 1-step, n-step, and tree-based. The tree-based version is similar to our work but
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is only able to use the current or root states. In contrast our work provides the IA with access to
the previous state allowing it to undo previous actions. They examine performance Gridworld tasks
with single and multi-goal variants but on a limited set of small maps.

Vezhnevets et al. (2016) proposed a method which learns to initialize and update a plan; their work
does not use a state-transition model and maps new observations to plan updates.

Value prediction networks (VPNs) by Oh et al. (2017), Predictron by Silver et al. (2016b), and
Farquhar et al. (2017a), an expansion of VPNs, combine learning and planning by training deep
networks to plan through iterative rollouts. The Predictron predicts values by learning an abstract
state-transition function. VPNs constructs a tree of targets used only for action selection. Farquhar
et al. (2017a) create an end-to-end differentiable model that constructs trees to improve value esti-
mates during training and acting. Both Oh et al. (2017) and Farquhar et al. (2017a) construct plans
using forward-only rollouts by exhaustively expanding each state’s actions. In contrast to the afore-
mentioned works, during planning DPN learns to selectively expand actions at each state, with the
ability to adjust sub-optimal actions, and uses planning results to improve the policy during both
training and acting.

Weber et al. (2017) proposed Imagination Augmented Agents (I2As), an architecture that learns to
plan using a separately trained state-transition model. Planning is accomplished by expanding all
available actions A of the initial state and then performing A rollouts using a tied-policy for a fixed
number of steps. In contrast, our work learns the state-transition model end-to-end, uses a separate
policy for planning and acting, and is able to dynamically adjust planning rollouts. Additionally,
in terms of sample efficiency, I2As require hundreds of millions of steps to converge, with the
Sokoban environment taking roughly 800 million steps. Though not directly comparable, our work
in the Push environment, a puzzle game very similar to Sokoban, requires an order of magnitude
fewer steps, roughly 20 million, before convergence.

Within continuous control learning a state-transition model for planning has been used in various
ways. Finn & Levine (2017) demonstrate the usage of a predictive model of raw sensory observa-
tions with model-predictive control (MPC) where the model is learned in an entirely self-supervised
manner. Srinivas et al. (2018) proposed using an embedded differential network that performs iter-
ative planning through gradient descent over actions to reach a specified target goal state within a
goal-directed policy. Henaff et al. (2017) focus on model-based planning in low-dimensional state
spaces and extend their method to perform in both discrete and continuous action spaces.

Tishby & Polani (2011) proposed a formulation of the Markov decision process where rewards are
traded against control information. The notion of valuable information is discussed, which deter-
mines the relevance of information by the value it allows the agent to achieve. Utility is related to
this notion of valuable information but instead measures the “gain” the OA can expect from a state-
transition. Additionally, our work maximizes both the expected reward given by the environment
and the utility provided to OA while their work focuses solely on maximizing control information
and does not couple information value with rewards.

Additional connections between learning environment models, planning and controls, and other
methods related to ours were previously discussed by Schmidhuber (2015).

4 EXPERIMENTS

We evaluated DPN on a multi-goal Gridworld environment and Push, (Farquhar et al., 2017a) a
box-pushing puzzle environment. Push is similar to Sokoban used by Weber et al. (2017) with
comparable difficulty. Within our experiments, we evaluated our model performance against either
model-free baselines, DQN and A2C, or planning baselines, such as TreeQN and ATreeC. The
experiments are designed such that a new scenario is generated across each episode, which ensures
that the solution of a single variation cannot be memorized. We are interested in understanding how
well our model can adapt to varied scenarios. Additionally, we investigate how planning length T
affects model performance using the Push environment, planning patterns that our agent learns in the
Push environment, and how the IA’s target affects the architecture performance. Full details of the
experimental setup and hyperparameters are found in the Appendix B. Unless specified otherwise,
each DPN model configuration is averaged over 3 different seeds and is trained for 20 million steps
due to limited computational resources.
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Figure 4: Randomly generated samples of the Push environment. Each square’s coloring represents
a different entity: the agent is shown as red, boxes as aqua, obstacles as black, and goals as grey.
The outside of the environment, not visible to the agent, is shown as a black border around the map.

Figure 5: Randomly generated samples of a 16 × 16 Gridworld environment where the agent must
collect all goals. The agent is shown as red, goals in cyan, obstacles as black, and outside of the
environment, not visible to the agent, is shown with a black border.

Push: The Push environment is a box-pushing domain, where an agent must push boxes into goals
while avoiding obstacles. Samples of this environment are shown in Figure 4. Since the agent can
only push boxes, with no pull actions, poor actions within the environment can lead to irreversible
configurations. The agent is randomly placed, along with 12 boxes, 5 goals, and 6 obstacles on the
center 6x6 tiles of an 8x8 grid. Boxes cannot be pushed into each other and obstacles are “soft” such
that they do not block movement, but generate a negative reward if the agent or a box moves onto
an obstacle. Boxes are removed once pushed onto a goal. We use the open-source implementation
provided by Farquhar et al. (2017b). The reward structure is as follows: +1 for pushing a box onto
the goal, -0.2 for moving over an obstacle or pushing a box over an obstacle, -0.1 if the agent attempts
to push a box into another, -0.01 for each step, and -1 if the agent falls off the map. A new map is
generated at the end of each episode which occurs after 75 steps, if the agent falls off the map, or
when all boxes have been cleared. We compare our model performance against planning baselines,
TreeQN and ATreeC (Farquhar et al., 2017a), as well as model-free baselines, DQN (Mnih et al.,
2015) and A2C (Mnih et al., 2016).

Planning length: Using the Push environment, we performed a hyperparameter search over pa-
rameter T , which adjusts the number of planning steps, with T = {1, 3, 5} evaluated. The push
environment was chosen because the performance is sensitive to an agent’s ability to plan effec-
tively.

Planning patterns: We examine the planning patterns that our agent learns in the Push environment
for T=3 steps. Here we are interested in understanding what information the agent extracts from the
simulation as context before acting.

Gridworld: We use a Gridworld domain with randomly placed obstacles that an agent must navigate
searching for goals. The environment, randomly generated between episodes, is a 16x16 grid with
3 goals. Details of level generation are provided in the appendix. The agent must learn an optimal
policy to solve new unseen maps. Figure 5 shows several instances of a 16x16 Gridworld where
the agent is shown as red, goals in blue, and obstacles as black. The rewards that an agent receives
are as follows: +1 for each goal captured, -1 for colliding with a wall, -1 for stepping off the map,
-0.01 for each step, and -1 for going over the step limit. An episode terminates if the agent collides
with an obstacle, collects all the goals, steps off the map, or goes over 70 steps. We evaluate our
algorithm against the following variations of the DQN baseline (Mnih et al., 2015): a wide network
with double the number of hidden units per layer, a deeper network using an additional hidden layer,
and a recurrent version. Each DQN variant used the same encoder structure as DPN.

Inner Agent Target: Using the Gridworld environment we examine how the IA target affects the
architectures overall performance. To this end we compare the original target, defined in Equation
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1, against two variants: the KL divergence between the OAs hidden states and the Q-function target
used by the OA.

5 RESULTS AND DISCUSSION

5.1 PLANNING LENGTH

In Figure 6(a), we see the performance of our model over the planning lengths T = {1, 3, 5} where
each parameter setting is trained with 3 random seeds for 20 million steps in the environment. As
seen in Figure 6(a), model performance increases as we add additional planning steps, while the
number of model parameters remains constant.

(a) Varied Planning Lengths. (b) Push Training Curves.

Figure 6: Push Environment. a) Training over varying planning lengths, T = {1, 3, 5}, in the Push
Environment. b) Training curves of DPN vs. baselines on the Push environment.

As the planning length increases, we see the model converge faster. We begin to see diminishing
returns in performance after T = 3 planning depth. As seen from the plots, even a single step
of planning allows the agent to test action-hypotheses and avoid poor choices in the environment.
Ideally, the architecture would be able to adjust the number of planning step T dynamically, similar
to the adaptive computation presented by Graves (2016), but we leave this to future work.

5.2 PUSH ENVIRONMENT

Figure 6(b) shows DPN, with planning length T = 3, compared to DQN, A2C, TreeQN and ATreeC
baselines 1. For TreeQN and ATreeC, we chose tree depths which gave the best performance, corre-
sponding to tree depths of 3 and 1 respectively. Our model clearly outperforms both planning and
non-planning baselines: TreeQN, DQN, and A2C; with a slight performance difference to ATreeC.
We see that our architecture converges at a much faster rate than the other baselines requiring roughly
12 million steps in the environment, in comparison to the other planning baselines, TreeQN and
ATreeC, which take roughly 35-40 million steps: ∼3x additional samples.

We note that the planning efficiency of DPN is higher in terms of overall performance per number
of state-transitions. On the Push environment, withA = 4 actions, TreeQN with tree depth of d = 3

requires
(Ad+1−1
A−1

)
− 1 = 84 state-transitions. In contrast, DPN with planning length of T = 3

requires only T state-transitions – a 96% reduction. Loosely comparing to I2As, simply in terms
of state-transitions, we see that I2As require A× L state-transitions per action step, where L is the
rollout length their model performs. This performance is a result of DPN learning to selectively
expand actions and being able to dynamically adjust previously simulated actions during planning.

Additionally, we observed that our model does not suffer from the issue of bouncing between adja-
cent states; an issue also noted by Farquhar et al. (2017a) with TreeQN. An earlier iteration of our
work was affected by this issue as IA employed a deterministic state-action value function. Our so-
lution was to use an actor-critic algorithm for IA to introduce stochasticity into the decision-making

1The data for the training curves of DQN, A2C, TreeQN, and ATreeC were provided by Farquhar et al. via
email correspondence. Each experiment was run with 12 different seeds for 40million steps.
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processes of OA such that the agent was able to bounce out of these states quickly, thus improving
performance.

(a) Breadth-first Pattern. (b) Depth-first Pattern.

Figure 7: Samples of planning patterns the agent uses to solve the Push environment with T = 3.
The faded environments, to the right of each sample, is used to signify when the agent is planning.
Highlighted squares represent the location that IA chose to move towards during planning.

5.3 PLANNING PATTERNS

By watching a trained agent play through newly generated maps, we identified common planning
patterns, which are shown in Figure 7. Two prominent patterns emerged: breadth-first search and
depth-first search. From Figure 7(a) we can see that our agent learned to employ breadth-first search,
where planning steps are used to expand available actions around the agent, corresponding to a tree
of depth 1. In contrast, depth-first search as seen in Figure 7(b), has the agent expanding state
forward only. The agent does not always follow depth-first search paths and seems to use them to
“check” if a particular pathway is worth pursuing.

5.4 MULTI-GOAL GRIDWORLD

Figure 8(a) shows, the results of DPN compared to various DQN baselines. Within this domain,
the difference in performance is clear: our model outperforms the baselines by a significant margin.
The policies that DPN learns generalizes better to new scenarios, can effectively avoid obstacles,
and is able to capture multiple goals. Of the DQN variations, we found that DQN-RNN performs
better than the other two versions, implying that for a model-free algorithm to perform well within
this environment, the agent must be able to perform additional computations and retain some infor-
mation on previous moves it has made. Additionally, as seen in Figure 8(a), the Deep and Wide
DQN variants do not achieve a score higher than -1.0 indicating the agents learn only to navigate
around the map without collecting goals before an episode ends. It should be noted we saw little
performance improvement with allocating the model-free algorithms an additional 2x environment
steps (40 million) or 2-4x longer exploration period (8-16 million).

The poor performance of DQN models is unsurprising as this environment is particularly unforgiving
due to: episode termination conditions, goal placement, and density of obstacles. As previously
mentioned, episodes end when the agent touches an obstacle, moves off the map, or exceeds the
number of allocated steps. While the difficulty with goal placement is that a certain distance must
be traversed between the agent to a goal and goal-to-goal, meaning a goal will rarely be discovered
without first traversing through several obstacles. Finally, obstacles are often placed in a position
where only one square of passage exists, in such positions an incorrect move will cause the episode
to terminate leaving little room for error.

5.5 INNER AGENT TARGETS

Figure 9(a) shows the performance of the DPN architecture with varied IA targets. From Figure
9(a) we see that the original IA target, labelled Q×KL, converges faster and performs better than
both the KL and Q targets. Here, the original loss achieves a +50.49% and +55% greater average
performance over the last 1000 episodes as compared to the KL and Q targets respectively.

Interestingly, between the KL and Q targets we see the KL target converges slightly faster and
appears more stable throughout training. We hypothesize that when combined together the KL com-
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(a) Training Curves.

Model Avg. Reward
DQN-Deep -1.30
DQN-Wide -1.37
DQN-RNN -0.42

DPN-T3 0.89

(b) Model Performance.

Figure 8: Gridworld Environment. a) Training curves with DPN compared to various DQN baselines
on 16×16 Gridworld with 3 goals. b) The performance of each DQN baseline and our model where
Avg. Reward is the average of the last 100 episodes of training.

(a) Training Curve (b) Training loss (c) Std. of DKL

Figure 9: Varied IA Targets. a) Training curve: Q×KL corresponds to the original target, KL to the
Kullback-Leibler divergence between hidden states of OA, and Q to the Q-function target (as used
by the OA). b) Training loss: the training loss of the entire architecture. c) Std. of DKL: The Std. of
the DKL between the hidden states of the OA.

ponent of the original loss acts as a stabilizer to the noisy Q-function helping speed up convergence.
We see evidence of this by looking at overall loss in Figure 9(b) and the Std. of the KL between the
OA’s hidden states in Figure 9(c). The architecture using the Q target experiences greater loss mag-
nitudes and variance throughout training while the KL target has lower variance. The combination
of the two producing the original loss, as seen in Figure 9(c), smooths out the variance experienced
by the OA.

6 CONCLUSION

In this paper, we have presented DPN, a new architecture for deep reinforcement learning that uses
two agents, IA and OA, working in tandem. Empirically, we have demonstrated that DPN outper-
forms the model-free and planning baselines in both the mutli-goal Gridworld and Push environ-
ments while using ∼3x fewer environment samples. Ablation studies have shown that our proposed
target for the IA outperforms other targets and the specific combination helps increase the speed
of convergence. We have shown that the IA learns to dynamically construct plans that maximize
utility for the OA; with IA learning to dynamically use classical search patterns, such as depth-first
search, without explicit instruction. Compared to other planning architectures, DPN requires sig-
nificantly fewer state-transitions during planning for the same level of performance – drastically
reducing computational requirements by up to 96%.
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A SUPPLEMENTAL MATERIAL

A.1 MOTIVATING EXAMPLE

As this work improves upon existing planning approaches it is pragmatic to examine the general
planning process a human might perform before action selection. We use chess as an illustrative
example as it is widely known and victory requires careful action selection.

Through introspection the following “planning algorithm” emerges, where before acting each player:
a) observes the current game state; b) selects a chess piece to move and mentally steps “forward in
time” moving their piece and opponent pieces with a mental dynamics model; and then chooses to
ci) repeat step b), cii) undo the last move, ciii) or reset to the current initial “root” state a). With
steps ci-iii) repeatedly performed until the player feels they have exhausted all useful paths. Finally,
an action is selected using this planning information. This process can be interpreted as dynamically
creating a tree structure where the nodes are visited states, the edges are actions, and the tree is grown
downward each time the player chooses to step “forward in time”. The player traverses this tree by
stepping forward (ci), undoing previous moves (cii), or abandoning the current pathway to start from
the root state (ciii). Importantly, undoing and resetting does not destroy previous information the
player has gained and is remembered when selecting the final action.

From this process we note four interesting characteristics:

• During the planning process, no new external state or information enters the system.
• The entire dynamic process tries to maximize the current information available to the player

given only their current state and a dynamics model.
• A model of the environment dynamics is needed to simulate action-conditional steps.
• Previously visited states and transitions should be remembered in working memory instead

of being discarded.

Our architecture, DPN, encodes each characteristic into the model structure.

B EXPERIMENTAL DETAILS

B.1 TRAINING DETAILS

We used the RMSProp optimizer with a learning rate of α = 0.0001, ε = 1e − 5, and decay of
0.95. We trained all environments for 20 million environment steps, using a model freeze interval
of 30k, and linearly annealed the exploration rate from 1.0 to 0.05 over the first 4 million steps in
the environment. Our replay memory held 1 million samples. We used a discount rate of γO = 0.95
for the outer agent and γI = 1.0 for the IA. The entropy regularization used was βA = 0.01
and βw = 0.007. The state-grounding coefficient used was λ = 0.01 in all experiments. All
hyperparameters were held fixed during all experiments.

B.2 GRIDWORLD ENVIRONMENT

For each episode, a new level is generated where we place an agent, 3 goals, and 50 obstacles of
varying size with their locations sampled uniformly in a 16× 16 grid map. First, the agent is placed
within one of the center 4 tiles of the map. Then a location for each goal is sampled where the
location must satisfy the following conditions:

• DE [gi, a] ≥ dg→a

• DE [gi, gj ] ≥ dg→g

where DE [x, y] is the euclidean distance between point x and y, dg→a is the distance between
goal gi and the agent, and dg→g is the distance between goal gi and gj . We used dg→a = 4.5
and dg→g = 6.0. Next, we randomly sample locations and dimensions for each obstacle, rejecting
already occupied locations, where each obstacle can have a width and height in {1, 2}. Finally, to
ensure that each goal can be reached, we carve a path backwards to the agent remove blocks that
stop clear passage.
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B.3 ARCHITECTURES

All encoder layers were separated with ReLU non-linearities unless otherwise specified. Convolu-
tion layers are specified with the notation conv-wxh-s-n with n filters of size w × h and stride s, and
fc-h denotes a fully-connected layer with h hidden units.

The state-transition model remained consistent between each environment with only the number of
actions A and embedding size z affecting the number of parameters of the component.

Gridworld: The encoder consisted of conv-3x3-1-16, conv-3x3-2-32, conv-4x4-2-32, and fc-128.
For the IA’s hidden state hI , we used 64 units and the outer agents hidden state hO has 64 units.
The hidden state z used 64 units. The DQN baseline used the same encoder as our architecture as
well as the same embedding size z.

Push: The encoder consists of conv-3x3-1-24, conv-3x3-1-24, conv-4x4-1-48, and fc-128. For the
IA’s hidden state hI , we used 64 units and the outer agents hidden state hO has 64 units. The hidden
state z used 128 units.

B.4 KL CALCULATION

To compute the KL divergence between hOτ and hOτ+1, we first apply the inverse tanh function
followed by the sigmoid: σ(tanh−1(· · · )); the resulting output is interpreted as a joint distribution
of ho independent Bernoulli random variables where the ith unit’s success probability is given by
the units value.
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