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ABSTRACT

Retrosynthesis is a technique to plan the chemical synthesis of organic molecules,
for example drugs, agro- and fine chemicals. In retrosynthesis, a search tree is built
by analysing molecules recursively and dissecting them into simpler molecular
building blocks until one obtains a set of known building blocks. The search
space is intractably large, and it is difficult to determine the value of retrosynthetic
positions. Here, we propose to model retrosynthesis as a Markov Decision Process.
In combination with a Deep Neural Network policy trained on 5.5 million reactions,
Monte Carlo Tree Search (MCTS) can be used to evaluate positions. In exploratory
studies, we demonstrate that MCTS with neural network policies outperforms the
traditionally used best-first search with hand-coded heuristics.

1 INTRODUCTION

From medicines to materials, organic molecules are ubiquitous. They are indispensable for human
well-being. To make them, chemists usually plan their syntheses with a “working-backwards”
problem-solving technique called retrosynthesis [Corey & Cheng (1989)]. In retrosynthesis, the
target molecule is recursively analysed and dissected, until a set of known building blocks is obtained.
Then, the chemist can go to the lab and execute the reaction steps starting with the buildings blocks.
It is a formidable intellectual challenge that has strong analogies to puzzle games: There is a large
number of rules, which are subsequently applied to the game state to give rise to a large, intractable
search tree. While this tree is not as large as in Go, mainly due to the shallower depth of usually
≈10–20, retrosynthesis has a significant branching factor (b ≈ 200). An additional problem that
arises in retrosynthesis, which is not very severe in Go or Chess, is to determine the applicable actions.
Molecules are modelled as graphs, and the (re)actions are production rules on graphs which involve
solving the NP-complete subgraph isomorphism problem. Thus, in a complete enumeration, for N
rules (for a non-toy system N ≈ 104 − 105), N × bd NP-complete steps would have to be performed
only to determine the legal actions!

Classically, automated retrosynthesis (computer-aided synthesis design) has been performed with
very large expert systems based on tens of thousands of manually encoded reaction production
rules and heuristics. Similar to other domains, despite of 40 years of active research these expert
systems have not delivered convincing results yet [Todd (2005); Szymkuć et al. (2016)]. However,
retrosynthesis is in many aspects more similar to Go than to chess. No good heuristics to estimate
state values have been found yet, which prohibits truncated search. The “games” thus have to be
played out. Additionally, chemists rely on their intuition, which they master during long years of work
and study, to prioritise which rules to apply when retroanalysing molecules. Analogous to master
move prediction in Go (Maddison et al. (2014)), we showed recently that, instead of hand-coding,
neural networks can learn the “master chemist moves”. We extracted production rules from 5.5
million reactions [Reaxys (2017)] automatically, and then trained Neural Networks to predict the
best transformation, or “the best move” (the ones reported in the literature to have worked to make
the molecule), to apply to a molecule for single step analyses (see Segler & Waller (2017a) for
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Figure 1: a) The synthesis of the target (ibuprofen) is planned with retrosynthesis. The target is
analyzed until a set of building blocks is found that we can buy or know how to make (molecules
marked red). Double arrows indicate a “reverse” retrosynthetic analysis step. b) The transforma-
tion/production rules (actions) to analyse the molecules (state) c) After a synthesis route has been
found, we run the reactions in the lab to make the target. Single arrows indicate chemical reactions,
chemicals over an arrow are added during the course of the reaction. d) Translation of the chemical
representation (a) to a search tree. e) Neural networks are used as a policy to select the best actions.

details). In this work, we seek to transfer the other lessons learned from the last decade of computer
Go, culminating in AlphaGo, to the full chemical synthesis planning problem by combining our
neural networks as policies with Monte Carlo Tree Search (MCTS) [Silver et al. (2016); Browne et al.
(2012)]. The contribution of this work is as follows: 1) We provide the first analysis of retrosynthesis
as a Markov Decision Process, 2) introduce MCTS to the synthesis planning problem to approximate
the value of states and actions, and 3) show how Deep Neural Networks can be used as policies, to
reduce the branching factor, and to approximate the subgraph isomorphism problem.

2 THEORY

2.1 MARKOV DECISION PROCESSES

A Markov Decision Process (MDP) is defined by a state space S , and an action space A(s), defining
the legal actions in a given state s ∈ S. Here, a state s ∈ S is a set of molecules s = {mi,mj , ...}.
The initial state s0 = {m0} contains the target molecule m0. Actions are productions on graphs.
When applying a legal action al to a state si = {ma,mb,mc}, it will produce a new state, e.g.
sj = {md,mb,mc}. The transition function T (s, a, s′) = P (s′|s, a) is set to be deterministic in this
work for simplicity. The reward function r(s) returns 1 if the state is terminal and solved (see below),
-1 if the state is terminal and unsolved, and 0 otherwise. A policy π(a|s) is a probability distribution
over all actions ai ∈ A(s), given state s. In this work, we use a 5-layer highway network, introduced
by Srivastava et al. (2015), with the ELU nonlinearities by Clevert et al. (2015) and a softmax output
layer to parametrize π(a|s). It predicts the probability distribution over all transformation rules.
Molecules are encoded as Extended Connectivity Fingerprints (ECFP4) (see Segler & Waller (2017a)
for details about the dataset, and the concrete model architecture).

2.2 CHEMISTRY

Molecules are treated as molecular graphs, which are vertex-labeled and edge-labeled graphs m =
(A,B), with atoms A as vertices and bonds B as edges [Andersen et al. (2014)]. Retrosynthetic
disconnection rules are productions on graphs p : G → M, where M is the space of multisets of
molecules in G. Most rules are unary and binary, that means they transform a molecule into one
or two new graphs. Each action is a production applied to one of the molecules m in state s. The
rules are extracted automatically from the literature following established procedures [Segler &
Waller (2017b)]. Given a set of building blocks R, the retrosynthetic analysis state sk is solved if
∀mi ∈ sk : mi

∼= rj ∈ R, that is all molecules mi in sk are isomorphic to a building block rj ∈ R.
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2.3 MONTE CARLO TREE SEARCH (MCTS)

MCTS combines tree search with random sampling [Browne et al. (2012)]. We use our policy
network in three of the four MCTS steps: Selection, Expansion, and Rollout. Within the search tree,
we employ Eq. (1), a variation of the UCT function similar to AlphaGo’s, to determine the best child
v′ of a node v, where P (a) is the probability assigned to this action by the policy network, N(v) the
number of visits and Q(v) the accumulated reward at node v, and c the exploration constant set to 3.

argmax
v′∈children of v

(
Q(v′)

N(v′)
+ cP (a)

√
N(v)

1 +N(v′)

)
(1)

The tree policy is applied until a leaf node is found, which is expanded by means of the policy
network. Our policy network has a top1 accuracy of 0.62 and a top50 (of 17370) accuracy of 0.98.
This allows to kill two birds with one stone: First, to reduce the branching factor, we only expand
the top 50 most promising actions, and not all possible ones (≈ 200). Second, by evaluating only 50
actions, we have to solve the subgraph isomorphism problem, which determines if the corresponding
rule can be applied to a molecule and yields the next molecule(s), only 50 times instead of 17370
times for all rules. During rollout, we sample actions from the policy network until the problem is
solved or a maximal depth of 20 is reached.

We compare our algorithm to the state of the art search method, which is Best-First Search (BFS)
with hand-coded heuristics, as described by Szymkuć et al. (2016). In BFS, each branch is added to a
priority queue, which is sorted by cost. Additionally, we perform BFS with the cost for a branch b
calculated with the policy network as f(b) =

∑s∈b
i=0(1− P (ai|si)).

3 RESULTS AND DISCUSSION

For testing, we randomly selected 40 drug-like molecules generated with the neural chemical language
model proposed by Segler et al. (2017). These target molecules were analyzed with the different
algorithms, to find a synthesis route to known building blocks. The algorithms received a budget of
2 h walltime to propose retrosynthetic paths for the 40 different targets. BFS was allowed to explore
up to 9000 branches, MCTS performed 9000 simulations. All calculations were performed on a late
2013 MacBook Pro on CPU.

BFS with heuristic cost is outperformed both in terms of time and accuracy by the BFS and MCTS
with the deep neural network (DNN) policy. BFS+DNN is two times faster than MCTS+DNN,
however, MCTS+DNN is able to solve more problems.

Table 1: Experimental Results

Entry Search Policy/Cost solved/% timed out/% mean time per mol./s

1 BFS Hand-coded Heuristic 22.5 70 600
2 BFS Highway Network 87.5 0 29
3 MCTS Highway Network 95 0 68

4 CONCLUSION

In this work, we provided preliminary evidence that combining deep neural network policies with
BFS and MCTS can also be used for planning in a highly challenging and important non-game
domain, namely chemical synthesis planning. Our system outperforms the current state of the art,
BFS with hand-coded heuristics. Larger scale experiments are currently ongoing. In future work, we
seek to explore learning value functions to perform truncated search, learning better policies, and
exploit transpositions. Another interesting avenue is to use more powerful, but slower algorithms to
calculate values for transformations, for example our recently proposed model of chemical reasoning
[Segler & Waller (2017b)]. We envision that our algorithm will become a valueable tool for synthetic
chemists in industry and academia.
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